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Abstract: Phononic crystals and acoustic metamaterials 
are periodic structures whose effective properties can be 
tailored at will to achieve extreme control on wave propa-
gation. Their refractive index is obtained from the homog-
enization of the infinite periodic system, but it is possible 
to locally change the properties of a finite crystal in such 
a way that it results in an effective gradient of the refrac-
tive index. In such case the propagation of waves can be 
accurately described by means of ray theory, and differ-
ent refractive devices can be designed in the framework of 
wave propagation in inhomogeneous media. In this paper 
we review the different devices that have been studied for 
the control of both bulk and guided acoustic waves based 
on graded phononic crystals.

Keywords: gradient index; phononic crystals; metamate-
rials; lenses; homogenization.

1  �Introduction
Phononic crystals and acoustic metamaterials enable 
to achieve innovative properties for the propagation of 
mechanical waves (air-borne sound waves, water-borne 
acoustic waves, water waves, elastic waves, surface 
acoustic waves and Lamb waves) inapproachable in 
natural materials. Phononic crystals consist of periodic 

arrangements of scatterers in a given matrix, and they 
were firstly proposed in 1993 [1, 2]. The attention that 
phononic crystals received originally was due to the 
existence of a phononic Bragg band gap where the prop-
agation of acoustic waves was forbidden. In this regime 
the wavelength λ of the acoustic field is comparable to 
the periodicity a of the lattice, λ ≈ a, and to be observ-
able it is also required that the thickness D of the bulk 
phononic crystals be at least four or five periodicities, 
D > > a. In the subwavelength range, λ > > a, it is pos-
sible to find local resonances in the scatterers, and the 
designed structures exhibit hybridization band gaps 
which give rise to novel effects such as negative mass 
density or negative elastic modulus. In this exotic regime 
the structure behaves as a special type of materials called 
“acoustic metamaterials”, which were firstly proposed in 
the seminal work [3] in 2000. Over the past two decades, 
dramatically increasing efforts have been devoted to the 
study of acoustic artificial structured materials driven by 
both fundamental scientific curiosities with properties 
not found previously and diverse potential applications 
with novel functionalities [4–16].

While interesting, most of the extraordinary proper-
ties of metamaterials are in general single-frequency or 
narrow-band, since outside the resonant regime meta-
materials behave as common composites. However, 
non-resonant phononic crystals in the low-frequency 
regime behave as homogeneous non-dispersive materi-
als whose effective parameters can be easily tailored, 
and in this regime gradient index (GRIN) acoustic mate-
rials, or GRIN devices, are easily doable. These devices 
were firstly proposed for acoustic waves by Torrent 
et al. in 2007 [17] and for elastic waves by Lin et al. in 
2009 [18], and they allow to manipulate acoustic waves 
to enforce them to follow curved trajectories. They are 
characterized by a spatial variation of acoustic refractive 
index, which is designed by locally changing the geom-
etry of units. For instance, the effective index obviously 
depends on the filling ratio of scatterers, namely, the 
size of scatterers, which is initially proposed for GRIN 
control of acoustic waves [17–19]; instead, the variation 
in the lattice spacing while keeping the size of scatterers 
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is also achievable [20, 21]; for triangular shape of scat-
terers, rotating the angles of the triangular shape can 
also affect the effective acoustic velocity [22]; for lead-
rubber pillared metamaterial plate, by changing the 
height of lead layer in pillars, the effective mass density 
is tuned, resulting in a change in effective phase velocity 
following a given law [23]; for phononic crystal plates, 
the effective velocity of antisymmetric Lamb wave is 
directly related with the thickness of plates, which can 
also further affect the effective velocity of symmetric 
mode [24–26]; and gradient effective index can also be 
achieved from coiling-space structures [27–30]. In addi-
tion to the geometric parameters, the effective refractive 
index can also be tuned in relation to the elastic proper-
ties of the scatterers, for instance, the choice of materi-
als [18, 31], or to an external stimulus such as electric 
field [32] or temperature [33].

The attained effective refractive index of the GRIN 
device can be smaller or larger than that of the background 
medium, which corresponds to phase advance [20] or 
delay approaches in wave propagation. Nevertheless, 
the phase delay approach is mostly employed as higher 
refractive index enables to design more advanced 
functionalities and reduce the entire width of the devices. 
Comparing to the wavelength, the thinner the device, the 
larger will be the highest required index. If the width of 
the whole device is downscaled to the subwavelength 
regime, the GRIN device becomes a metasurface [34, 35]. 
However, to find a high enough effective refractive index 
to design GRIN metasurfaces is a big challenge that needs 
new technologies in material science. Recently, it has 
been reported that soft porous materials [36, 37] with soft-
matter techniques can achieve a relative refractive index 
higher than 20 [38], resulting in soft GRIN metasurface 
[39]. GRIN devices can also be designed with negative 
index of refraction at frequencies lying in the first nega-
tive slope of the acoustic band structure [21]. However, 
these devices would have a narrow band, and it may limit 
potential applications.

