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Abstract—This letter introduces a novel remote sensing

single-image super-resolution (SR) architecture based on a

deep efficient compendium model. The current deep learn-

ing (DL)-based SR trend stands for using deeper networks

to improve the performance. However, this practice often

results in a degradation of visual results. To address this

issue, the proposed approach harmonizes several different

improvements on the network design to achieve state-of-

the-art performance when super-resolving remote sensing

imagery. On the one hand, the proposal combines residual

units and skip connections to extract more informative

features on both local and global image areas. On the other

hand, it makes use of parallelized 1×1 convolutional filters

(network in network) to reconstruct the super-resolved

result while reducing the information loss through the

network. Our experiments, conducted using seven different

SR methods over the well-known UC Merced remote
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sensing dataset, and two additional GaoFen-2 test images,

show that the proposed model is able to provide competitive

advantages.

Index Terms—Super-resolution, deep learning, remote

sensing.

I. INTRODUCTION

Image super-resolution (SR) has found a fertile do-

main in the remote sensing field in order to overcome

the optical limitations inherent to airborne and space

acquisition instruments. Remote target tracking [1], land-

cover mapping [2] and fine-grained image classification

[3] are some of the most popular applications in which

SR has shown to provide competitive advantages. In gen-

eral, single-image SR aims at enhancing the resolution

of a given input image from a single view of the target

scene. That is, the SR technology pursues to recover

spatial details not captured by the imaging sensor, which

logically implies a high level of visual uncertainty and

eventually demands strong image priors to effectively

relieve the ill-posed nature of the problem.

Different kinds of image reconstruction and learning

paradigms have been successfully applied to super-

resolve remotely sensed imagery [4]. From the most

traditional signal reconstruction mechanisms to the most

recent machine learning algorithms, all the existing SR

methodologies have their own advantages and limita-

tions. For instance, Zhang et al. [5] propose a land cover
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mapping SR approach which takes advantage of the self-

similarity property to learn multi-scale patch relations

useful to increase the input image resolution. Despite

the fact that this and other approaches, such as [6],

do not require any external training set, their perfor-

mances are usually rather unsatisfactory in applications

where precision is important. Other authors make use

of different machine learning paradigms to define more

accurate SR models based on a training procedure using

exemplar high-resolution data. For instance, Yang et al.

[7] present a SR technique based on the sparse coding

approach which learns a coupled dictionary from an

external high-resolution training set in order to project

the input low-resolution image at a higher resolution

scale. Alternative works propose the use of probabilistic

models to learn the mapping between low-resolution and

high-resolution image domains [8]. Even though these

and other recent models [9] [10] have shown to obtain

a good SR performance, they are typically based on

low-level visual features, which eventually limits the

SR capabilities, especially under the most challenging

remote sensing scenarios.

Recently, convolutional neural networks (CNN) have

shown a great potential to capture high level features

from optical data. Therefore, this paradigm has become

one of the most important technologies to deal with the

SR problem and many CNN-based learning models have

been proposed in the literature. For instance, Dong et

al. [11] propose a deep learning (DL) based approach

to super-resolve low-resolution image patches. In the

training stage, the method up-scales the low-resolution

input images by a bi-cubic interpolation, and then a 3-

layer CNN is trained to learn a mapping between these

interpolated versions and their ground-truth counterparts.

Conceptually, each layer represents: (1) patch extraction,

(2) non-linear mapping and (3) high-resolution genera-

tion. The first two layers use a formulation based on the

Rectified Linear Unit (ReLU) on the filter responses, e.i.

max(0,W ∗Y +B), where W and B represent the filters

and biases, respectively, ∗ is the convolution operator,

and Y is the input image. The third layer is a regular

convolutional layer with filter responses W ∗ Y + B.

Finally, the loss function used to train the parameters W

and B of the network is the Mean Square Error (MSE).

