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ABSTRACT

Gaia mission will provide a six-parameter solution for millions of stars, including a tridimensional

map of our galaxy. The estimation of distances has been made for the TGAS, while to contrast the

proper motions it is interesting to consider positions from the different Gaia Data Release with older

ones given in ground-based massive catalogs. This process has been followed to build, for example,

the PMA catalog using the 2MASS. Our aim is to improve the positions of this catalog, (although the

process is applicable to any other) and the first stage, presented here, consists of carrying out a 3D

study, using VSH development, of the systematisms in position for the stars common with Hipparcos-2,

taking into account the distances, magnitudes and spectral types. To this aim, we use linear polynomial

regression of first order that fits vector fields and the derivatives of their components. We verify that

the coefficients of the developments of first order have different behavior according to the characteristics

of stars and distances.

To deepen the study we focus on the conservative component of the field, applying the Helmholtz

theorem. Each potential function is obtained solving a Poisson equation on the sphere, after finding

the divergence of the corresponding vector field. Both vector and potential fields present patterns,

at certain points, that depend on the three considered parameters (distance, magnitude, and spectral

type): their sources and shrinks correspond to maxima and minima. In this sense, we observe that

these critical points are also critical points of the surface that represents the VT magnitude of Tycho-2,

which makes sense because this catalog was used in the reduction of 2MASS positions. Finally, we

selected some stars near the critical points of the vector fields and we apply the adjustments obtained

in the previous sections. The difference with the positions in DR1 allows us to compare the proper

motions, those from the PMA and those induced after our corrections.

Keywords: Reference systems –Catalogs–Astrometry

1. INTRODUCTION

Astrometry is an astronomical discipline whose objective is to determine positions, parallaxes and proper motions

in the most accurate possible way. In the last decades, since Hipparcos mission (that provided Hipparcos and Tycho

catalogs (Perryman & ESA 1997)), a much more precise determination for astrometric parameters and, in particular,

for parallax was possible than the one obtained using observations from Earth. The uncertainties, taking as reference

the improved version - Hipparcos-2 henceforth- by van Leeuwen (van Leeuwen 2007a),(van Leeuwen 2007b) are 0.3

mas for positions and parallaxes and 1 mas / yr for proper motions (data valid for J1991.25). The approximately

120000 stars contained in the catalog are, at best, an order up to 11.5 of H-magnitude. The Hipparcos catalog is the
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realization of the Hipparcos Celestial Reference Frame (HCRF), which was aligned with the ICRF with the aim of

having no system rotation. The estimated error on the expected accuracy of the system rotation of the HCRF with

respect to the ICRF was 0.25 mas/yr.

In the frame of the Gaia mission (Prusti et al. 2016), Gaia satellite was launched in 2013 with the objective

(see Arenou et al. (2017)), of ”measuring the three-dimensional distribution, both in position and in speed, of the

stars of our galaxy, as well as the determination of their astrophysical properties.” The astrometrical content of the

first Gaia Data Release, DR1 (Data Release 1, Lindegren et al. (2016)), consists of two parts: the primary and the

secondary data sets. The first of them contains positions, parallax and proper motions for the stars common with

the Tycho-2 catalog (Høg et al 2000), obtained by means of the so-called TGAS solution (Michalik el al. 2015).

For more details in the precedents of the TGAS construction, see the ”Agis paper” (providing an Astrometric Global

Iterative Solution Lindegren et al. (2012)) and their application by (Michalik et al. 2014) to obtain the HTPM solution

(without using Tycho’s stars). For estimated accuracy of TGAS, regarding the 96365 stars common with Hipparcos,

the J1991.25 positions have been taken as valid, while the proper motions are estimated to have an accuracy of 0.06

mas/yr and the parallax 0.3 mas (plus another 0.3 mas for a systematic component, see (Brown et al. 2016)). It is

very reasonable to expect that these precisions will be improved after the final stage of the 5 years mission (despite

having published DR2 in April 2018 (Brown et al. 2018), and other papers included in this special issue, they have

not been considered in this paper). This DR1 parallax system is independent of the Hipparcos parallax system, but

the comparison carried out by Lindegren et al. (2016)) concludes that the accuracies in both systems are comparable

for the Hipparcos stars. Since the publication of DR1, different studies have been carried out on systematic errors,

mainly in parallaxes. For instance Stassun K.G. & Torres G., (2016), using 158 eclipsing binary stars and finding

some correlations with the ecliptic latitude but not with brightness or color; Zinn et al. (2017), Gontcharov (2017),

Davies et al. (2017), Ridder et al. (2016) and Schönrich & Aumer (2017). Also, regarding the proper motions,

the PMA catalogue (Akhmetov et al. 2017) has been built from the data of DR1 and a modification of the 2MASS

(Cutri et al. 2003), (Skrutskie et al, 2006). These papers, among others, make us think that it may be of interest to

consider the use of massive catalogs, (although this mass property it is not necessary: the use of the complete catalog

or a subset may be possible, considering the characteristics of our study) to track the consistency/inconsistency in

certain parameters measured from different catalogs. In this paper, we have the twofold purpose of study the global

and local aspects of the residual 3D vector fields obtained by different comparisons between two astromeric catalogs.

More specifically, from the residuals in right ascension and declination, we will consider the discrete three-dimensional

vector field associated with these data with the goal of identifying possible systematic differences depending on a set of

parameters like magnitudes and spectral types for each fixed distance. On the one hand, we consider Hipparcos-2 van

Leeuwen (2007a) with the values of the distances of TGAS, as have been estimated after the studies of (Bailer-Jones

2015) and (Astraatmadja et al. 2016a), (Astraatmadja et al. 2016b). In this sense, it is interesting to note that

the measurement of a parallax is a ”noisy measure” of the inverse of the distance. Thus, it is only possible to assign a

probability to the distance using Bayes Theorem, from parallax observations and an ”a piori” distribution of distances

in the galaxy. It is precisely in this last article where the catalog of distances for the TGAS catalog is attached. Its

existence enables us to carry out a study, with a good precision, in the interval [25; 600] pc, taking slices centered at

r = 100, 200, 300, 400 and 500 pc in equatorial coordinates, without having to use the inverse of the trigonometrical

parallaxes of Hipparcos. A brief comment about this will be made in subsection 2.1. On the other hand, we have chosen

as second catalog the 2MASS catalog for two reasons: firstly, because of its use in PPMX Röser et al. (2008) and

the PPMXL Röser et al. (2010) position systems and also, because the UCAC4 Zacharias et al. (2013) astrometric

reduction was made applying certain corrections in which the 2MASS catalog was used in order to refer to Tycho-2;

and, secondly, for being a completely independent catalog from Hipparcos, although the stars of Tycho-2 were used to

obtain the reductions. Comparison of the 2MASS point-source positions with the Tycho-2 catalog shows that 2MASS

positions are consistent with the ICRS with a net or a set no larger than 15 mas. Similar uncertainty, at best, is

achieved for the UCAC4 stars. Some studies about the differences using 2MASS and the UCAC catalogs can be seen

in Zacharias et al. (2000), Zacharias et al. (2004) and Zacharias et al. (2013).

Regarding the methods for comparison of catalogs, it is particularly noteworthy that they have been evolving in

the last decades because a greater precision in the measurements demands a greater refinement in the theoretical

adjustment models. Thus, in the mid-60s of the last century the spherical harmonics were already used in the field

of Physical Geodesy (Heiskanen & Moritz 1967). About the same date, Brosche P. (1966) used them for the first

time to calculate the systematic part of the residuals obtained by comparing different stellar catalogs (English version
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in 1966). This approach allowed the independent development of residuals in AR and DEC. A joint treatment for

AR and DEC required the use of vector fields over the sphere and its development, under the hypothesis of regularity

(the completeness theorem can be found in Jeffreys (1967)), in vectorial spherical harmonics (VSH henceforth). This

method was introduced by Mignard & Morando (1990) in the field aimed at this paper, while an early introduction

about the general principles of VSH can be found in the classic Morse & Feshback (1953). This method, applied to

the vector fields of residuals both in the projection on the celestial sphere and in different slices, is the one that we

apply. In addition, to see how the spectral types and magnitudes affect the results, classifications have been made: a)

