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Abstract 
 
Wildfires play an important role in shaping landscapes and as a source of CO2 and particulate matter, and 
are a typical spatial point process studied in many papers. Modeling the spatial variability of a wildfire 
could be performed in different ways and an important issue is the computational facilities that the new 
techniques afford us. The most common approaches have been through point pattern analysis or by Markov 
random fields. These methods have made it possible to build risk maps, but for many forest managers it is 
very useful to know the size of the fire as well as its location. In this work, we use Stochastic Partial 
Differential Equation (SPDE) with Integrated Nested Laplace Approximation (INLA) to model the size of 
the forest fires observed in the Valencian Community, Spain. But the most important element in this paper 
is the process that needs to be carried out prior to simulating and analyzing the different point patterns, 
namely, the choice of the most suitable mesh for the database. We describe and take advantage of the 
Bayesian methodology by including INLA and SPDE in the modeling process in all the scenarios.  
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1. Introduction 
 
Modeling the spatial incidence of wildfires and the fire size is necessary to understand how global warming 
and climate change may affect the landscape in the coming years, and to determine what factors are related 
to spatial incidence and the size of the area burned (e.g., Díaz-Avalos et al., 2001, and Díaz-Avalos et al., 
2016). Wildfires can be associated with their spatial coordinates and the corresponding covariates, and this 
association makes it easier to represent them as a realization of a spatial stochastic process. Thus, even 
though methods such as Markov Random Fields may also be useful to respond to some scientific questions 
of interest, spatial point processes are the most appealing analytical tool to analyze the spatial and spatio-
temporal distribution of forest fires (Mandallaz and Ye, 1997; Xu and Schoenberg, 2011). Spatial point 
process theory is a rich subject that provides the mathematical fundamentals required to sustain methods 
that are useful to analyze phenomena with a spatial variation and make it possible to screen out the general 
factors that are related to such spatial variation. For a good introduction to spatial point processes, see 
Möller and Waagepetersen (2006).  

Previous studies have dealt with the problem of producing risk maps or of calculating the probability of a 
wildfire starting at some location inside a study area D using statistical methods (e.g., Serra et al., 2014 a, 
b; Barros and Pereira, 2014). Despite their usefulness, most of the studies have not considered the burned 
area caused by each wildfire in the same way as in this paper. Statistical methods used to produce wildfire 



risk maps have included Markov Random Fields (Díaz-Avalos et al., 2001) and spatial point processes 
(Juan et al., 2012; Møller and Díaz-Avalos, 2010; Serra et al., 2014 a, b). All these approaches have 
included the effect of spatial covariates. 

Nevertheless, the previous points in the work are the process of simulating, analyzing and modeling the 
three real patterns: regular, inhibition and cluster. We fitted several models, starting with models that 
include two simulated covariates. All the models have been compared with the use of Deviance Information 
Criterion (DIC) and the Watanabe-Akaike information criterion (WAIC) (Spiegelhalter et al., 2002; 
Watanabe, 2010).  

Moreover, the most important objective of this work is to show the benefits of using Stochastic Partial 
Differential Equation (SPDE) with Integrated Nested Laplace Approximation (INLA) for spatial data 
(Ehlers and Zevallos, 2015; Lindgren et al., 2011; Martins, et al. 2013; Neyens et al., 2018; R-INLA, 2015; 
Rue et al., 2009; Ruiz-Cárdenas et al., 2012). Previous studies (Taylor and Diggle, 2013) have described 
the difficulty of working with INLA for specific parameters, i.e., spatial parameters, but this problem could 
be solved with the use of SPDE in the majority of scenarios. 
 
Previously, however, it is necessary to introduce the methodology, the simulation, and the usefulness of 
this methodology. This will be done step by step. Some previous papers (e.g., Díaz-Avalos et al., 2016) 
have identified the main problem of using this methodology as the choice of mesh, but this was only a small 
step. In this paper we present the procedure for the real process of analyzing the different spatial point 
processes more accurately, as previously defined. 
 
Nowadays, the problem is to choose the perfect mesh formed with the SPDE of each pattern in a spatial 
point process, which is the main objective in this paper. Thus, it will be a valuable aid for researchers who 
are faced with the question: which is the correct mesh for my case?  

The rest of the paper is organized as follows: Section 2, Methods, gives all the details needed to clarify the 
Bayesian methodology used and Spatial Point Process; Section 3, the Simulation study, is followed by the 
models for the simulated data in Section 4. Section 5 describes and discusses the results and the 
interpretation of applied wildfire data. We finish with Discussion and conclusions in Section 6. To end, the 
code used is presented in Appendix A and other graphical results are shown in Appendix B. 

2. Methods 
 
Spatial Point Processes 
 
A spatial point process is a stochastic process in which we observe the locations of some events of interest 
within a bounded region D (Bivand et al. 2007). Spatial point process models are useful tools to model 
irregularly scattered point patterns that are frequently encountered in all kinds of studies. Except in the 
simplest cases (Poisson processes), the points or individuals (wildfires) of a spatial pattern will be mutually 
stochastically dependent. The simplest of all possible models is the constant intensity Poisson process, 
frequently referred to as the model of ‘complete spatial randomness’ (CSR) (Juan et al., 2012).   

The next step is to decide whether the spatial point process is declared regular, cluster or inhibition, but this 
is not the ultimate question of this paper. This issue has been defined in many papers (e.g., Juan et al. 2012) 
and here it is assumed that all the possibilities proposed in the spatial point process exist. Modeling and 
inference for spatial point processes is an issue that has been investigated broadly over the last few years. 
The wide range of fields of application has been the main engine driving such increased interest. Spatial 
Poisson processes play an important role in both statistical theory (Daley and Vere-Jones 2003) and 
applications (Diggle 2003). A large number of papers have discussed inference for spatial point patterns, 
but mostly in relation to testing the CSR hypothesis (Cressie 1993; Diggle 2003). However, in many 
applications, modeling issues are related to detecting patterns and interactions between points in the pattern 
(Baddeley and van Lieshout 1995), although this is not the most important item addressed in this paper, but 
instead just a previous step.  



Integrated Nested Laplace Approximation 
 

This work also offers the possibility of studying Spatial Point Processes in another way, by using INLA. 
The data can be idealized as realizations of a stochastic process indexed by: 

 

where  is a subset of . 
 
The advantages of using INLA over other methods, such as basic statistical methods or more complex ones 
(like Markov Chain Monte Carlo (MCMC) (Tsanas and Xifara (2012)), are the following: 
 

• It works with reasonable computational times, thereby allowing the user to work with complex models 
quickly and efficiently. 

• It allows for the integration of as many covariates as desired, and also the incorporation of new 
covariates in the model in later steps. 

• It allows the level of significance of covariates to be analyzed. 
• It does not require working with normal distributions exclusively, due to the fact that it is based on 

Bayesian inference. 
 