GRIN phononic crystals and metamaterials can be 
applied to various types of waves in a long frequency 
limit, such as surface water waves [40, 41] for a few 
hertz, air-borne sound waves [19, 42–51] for 103–105 Hz, 
water-borne acoustic waves [20, 31, 52–54] for 104–106 Hz, 
Rayleigh waves [55–59] for 10–108 Hz and Lamb waves 
[23–25, 32, 60–72] for 103–108 Hz, among others, with func-
tionalities like focusing [18, 19], waveguiding [70, 73], 
mirage [74], beam splitting or deflection [41, 62, 63], 
cloaking [55, 64] or energy harvesting [71, 72, 75]. It is 
in the domain of elastic waves in plates where the most 
interesting applications at the nanoscale are found, 

since from the technological point of view low-dimen-
sional materials are more interesting than bulk materi-
als. The excellent compatibility of phononic crystals and 
metamaterials with the nanoelectromechanical systems 
has been proven for applications in wireless telecom-
munications, sensing or thermal control, among others 
[76–81]. However, the propagation of elastic waves in 
plates is in general composed of three polarizations, 
which travel at different speeds and for which refractive 
devices designed for one of these polarizations will not 
work for the other two. Recently, the designs of GRIN 
devices based on phononic crystal plates have demon-
strated that the simultaneous control of all fundamental 
modes propagating in thin elastic plates in a broadband 
frequency region is possible [25, 26, 63].

The objective of this review is to provide a compre-
hensive picture of the evolution of the domain of GRIN 
devices for mechanical waves, to demonstrate the wide 
variety of applications at the nanoscale that these 
devices offer and to present the challenges to be accom-
plished to further develop this field. The paper is organ-
ized as follows: after this introduction, we will review the 
fundamental ideas of the homogenization of sonic and 
phononic crystals in Section 2 and of phononic crystal 
plates in Section 3, which offers efficient tools to obtain 
the effective elastic properties and, consequently, their 
effective refractive index. Then we will review GRIN 
devices for bulk acoustic and elastic waves in Section 4 
and for flexural waves in Section 5; the advanced full 
control of polarizations in elastic plates with multi-
modal GRIN devices will be reviewed in Section 6. The 
last section will present some conclusions and future 
challenges.

2  �Homogenization of sonic and 
phononic crystals

Graded materials with specific variations of the refractive 
index are obviously not found in nature, and they have 
to be artificially engineered. The inclusion of scatterers in 
a given matrix is an excellent way for the realization of 
artificially graded materials, since the average behavior of 
the scatterers is to modify the effective velocity of acous-
tic waves in the matrix, and this effective velocity can be 
tuned by means of the size of the inclusions. When these 
inclusions are arranged in a regular array we call the com-
posite a sonic (fluid matrix) or phononic (solid matrix) 
crystal, and the computation of the effective sound 
velocity is made by a set of mathematical tools called 
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homogenization theories. Roughly speaking, the homog-
enization region is the range of frequencies at which the 
propagating field cannot distinguish the individual scat-
terers of the composite and perceives the structure as a 
uniform material with some effective parameters (stiffness 
constant, mass density, viscosity, etc. are the parameters 
to be computed by means of the most adequate homogeni-
zation method).

Homogenization is an old problem, and a great bibli-
ography is available in this realm (see for instance [82]). 
Our aim here is not to review all these methods but to 
present some examples of these methods applied to the 
specific case of sonic and phononic crystals.

2.1  �Homogenization of sonic crystals by 
multiple scattering theory

As mentioned before, a sonic crystal consists of a periodic 
distribution of solid or fluid inclusions embedded in a 
fluid matrix. When the operating wavelength is larger than 
the typical distance between inclusions (lattice constant) 
the field cannot distinguish individual scatterers and per-
ceives the structure as a homogeneous material with some 
effective parameters (mass density, compressibility, speed 
of sound etc). There exists a vast literature about homog-
enization of periodic and random materials [82], but it 
has been shown that multiple scattering theory is a ver-
satile method in the case of sonic crystals. For instance, 
for the simple case of a two-dimensional arrangement of 
fluid inclusions (parameters labeled with “a”) in a fluid 

background (parameters labeled “b”), the effective bulk 
modulus Beff and mass density ρeff are given by

	

eff

eff

( ) ( )
(

1 1 
) ( )

,  a b
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f ff f
B B B f f

ρ ρ ∆ ρ ∆

ρ ρ ∆ ρ ∆

+ + −−= + =
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where f is the filling fraction of the crystal (area of 
the  inclusions divided by the area of the unit cell) and 
Δ represents a modification of the filling fraction due to 
the multiple scattering processes [83, 84].

For airborne propagation any solid material will have 
a much higher density than that of air, and the extreme 
impedance mismatch blocks the penetration of the 
acoustic wave into the solid inclusions. Therefore, those 
solids can be assumed to be “rigid” inclusions, and their 
mass density and compressibility can be set as infinite. 
In this case, if the filling fraction is small and the mul-
tiple scattering interactions can be neglected (Δ can be 
regarded as 1) the effective mass density and velocity can 
be simplified as [83]

	
air
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and we recover the effective mass density and effective 
sound velocity derived by Barryman [85] and the heuristic 
model [86], respectively.

