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Abstract. We pursue the scalable parallel implementation of the factor-
ization of band matrices with medium to large bandwidth targeting SMP
and multi-core architectures. Our approach decomposes the computation
into a large number of fine-grained operations exposing a higher degree
of parallelism. The SuperMatrix run-time system allows an out-of-order
scheduling of operations that is transparent to the programmer. Exper-
imental results for the Cholesky factorization of band matrices on two
parallel platforms with sixteen processors demonstrate the scalability of
the solution.
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1 Introduction

How to extract parallelism from linear algebra libraries is being reevaluated with
the emergence of SMP architectures with many processors, multi-core systems
that will soon have many cores, and hardware accelerators such as the Cell
BE processor or graphics processors (GPUs). In this note, we demonstrate how
techniques that have shown to be extremely useful for the parallelization of
dense factorizations in this context [7,8,17,18,6,5] can also be extended for
the factorization of band matrices [19]. The result is an algorithm-by-blocks
that yields high performance and scalability for matrices of moderate to large
bandwidth while keeping the implementation simple by various programmability
measures. To illustrate our case, we employ the Cholesky factorization of band
symmetric positive definite matrices as a prototypical example. However, the
same ideas apply to algorithms for the LU and QR factorization of band matrices.
The contributions of this paper include the following:

— We demonstrate that high performance can be attained by programs coded
at a high level of abstraction, even by algorithms for complex operations like
the factorization of band matrices and on sophisticated environments like
many-threaded architectures.



— We show how the SuperMatrix run-time system supports out-of-order com-
putation on blocks transparent to the programmer leading to a solution
which exhibits superior scalability for band matrices.

— We also show how the FLASH extension of FLAME supports storage by
blocks for band matrices different from the commonly-used packed storage
used in LAPACK [1].

— We compare and contrast a traditional blocked algorithm for the band
Cholesky factorization to a new algorithm-by-blocks.

This paper is structured as follows. In Section 2 we describe a blocked algo-
rithm for the Cholesky factorization of a band matrix which reflects the state-of-
the-art for this operation. Then, in Section 3, we present an algorithm-by-blocks
which advances operations that are in the critical path from “future” itera-
tions. The FLAME tools employed to implement this algorithm are outlined
in Section 4. In Section 5 we demonstrate the scalability of this solution on
a CC-NUMA with sixteen Intel Itanium?2 processors and an SMP with 8 AMD
Opteron (dual core) processors. Finally, in Section 6 we provide a few concluding
remarks.

In the paper, matrices, vectors, and scalars are denoted by upper-case, lower-
case, and lower-case Greek letters, respectively. Algorithms are given in a nota-
tion that we have developed as part of the FLAME project [3]. If one keeps in
mind that the thick lines in the partitioned matrices and vectors relate to how
far the computation has proceeded, we believe the notation is mostly intuitive.
Otherwise, we suggest that the reader consult some of these related papers.

2 Computing the Cholesky factorization of a band matrix

Given a symmetric positive definite matrix A of dimension n x n, its Cholesky
factorization is given by A = LLT, where L is an n x n lower triangular matrix.
(Alternatively, A can be decomposed into the product A = UTU with U an
n X n upper triangular matrix, a case that we do not pursue further.) In case A
presents a band structure with upper and lower bandwidth k4 (that is, all entries
below the k4 + 1 subdiagonal and above the k4 + 1 superdiagonal are zero), then
L presents the same lower bandwidth as A. Exploiting the band structure of
A when k; < n leads to important savings in both storage and computation.
This was already recognized in LINPACK and later in LAPACK which includes
unblocked and blocked routines for the Cholesky factorization of a band matrix.

2.1 The blocked algorithm in routine PBTRF

It is well-known that high performance can be achieved in a portable fashion
by casting algorithms in terms of matrix-matrix multiplication [1,11]. Figure 1
illustrates how the LAPACK blocked routine PBTRF does so for the Cholesky
factorization of a band matrix with non-negligible bandwidth. For simplicity we
consider there and hereafter that n and k; are exact multiples of kg and ny,



Algorithm: [A] := band_Choleskypy i (A4)