The data can be presented by a collection of observations  (Blangiardo et al., 2013; Cameletti 
et al., 2013). A temporal correlation structure is a complicated mathematical entity and its practical 
estimation is very difficult if the covariates are included (Vlad et al., 2015). In statistical analysis, to 
estimate a general model it is useful to model the mean for the unit using an additive linear predictor, 
defined on a suitable scale: 

 

 
where  is a scalar, which represents the intercept, are the coefficients of the linear effects of 

the covariates  on the response, and  is a collection of functions defined in 
terms of a set of covariates . The first step in defining the structure of the data . 
A very general approach consists in specifying a distribution for  characterized by a parameter (usually 
the mean ) defined as a function of a structured additive predictor  through a link function , 
such that . The additive linear predictor  is defined as follows (Blangiardo and Camaletti, 
2015): 

 

where  represents the coefficient that quantifies the effect of the covariates in the response . This 
statistical analysis can be carried out with the freeware statistical package R, version 3.4.3 (R Core Team, 
2016) and the R-INLA package 2017 (R-INLA 2017). 
 
Different models can be obtained depending on the covariates, marks and pattern considered in each one. 
Once the battery of competing models has been obtained, the DIC and the WAIC criterium can be obtained 
for each of them in order to select the best one. The best models would be those with a high level of 
complexity and a high goodness-of-fit, that is to say, models that show the lowest WAIC and DIC should 
be chosen (Spiegelhalter et al., 2002; Watanabe, 2010):  
 

𝐷𝐼𝐶 =% 𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠	𝑜𝑓	𝑓𝑖𝑡%+%𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦% = 𝐷(𝜃) + 2𝑝; 

where 𝐷(𝜃) is the deviance evaluated at the posterior mean of the parameters and p= denotes the ‘effective 
number of parameters’, which measures the complexity of the model (Spiegelhalter et al., 2002). When the 
model is true, 𝐷(𝜃) should be approximately equal to the ‘effective degrees of freedom’, 𝑛 − 𝑝;. 
 
For each model, a covariate  is significant in relation to the response variable Yi if there is no change in 
the sign between the 0.025 quantile and the 0.975 quantile of the mean of the corresponding . In addition, 
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the positive sign of the mean of the corresponding implies that the response variable increases when the 
covariate increases. The higher the mean of  is, the more significant the covariate will be. 

 
 

Stochastic Partial Differential Equation 
 

We consider that the observed data were generated by spatial point processes with covariates or marks. R 
software (R Core Team, 2016) and the Bayesian estimation methodology, including the basic features of 
INLA approach and the SPDE (Lindgren et al., 2011; R-INLA, 2015; Rue et al., 2009), were used to fit 
parametric models of the observed spatial patterns of wildfires, including covariates that will play the role 
of risk factors showing spatial variability. This approach makes it possible to account for the effects of the 
risk factors on the spatial distribution of wildfire patterns (Aragó et al., 2016).  
 
A technical difficulty to fit models using continuously indexed Gaussian random fields is the big n problem, 
which imposes restrictions on the size of the matrices that have to be inverted in the model fitting process. 
This difficulty is overcome using a discrete approximation based on SPDEs. For some Gaussian random 
fields with Matérn covariance, SPDE provides an explicit link between the Gaussian random field and a 
discrete approximation based on a Gaussian Markov random field (GMRF) constructed on a triangulation, 
which can be used for computational purposes (Wist and Rue, 2006; Lindgren et al., 2011).  
 
The SPDE approach allows a Gaussian field (GF) with the Matérn covariance function to be presented as 
a discretely indexed spatial random process (GMRF), which has significant computational advantages. 
Gaussian Fields are defined directly by their first- and second-order moments and their implementation is 
highly time-consuming, which leads to the so-called “big n problem”. The idea is to construct a finite 
representation of a Matérn field by using a linear combination of basis functions defined in a triangulation 
of a given domain D. This representation leads to the SPDE approach, which is a link between the GF and 
the GMRF, and allows the spatio-temporal covariance function and the dense covariance matrix of a GF to 
be replaced with a neighborhood structure and a sparse precision matrix, respectively, both of which are 
typical elements that define a GMRF. This, in turn, yields substantial computational advantages (Lindgren 
et al., 2011). 
 
More particularly, the SPDE approach consists in defining the continuously indexed Matérn GF X(s) as a 
discrete indexed GMRF by representing a basis function defined on a triangulation of domain D: 

 
 
where n is the total number of vertices in the triangulation; {φl(s)} is the set of basis functions and {wi} are 
the zero-mean Gaussian distributed weights. The basis functions are not random, but are instead chosen to 
be piecewise linear on each triangle: 

 
 

The key is to calculate {wi}, which reports the value of the spatial field at each vertex of the triangle. The 
values inside the triangle will be determined by linear interpolation (Simpson et al., 2011). 
 
The problem of the choice of the best mesh for the SPDE approximation could be solved using the correct 
steps presented in the next sections. The steps followed in this paper are: simulation, testing the different 
meshes, choice of the best one for each case, modeling, and comparing the results with DIC and WAIC. 

 

3. Simulation  
 
Working with all the possibilities in spatial point processes, first of all, the data are simulated and we have 
Regular, Cluster and Inhibition (Figure 1), which are simulated in a regular region (type A). For each case, 
the numbers of points are 462, 467 and 416, respectively. 
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Figure 1: Type A (first row) and Type B (second row). Regular, Cluster and Inhibition. Simulated by lgcp 
(third row). 
 
For the second type that was simulated (type B), we have an irregular region and, in this case, the numbers 
of points are 329, 269 and 250, respectively. The structure of the irregular region is the province of 
Castellón in the Valencian Community, Spain. Finally, the third row are the data simulated by rLGCP 
function of statstat package. In the last possibility, the data is simulated directly as Log Gaussian Cox 
Process as another different possibility. 
 
 
 
 
 
 



 
The statistical description of the variables data is presented in Figure B1 in the Appendix B, with the Figures 
B2 and B3. These are related to the spatial distances, the most important component for the study of spatial 
point processes. The histogram of the distances between sites and the cumulative proportion are also shown 
for each case. It shows we have all types of distances in the data, which is the normal structure for spatial 
point processes.  
 
SPDEs for each pattern 

 
The next step is to choose the best mesh for the distribution of each database using SPDE. When the mesh 
is prepared, it is possible to use two different codes, including (or not) inla.nonconvex.hull. Indeed, the use 
(or not) of the boundary increases the number of cases. Next Figure shown the elements studied in this 
process (Figure 2). It is possible to see in the first line the mesh on the left and the vertex numbered on the 
right. In the second line, each element of the mesh separated. 
 

 
 
Figure 2: Mesh elements in SPDE. First line the mesh (left) and vertex numbered (right). Second line the 

elements of the mesh. 
 

In the same way, next Figures shown the possibilities for control the mesh presented by SPDE-INLA 
(Figures 3 to 5) with the corresponding table for the parameters (Table 1 to 3). 



 
Figure 3: Meshes with max.edge changed. 