Despite the remarkable performance achieved by this

reference work, alternative CNN-based SR approaches

have been also proposed in the literature. In particular,

a relevant extension can be found in [12], where authors

introduce several improvements based on three main

points: (1) defining an end-to-end mapping to avoid

the initial interpolation process, (2) reformulating the

mapping layer by shrinking the input feature dimen-

sion, and (3) using a deeper architecture to achieve

a superior restoration quality. Other authors propose

different network improvements instead. For instance,

Kim et al. [13] define a SR approach considering a

deeper architecture, a data augmenting scheme together

with residual and multi-scaling learning. Even though

all these exhibit satisfactory SR performance, they have

not been specifically designed to manage remote sensing

imagery, which eventually constrains their effectiveness

over this application domain. Unlike general purpose

optical data, remotely sensed images exhibit special

complexity because they are typically highly-detailed

and fully-focused multi-band shots. As a result, other

works propose CNN-based SR methods aimed at dealing

with satellite and aerial data: Lei et al. [14] present a

DL approach especially designed to super-resolve remote

sensing data. Specifically, this method defines a multi-

level CNN architecture in order to learn multi-scale

local and global image features when introducing new

spatial details. Notwithstanding the remarkable perfor-

mance achieved by these and other SR approaches [15],

[16], the intrinsic complexity of airborne and space
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optical data, together with the specific particularities

and difficulties of the DL domain, still make room

for improvements focused on the development of new

architectures able to obtain performance advantages in

the SR task.

Taking into account this scenario, this letter proposes

a novel SR approach based on a deep efficient com-

pendium model which integrates different improvements

on the network design to effectively super-resolve re-

motely sensed images: (i) residual units, (ii) skip con-

nections and (iii) network in network (NIN). On the

one hand, the proposed architecture uses a combination

of residual units and skip connections to extract more

descriptive and informative visual features on both local

and global image areas. On the other hand, parallelized

1× 1 convolutional filters, also NIN [17], are employed

to generate the output super-resolved image by substan-

tially reducing the dimensions of the previous layers

and hence the information loss through the network.

With this design, the proposed approach pursues to

competently super-resolve remote sensing data while

avoiding undesirable visual artifacts. Our experiments,

which include seven different SR methods, the UC

Merced dataset and two additional GaoFen-2 test data

products, reveal very competitive performance of our

newly proposed approach.

TABLE I

KERNEL SIZES AND NUMBER OF FILTERS PER LAYER

Feature extractor network (FE-net)

Layer C(1) − C(12)

Kernel size 3× 3

N filters 196, 166, 148, 133, 120, 108, 97, 86, 76, 66, 57, 48

Reconstruction network (R-net)

Layer A B(1) B(2) U(1) U(2)* R

Kernel size 1× 1 3× 3

N filters 64 32 32 384 384 1

*A second upsampling layer is added when factor is

4x

II. METHODOLOGY

We propose an architecture based on fully convolu-

tional neural networks (FCNs) [18]. Our model is com-

posed by two parts (Fig. 1): i) the feature extractor part

(FE-net) and ii) the reconstruction part (R-net), which

are connected through a “concatenation” layer, where

all the feature maps obtained by FE-net are concatenated

through skip connections before being fed to R-net. The

FE-net receives the original image X ∈ Rn1×n2×n3

as input, which passes through a hierarchical set of 12

convolutional layers, denoted as C(n), in order to extract

the corresponding feature maps as a linear transformation

between each layer’s input and the layer’s kernel. The

kernel size has been set to 3× 3, in order to reduce the

number of parameters while considering enough spatial

information. Also, with the aim of learning the non-

linear relationships between the data, non-linear activa-

tion functions have been allocated behind each learnable

layer: X(l+1) = H
(
W(l) ∗X(l) + b(l)

)
, where H(·) is

implemented by the parametric rectifier linear unit (P-

ReLU) [19] in order to deal with the decaying ReLU

effect and the vanishing gradient problem. At the end,

all the output feature maps are concatenated and sent to

R-net.

The R-net follows the NIN architecture, implemented

by an inception module with two branches (layers A

and B(1), with kernels 1 × 1, and B(2) with kernel

3× 3) in order to reduce the input volume’s depth. The

obtained output is upsampled by one or more upsampling

layers U of 3 × 3 kernels, which increment the spatial

dimension by a 2× factor through phase shift reshaping

[20]. Then, upsampled feature maps are processed by a

convolutional layer (or reconstruction layer with 3 × 3

kernel) which obtains a single map that is combined with

a bicubic-upsampled image X′ ∈ Rm1×m2×m3 , where
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Fig. 1. Proposed model architecture, composed by FE-net (whose layer’s outputs are concatenated at the end) and the R-net (composed by the

inception module, whose concatenated output feeds the up-sampler, which is refined by a bicubic up-sampling). The final output is obtained as

the ensemble of 8 models .

m1 = f · n1, m2 = f · n2 and m3 = n3 being f

the scaling factor. Finally, with the aim of stabilizing

the performance of the model, a self-ensemble learning

step has been included [21], obtaining the final super-

resolved image Y ∈ Rm1×m2×m3 as the ensemble of 8

models. Model topology is described in Table I.