As an example of application, a circular cluster of 
151  wooden cylinders arranged in a hexagonal lattice 
embedded in air was homogenized by multiple scatter-
ing, and the resulting effective parameters as a function of 
the filling fraction are shown in the left panel of Figure 1. 
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Figure 1: Effective elastic parameters of sonic crystals.
(A) Effective mass density and effective sound velocity for a circular cluster consists of 151 rigid cylinders embedded in air. The black dots 
stand for the results from the multiple scattering simulations in Eq. (1), and the dashed lines are values obtained from Eq. (2) [83];  
(B) Impedance-velocity diagram of sonic crystals consist of square lattice of solids 1 and 2 cylinders in air. Insert shows the unit cell [87].
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We can clearly observe, especially from the insets, that the 
simplified approach by Eq. (2) for effective mass density 
is valid when the filling fraction is no larger than 0.7; 
meanwhile, the maximum limit of filling fraction is 0.6 for 
effective sound velocity. Experiments verified the homog-
enization method, and it was shown that for wavelengths 
larger than 4 times the lattice constant, the cluster could 
be considered as a homogeneous cylinder with fluid-like 
properties [83].

The theory can be generalized to more cylinders per 
unit cell. If we consider two types of cylinders, with mate-
rials labeled as 1 and 2, embedded in a square lattice, their 
fluid-like parameters being (ρa1, Ba1) and (ρa2, Ba2) and the 
filling fractions being f1 and f2, respectively, the effective 
parameters can be obtained as

	

eff1 2 1 1 2 2
eff eff

eff 1 2 1 1 2 2 eff

11 1 , ,   
1 b

b a a

Bf f f ff c
B B B B f f

η η
ρ ρ

η η ρ

+ +−= + + = =
− −�

(3)

where f = f1 + f2, ηi = ( ρi − ρb)/( ρi + ρb).
The right panel of Figure 1 shows a “phase diagram” 

of the effective impedance and effective sound velocity for 
several selected pairs of materials under the low filling 
fraction condition (neglecting multiple scattering inter-
actions), for different pair of materials and backgrounds 
(Pb-Fe, Pb-Al and Fe-Al in water and aerogel-rigid cylin-
ders in air). Any point on each curve is calculated sweep-
ing over the total filling fraction. The overlapped corner 
point (1, 1) in this diagram corresponds to the case of f1 = 0 
and f2 = 0. Notice that the effective impedance matches 
that of the background when the sonic crystal is made 
of aerogel and rigid cylinders embedded in air, making 
the sonic crystal transparent to air possessing a different 
refractive index. This interesting property was used in ref 
[17] to design a completely transparent GRIN lens.

Multiple scattering allows the homogenization of 
finite clusters; therefore, it is a versatile method to study 
the behavior of the effective parameters when disorder is 
introduced in the lattice [84] or even the effect of the clus-
ter’s size, as it was done in Ref. [88], where it was found 
that small clusters with specific number of scatterers pre-
sented the same effective parameters as that of the infinite 
medium.

2.2  �Homogenization of periodic phononic 
crystals

Metamaterials for acoustic or elastic waves have been 
mainly studied by means of sonic or phononic crystals. 

As said before, in the low-frequency limit, an anisotropic 
phononic crystal behaves as a homogeneous material 
with some effective parameters. The plane wave expan-
sion (PWE) method is an alternative method to multiple 
scattering for the homogenization of periodic compos-
ites. This approach was firstly proposed by Krokhin [89] 
for sonic crystals and generalized for non-local phononic 
crystals in [90]. The equation of motion of a homogeneous 
elastic material assuming harmonic time dependence is 
given by [91]

	
2 2

i iI IJ Jj ju k n C n uρω = � (4)

where ρ is the mass density, ω is the angular frequency, 
ui is the displacement, k is the wavenumber, n is a unit 
vector, C is the stiffness tensor, and we use Voigt notation 
for the sub-indexes.

In a phononic crystal the mass density and stiffness 
tensors are periodic functions of the spatial coordinates, 
and an inhomogeneous version of the above equation has 
to be used. The PWE method is applied and then we arrive 
to an eigenvalue equation [92]

	
2 ( ) ( ) ( )( )i iI IJ Jj ju C uω ρ −

− ′ ′
′

′ = + + ′G G
G G G Gk G k G � (5)

where ρG, IJCG and ( )iu ′G  are the Fourier components of the 
mass density, stiffness tensor and the displacement field, 
respectively. The summation over repeated indexes has 
been assumed. The above equation can be manipulated 
to solve for the average field (G = 0 component), and this 
average field can be used to describe the effective behav-
ior of the crystal. Then, after some complex mathematical 
manipulation we arrive to an expression for the dispersion 
relation of the average field, which consists in calculating 
the roots of the determinant of the matrix Γ as

	
2 * 2 * †( )ij ij iI IJ Jj iI Ij iJ Jjk n C n k n S S nΓ ω ρ ω= − − + � (6)

where the effective mass density * ,ijρ  the effective stiffness 
*
IJC  and the coupling tensor SIj are [92]

	
* 2( ) ( ), ,  ij ij ijk kρ ω ρδ ω ρ χ ω ρ′

′−= + G G
G G� (7a)

	
*
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	 lj( ) (, ,  ) ( )Ij IL LlS k C k kω ω χ ω ρ′−= + ′G G G
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The above formulas offer a way to describe reso-
nant ( )χ ′GG  and nonlocal (k) phononic crystals. In the 
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low-frequency (ω → 0) and local (k → 0) limit, from Eq. 
(7), the coupling tensor SIj = 0; the mass density is a scalar 
as the volume average value, the effective stiffness tensor 
is simplified as

	
* * 1

lm( ), ij ij IJ IJ IL Ll mM MJC C C M Cρ ρδ − −′ ′
′= = − ′G G G G

G GG G � (8)

The expressions derived there can also be applied in 
the low-frequency limit to obtain the following effective 
parameters

	 eff (1 ) b af fρ ρ ρ= − + � (10a)
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where ( ) .ij iI IJ JjM G C G− ′
′ = ′G G

G G  The information about the 
details of the phononic crystal structures is included in 
the stiffness tensor whose symmetry relates with the back-
ground matrix, inclusion, and lattice symmetry.

