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Abstract: Advances in Robotics are leading to a new generation of assistant robots working in
ordinary, domestic settings. This evolution raises new challenges in the tasks to be accomplished by
the robots. This is the case for object manipulation where the detect-approach-grasp loop requires a
robust recovery stage, especially when the held object slides. Several proprioceptive sensors have
been developed in the last decades, such as tactile sensors or contact switches, that can be used for
that purpose; nevertheless, their implementation may considerably restrict the gripper’s flexibility
and functionality, increasing their cost and complexity. Alternatively, vision can be used since it
is an undoubtedly rich source of information, and in particular, depth vision sensors. We present
an approach based on depth cameras to robustly evaluate the manipulation success, continuously
reporting about any object loss and, consequently, allowing it to robustly recover from this situation.
For that, a Lab-colour segmentation allows the robot to identify potential robot manipulators in the
image. Then, the depth information is used to detect any edge resulting from two-object contact.
The combination of those techniques allows the robot to accurately detect the presence or absence
of contact points between the robot manipulator and a held object. An experimental evaluation in
realistic indoor environments supports our approach.
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1. Introduction

Advances in Robotics are leading to a new generation of assistant robots working in ordinary
domestic settings, such as healthcare and rehabilitation [1,2], agriculture [3], emergency situations [4,5],
or guidance assistance [6]. In this context, the ability to autonomously manipulate objects is of critical
importance. Though there exist a wide research on robot grasping (e.g., Refs. [7–11]), it is mainly
focused on object location, along with motion and grasp planning. Only a few efforts have been
devoted to monitoring the grasp action for error recovery, an issue that is, however, crucial to achieve
the required level of autonomy in the robotic system.

Along this line, a state-of-the-art solution is to equip the robot gripper with tactile sensors. In this
way, the presence or absence of a grasped object can be easily perceived through pressure distribution
measure or contact detection [12,13]. For that reason, a wide variety of tactile sensors for robot hands
have been developed [14]. However, the existing tactile technologies have multiple limitations. First,
most of the existing sensors are too bulky to be used without sacrificing the system dexterity. Another
reason is that they are too expensive, slow, fragile, sensitive to temperature, or complex to manufacture.
They may also lack elasticity, mechanical flexibility or robustness. Therefore, it is necessary to have an
alternative or complementary sensing approach to robustly detect errors in object grasping.

Alternatively, information about joint position, joint velocity or joint torque (proprioception),
has been often used for robot grasping [15,16]. Nevertheless, the grasp stability may be affected by
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several parameters such as the configuration of the robotic gripper, the (mis)alignment of the joint
axes, or inaccurate data (e.g., open/close instead of the exact grip aperture). These drawbacks limit the
suitability of this approach for service robots.

As a solution, we propose to use computer vision since it can provide more accurate information
than other robot sensors. Thus, the evaluation of a manipulation action may be mediated by a proper
recognition of both the gripper and the held object. To the best of our knowledge, no other approach
exists in which vision is used for error detection after an attempt to pick up an object. For instance,
taking the Amazon Picking Challenge as a test case, none of the over 60 teams that participated in
its three editions (2015–2017) reported the use of vision for detecting grasping errors [17,18]. Often
grasping errors were not detected at all or error detection was based on a vacuum sensor when a
suction cup was used [19], as well as weight checking [20].

A wide range of approaches for gripper and/or object recognition varying in complexity and
functionality can be found in the literature. Currently, the most popular approach is deep learning [21–26].
This approach could be described as computational models composed of multiple processing layers that
allows it to learn representations of data with multiple levels of abstraction. Nevertheless, as a training
stage is required, all the manipulated objects (including the robot gripper) must be known in advance.
In addition, the use of elastically deformable objects or grippers can lead to a failure of this approach
since a sufficiently large number of visual appearances may not be available for system training.
Furthermore, the high requirements of current deep learning solutions in terms of memory and
computational resources make it infeasible for robot tasks.