III. EXPERIMENTS

A. Datasets and methods

The remote sensing UC Merced dataset has been con-

sidered in our experiments, which contains 21 ground-

truth classes with 100 RGB images per class and a

spatial resolution of 0.3 m/pixel. The dataset has been

randomly split into two balanced halves for training and

test purposes. Besides, 20% of the training data has

been reserved for validation. Regarding the experimental

protocol, the original 256× 256 high-resolution images

have been initially down-sampled using the considered

scaling factor and the bi-cubic kernel to generate the cor-

responding low-resolution counterparts. Then, the low-

resolution test images have been super-resolved using

different learning-based SR models after training and

validating the methods. It is important to highlight that

all the experiments have been carried out following the

standard SR procedure for RGB imagery, which is based

on the uniform color space transformation YCbCr [4]. In

order to assess the SR performance, two reference image

quality metrics have been employed: peak signal-to-noise

ratio (PSNR) and structural similarity index measure

(SSIM) [22]. Our experiments include seven different SR

methods available in the literature: the bi-cubic interpo-

lation kernel (BC), the original sparse coding approach

(SR) [7] and five different DL-SR methods, i.e. SRCNN

[11], FSRCNN [12], CNN-7 [14], LGCNet [14] and the

proposed approach. An additional dataset has been also

considered in order to assess the performance of the

proposal when transferring the knowledge learned from

the UC Merced dataset to a different remotely sensed

image collection. The considered external test collection

is made of two multi-spectral data products captured by

the GaoFen-2 satellite, where only the RGB channels

(3.2 m/pixel) have been selected for the experiments.

This collection has been kindly provided by LGCNet

authors for qualitatively assessment, since there is not
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available high-resolution reference data.

B. Results and discussion

Tables II-IV provide a quantitative assessment of the

experiments conducted over the UC Merced dataset.

In particular, Table II presents the average PSNR (dB)

and SSIM results for the considered SR methods when

using three different scaling factors, i.e. 2×, 3× and 4×.

Table III shows the average PSNR (dB) metric per class

when considering a 3× upscaling factor. Additionally,

Table III contains a summary of the quantitative metric

results as well as the corresponding inference times for

the considered SR methods. Note that the best metric

value in all the tables is highlighted using bold font.

According to the average quantitative results reported

in Table II, it is possible to point out several impor-

tant observations. The first remarkable point is related

to the effect of using different scaling factors when

super-resolving the considered test images. As we can

observe, all the considered methods obtain a better

metric result with smaller magnification ratios because,

logically, there is more available visual information to

introduce high-frequency components when considering

small factors over the UC Merced dataset. Nonetheless,

the proposed approach consistently provides the highest

metric improvement with respect to the second best

method for all the tested scaling ratios and metrics. In

the case of the PSNR metric, the proposed approach

outperforms, on average, LGCNet in 0.20dB, CNN-7 in

0.45dB, FSRCNN in 0.40dB, SRCNN in 0.70dB, SC

in 0.95dB and the bi-cubic baseline (BC) in 2.17dB.

Analogously, the proposed approach average SSIM result

is higher on a 0.013 for LGCNet, 0.020 for CNN-7,

0.019 for FSRCNN, 0.026 for SRCNN, 0.030 for SC

and 0.068 for BC. This initial quantitative comparison

reveals that the most recent DL-based SR models, i.e.

LGCNet, CNN-7, FSRCNN and the proposed approach,

HR BC (27.53dB) SC (28.37dB) SRCNN (28.85dB)

FSRCNN (29.45dB) CNN-7 (29.36dB) LGCNet (29.70dB) Ours (30.44dB)

Fig. 2. UC Merced airplane test image qualitative assessment for a

3× factor.

are the most effective to super-resolve the UC Merced

remote sensing data for all the considered scaling ratios.

However, the proposed approach clearly provides the

best average result in terms of the PSNR and SSIM

image quality metrics.

