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Abstract

In this work, we develop a performance-based design of model-based observes and statistical-based de-
cision mechanisms for achieving fault estimation and fault isolation in systems affected by unknown inputs
and stochastic noises. First, through semidefinite programming, we design the observers considering differ-
ent estimation performance indices as the covariance of the estimation errors, the fault tracking delays and
the degree of decoupling from unknown inputs and from faults in other channels. Second, we perform a co-
design of the observers and decision mechanisms for satisfying certain trade-off between different isolation
performance indices: the false isolation rates, the isolation times and the minimum size of the isolable faults.
Finally, we extend these results to a scheme based on a bank of observers for the case where multiple faults
affect the system and isolability conditions are not verified. To show the effectiveness of the results, we apply
these design strategies to a well-known benchmark of wind turbines which considers multiple faults and has
explicit requirements over isolation times and false isolation rates.
Keywords: Fault estimation, fault diagnosis, multiobjective optimisation, wind turbines.

1 Introduction

The importance of the reliability and maintainability of systems has increased over the last decades. Hence,
much effort has been devoted to developing fault detection and isolation (FDI) and fault tolerant control (FTC)
strategies (Gao, Cecati, & Ding, 2015). On the FTC framework, there are two possible approaches: active
and passive FTC. The difference between them is that passive FTC is just an application of robust control that
considers faults as uncertainties while active FTC relies on fault diagnosis outputs. The two main approaches
regarding FDI are data-based and model-based techniques, see (Ding, 2014) and (Ding, 2008; J. Chen & Patton,
2012), respectively. Broadly speaking, most FDI systems consist of residual generators and evaluators; however,
research has shown that there are intrinsic difficulties in the use of residuals in active FTC due to the complexity
derived from the reconstruction of the faults from the residuals. These reconstructions rely on discrete-event
algorithms with complex decisions that entail delays and errors (Lan & Patton, 2016; Cieslak, Efimov, & Henry,
2015). Active FTC based directly on fault estimation (FE) rather than on FDI seems to provide more immediate
and accurate results, see (Lan & Patton, 2016; X. Li, Karimi, Wang, Lu, & Guo, 2018). Among FE techniques,
there is an upward trend in the use of advanced observers (Gao et al., 2015). Sliding mode observers are used
in (X. Wang, Tan, & Zhou, 2017; Yin, Gao, Qiu, & Kaynak, 2017), adaptive observers are applied in (X.-J. Li,
Yan, & Yang, 2018; Rodrigues, Hamdi, Theilliol, Mechmeche, & BenHadj Braiek, 2015) and iterative observer
schemes are studied in (Huang, Zhang, Guo, & Wu, 2018). Augmented observers, which consider the faults as
additional states, have received considerable attention (Gao, 2015; Wu, Feng, & Duan, 2012; Gao & Ho, 2004).
Especially, proportional integral (PI) observers have been intensively studied (Chang, 2006; X. Li & Zhu, 2015;
Wu & Duan, 2007) and applied (X. Liu, Gao, & Zhang, 2018; Rotondo, Cristofaro, Johansen, Nejjari, & Puig,
2016) in the last two decades.

One of the main problems in the use of common FE techniques for active FTC arises when the faults af-
fecting a system are not isolable and it is not possible to build standard observers. Hence, most FE works con-
servatively consider that the faults verify isolability conditions, e.g., (X. Li et al., 2018; Witczak, Buciakowski,
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Puig, Rotondo, & Nejjari, 2016). A solution to deal with non-isolable faults is the use of a bank of generalised
observers (J. Chen & Patton, 2012; Ding, 2008). However, these schemes are usually implemented from a FDI
perspective and each observer in the bank is used to provide a residual signal which is sensitive to all but one
fault, e.g. (Dong, Wu, & Yang, 2017). Thus, there is a need to develop more FE approaches based on banks of
observers for systems with non-isolable faults.

Another problem in the use of FE for active FTC schemes is the misleading effect produced when feed-
forwarding non-zero fault estimates in fault-free scenarios. The residual signal in FDI and the fault estimation
signal in FE are subjected not only to faults but also to disturbances, which may deviate the estimation outputs.
In the FDI framework, in order to make the residual signal sensitive to faults but robust against disturbances,
structural methods such as the parametric eigenstructure assignment approach (Patton & Chen, 2000) and the
unknown input observer (UIO) approach (Hassanabadi, Shafiee, & Puig, 2016; Ziyabari & Shoorehdeli, 2017)
are well-known. Alternatively, numerical approaches based on optimization methods that use the H∞/H− and
the H∞/H∞ indices have gained more attention in FDI research owing to its wide applicability (Y. Li, Karimi,
Zhong, Ding, & Liu, 2018; Ahmadizadeh, Zarei, & Karimi, 2014; Aouaouda, Chadli, Shi, & Karimi, 2015).
In the FE framework, multiobjective optimization design approaches are also used in works as (Witczak et al.,
2016; Rodrigues et al., 2015; Gao, Liu, & Chen, 2016). In order to give further physical interpretation to the
indices involved in the optimization problem, (P. Zhang & Ding, 2008; W. Chen, Khan, Abid, & Ding, 2011)
propose to use the trade-off between the fault detection rate (FDR) and the false alarm rate (FAR). This trade-off
is used in recent works as (Zhong, Zhang, Ding, & Zhou, 2017; Zhao, Shen, & Wang, 2017) and it is of practical
importance in FDI applications. However, although the FAR and the FDR are suitable for FDI methods based
on residuals, these indices give little information about other important issues in estimation-based methods such
as the size of the faults which are susceptible to occur, the dynamic behaviour or the steady-state accuracy of the
results. Some initial approaches considering a few of these issues can be found in works as (Peñarrocha, Dolz,
& Sanchis, 2015; Sales-Setién, Peñarrocha, Dolz, & Sanchis, 2016; K. Zhang, Hao, Chen, Ding, & Peng, 2015).
The iterative design procedures of FDI residuals in (Peñarrocha et al., 2015) involve bounds of the minimum
size of the diagnosable faults (MDF), bounds of the FAR and a decay ratio representing the fault tracking ability
of the residuals. In (Sales-Setién et al., 2016) a non-iterative design procedure with the MDF, the FAR and the
Cumulative Squared Error (CSE) of the residuals is proposed. For its part, the methods in (K. Zhang et al.,
2015) include new indices as the expected detection delay (EDD) for FDI in statistical processes. In all, as stated
in (K. Zhang, Jiang, & Shi, 2012), more research on designs considering the performance of model-based FE is
needed.