 
 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 
Max.edge 0.1; 0.2 0.2; 0.2 0.05; 0.2 0.1; 0.5 0.1; 0.05 0.04; 0.05 
Cutoff 0.01 0.01 0.01 0.01 0.01 0.01 
Offset 0; -0.2 0; -0.2 0; -0.2 0; -0.2 0; -0.2 0; -0.2 
Number 
vertex 

575 501 1259 551 2373 2908 

Table 1: Parameters for Meshes 1 - 6. 

 
Figure 4: Meshes with max.edge changed, and cutoff. 



 
 Mesh 7 Mesh 8 Mesh 9 Mesh 10 Mesh 11 Mesh 12 
Max.edge 0.1 0.04 0.1; 0.2 0.1; 0.2 0.1 0.01 
Cutoff 0.01 0.01 0.1 0.001 0.001 -0.001 
Offset 0; -0.2 0; -0.2 0; -0.2 0; -0.2 0; -0.2 0; -0.2 
Number 
vertex 

795 3569 154 681 916 916 

Table 2: Parameters for Meshes 7 - 12. 
 

 
Figure 5: Meshes with max.edge, cutoff and offset changed. 

 
 Mesh 13 Mesh 14 Mesh 15 Mesh 16 Mesh 17 Mesh 18 
Max.edge 0.1; 0.2 0.01 0.1 0.1 0.1; 0.2 0.1; 0.2 
Cutoff 0.01 -0.001 -0.001 -0.001 0.01 0.01 
Offset 0.3; -0.2 0 0.3 -0.3 0.2; -0.4 0.1; 0.5 
Number 
vertex 

575 583 929 1077 1030 783 

Table 3: Parameters for Meshes 13 - 18. 
 
The different number of meshes is 11 possibilities for each regular and irregular region, with Regular, 
Cluster and Inhibition data, thus resulting in a total of 66 meshes. Figures B4 to B9 in Appendix 2 show 
the different meshes, with the meshes wiht lgcp function presented in Figures B10 to B11. 
 
In the case of irregular regions, the mesh can be produced in three ways: using only data, only the boundary 
or both of them together. In our case, we have used the last one, for the best model. If all the possibilities 
are presented, the total number of meshes is double. The numbers of vertices for each case are presented in 
Table 4. The dispersion in the number of vertices in each mesh is what really makes it difficult to select the 
best mesh.  
 

 



 Regular Data Inhibition Data Cluster Data 
Regular region 927; 103; 681; 1133; 

927; 44; 61; 927; 73; 
73; 82; 46; 429 

(Figure 4) 

896; 896; 896; 1340; 
1659; 850; 1312; 935; 
77; 77; 88; 144; 1253 

(Figure 5)  

1100; 101; 732; 1343; 
1141; 31; 65; 1100; 75; 75; 

72; 49; 559 
(Figure 6)  

Irregular region 732; 90; 566; 748; 
732; 36; 55; 1000; 72; 

84; 69; 42; 454 
(Figure 7) 

595; 128; 499; 617; 
671; 103; 60; 829; 84; 

84; 69; 42; 208 
(Figure 8) 

708; 129; 479; 684; 787; 
100; 53; 972; 84; 84; 69; 

42; 208 
(Figure 9) 

Lgcp Regular Regular region 
795; 107; 657; 1032; 

795; 38; 69; 1037; 80; 
80;  74;  34; 450 

 

Irregular region 
537; 84 420; 574; 537; 

39; 59; 840; 84; 
76; 66; 40; 375 

 

 

Table 4: Number of vertices for each case. 
 

 
 
For each case, it is necessary to decide on the best mesh. It depends on the number of points, computing 
time and if the data are inside the region. In the next step it will be selected with the DIC and WAIC.  The 
next figure shows the 18 meshes selected, and the characteristics of each case can also be seen. The 
conditions and the differences between the best and the worst selected for each case can be observed. The 
differences and the importance of choosing the best mesh for modeling are quite apparent. The same is 
done with the data simulated with lgcp function of spatstat package. The 9 meshes selected for the regular 
regions are in Figure 6 (a-b). 
 

 
Figure 6a: The 9 meshes selected for a regular region. 



 
Figure 6b: The 9 meshes selected for an irregular region. 

 

4. Applied models 
 

The next step is to develop the models for each case and to decide on the best one. For all cases, the models 
are presented with and without a spatial effect (In Table 5 the time in seconds of computation of each model 
is presented). For this reason, the number total of possibilities is twice that of the previous step. 
 
For the simulation steps, two covariates are presented, both Normal distributed. Indeed, one of them is the 
response variable and the other, with the product of the two of them, are the two sample covariates. The 
different components and information for the initial case are presented in the first part. Then, all the other 
cases are presented together. 
 
Case A: Regular Data with Regular region using the meshes selected in previous steps (Models M1-M3).   
Case B: Regular Data with Irregular region using the meshes selected in previous steps (Models M4-M6).   
 

  Model 1 Model 2 Model 3 Model 4 Model 5     Model 6  
Non-spatial effect  3.4882 1.7259 2.1738 1.6832 1.5079 1.4386 

Spatial effect  7.5670 4.0028 6.9747 6.9506 3.8036 5.3732 
Table 5: Time in seconds. 

 
The effect that variations in each simulated covariate had on the response variable was analyzed. For this 
purpose, INLA were obtained using the freeware statistical package R (version 3.4.3) and the R-INLA 
package. Models were obtained separately with or without spatial effect.  
 
The variable response was modeled against each covariate. Models are reported in Table 6, where the 
structure of each model is shown in: 

Y = βA + βB	V1 + βE	VBVE 



 
Each cell in Table 6 reports the model for the simulated data, and for the response variables V1 and V1*V2. 
In the same way, in this Table are presented the results for models M7: lgcp regular region and M8: lgcp 
irregular region data. The results are similar than the previous models (M1 to M6). 
 

  
𝜷𝟎 

Mean [0.025 quant, 0.975 quant] 

𝜷𝟏 

Mean [0.025 quant, 0.975 quant] 

𝜷𝟐 

Mean [0.025 quant, 0.975 quant] 

M1 - Non-Spatial effect 19.9561 [19.8591; 20.0530] 0.4667 [0.1027; 0.8304] -0.0231 [-0.0413; -0.0041] 

M1 - Spatial Effect 19.9574 [19.8574 ;20.0574] 0.4657 [0.1003; 0.8308] -0.0230 [-0.0413; -0.0047] 

M2 - Non-Spatial effect 19.9561 [19.8591;20.0530] 0.4667 [ 0.1027; 0.8304] -0.0231[-0.0413; -0.0049] 

M2 - Spatial Effect 19.9563 [19.8542; 20.0583] 0.4676 [0.1039; 0.8309] -0.0231 [-0.0413; -0.0049] 

M3 - Non-Spatial effect 19.9561 [19.8591; 20.0530] 0.4667 [0.1027;0.8304] -0.0231 [-0.0413; -0.0049] 

M3 - Spatial Effect 19.9565 [19.8549; 20.0580] 0.4678 [0.1038; 0.8315] -0.0231 [-0.0413; -0.0049] 