KM / (Non-KM); b) magnitudes in m4 / m5 / m6 / m7 sets (defined in the article); c) subsets obtained mixing the

two previous pure types (KM-m4 to KM-m7 and the same for No-KM). All of them have been studied over the whole

sphere and with the spatial subdivision by slices and then the 3D study has been performed, so that the results can

be compared in both cases. This part of our work concerns to the Global part of the study. We must mention that

the treatment of the data will be carried out through a suitable regression method. More specifically, we use local

polynomial regression of first order, fitting the components of the vector fields and the derivatives of these components

(it is important to know that we compute estimators for functions and their derivatives, not for the derivatives of

the estimator functions). These technical topics will be presented in section 3, after a study of the data in their

quantitative (subsection 2.2) and qualitative aspects (subsection 2.3). About the analysis of the vector field of the

residuals, we know that the toroidal harmonics correspond to the rotational part of the field and its calculation up

to order one can be sufficiently representative. However, this does not happen with the non-rotational part of the

vector field. To obtain a more accurate study, we have considered the Helmholtz Theorem which splits each vector

field into two components: rotational and non-rotational. This second part coincides with the gradient of a potential

function (so, the divergence of the residual field coincides with the Laplacian of such a potential function. See section

4). Thus, it is possible to obtain a high-order development of the potential function in each slice. To calculate both

expressions we use local first order polynomial estimators in three dimensions, providing adjustment for the function

and its derivatives to calculate the divergence of the vector field. For the second member of the equation we apply

the properties of spherical surface harmonics as eigenfunctions of the Laplace- Beltrami operator. The areas of the

sphere, for each slice, in which the critical points of the global field and the critical points of the potential are close

have no interest from the rotational point of view, but they have interest from the non-rotational point of view. This

is the Local part of the work. Once the critical points of the residual vector field for each slice have been related to

the critical points of a certain potential function, we have considered the possibility of finding a physical quantity that

is relevant in the reduction of data and that may be related to these critical points of the potentials found. In this

sense, given that Tycho-2 was the reference chosen in the reduction of positions of the 2MASS stars, we have studied

the surfaces determined by the BT and VT magnitudes. It has been checked that in the neighborhood of the critical

points of the vector fields the same type of critical point appears on the VT surface (sometimes the BT also behaves

the same, but less clearly than the VT. Probably, this is due, or is related, to the fact that this magnitude is closer to

the absolute magnitude, but this is merely a speculation) It is interesting to remark that the sources and shrinks (also

the saddle points) are patterns that appear depending on the stellar classification carried out (but not necessary in the

residual vector field on the whole sphere), while the relative extrema of the surfaces of VT magnitude, appear when

we consider all the stars from Tycho-2 in the neighborhood of each point since, obviously, in the process of reduction

of the 2MASS did not directly influence the stellar distances. Many results are presented in section 5 and we then we

finish in section 6 with a summary of conclusions.

To visualize other possible applications, once the work has been carried out with all the data of the 2MASS in the sense

explained above, we have computed some proper motions induced by the corrections obtained in section 5.1 in the

neighborhood of some of the singular points of the vector fields presented in 5.2. We proceed to compare the obtained

results with those of DR1 and those of the PMA, which, as mentioned, reviewed 2MASS prior to the calculation of its

proper motions.

2. PREVIOUS STUDIES OF THE DATA

2.1. A brief note about the use of distances

Regarding the use of the inverse of the parallax as distance, there are numerous papers in which such equality is

used for distances near the Sun (for example we can highlight: Vityazev & Tsvetkov (2009), Vityazev et al. (2011)

(Makarov & Murphy. 2007) which applies to a subset of 42487 stars of Hipparcos fulfilling that π/σ(π) > 5 or Vityazev

et al. (2017c)). On the other hand, in the 1997 version of Hipparcos, the uncertainties in the parallaxes were 1 mas,
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Table 1. Initial statistics for 2MASS-Hip2 (* = stars with r < 25pc are not considered; ** = we show data, in mas, for stars
with r ≤ 600pc)

Centered at r = Dr N r ∆α∗ ∆δ ∆α∗
r ∆δr

√
Pot

S2 58081 345.58 0.66 5.82 0.21 4.34 117.55

100 [25, 200]∗ 24498 125.34 1.37 8.41 1.08 7.55 124.19

200 [100, 300] 30455 192.93 0.43 6.29 0.33 6.29 118.58

300 [200, 400] 23219 288.88 -0.09 5.34 -0.11 5.39 114.71

400 [300, 500] 16224 386.69 0.40 4.17 0.48 4.03 113.32

500 [400, 600] 10364 482.60 1.15 2.80 1.10 2.84 112.50

so Lutz-Kelker bias was not considered before 200 pc. However, given that there are new estimates for the stars of

Hipparcos-2 from the publication of TGAS distances introduced in the paper Astraatmadja et al. (2016a) and the

corresponding data (catalog available at http://www.mpia.de/homes/calj/tgas distances/main.html), we have decided

to make use of these new data.

However, in a preliminary study related to the use of the inverse of the trigonometric parallax as a biased approx-

imation of the distance, we have created 1000 samples from the initial data, perturbing the AR and the DEC by a

N(0,1) and the inverse of the parallax by 20% of its value times a N(0,1) We have verified that, considering all the

samples, if we call mi and Mi the minimum and maximum values, for the i-star, of the ”distances” in Hipparcos-2 with

the application of the disturbance, 90% of the stars that we have used verifies that ri < dGi < Mi, where dGi are the

distances provided in the file annexed to (Astraatmadja et al. 2016a), which could show a relatively high reliability

in the results that will be obtained in our studies, in 3D, of the residuals for the stars of Hipparcos-2 compared with

the corresponding positions in another catalog. In spite of this, given the aforementioned availability of distances for

the stars of the TGAS, we have used them although the positions and proper motions are those corresponding to

Hipparcos-2. With this choice, the reliability of our method and later results are based on a disturbance test with

lower requirements, in which the RA and the DEC are still added a N (0,1) but to the distance, a 10% of itself times

a N(0,1) is added. The results obtained are shown later in Table 5. Before that, we previously show in the following

two subsections, the results of some elementary statistical studies about the qualitative and quantitative aspects of

the data considered.

2.2. Data quantitative aspects

We initially consider the 66577 stars common to Hipparcos 2 (van Leeuwen 2007b) and 2MASS (Skrutskie et al,

2006) with known TGAS distances, we eliminate double stars, those with negative parallax, and considering that both

residuals ∆α∗,∆δ are, in absolute value, minor than 200mas. Under these conditions, we have the initial statistics

seen in Table 1 (Dr indicates the domain to which the data in the corresponding line refer). We consider overlapping

for a better follow-up of the continuity or discontinuity of the different quantities.

We calculated the mean of r (r) for each slice, and the means in ∆α∗,∆δ in two different ways: the usual arithmetic

mean and the weighted mean with the distance in pc: ∆α∗r =
∑N
i=1ri∆α

∗
i∑N

i=1ri
,∆δr =

∑N
i=1ri∆δi∑N
i=1ri

. Finally, the square root

of the power

√
[∆α∗

i ]
2
+[∆δi]

2

N is provided.

We can observe that the means in ∆α∗,∆δ are very similar, no matter if the weighting is the classical arithmetic

or the one given by the distances. This may imply that the dependence ∆α∗(r),∆δ(r) (that can be seen, in a smooth

way, in figure 3) is very accurate for the TGAS distances. The graphs of the density functions in ∆α∗,∆δ and r can

be seen in Figures 1 and 2.

Another aspect to consider is the lack of normality of ∆α∗,∆δ (see, again, figure 1 for the 2MASS). This rather points

to a ”Gaussian Mixture” which confirms our interest to study different subsets of data, with respect to magnitudes

or spectral types, for example. The dependence of r and also some physical properties, would indicate the search for

clusters from a statistical point of view (not to be confused with star clusters). Finally, the distribution in r indicates

that a large % of our star set have a radius r ≤ 600pc so we have selected the stars up to such a distance because our

aim is devoted to the slices centered at the distances r=100, 200, 300, 400 y 500 pc. Employing these restrictions, only

58081 stars remain.

http://www.mpia.de/homes/calj/tgas_distances/main.html


Global and local 3D studies of the residual vector field 5

−200 −150 −100 −50 0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Figure 1. Density Functions for ∆α∗ (red),∆δ (green), in mas.
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Figure 2. Distribution of r (in pc) for 2MASS.

2.3. Data: qualitative aspects

The magnitude is a property whose influence has been studied by (Bien et al. 1978) and (Schwann 2001) among

others. In this section, we only give a brief description of the data that, in our case, take values between Hp-magnitudes

−1.088 and 14.169. Figure 4 gives an idea of their probability density function (Hmag is taken from the Hipparcos2

catalog and here it is represented as Hp).