Periodic homogenization is therefore a versatile cal-
culation method of the effective parameters, where once 
we know the shape of the scatterer or scatterers in the unit 
cell we can Fourier-transform their spatial distribution 
and obtain the effective parameters. The major drawback 
of this method is that it is not suitable for high contrast of 
inclusions or fluid-elastic composites, since in this case 
convergence is poor. Also, due to periodicity, order-dis-
order effects are not easy to study. It is therefore a com-
plementary technique to the multiple scattering method 
presented in the previous section.

3  �Homogenization of phononic 
crystal plates

In a homogeneous thin elastic plate, the propagation of 
flexural waves (antisymmetric Lamb mode wave) can be 
approximately described by the bi-Helmholtz equation 
(assuming time harmonic dependence of the field)

	
4 2( ) ( , ) 0b b bD h W x yρ ω∇ − = � (9)

where ρb, hb and 3 2/12(1 )b b b bD E h v= −  are the mass density, 
the thickness and the rigidity of the plate, respectively, 
Eb being the Young’s modulus and vb the Poisson’s ratio. 
W is the out of plane displacement field. Multiple scat-
tering can also be applied for the homogenization of 
distribution of scatterers in elastic plates, and frequency-
dependent effective parameters were obtained in [61]. 

where the subscript “a” (“b”) means the parameters for 
inclusions (background). The effective phase velocity can 
be obtained by the ratio of the wavenumber between the 
effective medium and the background, giving

	

1/4
eff eff eff

1/4
eff

( / )
( / )

b

b b b

c k D
c k D

ρ

ρ
= = � (11)

As an example, let us consider circular inclusions in 
a thin aluminum plate (hb = 0.1a) and let the inclusion’s 
material be chosen as a hole (empty inclusion), lead and 
rubber, whose parameters can be found in Ref. [61]. The 
effective parameters as given by Eqs. (10) and (11) as a func-
tion of the filling fraction are plotted in the left panel of 
Figure 2. The effective mass density is the volume average 
approach as for bulk waves. We see that the effective rigid-
ity and the Poisson’s ratio for the case of rubber behaves 
like that of a hole, since the ratio of the Young’s modulus 
between the rubber and the aluminum is very low. For 
the effective phase velocity, the difference between the 
rubber and the hole is more evident. In the right panel of 
Figure 2 is shown the dispersion curves from finite element 
methods (red dots) and the effective parameters in Eq. (10) 
(blue lines) for a triangular lattice of hole/lead inclusions 
in a thin aluminum plate with the radius of inclusion being 
0.3a. We can clearly observe that the agreement between 
the numerical simulation and the effective theory is quite 
good for the antisymmetric (A0) and symmetric (S0) Lamb 
modes. This is remarkable since we have developed the 
theory for the antisymmetric mode only; however, there is 
a connection between the speed of these two modes [26] 

if a wave propagates from plate h1 to plate h2, 
2 1

2

,A S

h
n n

h
=  

which allow us to relate both, even if the propagation of 
the S mode has not been included in the theory.
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Actually, there are three fundamental plate modes as 
it is seen in the right panel of Figure 2, with the third one 
named shear-horizontal mode (SH0), which needs an addi-
tional effective stiffness component eff

66c  to compute its dis-
persion relation. The theory developed for flexural waves 
allows the calculation of the velocity of the S0 mode only 
due to the special relationship between the velocities of A0 
and S0 modes; however, a similar relationship is not found, 
or at least obvious, for the SH mode. However, the homog-
enization theory for bulk phononic crystals presented in 
Section 2.2 offers the full components of the effective stiff-
ness matrix, and it can be used to compute the effective 
velocity of shear waves in a phononic crystal plate. This 
connection is not obvious in principle; however, it can be 
explained by a two-step homogenization procedure.

Figure 3, upper left panel, shows a two-dimensional 
phononic crystal made of cylinders embedded in a bulk 
matrix. The phononic crystal plate at the upper right 
panel can be regarded as a finite “slice” taken from the 
bulk phononic crystal. In the low-frequency limit, the 
phononic crystal behaves as a homogeneous material 
with effective parameters and tetragonal anisotropy 
(square lattice) or transversal isotropy (triangular lattice), 
and this symmetry is maintained for the phononic crystal 
plate, as illustrated from the upper panel to the lower 
panel in Figure  3A. Thus, the effective phononic crystal 

plate can also be considered as a finite “slice” of the effec-
tive homogeneous material with the same symmetry. Such 
homogenization procedure has a non-trivial implication 
in accordance with symmetry.