ATL *
Partition A — | Avc|Avm| *
Apm |ABR

where ATL is 0 x 0 and A]u]y[ is k}d X k}d

while m(Arr) < m(A) do
Determine block size ny

Repartition
Aoo * *
ATL * AlO All * *
App|Amm| * — | Axo|Ao1|Ax] * | %
Apm |ABR Az1|Asz2|Azz| *
Asa|Asz|Ass
where A1, Ass are ny X np, and Agz is k X k, with k = kg — nyp
A1 = L11L1T1 Dense Cholesky factorization
Ao = AglLflT(: La) Triangular system solve
A3z = A;ﬂLflT(: Ls1) Triangular system solve with triangular solution
Aoy := Aoy — Loy LY, Symmetric rank-k update
Asg := Azs — L3 L%} Triangular matrix-matrix product
Asz = Asz3 — L31 Lgl Symmetric rank-n;, update

Continue with

Aoo * *
Arr * A1o|A1] * *
Apmrc|Avm]| * — | Axg|Aai]Ax| x| %
Apm |ABR As1|Asz2| Ass|
As2| A3 Asa

endwhile

Fig. 1. Blocked algorithm for the Cholesky factorization of a band matrix.

respectively. Provided n, < k4 most of the computations in the algorithm are
cast into the symmetric rank-k update of Ags.

Upon completion of the factorization using the algorithm in the figure, the
elements of L overwrite the corresponding entries of A. The “4” symbols in
the figure denote symmetric parts in the upper triangle of A which are not
accessed /referenced.

2.2 Packed storage in routine PBTRF

Routine PBTRF employs a packed format to save storage. Specifically, the sym-
metry of A requires only its lower (or upper) triangular part to be stored, which
is saved following the pattern illustrated in Figure 2 (right). As they are com-
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Fig. 2. Symmetric 5 x 5 band matrix with bandwidth ks = 2 (left) and packed storage
used in LAPACK (right). The ‘*«’ symbols denote the symmetric entries of the matrix
which are not stored in the packed format.

puted, the elements of L overwrite the corresponding entries of A in the packed
matrix.

Due to As1/Ls1 having only their upper triangular parts stored, some opera-
tions in the actual implementation of the algorithm in Figure 1 need special care,
as described next. In particular, in order to solve the triangular linear system for
Asq, a copy of the upper triangular part of As; is first obtained in an auxiliary
workspace W of dimension ny x n, with its subdiagonal entries set to zero; the
BLAS-3 solver TRSM is then used to obtain W := WL," (= Ls1). Next, the
update of Asy is computed as a general matrix product using BLAS-3 kernel
GEMM to yield Agy := Azs — W L2, . Finally, the update of As3 is obtained using
BLAS-3 kernel SYRK as Ass := Azz — WWT, and the upper triangular part of
W is written back to As;.

2.3 Parallelism within the BLAS

Blocked implementations of the band Cholesky factorization are typically written
so that the bulk of the computation is performed by calls to the Basic Linear
Algebra Subprograms (BLAS), a standardized interface to routines that carry out
operations as matrix-vector (level-2 BLAS) and matrix-matrix multiplication
(level-3 BLAS).

Parallelism can be attained within each call to a BLAS routine with the
following benefits:

— The approach allows legacy libraries, such as LAPACK, to be used without
change.

— Parallelism within suboperations, e.g., the update of A;;—Ass in Figure 1,
can be exploited through multithreaded implementations of BLAS. However,
note that in practice kg > ny and ny is typically small so that the major
bulk of the computations is in the update of Ay, while the remaining oper-
ations may be too small to gain any benefit from the use of a multithreaded
implementation of BLAS.



Disadvantages, on the other hand, include:

— The parallelism achieved is only as good as the underlying multithreaded
implementation of the BLAS.

— The end of each call to a BLAS operation becomes a synchronization point
(a barrier) for the threads. In [20] it is shown how the updates of Ay, As;
can be merged into a single triangular linear system solve and the updates
Ags, Asa, and Aszs into a single symmetric rank-k4 update, so that a coarser
grain of parallelism is obtained and the number of synchronization points
is diminished. The performance increase which can be gained from this ap-
proach is modest, within 5-10% depending on the bandwidth of the matrix
and the architecture.

— For many operations the choice of algorithmic variant can severely impact
the performance that is achieved.

In the next section we propose an algorithm composed of operations with finer
granularity to overcome these difficulties.

3 An Algorithm-by-blocks

Since the early 1990s, various researchers [10, 12,13, 16] have proposed that ma-
trices should be stored by blocks as opposed to the more customary column-
major storage used in Fortran and row-major storage used in C. Doing so recur-
sively is a generalization of that idea. The original reason was that by storing
matrices contiguously a performance benefit would result. More recently, we have
proposed that the blocks should be viewed as units of data and operations with
blocks as units of computation [7,9]. In the following we show how to decom-
pose the updates in the algorithm for the band Cholesky factorization so that
an algorithm-by-blocks results which performs all operations on “tiny” ny X ny
blocks.