Artificially we have made a subdivision into 10m subintervals and have subsequently classified the stars according to

r−slices of 200pc. Approximately 75% of the stars are concentrated in the subsets that we have called m5 and m6, but

other magnitudes have also been considered that also have good representativity in some of the selected r−intervals.

More specifically, if m4 = [5.750, 7.153] ,m5 = [7.153, 8.556], m6 = [8.556, 9.959], m7 = [9.959, 11.363] and we consider

the distances [25, 600] pc .The numerical distribution can be seen in Table 2.

With respect to the spectral type, we have differentiated the two KM groups (K or M type) and the rest, obtaining

17243 for the first and 40838 for the second group, always with the general conditions indicated in the preceding

subsection. Global distributions for KM and No-KM stars can be seen in Figure 5 and their statistics in Table 3,

where we can see some information about the bias in the distributions of stars in KM and No −KM . Namely, the



6 Marco et al.

50 100 150 200 250 300 350 400 450 500 550 600

-2

0

2

4

6

8

10

12

14

16

Figure 3. Graphic in smoothed means of ∆α∗(r) (red),∆δ(r) (green), in mas.
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Figure 4. Density function for Hp-magnitude

Table 2. Numerical distribution regarding r and number of stars of the m4,m5,m6,m7 2MASS subsets.

Centered at r = Dr m4 m5 m6 m7

S2 4707 24888 28103 4263

100 [25, 200]∗ 2947 9742 9968 1632

200 [100, 300] 2844 13048 12215 2254

300 [200, 400] 1331 10248 9867 1712

400 [300, 500] 624 6031 8558 952

500 [400, 600] 309 3588 5866 568

former subset has a greater bias in ∆α∗, while the latter subset has a greater bias in ∆δ. In table 4 we show the

statistics for the spectral type in each of the magnitude subgroups.
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Figure 5. Star distribution for type K or M (KM) stars, in red, and the rest (No-KM), in green

Table 3. Numerical distribution (in mas) of stars of spectral type from K to M and the rest. Stars from 25pc to 99pc are
included and also subdivision by intervals centered at r from 100pc to 800pc. 2MASS-Hip2. r is the value in pc where the slice
is centered

Spectral r = Dr N ∆α∗ ∆δ σ∆α∗ σ∆δ ∆α∗
r ∆δr

√
Pot

S2 40838 -0.73 7.26 82.32 80.88 -1.78 5.91 115.6

No KM 100 [25, 200] 21360 0.50 8.66 88.29 84.52 0.21 7.97 122.6

200 [100, 300] 24286 -0.41 6.87 83.24 81.25 -0.54 6.65 116.5

300 [200, 400] 14740 -1.17 5.81 77.56 78.01 -1.25 5.85 110.2

400 [300, 500] 8465 -2.03 5.09 75.18 76.24 -2.08 4.50 107.2

500 [400, 600] 4738 -3.38 4.94 72.84 75.17 -3.52 5.01 104.8

S2 17243 4.01 3.45 86.62 87.15 4.03 1.87 123.0

KM 100 [25, 200] 3138 7.31 6.65 97.68 92.57 7.18 4.56 134.9

200 [100, 300] 6169 3.77 3.99 89.94 88.71 3.21 3.98 126.4

300 [200, 400] 8479 1.79 4.53 86.03 86.65 1.73 4.65 122.2

400 [300, 500] 7759 3.06 3.15 83.64 85.41 3.21 3.00 119.6

500 [400, 600] 5626 4.96 1.0 82.27 85.24 4.94 1.05 118.6

Table 4. Numerical distribution (in mas) of 2MASS-Hip2 stars of spectal type from K to M and the rest. Subdivision by
magnitudes are included considering only our m4,m5,m6 and m7 subsets.

Spec/Mag N ∆α∗ ∆δ σ∆α∗ σ∆δ ∆α∗
r ∆δr

No KM

& m4 3185 -1.55 4.61 86.11 86.45 -4.00 4.69

& m5 15392 -0.72 6.50 83.96 83.50 -3.24 4.80

& m6 18765 -0.64 6.62 80.77 79.47 -2.06 5.65

& m7 3329 -3.74 13.90 73.26 66.89 -4.58 11.07

KM

& m4 1402 15.95 2.20 95.91 96.39 19.34 4.75

& m5 8186 4.80 2.94 88.38 90.17 7.40 1.69

& m6 6936 2.46 3.48 81.71 82.54 2.56 2.28

& m7 583 -4.33 6.63 90.22 87.09 -2.74 -0.81
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3. THE METHODS

In this section we present a brief justification of why we use other than the current procedures to deal with the

problem. Next, we will introduce the formulations that allow to deal with the problem from a continuous point of

view.

3.1. Continuous vs. discrete problem

The problem about the three-dimensional study of the differences has recently been partially addressed by Vityazev

(Vityazev & Tsvetkov 2013) to the residuals of Hipparcos2 and UCAC4. Such work has taken into account the discrete

set of data, the adjustment model and the statistical method for the allocation of formal errors and, if appropriate,

the acceptance or denial of a determined computed value for some parameter (contrast of hypotheses).

However, it is possible to go back to the work of Mignard & Morando (1990) to see the use of VSH in catalog

problems. From then, two issues regarding catalogs have been studied: the one concerning the position and that of

the kinematical study of the galaxy from the proper motions. About the former we can highlight its application to

Hipparcos-FK5 (Mignard & Klioner 2012) and (Marco et al. 2004), or to those made by Vityazev et al. for the

UCAC4-PPMXL (Vityazev & Tsvetkov 2015), XPM-UCAC4 (Vityazev et al. 2017a), among others. Regarding the

application in kinematic studies, we can mention those obtained by Vityazev et al. (Vityazev & Tsvetkov (2009) with

Hipparcos and a catalog test between 200 and 300pc, Vityazev et al. (2011) for Tycho-2, Vityazev & Tsvetkov (2013)

for UCAC4, Vityazev & Tsvetkov (2014) for UCAC4, PPMXL and XPM, Vityazev & Tsvetkov (2017b) for Tycho-2

using TGAS, (Vityazev et al. 2017c) for UCAC4, PPMXL, TGAS, using RAVE5 and the use of VSH in Marco et al.

(2015) applied to the proper motions of Hipparcos2 and introducing non-parametric methods of adjustment. We can

also reference the study conducted by Mignard (2000) that, although it does not use VSH, does make an interesting

distinction between spectral types for the results of OMM model of the Hipparcos kinematics.

As we have already mentioned in previous articles (Marco et al. 2004), (Marco et al. 2015), the choice of model

requires assuming that the function to be adjusted belongs to a certain space of functions and then the least squares

integral condition is applied, which allows the calculation of the parameters. The fact of working with a discrete set of

data makes that such calculations to be, actually, estimates. In this sense, most authors prefer to make discrete least

squares adjustments (which we will call DLS). Accepting, of course, that this procedure provides the coefficients for

the least-variance unbiased estimator (in the discrete sense), there are some facts that make us think of a variation

of the procedure. First, the original data are not necessary unbiased (and this is why the estimator obtained - the

model with the corresponding coefficients - will not be the unbiased minimum variance estimator). Second, let us

remember that the data are being adjusted to a continuous function and the model is nothing more than the truncated

development, up to the desired order, of an infinite series. Such series development can be assumed to exist for a

function with square integrable in the working domain (for example, in the sphere). The fact of working with the DLS

method implies that no use is made of the analytical properties in which the continuous problem is formulated and a

good part of the power of the theoretical procedure may be lost. We then go on to describe the continuous extent of

the problem.