As an example, a phononic crystal plate with the unit 
cell shown in Figure 3B is considered for three different 
thicknesses, consisting of hole-gold shell unit cell in tri-
angular lattice. The inner radius is 0.2a, while the outer 
radius is 0.4a. The dispersions obtained from homog-
enization method with effective parameters in Eq. (8) 
are compared to those from finite element methods, as 
displayed in Figure 3B. In the low-frequency limit, these 
effective phononic crystal plates behave like transversely 
isotropic plate. It is clear that the agreements between the 
finite element method and homogenization method are 
excellent for S0 and SH0 modes for all cases of thickness 
before the mode branches deviate, as their dispersions 
do not depend on the plate’s thickness. However, the dis-
persion of A0 mode relates with the plate’s thickness. For 
thinner plates, the dispersion of fundamental A0 mode 
keeps the parabolic shape throughout the Γ-J direction 
of the first irreducible Brillouin zone, so that there is an 
excellent agreement in the whole range of Γ-J for plate’s 
thickness as 0.1a. For thicker thickness such as 0.5a and 
a, the agreement for A0 mode goes well before the A0 mode 
branch deviates.
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Figure 2: Effective elastic parameters of phononic crystal plates.
(A) The effective mass density (a), rigidity (b), Poisson’s ratio (c) and phase velocity (d) with respect to the filling fraction for different 
cylinder inclusions in an aluminum plate [61]; (B) Dispersion relations for a phononic crystal plate made of a triangular lattice of circular 
holes and lead inclusions with a radius of 0.3a. The red dots show the band structures obtained by the finite element method, while the 
blue lines show the dispersion curves calculated with homogenized parameters from Eq. (10) [26].
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As a conclusion, the homogenization procedure for 
phononic crystal plates illustrated in Figure 3A works well 
for low-frequency limit and thin plates.

4  �GRIN devices for bulk acoustic 
and elastic waves

This section is devoted to the review of GRIN devices 
for waves in bulk materials; therefore, no interfaces are 
assumed and surface or guided waves are excluded in this 
section (they will be considered in the next one). In princi-
ple we could divide the devices into two types, depending 
on the nature of the matrix which can be fluid or solid. 
This division makes sense since in the former shear waves 
does not exist in the background and the field is described 
entirely by a scalar pressure field, while in the latter shear 
waves with different propagation velocities have to be as 

well considered. However, for the fluid matrix an addi-
tional division can be made, since the physics involved in 
the scattering process is different if the background is air 
or water. While in air almost all solid materials are acous-
tically rigid due to the impedance mismatch between air 
and any solid, in underwater acoustics this impedance 
mismatch is of the same order, so that we have to consider 
the elastic nature of the inclusions. For this reason, we 
divide this section into three subsections, corresponding 
to the study and design of GRIN devices for air, water and 
solid backgrounds.

4.1  �GRIN devices for bulk acoustic waves in 
air

In this section, we will discuss the flat GRIN lens for focus-
ing whose surface is flat instead of being curved as in tra-
ditional lenses.
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Figure 3: Homogenization of phononic crystal plates for all three fundamental Lamb modes.
(A) Illustration of the homogenization relationship between phononic crystal and phononic crystal plate [26]. (B) Dispersion comparison of 
a phononic crystal plate between the finite element method (black dots) and the homogenization theory with effective parameters from Eq. 
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hole-gold shell unit cell whose inner radius is 0.2a and outer radius is 0.4a [25].
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The index profile of GRIN flat lenses keeps constant 
along the propagating x axis while it changes along the 
vertical y axis as [18]

	

1 0
0

1( ) sech( ),   cosh
h

n
n y n y

h n
α α −  

= =   
� (12)

where h is the half-height in y axis of the lens, n0 is the 
refractive index at y = 0, and nh is the index at the upper 
or lower edges y = ±h. Such index profile is designed with 
the aim of presenting low aberrations [18]. The position 
of focal point xf at the right side of the lens can be derived 
from the differential equation satisfied by the energy 
rays [19].

As shown in Figure 4A, a GRIN lens was fabricated 
with nine columns of metal rods whose radii are varied 
locally by an inverse design as follows: first make a sweep 
of the filling fraction for sonic crystals made of rigid cylin-
ders to plot the diagram of effective index and the filling 
fraction; then calculate the required index at a given posi-
tion along the y axis of the GRIN lens; next, choose the 

corresponding filling fraction of the rigid cylinder from the 
diagram in the first step in accordance with the required 
index in the second step; finally, calculate the required 
radius from the selected filling fraction in the third step. 
Figure 4B shows the pressure distribution fields after 
the GRIN sonic crystal at a frequency corresponding to a 
wavelength of about 3.8a numerically (upper panel) and 
experimentally (lower panel). Similar focal spots and side 
lobes are evidently seen. To quantitatively characterize 
the focusing effect, the pressure along the x and y axes are 
also plotted in Figure 4C, showing very good agreements. 
In this approach with rigid cylinders in GRIN sonic lenses, 
the effective impedance of the lens is not matched with 
the background, so that the maximum pressure at the 
focal spot is limited. As indicated in Figure 1B in Section 
2.1, the mixed lattice of aerogel and rigid cylinders can 
also tailor the effective index while keeping the effective 
impedance matched with the background, so that zero 
reflectance can be achieved to make the lens transparent. 
The first GRIN sonic Wood lens proposed in Ref. [87] has a 
higher pressure focalization at the focal spot.
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Figure 4: Sonic GRIN flat lens.
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Blue lines stand for simulation, and black dots stand for experiment [19].
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4.2  �GRIN devices for bulk acoustic waves in 
water

Different from the impedance mismatch between the air 
and solid scatters, the mass density and acoustic velocity 
are in the same order for most scatterers and water, so that 
the scatters cannot be regarded as rigid anymore. From 
Eq. (1) in Section 2.1, one can also calculate the effective 
parameters of phononic crystals in water.