With the purpose of real-time operation, visual local features could be used. One of the most
implemented technique is SIFT [27,28]. This approach shares many features with neuron responses in
primate vision. Basically, SIFT transforms visual input into linear scale-invariant coordinates that are
relative to local features. In this way, an object can be located in an image that contains many other
objects. The main drawback of this approach (and its alternatives [29–31]) is that a certain amount
of texture in the objects to be detected is required, a requirement that cannot be always guaranteed
in ordinary, domestic settings. Moreover, the grasping action may result in a great object occlusion
making the object visually undetectable.

In this context, traditional Computer Vision techniques could fit since they allow us to extract
simple image features like colour or shape that can be used for a proper robot gripper monitoring.
In particular, similarly to the human vision system, this paper proposes a technique to combine
simple visual features (e.g., motion, orientation, colour, etc.) for gripper monitoring. More specifically,
edge, depth and colour are properly combined to detect a contact between a robot gripper and
any grasped object.

This paper is organised as follows: Section 2 overviews the robot grasp task, while Section 3
introduces our approach for grasping monitoring. Experimental results are presented and discussed in
Section 4. Finally, conclusions and future work can be found in Section 5.

2. The Grasping Task

Any grasping task involves a device to hold and manipulate objects that can be in the form of
simple grippers or highly dexterous robotic hands (see Figure 1 for some examples). So, these devices
have evolved according to the Robotics demands. Firstly, the two-finger grippers were designed to
satisfy the industrial assembly needs. From that starting point, different designs have been proposed in
the literature to properly fulfill robot service tasks. In addition, the wide variety of objects to deal with
has also led to the use of different materials allowing the robot manipulator to flexibly adapt itself to
the most varied shapes (see Figure 2). This flexibility results in a deformation (sometimes permanent)
and, as a consequence, recognizing the gripper turns into a much more difficult task. In addition,
techniques based on a model of the gripper or its shape become impractical due to the complexity in
modelling the many different ways a gripper or its fingers can deform.
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Figure 1. A sample of the evolution of robotic manipulators.

Figure 2. A sample of deformations when flexible robotic grippers grasp an object.

For that reason, an abstraction is required. Generally speaking, a grasp can be defined as a set
of contacts between a robot manipulator and the surface of any held object (see Figure 3). From
this definition, the grasping action could be detected as the contact between the object and the
manipulator. Therefore, a solution could be to properly detect both the object and the manipulator and
find their contact points. However, there are several issues to be overcome such as detecting them in
different environments, the wide variety of objects (some of them could be quite similar to the others),
and a great manipulator diversity. In addition, using only an RGB input can lead to tricky situations
where the manipulator and the object are not in contact, but the visual system may wrongly identify
contact points. As illustrated in Figure 4, given the visual alignment between the robotic manipulator
and the object, the robot may be unable to distinguish if they are in contact or not. What is more,
colour-based object recognition highly depends on illumination conditions; so, with the purpose of
reducing its influence, different colour models have been investigated in terms of sensitivity to image
parameters [32]. From this study, the Lab colour space is the best alternative due to its invariance
under different conditions.

Figure 3. Contact points resulting from robotic grippers grasping an object.
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Figure 4. Tricky RGB situations of non-grasping contact points where a visual aligment between an
object and the robotic manipulator can be confusing.

Note that the colour coordinates are experimentally set for each robotic manipulator. For that,
several images under different environmental conditions (five images in our experiments) are required
to properly adjust the Lab range. However, a colour-based segmentation extracts all the elements
within the scene satisfying those colour coordinates, as illustrated in Figure 5. Thus, more information
is required to properly identify the robot gripper so that a robust detection of grasp contact points is
achieved and, as a consequence, the grasping action itself is more dependable. In this paper, we propose
to fuse Lab data with depth information to achieve this goal. This data could be obtained from an
RGB-D camera, a popular device in the last years due to its low price and the enriched information it
provides. As explained in the following section, this sensory fusion also solves the detection of the
gripper and the object.