Hyperparameters for M1 with spatial 
effect k = 35.95037 su = 0.08259 r = 0.101414 

Precision for the Gaussian 
observations M1 t= 1.913073 se = 1.003121  

M4 - Non-Spatial effect 19.994 [19.8875, 20.1006] -0.0011 [-0.4354, 0.4328] 0.0004 [-0.0212, 0.0219] 

M4 - Spatial Effect 19.9951 [19.8848, 20.1053] 0.0011 [-0.4337, 0.4355] 0.0002[ -0.02135, 0.0218] 

M5 - Non-Spatial effect 19.9941 [19.8875, 20.1006]      -0.0011 [-0.4355, 0.4328] 0.0004 [-0.0212, 0.0219] 

M5 - Spatial Effect 0.0056 [ -62.082, 62.0415] -0.0010[-0.444, 0.4419] 0.0003 [-0.0216, 0.0223] 

M6 - Non-Spatial effect 19.994 [19.8875, 20.1006] -0.0011[-0.4354, 0.4328] 0.0003 [-0.02121, 0.0219] 

M6 - Spatial Effect    19.9995 [ 19.8822, 20.1191]      0.00001 [-0.4352, 0.4349]      0.0002 [-0.0213, 0.0219] 

Hyperparameters for M4 with spatial 
effect k = 317.6976 su = 0.04487588 r = 0.07875396 

Precision for the Gaussian 
observations M4 t= 1.755458 se = 0.982564  

M7 - lgcp -regular - Spatial effect 19.662[9.5139,27.0881] 0.0002[-0.0205, 0.0209]  

M7 - lgcp -regular - Non-Spatial 
effect 20.0291[19.9250,20.1330] 0.0004[-0.0205, 0.0212]  

M8 - lgcp -irregular - Spatial effect 19.5897[9.5736,26.4373 -0.0395[-0.0674, -0.0116]  

M8 - lgcp -irregular - Non-Spatial 
effect 20.0219{19.8871,20.1566] -0.0287[-0.0665, -0.0110]  

Hyperparameters for M7, M8 with 
spatial effect 

k = 0.59186 

k = 0.5939 

su = 0.34376 

su = 0.288307 

r = 7.809422 

r = 10.68171 

Precision for the Gaussian 
observations M7, M8 

t= 1.897201 

t= 1.65136 

se = 1.028346 

se = 1.05865 
 

Table 6: Intercept and the fixed effects (𝜷𝒊) for the models by considering each response variable against 
each covariate. The hyperparameters are included. 



If the parameters are compared for non-spatial or spatial effect, it is clear that there are not many differences 
(Figures 7 and 8). 

 

 
Figure 7: Comparison of model parameters. 

 

 

 
Figure 8: Parameter structure for regular (first row) and irregular (second row) in lgcp data. 

 
 
 
On the other hand, DIC and WAIC are presented with the same information so as to allow comparison 
among the models. Table 7 shows the summary results related to goodness-of-fit for the battery of models. 
 
 
 

  DIC             WAIC 

M1 - Non-spatial effect  1188.787 1190.530 

M1- Spatial effect  1188.317 1190.212 

M2 - Non-spatial effect  1188.788 1190.531 

M2- Spatial effect  1188.862 1190.632 

M3 - Non-spatial effect  1188.788 1190.530 



M3- Spatial effect  1188.944 1190.624 

M4 - Non-spatial effect  926.5833 929.0286 

M4- Spatial effect  926.7945 929.1223 

M5 - Non-spatial effect  926.5854 929.0288 

M5- Spatial effect  924.6721 927.8104 

M6 - Non-spatial effect  926.5810 929.0302 

M6- Spatial effect  926.3983 928.7516 

M7 - Non-spatial effect  1118.003 1117.812 

M7 - Spatial effect  1116.516 1116.435 

M8 - Non-spatial effect  714.4145 714.4474 

M8 - Spatial effect  713.3403 713.3548 

Table 7: DIC and WAIC of parameters all models. 
 
It could be deduced from the results obtained that in both cases including a higher number of covariates 
improves the model because DIC and WAIC become lower, which indicates that these models allow better 
prediction. This was the case, for example, when we analyzed the values of DIC and WAIC for the three 
models that relate V1 with every single covariate V1*V2, therefore showing it is a better model. 
 
The next step is to study the spatial effect, in two formats: normal and 3D. This is presented in Figure 9a 
and 9b.  

 

 
Figure 9a: Spatial effect: Regular region for lgcp. 

 
 
 



  

      
 

Figure 9b: Spatial effect: Irregular region lgcp simulated. 
 
 
By means of the corresponding model parameters, the spatial effect can be presented, showing the 
correlation with the corresponding distance (Figure 10). 
 

 
Figure 10: The correlation depending on the distance in the model. 

 
A previous step for prediction is validation. This is performed by comparing the residuals and real data, 
and comparing prediction and real data, as can be seen in Figure 11 below.  
 



        

 
Figure 11: Residual comparison (left), real–predicted differences (right). 

 
 
The residuals for lgcp data simulated are shown in next Figure 12: 
 

 
Figure 12: Standardized Residuals vs. fitted values. 

 
In the next step, the simulated data could be presented, together with the predicted model and the related 
standard deviation. It is shown in the next Figure 13 for a regular and irregular case for lgcp.  The other 
cases are shown in Figure B12 in the Appendix. 



Figure 13: Value models for regular region with lgcp data (first row) and irregular region (second row). 
 
 
The code for all steps is presented in Appendix A. 
 
 

5. Real Data. Burned area in wildfires 
 
A wildfire is any uncontrolled fire in combustible vegetation that occurs in the countryside or a wilderness 
area (Cambridge, 2008). A wildfire differs from other fires by its extensive size, the speed at which it can 
spread out from its original source, its potential to change direction unexpectedly, and its ability to jump 
gaps such as roads, rivers, and fire breaks (National Interagency Fire Center, 2011). Wildfires are 
characterized in terms of the cause of ignition, their physical properties such as speed of propagation, the 
combustible material present, and the effect of weather on the fire (Flannigan et al., 2006).  
 
Fire risk is very important in the Mediterranean region because it has a marked seasonality, with high 
temperatures and low humidity in summer. Climatic trends interact with the landscape dynamics. The 
process of afforestation of the different agricultural areas with the increasing abandonment of rural 
activities has led to a situation of extreme vulnerability to the risk of fires, especially in mountainous 
Mediterranean areas, where this has led to abandonment and still represents an expansion, accumulation 
and greater continuity of the forest. In addition, other factors such as the development of second homes in 
these forest areas, the proliferation of roads and electricity networks, and an increased presence of human 
beings make this countryside more prone to suffer large forest fires due to the fact that they facilitate the 
process of starting fires (Díaz-Delgado and Pons, 2001; Moreira et al., 2001). 
 
Given that wildfires are a natural element of the Mediterranean ecosystem, the prevention and suppression 
of forest fires should be addressed in order to lower the risk and vulnerability levels to values that are 
tolerable for society.  
 