For our discussion below, assume k = pny, for the blocked algorithm in Fig-
ure 1. Then, given the dimensions imposed by the partitionings on A,

A1y * * * * *
AY | A *  x * *
* * 1 10 11
A Az | Ass Az * * *
Agi|Azg| * | — : ;
Aszq|Azz|Ass X : : : x *
p—1| yp—1,0 4p—1,1 p—1,p—1
AR AR T AR AL i *
0 1 P—
Az | Azy  Agp Az |Ass

where all blocks are ny x n,. Therefore, the update Asy := Aoq LflT in the blocked
algorithm can be decomposed into

A%l A%l
A21 A21
-T
: = : 11 > (1)
-1 -1
Ay A



which corresponds to p triangular linear systems on n; x np blocks. Similarly,
the update Asg := Ago — L21L2T1 becomes

00 00
T mooa
Ass Ay * * Ass  Ass  * *
: : . * : : *
p—1,0 4p—1,1 p—1,p—1 p—1,0 4p—1,1 p—1,p—1
A5y A5y Ay A5y A5y s }422 (2)
0 0
A%1 A%1
A A
- . . 9
p—1 p—1
A A

where we can identify p symmetric rank-n;, updates (for the n, x n;, diagonal
blocks) and (p?/2 — p/2) general matrix products (for the n;, x n, subdiagonal
blocks). Finally, the update Ass := Azy — L3; LY} is equivalent to

(Ag2 A§2-~AZ3)1_1):: (Ag2 A§2---A13)1_1)_A31 : (3)
Ay
which, given the upper triangular structure of A3y, corresponds to p triangular
matrix-matrix products of dimension ny X ny.

The first key point to realize here is that all the operations on blocks in (1)
are independent and therefore can be performed concurrently. The same holds
for the operations in (2) and also for those in (3). By decomposing the updates
of Asy, Aga, and Ass as in (1)—(3) more parallelism is exposed at the block level
in the algorithm in Figure 1.

The second key point is that some of the block operations in (1) can proceed in
parallel with block operations in (2) and (3). Thus, for example, A3, := A} L7} is
independent from A3 := A — A9, (A3,)T and both can be computed in parallel.
This is a fundamental difference compared with a parallelization entirely based
on a parallel (multithreaded) BLAS, where each BLAS call is a synchronization
point so that, e.g., no thread can be updating (a block of) Ass before the update
of (all blocks within) Ag; is completed.

4 The FLAME tools

In this section we briefly review some of the tools that the FLAME project puts
at our disposal.

4.1 FLAME

FLAME is a methodology for deriving and implementing dense linear algebra
operations [3]. The (semiautomatic) application of this methodology produces



provably correct algorithms for a wide variety of linear algebra computations.
The use of the Application Programming Interface (API) for the C programming
language allows an easy translation of FLAME algorithm to C code, as illustrated
for dense linear algebra operations in [4].

4.2 FLASH

One naturally thinks of matrices stored by blocks as matrices of matrices. As a
result, if the API encapsulates information that describes a matrix in an object,
as FLAME does, and allows an element in a matrix to itself be a matrix object,
then algorithms over matrices stored by blocks can be represented in code at the
same high level of abstraction. Multiple layers of this idea can be used if multiple
hierarchical layers in the matrix are to be exposed. We call this extension to the
FLAME API the FLASH API [15]. Examples of how simpler operations can be
transformed from FLAME to FLASH implementations can be found in [7,9].

The FLASH API provides a manner to store band matrices that is conceptu-
ally different from that of LAPACK. Using the FLASH API, a blocked storage
is easy to implement where only those (np x 1) blocks with elements within the
(nonzero) band are actually stored. The result is a packed storage which roughly
requires same the order of elements as the traditional packed scheme but which
decouples the logical and the physical storage patterns, yielding higher perfor-
mance. Special storage schemes for triangular and symmetric matrices can still
be combined for performance or to save space within the n; x n; blocks.

4.3 SuperMatrix

Given a FLAME algorithm implemented in code using the FLAME/C interface,
the SuperMatrix run-time system first builds a Directed Acyclic Graph (DAG)
that represents all operations that need to be performed together with the de-
pendencies among these. The run-time system then uses the information in the
DAG to schedule operations for execution dynamically, as dependencies are ful-
filled. These two phases, construction of the DAG and scheduling of operations,
can proceed completely transparent to the specific implementation of the library
routine. For further details on SuperMatrix, see [7,9].