Suppose that we want to determine a function f(x) belonging to a Hilbert space H, with x ∈ D, the work domain,

and that function verifies the necessary hypotheses that assure the existence of a convergent series development (not

punctual convergence, but convergence in the norm of the functional space). Suppose we work with an orthogonal

basis (φi)i≥0. Then, the completeness property tells us that there exist (unique) coefficients αi such that:

f(x) =
∑
i≥0

αiφi(x) (1)

Remember that this equality is, in fact, symbolic. What it really means is that:

lim
n→∞

∥∥∥∥∥f −
n∑
i=0

αiφi

∥∥∥∥∥
H

(2)

where ‖ ‖H represents the norm associated to the inner product in H denoted by 〈, 〉H . Thanks to the orthogonality

and completeness properties of the basis we can assure that:

αk =
〈f, φk〉H
〈φk, φk〉H

∀k ≥ 0 (3)



Global and local 3D studies of the residual vector field 9

The importance of this formula is that each coefficient is found independently of the others. Note that this does

not happen with a discrete treatment of the problem because in this case, we have to choose an ”a priori” order for

the development and if we decide to increase that order, the coefficients must be recalculated again. This is a huge

drawback. The reason is that the functional orthogonality of the basis enables the previous formula to be exact for

each index. In the discrete case, with the DLS method, the theoretical functional orthogonality does not become

algebraic orthogonality of the normal matrix that estimates the coefficients. This is why recalculation is mandatory if

the order of development is changed. On the contrary, a discrete formulation in which we select a mesh in the domain

D with equispaced points (in each dimension of D ), retains the theoretical functional orthogonality to that discrete

step. You would get approximate values:

α̂k =

〈
f̂ , φk

〉
Hm

〈φk, φk〉Hm
∀ k ≥ 0 (4)

where f̂ , âk are approximations obtained by working in the discrete space Hm, m representing the discrete meshing

and 〈, 〉Hm the discretization of the inner product in H. No recomputation of the coefficients is required if the order

is increased.

In our case, the Hilbert space will be that of functions (or vector fields) of square integrable in the sphere: L2(S2),

and the v product will be the integral over the sphere. Note that the calculation of the estimates of α̂k will be performed

by applying a numerical integration. To complete the procedure, we only need to see how to determine f̂ . Let us recall

that we initially start from a set of discrete data αi, δi, ri,∆α
∗
i ,∆δi and we can assume that they are realizations of

random discrete or continuous variables . We work on the second assumption and we will use non-parametric kernel

estimation, and kernel local polynomial linear regression that is useful for working with vector fields.

3.2. Kernel Estimations

In this subsection we provide the exposition of the procedures for determining density functions, unidimensional

regressions to fit the function, and multidimensional local polynomial formulation ( which adjusts the function and

the partial derivatives up to a predetermined order, which for us will be only one). During the brief presentation,

the necessary references will be cited for an extension of the concepts, including theoretical results as well as their

practical application.

3.2.a) A kernel K is a non-negative function, defined in a domain D and such that
∫
D
K(x)dx = 1,

∫
D
xK(x)dx = 0

and
∫
D
x2K(x)dx < +∞. Simple and usual examples are Epanechnikov kernel: K(x) = 1|x|≤1

3
4 (1 − x2) or Gauss

kernel K(x) = 1
2π

∫ x
−∞ exp(−t2)dt. Its properties, in terms of statistical efficiency, can be found in (Simonoff 1996),

(Fan & Gijbels 1996) or (Wand & Jones 1995). The density function f(x) of a random variable (r.v.) X is estimated

by:

f̂(x) =
1

Nh

N∑
k=1

K(
x− xk
hx

) (5)

where (xk) are the discrete data of the r.v. and hx is the so-called bandwidth which can be constant or variable

and in which the sub-index refers to the r.v. The higher value of hx the smoother the estimator and the lesser value

of hx the lesser smooth estimator. The optimization of this parameter is done minimizing the AMISE (Asymptotic

Mean Integral Squared Estimation), whose value for this one-dimensional problem is hopt = Nσ̂−0.2 with N the size

of the sample and σ̂ the standard deviation of the data. This topic and the extension to the multidimensional case is

immediate and can be seen in the previous references. The optimal values of the bandwidth are obtained in the case

of a dimension d, as H =
(

4
d+2

) 1
d+4

diag
(

Σ
−1
2

)
n

−1
d+4 (Simonoff 1996), with H the vector of the different values of h

and Σ the variance-covariance matrix.

3.2.b) Let us now consider the case of an r.v. (X,Y ) with discrete data (xk, yk). Let f̂X,Y (x, y) denote the kernel

estimate of the joint density function. If we assume that the r.v. Y depends on the r.v. X, the regression of Y on X

will be y = m(x). The precise definition is y = m(x) = E [Y |X = x] =
∫
yfY |X=x(y|X = x)dy, where fY |X=x is the

conditional probability which, by the Total Probability Theorem, verifies that fX,Y (x, y) = fY |X=x(Y |X = x)fX(x)

(hereafter, we will omit references in densities to r.v.s, except where the context requires otherwise). A substitution in

the exact formula of the regression, but applying the kernel approximations of the densities (since they are unknown),
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provides an estimate of the regression, known as Nadaraya-Watson (since there is no danger of confusion we use h

instead of hx):

y = m̂(x) =

N∑
k=1

ωkyk , ωk =
K(x−xkh )∑N
j=1K(

x−xj
h )

(6)

It is interesting to remark that the Nadaraya-Watson method has the following characteristic: if Y is an r.v.

dependent on another r.v. X, the estimation at a point x is the value β̂(x) that minimizes (in β) the expression:

1

Nh

n∑
i=1

(Yj − β)2K

(
x− xj
h

)
(7)

which is nothing more than the discretization (from integral to summation) of the variance of Y |X=x with the ap-

proximate density of the kernel and with the solution β̂ = E [Y |X=x]. In this sense, the Nadaraya-Watson formula is

easily generalizable to the case of an r.v. Y (with Y = ∆α∗ or ∆δ) depending on (α, δ, r):

y =

N∑
k=1

ωkyk , ωk =
K(α−αkhα

)K( sin δ−sin δk
hsin δ

)K( r−rkhr
)∑N

j=1K(
x−xj
hα

)K(
sin δ−sin δj

hsin δ
)K(

r−rj
hr

)
(8)

Where we have worked with sin δ and not with δ.

3.2.c) The regressions given in the two previous subsections refer to scalar functions. However, our work is based on

vector fields in space, that will be three-dimensional or two-dimensional, depending on wether we work in R3 or, for

each fixed r, in S2 either in Cartesian coordinates or in spherical coordinates. In the latter case, if X is the position

vector of a point, in the sphere of radius r, then small variations in α and δ will also induce a change in the position

vector and, thus, the residual vector field is:

∆X ≡ V(α, δ) = V α(α, δ)eα + V δ(α, δ)eδ = (∆α∗) eα + (∆δ) eδ (9)

We have denoted as V α(α, δ) = ∆α∗, V δ(α, δ) = ∆δ the scalar fields of residuals and, as usual, by eα, eδ the unit

vectors in the tangent plane, at the considered point, and in the respective directions given by the right ascension and

the declination. In Cartesian coordinates, these vectors are:

eα =
1

cos δ

∂X

∂α
=

 − sinα

cosα

0

 , eδ =
∂X

∂δ
= X× eα =

 − cosα sin δ

− sinα sin δ

cos δ

 (10)

As already mentioned in section 1, the consideration of the three-dimensional problem provides residuals ∆α∗ =

∆α∗(r, α, δ),∆δ = ∆δ(r, α, δ) where the dependence of r makes it possible to choose two ways of working: a) fixing

certain values of r (the slices mentioned in section 1) and then take ∆α∗ = ∆α∗(α, δ),∆δ = ∆δ(α, δ) for each of those

r; b) work directly in 3 dimensions, in any coordinate system. As we will see later, the work in Cartesian coordinates

has, in some cases, advantages when dealing with points near the poles. By now, we will limit ourselves to describing

the approach to arrive at a generic exposition of the local polynomial regression method (first degree) to be used with

the vector field component functions. For convenience, it will be exposed for two variables, although its generalization

to the case of three or more variables is immediate.

The kernel polynomial local regression provides estimates of the function and its derivatives up to a predetermined

order. Again, for simplicity, we will limit ourselves to the case where only derivatives of first order are required, that

is, a local linear polynomial regression. To see how this problem is addressed, let us consider that we are looking for

a fit between random variables such as Yi = m(Xi), where Xi is a random vector of dimension 2 and we assume that:

m(Xi) ' m(x) + (D1m)x(Xi − x) (11)

as linear approximation. We search the estimator
{
m̂(x), ∂̂m∂x1

(x), ∂̂m∂x2
(x)
}
≡ {m̂(x), m̂11(x), m̂12(x)} where the second

notation is for convenience and if, for example, the r.v. is ∆α∗, m̂ indicates the estimation of the function, while

m̂11, m̂12 indicate the estimates of the partial derivatives of the random vector with respect to α, δ respectively. Since
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m is a scalar function, the first subscript in both expressions of m̂11, m̂12 is not necessary here, but they are shown since

for the case where m had several components, they should all be considered. The estimates {m̂(x), m̂11(x), m̂12(x)}
are the solution to the problem:{

b̂0(x), b̂11(x), b̂12(x)
}

=

= min
{b̂k(x)}

{Yi − b0(x)− b11(x)(Xi,1 − x1)− b12(x)(Xi,2 − x2)}2Kh,ix
(12)

being x = (x1, x2)t,h = (h1, h2)t and Kh,ix :

Kh,ix =
1

h1
K(

Xi,1 − x1

h1
)

1

h2
K(

Xi,2 − x2

h2
) (13)

For the explicit formulas to program the computation of the estimators, see Masry & Fan (1997).