Figure 5. Image segmentation based on Lab colour model.

3. Grasp Monitoring

As mentioned above, the proposed approach is based on the fusion of two visual inputs: RGB
and depth. So, RGB information provides an early, coarse image segmentation. As previously shown in
Figure 5, the RGB input is first converted into its corresponding Lab image. Then, a segmentation based
on Lab gripper coordinates is applied. Given that real environments are considered, several elements
could present the same colour distribution and, as a consequence, they also appear in the segmentation
result. This is the case of Pepper’s robot that is homogeneously coloured and consequently, all the
robot parts are present in the colour-based segmentation result as depicted in Figure 5. For that reason,
an additional cue is required to properly identify the robot gripper and, therefore, the grasping task.

In this sense, depth data has been used to overcome the colour segmentation issues. Thus, on the
one hand, the depth cue provides information about an object’s position with respect to its neighbours.
This allows the robot to robustly detect the contact points (or their absence) between the scene objects.
In this way, the real contact points can be properly identified based on the depth difference between
two touching objects. Nonetheless, this approach detects any contact point between two objects.
So, for instance, apart from the grasping contact points, it obtains the contact points between a table
and any object on it, those between two objects in touch or overlapping, or even the contact points
between different parts of the same object, as shown in Figure 6. Due to the sensor limitation, there is a
noteworthy amount of pixels without depth information. For example, too close pixels like the robot’s



Sensors 2019, 19, 1648 5 of 15

body, are missing in the depth map. In addition, other visual objects are vanished as it is the case of the
door. As a result, the number of contact points is reduced although more information is necessary to
accurately isolate gripper-object contact points.

Figure 6. Contact points detected by the depth-based map.

To overcome this difficulty, the gripper recognition is applied to properly identify the grasping
contact points and, consequently, evaluate the robot grasping task and detect its possible errors.
With that aim, a contour extraction is performed, that is, the contours are obtained from depth changes.
A pixel is classified as a contour when there is a leap between the depth information for that pixel
and one of its neighbours. In our case, that jump was limited to 0.01 depth units (approximately
1 cm). Note that to achieve this, a critical issue is the missing depth points mainly resulting from the
distance with respect to the sensor and the object’s thinness. As a solution, the border pixels in terms
of presence/absence of information have been also considered as contours (see Figure 7).

Figure 7. Results of our edge detection from depth information such that the bottom centre column
represents the first contour segmentation, while the last one shows the contour segmentation
after refinement.
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This fact leads to all the object’s contours in the scene. Consequently, an edge refinement is
necessary to adequately isolate the robot gripper. Given that the vision system is always located at the
top of the robot and looking ahead, the robot actuator contour emerges from the bottom part of the
image. Therefore, all the contours out of the image bottom are discarded as shown in Figure 7.

Once the contours are obtained, they are combined with the colour segmented image. In this way,
the gripper is properly identified within the visual scene. The last step is to check the presence or
absence of contact points with a held object. For that, only the objects contained between the robot
fingers are considered.

Therefore, the whole approach combines all the abovementioned methods to properly check the
grasping status at any time. So, as illustrated in Figure 8 and sketched in Algorithm 1, our approach
concurrently performs three raw segmentations: the first is based on the Lab gripper components;
the second obtains all the contact points between two objects separated by less than 5 cm, while
the last one outputs an image with all the object contours. As all the object contours are obtained,
the last segmentation is refined such that only the ones that start at the bottom of the image are
considered. This information, together with the colour segmentation, allows the system to properly
isolate the robot gripper. Finally, the overlap between this last image and the raw contact points
segmentation provides the robot with the information about the presence or absence of contact points
and, consequently, the status of the grasping task. Note that the proposed approach only depends on
two parameters: the Lab components, corresponding to the robot gripper; and the depth threshold.
So, on the one hand, the Lab components are defined by an interval of values for each component
obtained from a Lab-component analysis of the robot gripper under different illumination conditions.
On the other hand, the depth threshold must be set from camera information such that it approximately
corresponds to 1 cm.