For the same type of GRIN flat lens as in the last 
section, similar phononic crystals made of radius-varied 
steel cylinders are proposed in water [93]. In the upper 
left panel in Figure 5, the profile of radius is calculated to 
meet the required index profile like Eq. (12), the maximum 
index being at the center and minimum at the edges in ver-
tical axis. A plane wave with center frequency at 20 kHz 

is excited, corresponding to wavelength as 4 times lattice 
constant around the cutoff frequency in the low-frequency 
limit. A clear focusing spot is observed from the experi-
mental pressure intensity field. From the multiple scatter-
ing theory(MST) simulation, a similar position focal spot is 
also obtained as shown the dot “ + ” in subpart (c) of upper 
right panel of Figure 5. It is worthy to note that this GRIN 
lens also supports the source off the central axis, which 
was demonstrated numerically and experimentally [93].

Equation (12) gives a picture of special index profile for 
focusing with low aberration, while it does not define that 
the maximum index at the center n0 should be larger than 
that of the background nb; in another word, Eq.  (12) can 
also be achieved by phase advance approach. In the lower 
panel of Figure 5, phononic crystals made of air-filled 
aluminum tubes are arranged in water with anisotropic 
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Figure 5: GRIN flat lens with phase delay and advance approaches.
Upper left panel: Schematic view of GRIN flat lens with radius-varied steel cylinders embedded in water. Upper right panel: Normalized pressure 
amplitude from the source (a), measured normalized pressure intensity after the GRIN lens (b) and the same pressure intensity map using MST (c) 
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lattice spacing. The thickness of the aluminum shell is 1/10 
of the radius that is designed to have impedance matching 
with respect to water [94], a higher velocity but lower mass 
density acting as metafluids. The required filling fraction 
profile to meet the index distribution is implemented by 
using anisotropic lattice spacing [95]. From the lower left 
panel of Figure 5, the lattice space in vertical axis is large 
at the center while it reaches the minimum at the upper 
and lower edges. The minimum velocity at the center is 
still larger than that of the background water, resulting in 
a phase advance GRIN lens. A good comparison is found in 
the lower right panel of Figure 5 among the experimental 
measurement and two predicted numerical simulations. It 
is worth mentioning that such GRIN flat lens is broadband, 
which can be implemented in water from experimental 
point of view as the short pulse from the transducer in 
water is normally broadband.

4.3  �GRIN devices for bulk elastic waves

The effective parameters for bulk elastic wave in 2D pho-
nonic crystals can be found in Eq. (8) in Section 2.2. Here, 
another approach based on the analysis of the lowest 

band among the dispersion curves is introduced. Let us 
consider a phononic crystal made of square lattice solid 
inclusions embedded in an elastic matrix. For small ani-
sotropic ratios, the effective index for a bulk elastic wave 
can be obtained as [18]

	
eff ,  ,  

2 / /
b b b bX M

X M
X X M M
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�
(13)

where cb is the acoustic velocity in the background matrix, 
c is the group velocity of the bulk elastic wave mode, and 
ΓX and ΓM are two orientations in the first Brillouin zone. 
For an epoxy matrix phononic crystal, the diagram of the 
first band of shear-vertical (SV) mode is plotted in two 
ways: (i) steel inclusions with different filling fractions 
(different radii) as shown in the left panel of Figure 6A; 
and (ii) fixed filling fraction but with different material 
inclusions as shown in the right panel of Figure 6A. The 
elastic parameters for different solid materials can be 
found in Ref. [18]. Both approaches can change the slope 
of the first SV mode leading to a variation of effective 
index by Eq. (13).

From the dispersion curve variations, for a given band 
the effective index will change locally along the reduced 
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frequency, and for different bands the dispersive proper-
ties of the effective index are slightly different. Therefore, 
if a GRIN flat lens is designed based on a given frequency, 
it may have a small deviation in focal length as the effec-
tive or fitted gradient coefficient α in Eq. (12) changes, as 
seen in the right panel of Figure 6.

5  �GRIN devices for flexural waves
The control of elastic waves in plates provides the most 
interesting applications such as on-chip acoustic propa-
gation, thermal conductivity control and opto-mechanic 
interactions in micro/nanoscale for GRIN devices, which 
can be attractive for the communities of physics, materi-
als and nano science. For 2D thin plates, or membranes, 
the elastic waves propagate as surface waves due to the 
constraints of the plate’s two boundaries, resulting in 
antisymmetric, symmetric and shear-horizontal polari-
zations. Among those modes, the fundamental antisym-
metric mode, in another word flexural mode, is widely 
studied since it is mainly characterized by out-of-plane 

displacement component in plates that can be easily 
detected by means of optical methods.