4. MODELS OF ADJUSTMENTS

In this section, we present two different models of adjustment, with two different objectives: the first one refers to

the global study of the vector fields of the residuals and the second sets the stage for a local study of such residuals.

More specifically, the first model is a global adjustment development in VSH, already mentioned in previous sections.

Given the lack of known significance for the coefficients of the developments, beyond the coefficients of the toroidal

harmonics of order one representing the rotation between both catalogs, we limit ourselves to developments of first

order. Already in section 5, in its practical application, we will see that depending on whether one field or another is

considered in terms of spectral types, magnitudes and distances, such coefficients differ from one development to other.

Thus, we will show the dependence of the systematisms, using the vector fields, of the different physical magnitudes

considered. As for the second decomposition used, this consists in the application of the Helmholtz Theorem that

enables to split a vector field into its rotational and irrotational components. This latter component is the gradient

of a scalar field that, moreover, we can obtain as a development in surface spherical harmonics (in the present work,

we have experimentally verified that a development of 5th order contains practically the complete information of the

irrotational part of each considered vector field). Obtaining such potential is evident and the procedure is explained

in section 5.2. We are interested in areas of the sphere where the irrotational component of the field is dominant. In

these cases, the relative extremes of the potential function (local maxima and minima) are very close to critical points

of the working vector field (sources and shrinks, respectively). So we are using this development to carry out a local

study of the residuals. It is important to highlight that the local properties of the different fields that are associated

to certain physical properties (spectral type, magnitude, as well as distance), that is, the patterns that we obtain,

do not appear in the global field in which only the distance (or not even that, as in the case of a 2D vector field) is

considered. Finally, in a later section, we will see a possible justification, which remains only as a hypothesis, for the

emergence of the critical points, outlining a possible way to advance further in this local study.

4.a) At this point, we assume that after the application of the statistical procedures of the previous section, we have

carried out the studies on the r.v. and estimates of the components of the vector field ∆X have been found. This

field is a simplified version of another three-dimensional field F that depends on the variables r, α, δ which we assume

to verify the necessary conditions to be developed in Vector Spherical Harmonics (VSH henceforth. For convergence

results see Jeffreys (1967))

F(r, α, δ) =
∑

n,|m|≤n

[rnmRnm + snmSnm + tnmTnm] (14)

where Rnm,Snm,Tnm are the vectors (orthogonal and complete system of the functions with integrable square in the

sphere of radius r) whose coefficients represent the radial, spheroidal and toroidal parts, respectively of the field F .

These vectors are given by the expressions:

Rnm = Ynmr,Snm = r∇Ynm,Tnm = −r×∇Ynm (15)

where r is the position vector, r its modulus and Ynm are the ordinary surface spherical harmonics (see Annexes A

and B). By the orthogonality, the different coefficients are calculated independently by the formula given above (3)
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and (4). Estimates of the coefficients are performed by a polynomial linear local regression of the components of the

field ∆X = (∆α∗) eα + (∆δ) eδ, in a grid of equispaced points over each sphere with a preset radius r.

4.b) The decomposition used in the preceding section is of first order and allows obtaining the coefficients

s1,0, s1,1, s1,−1 and t1,0, t1,1, t1,−1. These last ones represent the rotation between both catalogs, deduced from the

vector field of the residuals, but the s1,0, s1,1, s1,−1 values (unlike those that are obtained in the vector field of the

proper motions of the considered catalog, applied to stellar kinematics) do not have a clear physical meaning. Even so

we propose an indirect approach based on the Helmholtz decomposition theorem. This result states that a vector field,

under certain assumptions of regularity that we will assume, can be decomposed into its rotational part (solenoidal

or divergence-free) and in its non-rotational part, which comes from a scalar potential. Since, for a given r0, we are

working on a sphere, we can apply to such a potential a spherical surface harmonic development of the desired order.

Thanks to the properties of the spherical harmonics as eigenfunctions of the Laplace-Beltrami operator, it is possible

to determine the coefficients of the potential by considering the divergence of the field. More specifically, let φ be

a potential such that given a vector field
−→
X in the sphere, Helmholtz theorem states that there exists a (unique)

decomposition in the form: −→
X =

−→∇φ+
−→∇ ×−→u (16)

where the potential gradient φ,
−→∇φ is rotational-free, the rotational

−→∇ ×−→u is divergence-free.

The calculation process is as follows:

4b-1) We find the divergence of the field, which provides the laplacian of the potential φ:

div
−→
X = ∆φ (17)

4b-2) We find φ and we suppose it developed in surface spherical harmonics:

φ(α, δ) =
∑
n,m

αnmYnm(α, δ) (18)

If we apply the property that the harmonics are eigenfunctions of the Laplace-Beltrami operator, then we have:

∆φ =
∑
n,m

αnm∆Ynm =
∑
n,m

[−n(n+ 1)αnm]Ynm (19)

4b-3) The usual inner product in the Hilbert space L2(S2) allows to obtain the components αnm

αnm = − 1

n(n+ 1)

〈∆φ, Ynm〉
〈Ynm, Ynm〉

(20)

5. RESULTS

We divide this section into two subsections showing the coefficients of the VSH of the 2MASS-Hip2 vector field.

Then, we perform a comparison between the potentials and vector fields for each slice for 2MASS-Hip2. And finally,

we relate empirically the critical points with the same points on the surface of the VT -magnitude for Tycho-2.

5.1. Coefficients of the vector fields

Before performing the calculations for the available data and in order to carry out a test on the reliability of the

results that are given throughout the section, we generated 1000 samples for the 2MASS catalog, perturbing the

residuals in right ascension and declination using a N(0, 1), and the distance with 10% of its value multiplied by a

N(0,1). The results for the larger slices (those centered from r = 100 pc to r = 500 pc) are shown in table 5, including

the actual values obtained for all the original non-perturbed data. After this, we compute the developments in VSH

for all the KM / No-KM, m4 to m7 classifications and the mixtures between them, tapping different overlapping

slices centered on r = 100, 200, 300, 400, 500 all in pc. We can observe that all the factors r, m, spectral type, have

influence on them. In the first place, m4 and KM-m4 highlight the value of t1,0. Regarding m5 and No-KM-m5, the

highest values are reached in s1,0. For m6 the same coefficient (s1,0) stands out correlated with both, KM and No-KM.

Unfortunately, for m7 no results can be shown in the case of KM- m7 for any value of r or in the case of No-KM- m7

for r = 400 pc or r = 500 pc, due to the low number of stars) So practically the maximum size in all the magnitudes

falls on the same coefficient, different for each catalog, and with the same correlations with KM, No-KM or both. The

exception is in m4 with t1,0 and its correlation KM-m4.
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Table 5. First Order VSH, up to 500pc. 2MASS-Hip2. r means the center of the slice. We also show the sample results and
errors for the main slices.