Figure 8. Our approach flowchart for robust grasping monitoring.
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Algorithm 1: Our grasping monitoring approach.
Data: RGB-D image
Result: a boolean indicating an object is grasped
nContactPoints← 0;
for each pixel do

LAB components are obtained from RGB coordinates;
if Lmin ≤ Lpixel ≤ Lmax && amin ≤ apixel ≤ amax && bmin ≤ bpixel ≤ bmax then

LAB_segmented← 255;
else

LAB_segmented← 0;
end
if Depthpixel is NaN then

Edge_detection← neighbourhoodclassi f ication;
else

if distance(Depthpixel , Depthneighbourhood) ≤ Depth_threshold then
Edge_detection← 255;

else
Edge_detection← 0;

end
end
if Edge_detection && Bottom_Edge then

Arm_detection← 255;
else

Arm_detection← 0;
end
if Arm_detection && Depthpixel ≤ Contactthreshold then

Contact_points← 255;
else

Contact_points← 0;
end
if LAB_segmented && Contact_points then

nContactPoints← nContactPoints + 1;
end

end

4. Experimental Results

With the purpose of validating our approach, three different robot platforms have been used:
the Baxter robot [33], the Pepper robot [34] and the Hobbit robot [35] (see Figure 9). The Baxter robot is
a two-armed robot designed for industrial automation. On the contrary, the Pepper and Hobbit robots
are social platforms designed to interact with people. So, Pepper is a commercial semi-humanoid robot
being adapted to several applications like a guide assistant, while the Hobbit is a socially assistive
robot aimed at helping seniors and elderly people at home. All these robot platforms are endowed
with multiple sensors, providing the robot with perceptual data, and actuators, allowing the system to
perform its tasks.
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Figure 9. The three robot platforms used to evaluate the performance of our approach: the Baxter
robot [33] (left), the Pepper robot [34] (center) and the Hobbit robot [35] (right).

There are several differences between them to be taken into account for grasping tasks. On the one
hand, the robot gripper is quite different in each robot. In particular, Baxter is provided with a parallel
jaw gripper intended to perform industrial tasks such as packaging, material handling or machine
tending. On its behalf, Pepper emulates a human hand with a five-finger gripper, whereas Hobbit is
endowed with a gripper based on FESTO Fin Ray Effect; in this design, the two soft, triangular fingers
with hard crossbeams can buckle and deform to conform around grasped objects. This allows us to
evaluate the performance of our approach not only with rigid grippers but also with continuously
shape-changing grippers.

On the other hand, the camera location varies between the platforms. Indeed, the visual input is
provided by a pan-tilt RGB-D camera (i.e., Microsoft Kinect) mounted on the head of each robot and,
therefore, it is approximately located at a height of 160 cm ( Baxter), 110 cm (Pepper), and 130 cm (Hobbit).

With the aim to accurately evaluate the approach performance, the three robots were located at
different unstructured scenarios (seven in total) carrying out different tasks. So, Baxter is performing a
pick-and-place task (see Figures 10 and 11), while Pepper and Hobbit execute assistive tasks as depicted
in Figures 12 and 13. A total of twenty objects were used in our experiments including challenging
ones such as keys, a bottle of water, a pack of gum, or a headphone’s bag.