Figure 7A shows the foci of the GRIN flat lens con-
nected to a linear phononic crystal waveguide for flexural 
waves in a piezoelectric plate based on deep reactive ion 
etching. The well-designed GRIN lens focuses a plane 
incident wave as a spot at the interface between the GRIN 
lens and the phononic waveguide so that waveguiding 
is demonstrated. This would have potential for develop-
ing active microplate lenses [96]. In Figure 7B, GRIN flat 
lens is fabricated with silicon pillars erected on top to 
behave as a metalens to demonstrate the focusing behind 
the lens in the near-field beyond the diffraction limit. 
The dipolar resonant pillars and the flexural waves can 
exhibit polarization coherency to enhance the evanescent 
waves in order to help the focal spot include better infor-
mation [68]. The conception of mixed local resonance and 
GRIN lens can also be applied to other types of waves. At 
nanoscale, a gradient optomechanical/phoxonic crystal 
in one-dimensional semiconductor slab is fabricated 
with the minimum radius of the hole as only 100  nm 
[78], as displayed in Figure 7C. This phoxonic crystal 
demonstrates a full phononic band gap at the gigahertz 
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Figure 7: GRIN devices for flexural waves.
(A) Acoustic waveguide by combining GRIN flat lens and phononic crystals in an 80 μm thick plate. SEM image shows samples in the rectangular 
dotted box with the radii of gradient holes varying from 15 μm to 25 μm [96]. (B) Acoustic metalens by combining GRIN flat lens and pillars (30 μm 
radius) to exhibit the near-field subdiffraction focusing [68]. (C) 1D phoxonic crystal with varied unit cells (the minimum radius of holes is 100 nm) 
to exhibit the optomechanical interactions [78]. (D) GRIN flat rectangular lens and Luneburg circular lens for energy harvesting [71, 72].
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domain. The optomechanical coupling originates from 
moving interfaces and the photoelastic effect. The acous-
tic mode inside the band gap exhibits high mechanical 
quality factor making the optomechanical phonon coher-
ent manipulation possible. Figure 7D illustrates that the 
confinement of elastic waves in the GRIN devices can be 
used for energy harvesting [71, 72]. Piezoelectric energy 
harvester disks are deposited on a GRIN flat lens and a 
Luneburg lens at a position where the incident plane wave 
is focused as a spot. Comparing to the energy harvested 
in the background plate, the GRIN devices can generate 
output electrical power an order of magnitude higher.

In Section 3, Eq. (10) gives a useful tool to calculate 
the effective parameters of phononic crystal plates whose 

thickness is fixed as a constant. Therefore, GRIN devices 
can be designed by varying the filling ratio, in other words 
changing the radii of holes [62]. Now let us revisit the equa-
tion of motion (9) which describes flexural waves using 
Kirchhoff-Love approximation. When a plane wave propa-
gates in a thin plate with a wavenumber k, Eq. (9) gives the 
solutions for the dispersion relation and phase velocity as
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from where one can see that the phase velocity is not 
only related to the elastic parameters but also depends 
on the plate’s thickness. This special property of flexural 

Figure 8: GRIN lenses for flexural waves based on plate’s thickness variations.
(A) Refractive index n profiles and corresponding plate’s thickness h/hb variations for Luneburg, Maxwell fish-eye, 90° rotating, Eaton, 
concentrator lenses. (B) Wave performances of those lenses [24]. (C) Omnidirectional invisible lens for flexural waves based on thickness 
variation for two different frequencies [64].
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waves allows designing of GRIN devices just by locally 
varying the plate’s thickness without any phononic 
crystal with holes. The refractive index for flexural wave 
can be easily derived when all elastic parameters remain 
fixed as in [60]

	
eff

eff

bhn
h

= � (15)

In the upper left panel of Figure 8, a set of omnidirec-
tional GRIN devices are displayed with their refractive index 
profiles, namely, Luneburg, Maxwell fish-eye, 90° rotating, 
Eaton and concentrator lenses [97, 98], as shown by the dif-
ferent colors. Implementing the refractive formula Eq. (15), 
their corresponding thickness variations are also shown 
in the panel below. To achieve higher refractive index neff, 
it needs smaller thickness heff. For 90° rotating, Eaton and 
concentrator lenses, the maximum index at the center of 
the circular lens is larger than 5, so that the relative thick-
ness there is smaller than 1/25. The designed GRIN lenses 
based on thickness variation are performed with full wave 
simulations, and their corresponding wave functionalities 
are displayed at the bottom of Figure 8 [24].

Invisibility is always a challenging problem for wave 
control in physics. Acoustic cloaks in principle require 
inhomogeneous and anisotropic materials for their reali-
zation, which are quite complicated to fabricate in prac-
tice [99–101]. A special gradient refractive index profile 
for omnidirectional invisible lens is derived that requires 
an infinite index in the vicinity of the center [102, 103]. 
However, such singularity can be achievable for flexural 
wave by Eq. (15). Nevertheless, from a practical point of 
view, the central index can be chosen with a proper finite 
value in accordance with the step in design. A ray enters 
the lens and exits in the same direction by flowing a loop 
around the center inside the lens, thus producing an 
invisible effect. The multi-frequency performance of the 
invisible lens is simulated with cylindrical waves from a 
point source as seen in Figure 8C. [64]. It is worthy to note 
that acoustic cloak for flexural wave based on nonlinear 
transformation acoustics method is proposed and realized 
also by varying the plate’s thickness locally to fulfill the 
required rigidity profile [104].