If every wildfire is associated with its spatial coordinates, longitude and latitude of the centroid of the 
burned area or the place where it was detected, along with other variables such as size or cause of the forest 



fire, and controlling for the moment in time in which it was produced, one can identify all wildfires with a 
spatial-temporal stochastic process. Such processes, called spatial point processes, often display 
dependence between the spatial positions and moments in time, and interdependence between them. What 
is usually of more interest is the detection of trends in the intensity of fire locations, and determination of 
how (or whether) such trends are influenced by covariates, observable at each location of the spatial 
window. These covariates might include vegetation or land use, other descriptors of terrain (such as 
elevation, slope and orientation), and still others such as proximity to concentrations of human population 
or to concomitants of human activity (roads and railroads). Interaction between points may in general be of 
some interest in its own right. More important is the impact of the presence of interaction on statistical 
inference concerning trends and their dependence upon covariates. Temporal clustering of wildfires, 
whether deriving from multiple ignition lightning events, arson (Butry and Prestemon, 2005), or other 
sources, combined with favorable fuel and weather conditions, can force suppression resource rationing 
across space. Spatial clustering can also indicate the presence of risk factors. 
 
Data setting 

 
We analyze the patterns produced by wildfire incidents in the Valencian Community, located on the north-
east coast of the Iberian Peninsula. The region is bordered by Catalonia to the north and the Iberian System 
range of mountains to the west. Furthermore, the region is delimited to the east by the Mediterranean Sea. 
It is a region with a surface area of 23,245 square kilometers, representing 4.6% of the Spanish national 
territory.  
 
A total of 315 fires were recorded in the study area during 2015 (Figure 14). In addition to the locations of 
the fire centroids, in Cartesian coordinates (Mercator transversal projections, UTM, Datum ETRS89, zone 
31-N), several covariates were also considered.  
 
 

 
Figure 14: Distribution of forest fires in the Valencian Community in 2015. 

 
 
 
The normal steps used for exploration of data in such cases are: 
 
1) Data exploration 
2) Outliers  
3) Collinearity  
4) Relationships Y vs. X 
5) Variance Inflation factors 



6) Interactions (is the quality of the data good enough to include them?) 
7) Zero inflation justification. 
 
The covariates, related to wildfires, used for the application are: typology, cause, causative, days last rain, 
temp_max (maxim temperature), Relative_H (Relative Humidity), wind speed, wind direction, combined 
model, danger degree, fire type, total tree, total not tree, Total (tree and not tree). The relationships between 
the covariates are shown in Figure 15 (boxplots). 
 
 

 
Figure 15: Boxplot covariates: cause, days last rain, temp_max, Relative_H, wind speed, wind direction, 

combined model, danger degree, fire type. 
 

 
 
 
 
The next step is the Variance Inflation factors (GVIF), seeking the optimal variables and using only values 
below 2 because these are informative (Table 8). 
 
 
 
 
 
 



 GVIF - Step 1 GVIF - Step 2 
typology 1.060767 1.060414 
group typology 2.441872  
cause 1.211273 1.080824 
causative 2.444984  
days last rain 1.256075 1.221050 
temp_max 1.520976 1.490312 
Relative_H 1.412322 1.385338 
wind speed 1.435472 1.435213 
wind direction 1.690188 1.676258 
combined model 1.182671 1.171493 
danger degree 1.412806 1.393972 
fire type 1.103011 1.100342 
total tree 1.114397 1.107647 
total no tree 1.199396 1.194232 

Table 8: Values of GVIF in the two steps. 
 
On representing the covariates in order to study the collinearity, no problematic structures or outliers are 
found. The next step, which is necessary for the study of real data, is the relationships. The most likely 
option to obtain patterns, however, is the relationship between each covariate and the response variable. In 
this case, the response variable is TOTAL (tree and not tree together). This is represented in Figure 16 and 
there is no pattern present. 
 
 

 
Figure 16: Response vs. covariates. 



In the same way, the distances are studied, and different distances are found, which gives us the chance to 
continue the study including all of the referenced points (Figure 17). 
 
 

 
Figure 17: Frequency and cumulative proportion of distances. 

 
 
Finally, before selecting the model, the decision regarding the model selected is important if the number of 
0 in the data is high, since in this case the model will be Zero Inflation. There is 42.22% of zero data, and 
we will use a Zero-inflated model (Figure 18). 
 

 
Figure 18: Values of response data. 

 
 
 
Following the steps presented above, we use with simulations data is the SPDE, the same number of meshes, 
9+4 (Figure 19) and Figure 20 below shows the two selected meshes. 
 



 
Figure 19: The 13 meshes, with respective numbers of vertices: 1612, 1430, 1612, 2021, 1732, 1356, 

1592, 2071, 794, 1778, 600, 1836, 2801. 

 
Figure 20: The meshes selected, with the previous steps. 

 
 



 
The models applied for the real data, that is, wildfires in the Valencian Community in 2015, have both non-
spatial and spatial effects and this affects the computing time (Table 9). Table 10 shows the value of the 
parameters for each model for real data. In Figure 21, the difference between the values of the parameters 
is apparent, and it is important for the final results. 
 

  Model 1 Model 2 

Non-spatial effect  1.7078 1.3112 

Spatial effect  14.7019 23.9632 

Table 9: Time in seconds. 
 

 

  

𝜷𝟎 

Mean [0.025 quant, 0.975 
quant] 

𝜷𝟏 

Mean [0.025 quant, 0.975 
quant] 

𝜷𝟐 

Mean [0.025 quant, 0.975 
quant] 

M1 - Non-Spatial 
effect 2.2439 [2.1916, 2.2955] -0.0352 [-0.0394, -0.0311] 0.0016 [0.00152, 0.0017] 

M1 - Spatial Effect 0.2974 [-0.2243, 0.7566] -0.0148 [-0.0300, -0.0002] 0.0025 [0.0015, 0.0036] 

M2 - Non-Spatial 
effect 2.2439 [2.1917, 2.2955] -0.0352 [-0.0394, -0.0311] 0.0016 [0.0015, 0.0017] 

M2 - Spatial Effect 0.2384 [-0.3764, 0.7848] -0.0163 [-0.029, -0.0039] 0.0033 [0.0022, 0.0045] 

 k = 0.5166625 su = 2.467049 r = 5.694205 

Table 10: Parameters of the model. 
 

 
Figure 21: Comparison of parameters with and without spatial effect. 

 
Table 11 below shows the summary results related to goodness-of-fit for the battery of models. DIC and 
WAIC. 

  DIC             WAIC 

M1 - Non-spatial effect  5183.299      4574.274 

M1- Spatial effect  5184.681      4573.108 

M2 - Non-spatial effect  1104.704      1131.896 

M2- Spatial effect  -Inf                   -Inf 

Table 11: DIC and WAIC. 



 
With these results, it can be deduced that including a higher number of covariates improves the model 
because DIC and WAIC become lower, which indicates that these models enable better prediction. Figure 
22 shows the spatial effect of the Valencian Community in two formats. 
 