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

100 24498
9.70± 0.08

9.81

3.25± 0.09

3.19

0.67± 0.09

0.73

2.87± 0.08

2.85

1.55± 0.09

1.58

3.57± 0.09

3.43

200 30455
8.26± 0.07

8.28

3.55± 0.07

3.63

0.45± 0.07

0.45

2.25± 0.07

2.24

1.40± 0.07

1.41

3.96± 0.08

3.97

300 23219
6.64± 0.11

6.68

3.56± 0.10

3.60

0.56± 0.10

0.57

1.98± 0.10

1.98

0.98± 0.10

0.99

4.44± 0.10

4.50

400 16224
5.45± 0.16

5.47

3.38± 0.15

3.38

1.02± 0.15

1.01

2.21± 0.16

2.25

−0.20± 0.16

0.28

4.50± 0.16

4.58

500 10364
4.12± 0.25

4.11

3.40± 0.23

3.38

1.13± 0.24

1.17

2.73± 0.24

2.83

−1.13± 0.24

1.23

4.15± 0.23

4.14

S2 58081 7.33 3.43 0.80 2.12 0.81 3.81

S2(with weights) 7.39 3.44 0.69 2.38 0.84 3.65

Table 6. VSH coefficients for m4 magnitudes 2MASS-Hip2. r means the center of the slice

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

100 2947 5.87 3.84 2.60 4.44 1.13 2.51

200 2844 4.39 4.79 0.39 6.76 1.50 3.66

300 1331 2.62 7.04 -4.09 10.98 2.55 4.52

S2/m4 4587 5.62 4.19 -0.05 6.64 0.69 2.62

Table 7. VSH coefficients for m5 magnitudes. 2MASS-Hip2. r means the center of the slice

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

100 9742 9.44 4.58 1.75 3.00 1.51 3.42

200 13048 8.41 4.39 1.44 2.22 1.57 3.58

300 10248 7.02 3.42 1.36 1.77 1.04 4.03

400 6031 5.41 2.09 1.49 3.26 -0.29 5.15

500 3588 2.25 1.64 0.15 5.76 -2.08 5.33

S2/m5 23568 7.43 2.49 1.40 3.07 0.82 3.24

Regarding the toroidal components, we have already highlighted the size of t1,0 for m4. For m5 and m6 we can

highlight a change of sign in t1,1 in r = 400 pc and r = 500 pc that is only observed, very slightly, in KM-m5 and No-

KM-m5, respectively.

The next variation in sign is given in t1,0 and t1,1 for m7 in r= 300 pc. Both coefficients in No-KM-m7 are negatives

for all value of r where the calculations are significant (note that in the subgroup KM-m7 there are very few stars

per slice and no conclusions can be drawn). It should be noted that, in general, there are trends in the increase or

decrease of the values of many parameters when increasing r. It seems clear that these trends do not have a random

origin and point, once more, to the influence of distance on the values of the coefficients. All the details can be seen

in tables from 6 to 19.

5.2. Comparison between potentials, vector fields on the slices of 2MASS and VT Tycho-2 surfaces

A visual inspection of the 2MASS-Hipparcos2 residual vector fields reveals a great mix of properties in terms of their

singular points. Recall that after the formula (16) the non-rotational part of the field comes from a potential, for each
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Table 8. VSH coefficients for m6 magnitudes. 2MASS-Hip2. r means the center of the slice

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

100 9968 10.21 2.18 0.98 2.50 1.78 3.97

200 12215 8.19 2.93 0.78 1.57 1.68 4.36

300 9867 6.06 3.52 0.19 1.20 0.92 4.85

400 8558 4.98 3.99 1.46 1.08 -0.35 4.42

500 5866 4.46 4.09 1.86 1.54 -1.17 3.50

S2/m6 28701 7.50 3.23 0.28 1.12 0.77 3.70

Table 9. VSH coefficients for m7 magnitudes. 2MASS-Hip2. r means the center of the slice

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

100 1632 17.83 2.63 3.17 4.29 2.69 1.08

200 2254 14.97 0.14 0.81 5.07 2.81 0.77

300 1712 13.42 1.05 2.66 -5.94 -2.50 1.54

S2/m7 3912 14.88 1.22 1.60 5.18 1.39 2.45

Table 10. VSH coefficients for No-KM magnitudes. 2MASS-Hip2. r means the center of the slice

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

100 21360 10.12 3.69 1.27 2.05 1.27 3.46

200 24286 8.96 3.80 0.70 1.51 1.20 3.91

300 14740 7.36 3.94 0.57 1.01 0.54 4.74

400 8465 6.30 3.89 1.45 0.84 -1.66 5.20

500 4738 6.18 3.53 2.60 0.72 -3.73 5.46

S2/No−KM 40808 9.24 3.28 1.14 1.53 0.44 4.20

Table 11. VSH coefficients for KM magnitudes. 2MASS-Hip2. r means the center of the slice

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

100 3138 8.16 1.13 -2.34 7.04 3.34 2.68

200 6169 6.54 2.37 -3.27 4.33 2.74 3.33

300 8479 5.73 2.07 0.86 3.08 2.21 3.08

400 7759 4.65 1.86 0.79 3.42 1.38 2.93

500 5626 2.34 2.49 0.05 4.37 0.74 2.11

S2/KM 17243 4.95 1.82 -0.05 4.58 1.77 2.47

r, found with (18) and (20) up to fifth order (already fulfilling formula (17)). We show in Figure 6 the contour lines

corresponding to the potential of the [25, 200] pc slice.

Tables 20 to 24 show some additional information with the singular points of the potential for each r and the critical

points of the vector fields. We denote as area I = {α ≥ π, δ < 0}, area II = {α ≥ π, δ ≥ 0}, area III = {α < π, δ ≥ 0},
area IV = {α < π, δ < 0}

We are going to show some examples in which it is appreciated that a maximum of this potential corresponds to a

source of the vector field, and a minimum of the potential corresponds to a shrink of the vector field. We recall that

the singular points and their situation regarding the critical points of the potential can be seen in tables 20 to 24.

Given that there are many graphs, we have considered adequate to only show some of the most relevant in figures 7
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Table 12. VSH coefficients for No −KM spectral types and m4 magnitudes. 2MASS-Hip2. r means the center of the slice.
The entries correspondig to r=500 are not included because there are only 191 stars.

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

100 2281 6.18 5.04 5.24 1.32 0.99 4.33

200 1834 5.13 4.87 2.23 0.96 0.31 4.62

300 713 2.25 7.65 -1.18 1.51 2.24 8.17

400 335 2.23 11.78 -5.64 2.24 3.52 10.83

S2/No−KM −m4 3185 6.51 4.21 3.44 1.58 0.65 4.85

Table 13. VSH coefficients for No−KM and m5 magnitudes. 2MASS-Hip2. r means the center of the slice

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

100 8563 10.21 4.80 2.23 2.93 1.58 3.41

200 9196 9.04 4.34 1.42 1.78 1.72 3.03

300 5504 7.55 5.21 0.54 1.80 1.88 4.18

400 2716 5.30 4.50 1.79 2.82 0.66 5.91

500 1325 2.13 2.14 1.39 3.45 -0.09 8.46

S2/No−KM −m5 15392 9.35 3.41 1.73 2.88 1.73 3.90

Table 14. VSH coefficients for spectral types spectral No −KM and m6 magnitudes . 2MASS-Hip2. r means the center of
the slice

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

100 9199 10.12 3.15 -0.78 1.78 1.30 3.57

200 11016 8.45 3.57 -0.39 0.91 1.12 4.10

300 6834 6.08 3.76 -0.19 1.28 0.35 5.53

400 4477 5.16 4.06 1.50 0.98 -2.36 5.81

500 2732 5.69 4.34 2.45 1.80 -5.22 5.28

S2/No−KM −m6 18765 8.21 3.11 0.28 0.87 0.05 4.54

Table 15. VSH coefficients for spectral types No −KM and m7 magnitudes. 2MASS-Hip2. r means the center of the slice.
The entries correspondig to r=500 are not included because there are only 461 stars.

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

100 1230 17.95 -0.89 0.94 -4.35 -3.65 1.10

200 2178 15.80 -0.85 2.41 -5.43 -3.24 1.41

300 1638 14.41 0.36 3.13 -5.95 -2.74 2.10

400 883 13.95 1.45 2.42 -5.65 -3.58 1.84

S2/No−KM −m7 3329 13.36 -0.09 1.05 -5.47 -1.52 2.08

to 11. Because Tycho-2 was used for the reduction of the 2MASS positions, we studied the surfaces of the BT and VT
magnitudes in the neighborhood of the critical points. In a very general way the VT surface mimics the extrema of the

vector field, including the saddle points (these have not been included in the figures because we have selected only a

few of them). It should be noted that the surface VT is unique, while vector fields depend on the magnitude, spectral

type and distance, showing patterns -in terms of singular points- different in each case.
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Table 16. VSH coefficients for spectral types KM and m4 magnitudes. 2MASS-Hip2. r means the center of the slice

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

100 666 5.28 2.45 -5.94 15.70 1.94 0.04

200 1010 3.83 3.18 -6.80 19.58 2.31 0.81

300 618 1.94 5.29 -8.35 24.48 2.64 0.68

400 289 -0.23 10.75 -9.30 27.67 3.08 -0.71

500 118 2.62 14.54 -13.20 28.48 2.84 -6.84

S2/KM −m4 1402 4.68 4.12 -8.51 21.19 2.07 -0.99

Table 17. VSH coefficients for spectral types KM and m5 magnitudes. 2MASS-Hip2. r means the center of the slice