We used OpenMP to provide multithreading facilities where each thread exe-
cutes asynchronously. We have also implemented SuperMatrix using the POSIX
threads API to reach a broader range of platforms.

Approaches similar to SuperMatrix have been described for more general
irregular problems in the frame of the Cilk project [14] (for problems that can be
easily formulated as divide-and-conquer, unlike the band Cholesky factorization),
and for general problems also but with the specific target of the Cell processor
in the CellSs project [2].



5 Experiments

In this section, we evaluate two implementations for the Cholesky factorization of
a band matrix with varying dimension and bandwidth. Details on the platforms
that were employed in the experimental evaluation are given in Table 1. Both
architectures consist of a total of 16 CPUs: SET is a CC-NUMA platform with
16 processors while NEUMANN is an SMP of 8 processors with 2 cores each. The
peak performance is 96 GFLOPS (96 x 10° flops per second) for SET and 70.4
GFLOPS for NEUMANN.

Platform || Architecture Frequency L2 cache L3 cache Total RAM
(GHz) (KBytes) (MBytes) (GBytes)
SET Intel Itanium2 1.5 256 4096 30
NEUMANN [|AMD Opteron 2.2 1024 — 63
Platform Compiler  Optimization BLAS Operating
flags System
SET icc 9.0 -03 MKL 8.1 Linux 2.6.5-7.244-sn2
NEUMANN icc 9.1 -03 MKL 9.1 Linux 2.6.18-8.1.6.el5

Table 1. Architectures (top) and software (bottom) employed in the evaluation.

We report the performance of two parallelizations of the Cholesky factoriza-
tion:

— LAPACK DPBTRF + multithreaded MKL. LAPACK 3.0 routine DPBTRF
linked to multithreaded BLAS in MKL.

— AB + serial MKL. Our implementation of the algorithm-by-blocks linked
to serial BLAS in MKL.

When hand-tuning block sizes, a best-effort was made to determine the best
values of ny in both cases.

Figures 3 and 4 report the performance of the two parallel implementations
for band matrices of order n = 2000 and n = 5000 with varying dimension
of the bandwidth and number of processors. The first thing to note from this
experiment is the lack of scalability of the solution based on a multithreaded
BLAS (plots on the left column): as more processors are added to the experiment,
the left plots in the figure shows a notable drop in the performance so that
using more than 2 or 4 processors basically yields no gain or even results in
a performance decrease. The situation is different for the algorithm-by-blocks
(plots on the right-hand side): For example, while using 4 or 8 processors on SET
for a matrix of bandwidth below 200 attains a similar GFLOPS rate, using 8
processors for matrices of larger bandwidth achieves a significant performance
increase. A similar behavior occurs when all 16 processors of SET are employed
but at a higher threshold, k4 ~ 450.
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Fig. 3. Performance of the band Cholesky factorization algorithms on 1, 2, 4, 8, and
16 CPUs of SET.
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Fig. 4. Performance of the band Cholesky factorization algorithms on 1, 2, 4, 8, and
16 CPUs of NEUMMAN.



Figure 5 compares the two parallel implementations using the optimal num-
ber of processors: 2 (n=2000) and 4 (n=5000) on SET for the LAPACK DPBTRF-+
multithreaded MKL implementation; 4 (n=2000) and 16 (n=5000) for this same
algorithm on NEUMANN; and 16 for the AB + serial MKL implementation
on both platforms. From this experiment it is clear the benefits of using an
algorithm-by-blocks on a machine with a large number of processors.

Band Cholesky factorization for n = 2000 on SET Band Cholesky factorization for n = 5000 on SET
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Fig. 5. Performance of the band Cholesky factorization algorithms.

6 Conclusions

We have presented an extension of SuperMatrix that yields algorithms-by-blocks
for the Cholesky, LU (with and without pivoting) and QR factorizations of band
matrices. The programming effort was greatly reduced by coding the algorithms
with the FLAME/C and FLASH APIs. Using the algorithm-by-blocks, the Su-
perMatrix run-time system generates a DAG of operations which is then used
to schedule out-of-order computation on blocks transparent to the programmer.

The results on two different parallel architectures for an algorithm-by-blocks
for the band Cholesky factorization of matrices with medium to large band-



width clearly report higher performance and superior scalability to those of a
traditional multithreaded approach using LAPACK.
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