 
Figure 22: Spatial effect. 

 
In this case, validation is performed by comparing residuals and with the correlation between the real data 
and the model data (Figure 23 up). The relationship with the distances can also be seen in Figure 23. The 
correlation in this case, r = 0.8309389, has a high value, which suggests a good result.  

 
Figure 23: Differences between real and model data (up), and Correlation–distance (down). 



6. Conclusions and Discussion 
 
The problem of Bayesian Inference using SPDE for spatial point processes is considered in this work. The 

steps proposed for considering the best solution for each case are presented and modeled using simulated 

process models, where the latent Gaussian field is extended to a GRMF.  

A computationally efficient method for Bayesian inference, based on INLA and SPDE, was presented. We 

looked at an application for modeling a wildfire dataset in which the process is faster and clearer. The 

example was of interest since the point pattern shows clear signs of being affected by some covariates and 

spatial elements.  

In a more general context of spatial point process modeling, the data structure we considered here differs 

from the point patterns typically analyzed in the point process literature, but it is important to show that this 

SPDE methodology affords researchers easier and computationally efficient results. It is very important to 

note the steps used in the process and the reduction in computational time.  

The advantage of INLA-SPDE is that it is able to predict the subsequent marginal distributions of the model 

parameters as well as the model responses without carrying out extensive simulations. This methodology 

can be potentially applied to mapping the spatial distribution of environmental variables or in all kinds of 

spatial point patterns. Therefore, the use of triangulated meshes in INLA-SPDE may lead to the possibilities 

of working with simple or complex databases.  

The purpose of this study was to demonstrate that the use of the INLA-SPDE package (Rue et al., 2009, 

and Lindgren et al., 2011) to analyze all kinds of point patterns is faster, clearer, and computationally 

effective. The results showed that INLA-SPDE can also be a complementary tool in the wildlife biologist’s 

analytical toolkit, where models are specified using a syntax that should be familiar to users of R, and where 

data are formatted in a straightforward way with relatively few lines of code.  

As a conclusion, the SPDE methodology is a relevant element for the study of the spatial data, but it could 

be improved with the inclusion of the temporal effect as an element not separately with the space. In the 

same way, the spatial effect included in the model by SPDE is difficult because there are many elements 

included in this methodology and it is not well known by the researchers. It is shown in the results with 

wildfires because the small change in a parameter could modified the results. Nevertheless, the use of 

INLA-SPDE may lead to two possibilities, working with simple or complex databases, and this process can 

be potentially applied to mapping the spatial distribution of spatial data in all kinds of point patterns, in 

geostatistical data and including covariates.  
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Appendix A: CODE 
 

# The code presented is only for regular cases. The results of all cases, regular and irregular regions (two possibilities), are presented 
in the paper for Regular, Inhibition and Cluster data. 
 

A) Data 
 
# Regular: 
myRegular <- rpoispp(400, win=owin(c(0,1),c(0,1))) 
v1R=rnorm(length(myRegular$x), mean = 20, sd = 1) 
v2R=rnorm(length(myRegular$x), mean = 0, sd = 5) 
Regular=data.frame(x=myRegular$x,y=myRegular$y,v1R,v2R) 
 
# Inhibition: 
myStrauss <- rStrauss(0.05,0.2,1,square(100)) 
v1I=rnorm(length(myStrauss$x), mean = 20, sd = 1) 
v2I=rnorm(length(myStrauss$x), mean = 0, sd = 5) 
Inhibition=data.frame(x=myStrauss$x,y=myStrauss$y,v1I,v2I) 
 
# Cluster: 
myThomas = rThomas(50, 0.035, 8) 
v1C=rnorm(length(myThomas$x), mean = 20, sd = 1) 
v2C=rnorm(length(myThomas$x), mean = 0, sd = 5) 
Cluster=data.frame(x=myThomas$x,y=myThomas$y,v1C,v2C) 
 
# Iregular región: 
#  Regular: 
myRegular_cont <- rpoispp(450, win=polyowin) 
v1R_cont=rnorm(length(myRegular_cont$x), mean = 20, sd = 1) 
v2R_cont=rnorm(length(myRegular_cont$x), mean = 0, sd = 5) 
Regular_cont=data.frame(x=myRegular_cont$x,y=myRegular_cont$y,v1R_cont,v2R_cont) 
 
# Cluster: 
myThomas_cont = rThomas(50, 0.03, 8,win=polyowin)v1C_cont=rnorm(length(myThomas_cont$x), mean = 20, sd = 1) 
v2C_cont=rnorm(length(myThomas_cont$x), mean = 0, sd = 5) 
Cluster_cont=data.frame(x=myThomas_cont$x,y=myThomas_cont$y,v1C_cont,v2C_cont) 
 
# Inhibition: 
 myStrauss_cont <- rStrauss(1000,0.7,0.05,W=polyowin) 
 v1I_cont=rnorm(length(myStrauss_cont$x), mean = 20, sd = 1) 
 v2I_cont=rnorm(length(myStrauss_cont$x), mean = 0, sd = 5) 
Inhibition_cont=data.frame(x=myStrauss_cont$x,y=myStrauss_cont$y,v1I_cont,v2I_cont) 
 

B) Descriptive, Histogram and Cumulative 
 
par(mfrow=c(2,2)) 
ggplot(lgcp_irregular, aes(x = lgcp_irregular$v1R)) + geom_histogram(binwidth = 1) 
ggplot(lgcp_irregular, aes(x = lgcp_irregular$v2R)) + geom_histogram(binwidth = 1) 
ggplot(lgcp_irregular, aes(x = lgcp_irregular$v1R)) + geom_density() 
ggplot(lgcp_irregular, aes(x = lgcp_irregular$v2R)) + geom_density() 
 
Loc <- cbind(locR[,1], locR[,2]) 
head(Loc) 
D <- dist(Loc) 
par(mfrow = c(1,2), mar = c(5,5,2,2), cex.lab = 1.5) 
hist(D, freq = TRUE, main = "", xlab = "Distance between sites",ylab = "Frequency") 
text(0.08, 10000, "A", cex = 1.5) 
plot(x = sort(D), y = (1:length(D))/length(D),  
     type = "l",xlab = "Distance between sites",ylab = "Cumulative proportion") 
text(0.2, 0.9, "B", cex = 1.5) 
 

C) Mesh 
 
S <- cbind(myRegular$x, myRegular$y) 
locR=S 



meshR <- inla.mesh.2d(locR, max.edge=c(100),cutoff=0.001) 
plot(meshR) 
points(locR, col = 1, pch = 16 , cex = 1) 
meshR$n  
meshR$loc[,1:2] 
points(meshR$loc[,1:2]) 
 