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

100 1179 6.45 4.15 0.38 3.37 1.09 2.97

200 3852 6.39 2.26 2.35 1.45 1.22 3.31

300 4744 6.85 0.94 2.72 1.38 1.01 3.51

400 3315 5.14 -0.25 1.22 3.66 -0.07 3.81

500 2263 0.72 0.33 -1.57 7.56 -1.70 2.81

S2/KM −m5 8186 4.46 0.48 0.68 5.22 -0.26 2.40

Table 18. VSH coefficients for spectral type KM and m6 magnitudes. 2MASS-Hip2. r means the center of the slice

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

100 769 11.84 -6.71 -3.29 8.14 6.32 5.98

200 1199 7.98 0.26 -0.60 2.21 4.01 4.38

300 3033 5.90 2.12 0.46 0.06 2.89 3.10

400 4081 4.85 2.71 1.48 0.56 2.25 2.47

500 3134 3.41 3.48 1.16 1.33 1.46 2.15

S2/KM −m6 6936 5.21 1.75 1.02 1.74 2.49 4.39

Table 19. VSH coefficients for spectral types KM and m7 magnitudes. 2MASS-Hip2 r means the center of the slice. We only
show the entries corresponding to the whole sphere because the slices correspomding to r=100, 200, 300, 400 and 500 pc contain
only 402, 76, 74, 69 and 107 stars, respectively.

r = N s1,0 s1,1 s1,−1 t1,0 t1,1 t1,−1

S2/KM −m7 583 10.38 -5.33 -6.37 1.48 5.91 3.87

5.3. Application to obtain some proper motions in the neighborhoods of the critical points

In this subsection, we will consider some of the critical points obtained in the local study, selecting stars around

the center within a radius of 0.2 rad. This will provide a number of stars common to Hipparcos and 2MASS in the

neighborhood of the selected critical point for each case. We will choose some of them and we will apply the global

correction depending on the spectral type of the star, its magnitude, and its distance according to TGAS. After these

corrections, we follow an elementary process of position improvement (see (Marco et al. 2013) and (Michalik et al.

2014)). As the area of influence is small and we do not aim to obtain a joint solution (this issue will be considered in a

further stage), it is not necessary to work with the positions in SMOK coordinates (Michalik et al. 2014). The quotient

between the difference of positions (DR1 in t=2015 and improved version of 2MASS in t=2000) and the elapsed time

for each star provides our approximation for the proper motions (see table 25) These values are compared with the
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Figure 6. Contour lines corresponding to the potential of the [25, 200] pc slice..
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¡

DR1 values and the PMA values which were obtained from DR1 and amelioration, using another procedure, from the

2MASS catalog. It must be taken into account that star-to-star comparisons are merely indicative. They cannot be

representative, in a strict sense, because the adjustments for the elimination of bias are made by minimizing residuals

in L2-norm and not in L∞-norm.

6. CONCLUSIONS

In this paper, we have presented a three-dimensional study of the vector field of positional residuals between 2MASS

and Hipparcos-2, considering distances from TGAS provided in (Astraatmadja et al. 2016b). Such residuals have

been used to obtain adjustments by nonparametric regression both for the entire sphere and for slices centered at

the distances r = 100, 200,300, 400 and 500 pc. These regressions have been carried out so that we have obtained

the vector fields at equally spaced points. This allows least squares adjustments from a continuous approach, using

integrals, with the exception that these integrals are finally approximated by a numerical integration method. This

procedure allows a robust evaluation of the desired parameters. In particular, the spheroidal and toroidal coefficients

of the spherical vector harmonic developments that have been applied to vector fields. These have been computed for
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Table 20. Singular points of the potential and the vector fields, classified by magnitudes, of the non-rotational component. FS
means faint source, AF Attracting Focus

[25, 200)
Coordinates

Type
m4 m5 m6 m7

I
4.7,−0.7)

Max

No−KM
Source

(4.5,−1.05)

Source

(4.6,−0.85)

KM

Source

(4.9,−0.8)

No−KM
Shrink

(6.1,−1.15)

KM

Source

(4.2,−0.75)

II
(3.5, 0.5)

Max

No−KM
Source

(3.9, 0.2)

KM

Source

(3.7, 0.45)

KM

Source

(4.4, 1)

No−KM
Source

(4.65, 0.92)

III
(1.7, 0)

Max

KM

Source

(2.3, 0.2)

(1.75, 0)

Source

(1.3, 1.05)

Min

No−KM
Shrink

(0.85, 1.15)

KM

Shrink

(1.6, 1)

KM

Shrink

(0.4, 1.1)

No−KM
Source

(2.3, 0.5)

IV
(1.7,−1.1)

Min

KM

Shrink

(2.47,−1.02)

No−KM
Shrink

(1.8,−1.15)

KM

Shrink

(1.9,−0.95)

No−KM
Shrink

(2,−1)

several cases: a) all stars, not classified and classified by slices; b) taking into account if the stars are KM or Non-KM;

c) According to four groups of Hp magnitudes that gather practically all of the stars; d) Idem with mixtures between

KM and different magnitudes, and Non-KM and different magnitudes. We have verified how the coefficients of the

vector fields depend on the spectral type and the magnitude, as well as on r. It should be noted that the adjustments
have been made by ”overlapping” and smoothly, so that the variations of the values of the parameters are also smooth,

showing an (intuitive) idea of mathematical continuity. We stress that although the variations, between values of

consecutive r, are small, they generally maintain a growing or decreasing tendency, with some exception.

To study the reliability of the results, case a) (see above) has been applied to 1000 samples created with perturbations

times a N (0,1) for both AR and for DEC while for the distance has been considered a perturbation of the 10% of

its value times a N(0,1). The results obtained for the real data are within the confidence interval for each coefficient,

obtained by creating the perturbed data in the 1000 samples.

We have considered that the developments of first order for the toroidal component, are sufficient to determine the

rotation between both catalogs. On the other hand, we have considered the non-rotational part of the field in more

detail. To this aim, the Helmholtz Theorem has been used to decompose the vector field in its rotational part (the

toroidal components of first order) and non-rotational. Focusing on the non-rotational part and considering that it is

the gradient of a potential function, we deduce that the divergence of the residual field coincides with the Laplacian of

the potential and that happens for each of the considered cases. If we assume that the potential can be developed in

spherical (surface) harmonics, their properties lead immediately to the obtention of the Laplacian of such potential as

the sum of coefficients (to be calculated) and the spherical functions themselves. The calculation of the divergence of

the residual field is carried out by means of a polynomial local regression of first order, in order to obtain the first-order

derivatives of each component and later the divergence of the vector field. The equality between both members allows,
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Table 21. Singular points of the potential and the vector fields, classified by magnitudes, of the non-rotational component. FS
means faint source, AF Attracting Focus

[100, 300)
Coordinates

Type
m4 m5 m6 m7

I
Shrink

(5.7,−0.2)

No−KM
Source

(4.7,−1.1)

(5.9,−0.2)

Shrink

Shrink

(5.4, 0.2)

II
(3.1, 0.5)

Max

KM

Shrink

(2.8, 0.5)

KM

Shrink

(5.2, 0.1)

(2.7, 0.3)

Source

KM

Source

(3.75, 0.82)

III
(1.5, 0)

Max

Shrink

(0.9, 1.1)

KM

Shrink

(1.15, 0.95)

No−KM
Source

(2.2, 0)

KM

Shrink

(1.3, 0.95)

(1.2, 1.1)

Min

IV
(1.5,−1.25)

Min

No−KM
Source

(1.5,−0.3)

KM

Shrink

(2,−1.10)

No−KM
Shrink

(1.6,−1.25)

through numerical integration, to obtain the coefficients of the potential. We verify that there are extrema for each

potential that correspond to close critical points of the associated vector field. This happens, obviously, in areas of the

sphere where the rotational component is small and, therefore, not very influential. From the results included in the

tables of Section 5.2, it can be deduced that the patterns of the critical points and the potentials are dependents of r.

Finally, we have taken into account that the 2MASS reductions were made using the Tycho-2 as reference catalog.