As shown in Figure 10, several contact points are detected within a scene. So, all the objects on
the bin present contact points. However, thanks to the gripper recognition module, only the grasping
contact points are considered for evaluating the status of the grasping task. Another critical issue is
the missing depth data, clearly present in Figure 10. The combination of colour and depth cues and
the inclusion of non-data points allows our approach to successfully detect the presence or absence of
contact points between the robotic manipulator and the object, as shown in Figure 10 and its partial
version in Figure 11.
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Figure 10. Some experimental results of our approach with the Baxter robot in pick-and-place tasks.
The first column corresponds to the taken RGB-D image given as an RGB image and a depth map.
The second column illustrates the Lab segmentation with the robot arm contour obtained from the
contour segmentation refinement. The third column illustrates the combination of the images in the
two columns. The next column depicts all the two-object contact points based on depth proximity.
The last image shows the contact points obtained from the overlap between the results in the third and
fourth columns.
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Figure 11. Some experimental results of our approach with the Baxter robot in pick-and-place tasks:
the left column corresponds to the input RGB image; the middle column illustrates the detected contact
points; and the last column shows the overlapping between the original image and the detected contact
points (in pink).
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Figure 12. Some experimental results of our approach with the Hobbit and Pepper robots in assistive
tasks. The first column corresponds to the taken RGB-D image given as an RGB image and a depth
map. The second column illustrates the Lab segmentation with the robot arm contour obtained from
the contour segmentation refinement. The third column illustrates the combination of the images in
the two columns. The next column depicts all the two-object contact points based on depth proximity.
The last image shows the contact points obtained from the overlap between the results in the third and
fourth columns.
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On its behalf, Figure 12, and the partial version in Figure 13, highlight the resolution of the visual
ambiguities since no false positive grasping contact points are obtained, even when the robot gripper
is close to the ground and its visibility is poor. Thin objects can be also properly detected when they
are grasped as in the case of the chewing gum pack. In addition, it can be observed that neither the
changing shape of Hobbit’s gripper nor the use of different robot grippers affect the approach results.

Figure 13. Some experimental results of our approach with the Hobbit and Pepper robots in assistive
tasks: the left column corresponds to the input RGB image; the middle column illustrates the detected
contact points; and the last column shows the overlapping between the original image and the detected
contact points (in pink).
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The approach’s performance has been analysed by means of a comparison between its output in
terms of presence or absence of a grasped object and the images manually labelled considering seven
scenarios, three robot platforms, and twenty objects with different visual features. With a total of one
thousand 640 × 480 images, the algorithm was able to successfully evaluate the grasping status with
an accuracy of 97.5% at a speed of 160 ms per image. Note that this speed allows the robot to work in
real-time, what is crucial for service robots. The main errors were a consequence of handling small
and/or thin objects in specific configurations.

5. Conclusions

Reliable grasping is a decisive task for any robotic application from industrial pick-and-place to
service assistance. For that reason, it is critical to successfully perform any grasp and properly recover
for any error. This is, however, not straightforward due to the great variety of robot manipulators and,
especially, those with a design that prevents the use of other devices like touch sensors.

In this paper, we propose a novel vision approach for monitoring the grasping tasks and verifying
any lost of the held object. The underlying idea is the recognition of the contact points between the
robot manipulator and the grasped object. For that, all the contact points between two objects within
the scene are obtained from depth data. Then, it is checked whether any contact point corresponds to
the inner part of the gripper. With that aim, a griper recognition method based on the fusion of depth
and colour cues is presented.

So, on the one hand, the input RGB image is segmented according to the Lab-colour manipulator
coordinates. At the same time, edge information is extracted from depth data. An edge refinement
under the assumption of the manipulator boundary comes from the bottom of the image, allows our
approach to extract the robot arm contour. Finally, the colour-contour combination together with the
contact point map determines the grasping status at any time.

With the aim of properly evaluating the performance of our approach, three different robot
platforms have been used: Baxter, Pepper and Hobbit. So, its performance was evaluated in different
scenarios, with different objects and with several head poses. The experiment results highlight the
good performance, obtaining an accuracy of 97.5%. It is noteworthy that the erroneous cases are
present when thin or small objects are manipulated and only in some manipulator configurations.
For that reason, the approach should improve to cover these cases. In addition, the proposed approach
runs in real-time, which is an issue particularly problematic for robot applications.

As future work, other visual features will be analysed with the aim of overcoming the problems
detected with small or thin objects without constraining the robot’s autonomy.
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