# 9 meshes: 
mesh1 <- inla.mesh.2d(Loc, max.edge=c(100, 100), cutoff = 0) 
mesh2 <- inla.mesh.2d(Loc, max.edge=c(100, 100), cutoff = 0.1) 
mesh3 <- inla.mesh.2d(Loc, max.edge=c(100, 100), cutoff = 0.01)   
mesh4 <- inla.mesh.2d(Loc, max.edge=c(100, 100), cutoff = 0.001,offset=c(0,-0.2)) 
mesh5 <- inla.mesh.2d(Loc, max.edge=c(12500, 15000)) 
mesh6 <- inla.mesh.2d(Loc, max.edge=c(100, 100), cutoff = 0.25) 
mesh7 <- inla.mesh.2d(Loc, max.edge=c(100, 100), cutoff = 0.15) 
mesh8 <- inla.mesh.2d(Loc, max.edge=c(15, 15), cutoff = 0) 
hull <- inla.nonconvex.hull(Loc) 
mesh9 <- inla.mesh.2d(boundary = hull, max.edge=100, cutoff = 0) 
#Number of vertices: 
c(mesh1$n, mesh2$n, mesh3$n, mesh4$n, mesh5$n, mesh6$n,  
  mesh7$n, mesh8$n, mesh9$n) 
 
# Following 4 meshes: 
bound1 <- inla.nonconvex.hull(Loc) 
bound2 <- inla.nonconvex.hull(Loc, convex=0.3, concave=-0.15) 
bound3 <- inla.nonconvex.hull(Loc, concave=0.5) 
bound4 <- inla.nonconvex.hull(Loc, concave=0.1, resolution=c(300, 300)) 
mesh10 <- inla.mesh.2d(boundary = bound1, max.edge=100,  cutoff = 0) 
mesh11 <- inla.mesh.2d(boundary = bound2, max.edge=100, cutoff = 0) 
mesh12 <- inla.mesh.2d(boundary = bound3, max.edge=100, cutoff = 0) 
mesh13 <- inla.mesh.2d(boundary = bound4, max.edge=100, cutoff = 0) 
#Number of vertices: c(mesh10$n, mesh11$n, mesh12$n, mesh13$n) 
 

D) Models 
 
#Regular case 
 
S <- cbind(myRegular$x, myRegular$y) 
locR=S 
Loc <- cbind(locR[,1], locR[,2]) 
A1<- inla.spde.make.A(meshRegular, loc = Loc) 
dim(A1) 
spde_1   <- inla.spde2.matern(meshRegular, alpha = 2) 
w.index <- inla.spde.make.index('w', n.spde = spde_1$n.spde) 
 
Xm <- model.matrix(~ -1+Regular$v1R * Regular$v2R, data = Regular) 
N <- nrow(Regular) 
colnames(Xm) 
X <- data.frame(V1          = Xm[,1], V2 = Xm[,2],V1.V2 = Xm[,3]) 
 
StackFit <- inla.stack( 
  tag = "Fit",  data = list(y = X$V1),   A = list(1, 1, A1),                   
  effects = list( Intercept = rep(1, N), X = X, w = w.index)) 
 
# Model1 (no spatial effect) and Model2 (spatial effect) 
Model1 <- y ~ -1 + Intercept + V2 +V1.V2 
Model2 <- y ~ -1 + Intercept + V2 +V1.V2 + f(w, model = spde_1) 
IModel1 <- inla(Model1, family = "gaussian", data = inla.stack.data(StackFit), 
             control.compute = list(dic = TRUE, waic = TRUE), 
             control.predictor = list(A = inla.stack.A(StackFit))) 
summary(IModel1) 
IModel2 <- inla(Model2, family = "gaussian",  
      data=inla.stack.data(StackFit), control.compute = list(dic = TRUE, waic = TRUE), 
             control.predictor = list(A = inla.stack.A(StackFit))) 
summary(IModel2) 
# The same for all cases. 
 
# Model comparison (DIC, WAIC) 
 
dic1  <- c(IModel1$dic$dic,IModel2$dic$dic,IModel3$dic$dic, IModel4$dic$dic,IModel5$dic$dic,IModel6$dic$di) 
waic1 <- c(IModel1$waic$waic, IModel2$waic$waic,IModel3$waic$waic, IModel4$waic$waic, 
IModel5$waic$waic,IModel6$waic$wai) 
Z.out1     <- cbind(dic1, waic1) 
rownames(Z.out1) <- c("Gaussian lm","","",   
                      "Gaussian lm + SPDE","","") 
Z.out1 



 
# Visualize the differences 
Combined <- rbind(IModel1$summary.fixed[, c("mean", "0.025quant","0.975quant")],IModel2$summary.fixed[, c("mean", 
"0.025quant", "0.975quant")]) 
Combined$WhichModel <- rep(c("lm", "spatial lm"), each = 3) 
Combined$WhichVariable <- rep(rownames(IModel1$summary.fixed), 2) 
colnames(Combined) <- c("Mean", "Lo", "Up", "WhichModel", "WhichVariable") 
Combined 
 
# Graphically 
 
p <- ggplot() 
p <- p + geom_point(data = Combined, aes(x = WhichModel, y = Mean)) 
p <- p + geom_errorbar(data = Combined, aes(x = WhichModel, ymax = Up,  
                           ymin = Lo), width=0.2) 
p <- p + geom_hline(yintercept = 0, linetype = 2)  
p <- p + xlab("Parameters") + ylab("Values") 
p <- p + theme(text = element_text(size=15))  
p <- p + facet_wrap( ~ WhichVariable, scales = "free_y") 
p <- p + theme(legend.position="none")  
p 
 
# Hyperparameters 
SpFi.w <- inla.spde2.result(inla = IModel1, name = "w",spde = spde_1, 
                            do.transfer = TRUE) 
names(SpFi.w) 
Kappa <- inla.emarginal(function(x) x, SpFi.w$marginals.kappa[[1]] ) 
sigmau <- inla.emarginal(function(x) sqrt(x),  
                         SpFi.w$marginals.variance.nominal[[1]] ) 
r <- inla.emarginal(function(x) x, SpFi.w$marginals.range.nominal[[1]] ) 
Kappa # POSTERIOR MEAN OF KAPPA 
sigmau # POSTERIOR MEAN OF SIGMA U 
r     # RANGE 
 
# Correlation structure with the previous parameters 
D     <- as.matrix(dist(meshRegular$loc[,1:2])) 
d.vec <- seq(0, max(D), length = 100)       
Cor.M <- (Kappa * d.vec) * besselK(Kappa * d.vec, 1)  
Cor.M[1] <- 1 
par(mfrow=c(1,1), mar = c(5,5,2,2)) 
plot(x = d.vec, y = Cor.M, pch = 16, type = "l", cex.lab = 1.5, xlab = "Distance",  
     ylab = "Correlation", xlim = c(0, 0.3)) 
 

E) Spatial random field 
w.pm <- IModelo1b$summary.random$w$mean   
w.proj <- inla.mesh.projector(meshRegular)  
w.pm100_100 <- inla.mesh.project(w.proj, w.pm) 
grid <- expand.grid(x = w.proj$x, y = w.proj$y) 
grid$z <- as.vector(w.pm100_100)           
levelplot(z ~ x * y, data = grid, aspect = "iso", 
          scales = list(draw = TRUE), 
          xlab = list("Easting ", cex = 1.5), 
          ylab = list("Northing", cex = 1.5), 
          main = list("Posterior mean spatial random field", cex = 1.5), 
          panel=function(...){panel.levelplot(...) 
            grid.points(x = Regular$x,  
                        y = Regular$y, pch = 1, size = unit(0.5, "char"))}  ) 
 