6  �Multimodal GRIN devices
From Figure 3B, the fundamental Lamb modes have 
another two polarizations in addition to flexural mode. 
In fact, excitation in the thin plate from a given source 

will generate all kinds of modes, which means a design 
for only one mode may hinder the full functionalities of 
a GRIN device for applications such as absorption and 
energy harvesting. As discussed in the last section, the 
flexural wave can be independently controlled by thick-
ness variation for given elastic parameters. The S0 and 
SH0 modes mainly depend on the elastic parameters (c11, 
c13, c33) and (c66), respectively, for transversely isotropic 
materials. Therefore, it needs a homogenization theory 
to obtain the full effective stiffness matrix. As illustrated 
in Figure 3 in Section 3, the full homogenization method 
described in Section 2.2 for bulk phononic crystal can be 
also applied to the thin phononic crystal plate by con-
sidering the latter as a finite thin “slice” taken from the 
former. All the three polarizations of the Lamb waves 
are well described in the low-frequency limit. Taking the 
same gold-shell-hole unit cell, we make a sweep for the 
outer radius while also varying the inner radius for a given 
outer radius. Figure 9A shows a full phase diagram of all 
possible pairs of (nS0, nSH0) domain with this sweeping 
approach, which exhibits several interesting properties: 
(i) the dotted red line cutting the blue domain indicates 
that the effective indexes for the S0 and SH0 modes are 
identical, supporting the simultaneous control of these 
two modes; (ii) the maximum effective index for S0 mode 
can reach up to almost 5, while it can be larger than 10 for 
SH0 mode; (iii) the wide blue domain shows that it is pos-
sible to design a special (nS0, nSH0) trajectory that makes 
a GRIN device work as one type of lens for S0 mode and 
as another lens for SH0 mode. After defining the index 
profiles for SH0 and S0 modes, the index of A0 mode can 
be designed by means of an independent thickness varia-
tion and such that it works similarly to the one or both of 
the SH0 and S0 modes or as another totally different lens. 
Thus, a full control of Lamb modes and advanced multi-
modal GRIN device becomes achievable.

In Figure 9B, the red dotted circle shows the area of 
the Maxwell fish-eye lens that is designed to work simi-
larly for all the three fundamental modes. A point source 
is excited at the left border of the lens, and a focused point 
image is formed at the right diametric border for a given 
frequency. It should be mentioned that the wavelengths 
of the three modes are different since their speeds are 
not the same due to different dispersion properties. The 
design of the full control means the positions of point 
focusing are the same, but not the wave field patterns. 
Finally, an advanced multimodal GRIN device is displayed 
in Figure 9C: it works as Luneburg lens for the S0 and SH0 
modes, while it behaves as Maxwell fish-eye lens for the 
A0 mode. The full control method is also extended to GRIN 
flat lens and beam splitter [63].
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7  �Summary

Over the past two decades, we witnessed the rapid growth 
and development of phononic crystals and metamaterials 
as well as the recent emergence of metasurfaces to deepen 
the understanding of wave physics. Although the effective 
index is a homogenized result from infinite periodic struc-
tures, it is still proper to define a local index in a gradient 
structure, being a bridge between infinity and locality. The 
homogenization theories of phononic crystals/metamate-
rials and the design principles of GRIN devices are imple-
mented in terms of wavelength, mainly in long wavelength 
limit λ > 3~4a, a being the lattice constant. Therefore, the 
GRIN conception can be applied to the structure’s size from 
nanometer to meter and different wave natures propagating 
in solids, liquids and gases with free or constrained bound-
ary conditions, among which the applications for elastic 
waves in thin plates at nanoscales show a promising poten-
tial in future for wireless telecommunications, heat conduc-
tivity, phonon sensor and so on. The complex properties of 
elastic waves in thin plates are also fully demonstrated to 
design more advanced and multimodal GRIN devices. The 
applications of GRIN phononic crystals and metamaterials 
are mainly related with energy redirection and focusing; 
however, more advanced devices could also be considered 
some subtype of GRIN devices, though their functional-
ity is not designed in the framework of “ray trajectory 
design”. This is the case of acoustic cloaks [100, 105–108], 

parity-time-symmetric acoustic structures [109–111], 
one-way acoustic diode [112, 113] and acoustic rainbow 
trapping [114–116]. Nevertheless, several challenges remain 
to be answered in future: (1) When wave propagates from 
one medium to another one, from a uniform surface point 
of view its behavior is governed by the Snell’s law that 
involves the ratio of the refractive index between the two 
media. However, the wave energy transfer rate is governed 
by the impedance ratio between the two media. For some 
GRIN devices such as flat lens and transmitted-type meta-
surface, the impedance matching condition is not always 
easily fulfilled, which will limit the focusing energy level 
and the corresponding energy harvesting efficiency. (2) 
New refractive index profiles are needed to discover math-
ematical methods that can help to design updated wave 
functionalities. (3) New physics such as thermal conduc-
tivity behaviors and nonlinear optical/acoustic responses 
in gradient phoxonic crystals at nanoscale. It can be fore-
seen that new breakthroughs will be reported by the united 
efforts in the communities of physics, material science, 
engineering, nano science and mathematics among others.
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Figure 9: Multimodal GRIN devices to fully control all three fundamental Lamb waves.
(A) Diagram of all possible values for the effective indexes for (nS0, nSH0) by varying the inner and outer radii of the gold-shell-hole structure. 
(B) GRIN Maxwell fish-eye lens designed for all three Lamb modes simultaneously. (C) An advanced multimodal GRIN device works as 
Luneburg lens for the S0 and SH0 modes while as Maxwell fish-eye lens for the flexural mode [25].
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