When analyzing the quantitative SR results per class,

we can also observe a remarkable improvement provided

by the proposed approach. Table III shows that the

proposed approach obtains the best PSNR result using a

3× scaling factor in 13 UC Merced categories whereas

the second best SR method (LGCNet) achieves the

highest value in the rest classes (8). Despite the fact

that LGCNet and other recent DL competitors provide

a good SR performance, the proposed approach shows

a superior overall result when evaluating the individual

class results in more detail. On the one hand, the

proposed approach absolute PSNR class improvement

over LGCNet is 13.06dB which indicates the proposed

architecture effectiveness to super-resolve UC Merced

remote sensing data. On the other hand, it is also possible

to observe that the proposed approach is especially

effective in those classes which contain a high level

of spatial details, such as dense residential, harbor or

parking, and therefore they require a higher amount of

spatial details in the super-resolution process.
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TABLE II

QUANTITATIVE ASSESSMENT FOR THE CONSIDERED SR METHODS (IN COLUMNS) USING THREE DIFFERENT SCALING FACTORS (IN ROWS).

Bicubic SC [7] SRCNN [11] FSRCNN [12] CNN-7 [14] LGCNet [14] Proposed

scale PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

2 30.76 / 0.8789 32.77 / 0.9166 32.84 / 0.9152 33.18 / 0.9196 33.15 / 0.9191 33.48 / 0.9235 33.65 / 0.9274

3 27.46 / 0.7631 28.26 / 0.7971 28.66 / 0.8038 29.09 / 0.8167 29.02 / 0.8155 29.28 / 0.8238 29.52 / 0.8394

4 25.65 / 0.6725 26.51 / 0.7152 26.78 / 0.7219 26.93 / 0.7267 26.86 / 0.7264 27.02 / 0.7333 27.22 / 0.7528

TABLE III

CLASS-BASED UC MERCED QUANTITATIVE SUPER-RESOLUTION

ASSESSMENT CONSIDERING A 3× SCALING FACTOR.

Class Bicubic
SC SRCNN FSRCNN CNN-7 LGCNet

Proposed
[7] [11] [12] [14] [14]

1 26.86 27.23 27.47 27.61 27.59 27.66 29.06

2 26.71 27.67 28.24 28.98 28.81 29.12 30.77

3 33.33 34.06 34.33 34.64 34.59 34.72 33.76

4 36.14 36.87 37.00 37.21 37.22 37.37 36.38

5 25.09 26.11 26.84 27.50 27.39 27.81 28.51

6 25.21 25.82 26.11 26.21 26.22 26.39 26.81

7 25.76 26.75 27.41 28.02 27.89 28.25 28.79

8 27.53 28.09 28.24 28.35 28.35 28.44 28.16

9 27.36 28.28 28.69 29.27 29.16 29.52 30.45

10 35.21 35.92 36.15 36.43 36.39 36.51 34.43

11 21.25 22.11 22.82 23.29 23.32 23.63 26.55

12 26.48 27.20 27.67 28.06 27.99 28.29 29.28

13 25.68 26.54 27.06 27.58 27.48 27.76 27.21

14 22.25 23.25 23.89 24.34 24.30 24.59 26.05

15 24.59 25.30 25.65 26.53 26.19 26.58 27.77

16 21.75 22.59 23.11 23.34 23.37 23.69 24.95

17 28.12 28.71 28.89 29.07 29.03 29.12 28.89

18 29.30 30.25 30.61 31.01 30.93 31.15 32.53

19 28.34 29.33 29.40 30.23 29.94 30.53 29.81

20 29.97 30.86 31.33 31.92 31.87 32.17 29.02

21 29.75 30.62 30.98 31.34 31.32 31.58 30.76

In addition to the quantitative evaluation reported

by Tables II-III, some visual super-resolved results are

provided in Figs. 2-5 as a qualitative evaluation for

the tested methods. In particular, Figs. 2-3 show the

SR results for two specific test UC Merced images,

airplane and road considering 3× and 4× scaling factors

respectively. The visual results presented in Figs. 2-3

reveal that each particular SR model tends to generate

different visual features on the super-resolved output.

Whereas the bi-cubic baseline (BC) together with SC and

HR BC (20.46dB) SC (21.51dB) SRCNN (23.30dB)

FSRCNN (24.23dB) CNN-7 (23.25dB) LGCNet (25.67dB) Ours (27.60dB)

Fig. 3. UC Merced road test image qualitative assessment for a 4×
factor.