F) The previous plot but in 3D 
xygrid <- expand.grid(w.proj$x, w.proj$y) 
Data3D <- data.frame(x = xygrid[,1], 
                     y = xygrid[,2], 
                     z = melt(w.pm100_100)[,3]) 
names(Data3D) <- c("x", "y", "z") 
p <- ggplot(Data3D, aes(x, y, z = z), col = rgb(1, 0.5, 0.5, 0.7)) 
p <- p + stat_contour(geom="polygon",aes(fill = ..level..)) 
p <- p + geom_tile(aes(fill = z)) 
p <- p + stat_contour(geom="polygon",aes(fill = ..level..)) 
p <- p + stat_contour(aes(colour = ..level..)) 
p <- p + xlab("X") + ylab("Y")  
p          
 

G) Model and standard deviation 
grid.arrange(levelplot(inla.mesh.project(proj, field=IModel2$summary.fitted.values$mean[1:meshRegular$n]),  
              xlab='X', ylab='Y ', scale=list(draw=TRUE), col.regions=topo.colors(30)),  



             levelplot(inla.mesh.project(proj, field=IModel2$summary.fitted.values$sd[1:meshRegular$n]),  
                       xlab='X', ylab='Y ', scale=list(draw=TRUE),  
                       col.regions=topo.colors(30)), nrow=1 

H) Model validation 
 
StackFit <- inla.stack(tag = "Fit", 
  data = list(y = X$V1), A = list(1, 1, A1),                   
  effects = list(Intercept = rep(1, N), X = X, w = w.index)) 
IModel2_b <- inla(Model2, 
                  family = "gaussian",  
                  data=inla.stack.data(StackFit), 
                  control.compute = list(dic = TRUE, waic = TRUE), 
                  control.predictor = list(A = inla.stack.A(StackFit))) 
FitIndex <- inla.stack.index(StackFit, tag = "Fit")$data 
IModel1b.a <- IModel1b_b$summary.fitted.values[FitIndex,"mean"] 
IModel1b.E <- X$V1 - IModel1b.a 
plot(x = IModelo1b.a, y = IModelo1b.E) 
plot(x = IModelo1b.a,  y = X$V1) 
cor(IModelo1b.a, X$V1) 
 
 

I) Model interpretation 
 
Out.IModel1b <- IModel2_b$summary.fixed 
print(Out.IModel1b, digits = 2) 
#To get sigma for the equation 
tau <- IModelo1b_b$marginals.hyperpar$`Precision for the Gaussian observations` 
sigma <- inla.emarginal(function(x) (1/sqrt(x)), tau) 
mean(tau) 
sigma 
 

J) Prediction 
 
StackFit <- inla.stack(tag = "Fit",data = list(y = X$V1),   
  A = list(1, 1, A1),  effects = list( 
Intercept = rep(1, N), X = X, w = w.index)) 
dim(A1)  
rowSums(A1)  
colSums(A1)  
dim(inla.stack.A(StackFit)) # 410 821 
Xm <- model.matrix(~ -1+Regular$v1R * Regular$v2R, data = Regular) 
X <- data.frame(V1          = Xm[,1], 
                V2          = Xm[,2], 
                V1.V2        = Xm[,3]) 
StackPred <- inla.stack( 
  tag = "Predict",data = list(y = NA),A = list(1, 1),                   
  effects = list(Intercept = rep(1, nrow(X)), X = X)) 
dim(inla.stack.A(StackPred))  
All.stacks=inla.stack(StackFit,StackPred) 
dim(inla.stack.A(All.stacks))  
 
IModel1b.pred <- inla(Model2b, 
                  family = "gaussian",  
                  data=inla.stack.data(All.stacks), 
                  control.compute = list(dic = TRUE), 
                  control.predictor = list(A = inla.stack.A(All.stacks))) 
 
dim(IModel1b.pred$summary.fitted.values)  
index.Fit <- inla.stack.index(All.stacks, tag = "Fit")$data 
index.Pred <- inla.stack.index(All.stacks, tag = "Predict")$data 
 
IModel1b.values <- IModel1b.pred$summary.fitted.values[index.Fit, c(1,3,5)]   
IModel1b.pred <- IModel1b.pred$summary.fitted.values[index.Pred, c(1,3,5)]  
dim(IModelo1b.values) 
dim(IModelo1b.pred) 
 
Dif=IModel1b.values[,1]-IModel1b.pred[,1] 
plot(Dif1,ylim=c(-0.03,0.03)) 
abline(h=0.0) 
 

K) Simulation 
 
IModel1b.sim <- inla(Model1b, family = "gaussian", data=inla.stack.data(All.stacks), control.compute = list(config=TRUE),  
control.predictor = list(A = inla.stack.A(All.stacks))) 
set.seed(12345) 



Simulation1=inla.posterior.sample(n=1,result=IModel1b.sim,seed=12345) 
# Simulated data: 
Simulation1[[1]]$latent 
proj <- inla.mesh.projector(meshRegular)  
meshRegular$n  
levelplot(inla.mesh.project(proj, field=Simulation1[[1]]$latent[1:meshRegular$n]),  
                xlab='X', ylab='Y ', scale=list(draw=TRUE), col.regions=topo.colors(30) 

 

Appendix B: OTHER GRAPHICAL RESULTS 
 
 

   

         
Figure B1: Histogram (first row) and Density (second row) for the two variables in regular and irregular 

region (first row).  
 
 
 

 
 

 
 



 
Figure B2: From first row to the last, Regular, Cluster and Inhibition, in regular regions. 

 

 

 
 

Figure B3: From first row to the last, Regular, Cluster and Inhibition, in irregular regions. 
 
 
 



 
Figure B4: Regular data with a regular region. The 9 meshes on the left are presented without a non-

convex function. 
  

 
Figure B5: Inhibition data with a regular region. The 9 meshes on the left are presented without a non-

convex function. 
 
 



 
Figure B6: Cluster data with a regular region. The 9 meshes on the left are presented without a non-

convex function. 
 
 

 
 

Figure B7: Regular data with an irregular region. The 9 meshes on the left are presented without a non-
convex function. 

 
 
 



 
 

Figure B8: Cluster data with an irregular region. The 9 meshes on the left are presented without a non-
convex function. 

 
 

 
 
Figure B9: Inhibition data with an irregular region. The 9 meshes on the left are presented without a non-

convex function. 
 
 
 



 
 

Figure B10: Lgcp data simulated in regular region and irregular region. 
 

 
 

Figure B11: Lgcp data simulated in irregular region and irregular region. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure B12: First row: Regular region, and second row: irregular region. 

Simulated (left), Predicted (Center) and Standard Deviation (right). 
 
 