That is why we have studied the surfaces (here for the whole celestial sphere) corresponding to the magnitudes BT
and VT . We have checked that for each critical point of each vector field (in which aspects such as the slice in which

we works, the spectral type and the magnitude do have importance) there is a critical point of the VT surface (the

case of BT , although in some cases could also be used, is, in general, less conclusive). In addition, there is a strong

correspondence is between shrinks, sources and saddle points in the vector field and minimum, maximum and saddle

points on the VT surface (See figures from 8 to 12). With this and being aware that there are still questions to

be answered, we have concluded our 2MASS-Hipparcos-2 residual analysis, is an apparently wide field of work that

relates locally the geometry of vector fields to certain physical properties. Notice the importance, which can be seen

in the tables and figures of Subsection 5.2, that the critical points of the surfaces of the magnitude VT are obtained

considering the complete celestial sphere, while their relative extrema correspond to critical points of residual vector

fields corresponding to a specific subgroup of stars and a certain distance. This confirms the importance of the 3D

study introduced/studied in this article.

It is interesting to note that three issues remain. Firstly is the search for a classification by statistical clusters,

taking into account at least distances, spectral types, and magnitudes. Secondly, the improved recent massive catalogs

with which to compare different aspects of the Gaia Data Release that are to appear. And thirdly, the Helmholtz

decomposition of the velocity field of a catalog, studying the potentials in the different cases in which this vector field

is found and seeing the possible implications of the obtained results. It is clear that these issues are to be addressed

in later work.
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Table 22. Singular points of the potential and the vector fields, classified by magnitudes, of the non-rotational component. FS
means faint source, AF Attracting Focus, SF Source Focus

[200, 400)
Coordinates

Type
m4 m5 m6 m7

I

KM

Source

(5.9,−0.45)

KM

Shrink

(5.1, 0)

Shrink

(6.1,−0.1)

Shrink

(5.7, 0)

No−KM
Shrink

(5.9,−0.3)

No−KM
Shrink

(5.6,−0.1)

II

KM

Source

(4.8, 0)

No−KM
Shrink

(5.5, 1.05)

Source

(1.9,−0.05)

No−KM
Source

(1.9,−0.05)

III
(1.2, 1.1)

Min

KM

Shrink

(1.4, 0.95)

No−KM
Shrink

(1.4, 1.2)

KM

Shrink

(1.1, 1.15)

Shrink

(1.2, 0.85)

F1(1.5, 0)

Max

Shrink

(1.4, 1.5)

KM

Source

(1.5, 0.05)

F1(3, 0.25)

Max

KM

Source

(1.3, 0)

Source

(1.7,−0.15)

IV
(1.5,−1.25)

Min

No−KM
Shrink

(1.7,−1.2)

No−KM
Shrink

(1.5,−1.25)

Shrink

(1.8,−1)

After a simple process of local improvement of the 2MASS stars located in the neighborhood of some of the singular

points that appeared in Subsection 5.2, we have applied the adjustments obtained in Subsection 5.1 to deduce the

induced proper motions and compare them with those provided by DR1 and PMA. It must be neared in mind that the

local corrections have not been arranged in the way of a search for a joint solution and that the adjustments we use

to minimize the L2-norm, so that the comparison one by one, that is, in the L∞-norm, should be done with caution

and the results are merely indicative.
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Table 25. Comparison between the proper motions from DR1, PMA and our obtained results for some stars in the neighborhood
of some singular points of their vector field. Hip stands for the number of the star in the Hipparcos catalogue, DR1 for the DR1
identifier. Subindex (1) means DR1 and (2) means PMA. The proper motions are given in mas, being the last two colums µ∗

α

µδ our obtained results.
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APPENDIX

A. SURFACE SPHERICAL HARMONICS

We present in this Annex the surface spherical harmonics up to 5th order:

Y00(sin δ) = 1

Y10(sin δ) = sin δ

Y1,−1(sin δ) = cos δ cosα

Y1,1(sin δ) = cos δ sinα

Y2,−2(sin δ) = 3 cos2 (δ) cos (2α)

Y2,−1(sin δ) = 3 sin δ cos (δ) cos (α)

Y2,0(sin δ) = 3
2 sin δ sin (δ)− 1

2

Y2,1(sin δ) = 3 sin δ cos (δ) sin (α)

Y2,2(sin δ) = 3 cos2 (δ) sin (2α)

Y3,−3(sin δ) = 15 cos3 (δ) cos (3α)

Y3,−2(sin δ) = 15 sin δ cos2 (δ) cos (2α)

Y3,−1(sin δ) = 3
2

(
5 sin2 δ − 1

)
cos (δ) cos (α)

Y3,0(sin δ) = 1
2

(
5 sin3 δ − 3 sin (δ)

)
Y3,1(sin δ) = 3

2

(
5 sin2 δ − 1

)
cos (δ) sin (α)

Y3,2(sin δ) = 15 sin δ cos2 (δ) sin (2α)

Y3,3(sin δ) = 15 cos3 (δ) sin (3α)

Y4,−4(sin δ) = cos4 (δ) sin (4α)

Y4,−3(sin δ) = sin δ cos3 (δ) sin (3α)

Y4,−2(sin δ) = 7
(
sin2 δ − 1

)
cos2 (δ) sin (2α)

Y4,−1(sin δ) = sin δ
(
7 sin2 δ − 3

)
cos (δ) sin (α)

Y4,0(sin δ) = 35 sin4 δ − 30 sin2 (δ) + 3

Y4,1(sin δ) = sin δ
(
7 sin2 δ − 3

)
cos (δ) cos (α)

Y4,2(sin δ) = 7
(
sin2 δ − 1

)
cos2 (δ) cos (2α)

Y4,3(sin δ) = sin δ cos3 (δ) cos (3α)

Y4,4(sin δ) = cos4 (δ) cos (4α)

Y5,−5(sin δ) = sin5 (δ) sin (5α)

Y5,−4(sin δ) = sin δ cos4 (δ) sin (4α)

Y5,−3(sin δ) =
(
9 sin2 δ − 1

)
cos3 (δ) sin (3α)

Y5,−2(sin δ) = 3
(
sin3 δ − sin δ

)
cos2 (δ) sin (2α)

Y5,−1(sin δ) = cos δ
(
21 sin4 δ − 14 cos2 (δ) + 1

)
sin (α)

Y5,0(sin δ) = 63 sin5 δ − 70 sin3 δ − 14 cos2 (δ) + 15 sin δ

Y5,1(sin δ) = cos δ
(
21 sin4 δ − 14 cos2 (δ) + 1

)
cos (α)

Y5,2(sin δ) = 3
(
sin3 δ − sin δ

)
cos2 (δ) cos (2α)

Y5,3(sin δ) =
(
9 sin2 δ − 1

)
cos3 (δ) cos (3α)

Y5,4(sin δ) = sin δ cos4 (δ) cos (4α)

Y5,5(sin δ) = sin5 (δ) cos (5α)

B. SPHEROIDAL AND TOROIDAL SPHERICAL HARMONICS USED

We include a list of the Spheroidal and Toroidal spherical harmonics used in this paper. The general formulation

may be seen in Morse & Feshback (1953) . For clarity, we have not included the norms in these formulas.
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S1,−1 = − cos l−→e l + sin l sin b−→e b
S1,0 = cos b−→e b

S1,1 = sin l−→e l + cos l sin b−→e b
S2,−2 = 6 cos 2l cos b−→e l − 6 sin 2l cos b sin b−→e b
S2,−1 = −3 cos l sin b−→e l − 3 sin l cos 2b sin b−→e b

S2,0 = 3 cos b sin b−→e b
S2,1 = 3 sin l sin b−→e l − 3 cos l cos 2b−→e b

S2,2 = −6 sin 2l cos b−→e l − 6 cos 2l cos b sin b−→e b
S3,−1 = −

(
5 sin2 b− 1

)
cos l−→e l + sin l sin b

(
15 sin2 b− 11

)−→e b
S4,2 =

(
7 sin2 b− 1

)
cos b sin 2l−→e l +

(
7 sin2 b− 4

)
sin 2b cos 2l−→e b

(B1)

T1,−1 = sin l sin b−→e l + cos l−→e b
T1,0 = cos b−→e l

T1,1 = cos l sin b−→e l − sin l−→e b
T2,−2 = −6 sin 2l cos b sin b−→e l − 6 cos 2l cos b−→e b
T2,−1 = −3 sin l cos 2b−→e l + 3 cos l sin b−→e b

T2,0 = 3 cos b sin b−→e l
T2,1 = −3 cos l cos 2b−→e l − 3 sin l sin b−→e b

T2,2 = −6 cos 2l cos b sin b−→e l + 6 sin 2l cos b−→e b

(B2)