SRCNN seem very sensitive to the upscaling aliasing

effect, the most recent DL-based models FSRCNN,

CNN-7, LGCNet and the proposed approach provide a

substantially more robust result for UC Merced remote

sensing data. That is, SC and SRCNN models were

designed to super-resolve images starting from their cor-

responding interpolated versions which logically intro-

duces an unavoidable aliasing effect which is eventually

super-resolved in the final result. The most recent DL-

SR models, e.g. FSRCNN, CNN-7, LGCNet and the

proposed approach, work for relieving this effect by

using deeper architectures which allow them to recover

cleaner high-resolution image patterns. For instance, it

is easy to appreciate in Fig. 2 that BC, SC and SRCNN

introduce an important aliasing effect on the airplane

wing.

According to the visual result displayed in Fig. 3, it
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is possible to see that the proposed approach is able

to remove a large amount of the noise present in the

road details of FSRCNN, CNN-7 and LGCNet. That

is, the image lines of the proposed approach result are

sharper and certainly the most similar to their high-

resolution counterparts which eventually leads to the best

visual perceived quality. Moreover, the qualitative super-

resolution results provided in Figs. 4-5 show that the

proposed model is able to reduce the ringing artifacts

when compared to other methods which also indicates

the proposed model higher robustness to transfer the

knowledge acquired from the UC Merced dataset to the

GaoFen-2 collection despite the existing spatial resolu-

tion differences. Finally, the computational time results

reported in Table IV reveal that the proposed approach is

able to achieve a high computational performance level

using a GPU NVIDIA GeForce GTX 1080 whereas the

considered competitors make use of a more powerful

GPU device, i.e. NVIDIA Titan Z.

The current trend in DL-SR is inspired on using

deeper architectures to improve the resulting perfor-

mance (e.g. [13], [14]), however this practice may result

in a poor propagation of activations and gradients which

eventually degrades the quality of the convolutional fea-

tures and hence the super-resolved result because output

images can be affected by noisy artifacts. To mitigate

these issues, the proposed approach makes use of a

combination of residual units and skip connections in

order to extract more informative features on both local

and global image areas. On the other hand, parallelized

1 × 1 convolutional filters are used to reconstruct the

resulting super-resolved image by means of a network

architecture which substantially reduces the dimensions

of the previous layers in order to minimize the informa-

tion loss through the network. The combination of these

improvements allows the proposed approach to produce a

more effective remote sensing image computation while

LR BC SC SRCNN

FSRCNN CNN-7 LGCNet Ours

Fig. 4. GaoFen-2 airport test image qualitative assessment for a 3×
factor.

LR BC SC SRCNN

FSRCNN CNN-7 LGCNet Ours

Fig. 5. GaoFen-2 factory test image qualitative assessment for a 4×
factor.

achieving state-of-the-art performance.

TABLE IV

METRICS SUMMARY FOR THE BEST CONSIDERED SR METHODS

scale
VDSR [13] LGCNet [14] LGCNet+ [14] Proposed

PSNR / SSIM / time PSNR / SSIM / time PSNR / SSIM / time PSNR / SSIM / time

2 33.47/0.9234/0.119 33.48/0.9235/0.063 33.53/0.9242/0.070 33.65/0.9274/0.187

3 29.34/0.8263/0.118 29.28/0.8238/0.061 29.35/0.8251/0.069 29.52/0.8394/0.100

4 27.11/0.7360/0.120 27.02/0.7333/0.061 27.13/0.7375/0.073 27.22/0.7528/0.066

IV. CONCLUSIONS AND FUTURE LINES

This letter presents a novel remote sensing single-

image super-resolution approach based on a deep ef-

ficient compendium model. The proposed architecture

integrates different improvements on the network de-

sign to achieve state-of-the-art performance to super-

resolve remote sensing data: (i) residual units, (ii) skip
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connections and (iii) network in network. Our experi-

ments, conducted over the remote sensing UC Merced

dataset and GaoFen-2 tests images using seven different

SR methods available in the literature, reveal that the

presented approach is able to archive a state-of-the-

art SR performance in the remote sensing field. Future

work will be aimed at extending the proposed model

to deep self-learning architectures and comprehensively

analyzing the effect of considering different network

modifications within the remote sensing SR domain.
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