A well-known benchmark for FDI and FTC of wind turbines is developed in (Odgaard, Stoustrup, & Kinnaert,
2013). The benchmark takes account of a wide variety of the multiple and diverse faults to which a wind turbine
is prone and it sets some FDI performance requirements. A wide variety of solutions based on residuals have
been presented for this wind turbine FDI problem, see (Odgaard & Stoustrup, 2012). Data-based approaches
are proposed in works such as (Pashazadeh, Salmasi, & Araabi, 2018). Nonetheless, model-based approaches,
such as the ones presented in (Sanchez, Escobet, Puig, & Odgaard, 2015; W. Chen, Ding, et al., 2011), are more
common. UIOs are presented in (Sanchez et al., 2015) and Kalman filters are developed in (W. Chen, Ding, et al.,
2011). However, there are not solutions that provide a priori performance-based designs of the fault diagnosers
to guarantee the requirements in the benchmark. Hence, the FDI performance is generally tested through an a
posteriori analysis or simulations. Regarding FTC, both passive and residual-based active FTC strategies have
been applied to wind turbines in (Sloth, Esbensen, & Stoustrup, 2011; Blesa, Rotondo, Puig, & Nejjari, 2014). In
(X. Liu, Gao, & Chen, 2017; Lan, Patton, & Zhu, 2016; Shi & Patton, 2015) active FTC strategies based on FE
are applied to wind turbines. However, all these works assume that only certain faults among all the possible ones
may affect the turbines. The same assumption is considered in the FE solution presented in (Witczak, Rotondo,
Puig, Nejjari, & Pazera, 2017).

1.1 Contributions

In this work, FE is achieved by means of PI observers. The fault estimates are then evaluated in statistical-based
decision mechanisms to achieve fault isolation (FI). The main contribution of this work is the development of
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novel estimation performance-based design strategies of PI observers. In analogy to the integrated design of
residual generators and evaluators in (P. Zhang & Ding, 2008; W. Chen, Khan, et al., 2011), we also present
novel co-design strategies in the FI framework. We formulate the co-design of PI observers and statistical-
based decision mechanisms guaranteeing a priori isolation performance requirements. Compared to the relevant
existing literature, the novelties of the proposed designs are the following.

• Designs with a priori performance requirements. In most cases, the performance of FE and FDI strategies
is tested a posteriori (e.g., (Blesa, Jiménez, Rotondo, Nejjari, & Puig, 2015; L. Chen, Patton, & Goupil,
2012)). Hence, the satisfaction of estimation or isolation performance requirements entails iterative proce-
dures. The designs proposed in this work guarantee a priori performance requirements and, thus, we avoid
iterative design procedures.

• Designs with individual performance requirements. The designs proposed in this work deal with the perfor-
mance of each single fault estimation/isolation channel. This increases the design flexibility compared with
most existing FE and FI designs, where the performance is jointly fixed for all the fault estimation/isolation
channels (e.g. (Witczak et al., 2016; Gao et al., 2016)).

• Designs with time-domain performance indices. In an aim to bridging the gap between theory and practice,
we use new performance indices providing further practical and physical interpretation to the norm bounds
which are commonly used in FDI and FE designs (Witczak et al., 2016; X. Li et al., 2018). The proposed
observer designs for FE deal with the trade-off between the tracking delays w.r.t. different fault signals and
the covariances of the fault estimates due to noises. The proposed co-designs for FI deal with the following
isolation performance indices: the false isolation rates, the minimum isolable faults and the isolation times.

• Single-step numerical designs of observers guaranteeing unknown input and interfault decoupling. The
well-known design of UIOs requires algebraic constraints to achieve unknown input (UI) decoupling (J. Chen
& Patton, 2012). Then, the remaining design freedom is used in a numerical second-step design to achieve
certain requirements over other performance criteria (X. Liu et al., 2018; X. Li & Zhu, 2015; Witczak et
al., 2016). In this work, we propose to use the concept of degree of UI decoupling in order to numerically
achieve UI decoupling and other performance requirements in a single-step multiobjective optimization
problem. We also introduce the concept of degree of interfault decoupling to deal with the transient fault
estimation error which occurs due to the appearance of faults in other channels (e.g., the simulation re-
sults in (Rotondo, Nejjari, Puig, & Blesa, 2015; Salahshoor, Mosallaei, & Bayat, 2008)). The observer
performance indices (covariance due to noises, fault tracking delays and UI and interfault decoupling) are
altogether formulated via matrix inequalities in a single-step optimization problem.

We generalise these design strategies to a scheme based on a bank of PI observers and statistical-based decision
mechanisms that allow achieving FI and FE in systems where isolability conditions of faults do not hold. As-
suming the non-simultaneity of certain number of faults, we extend the concept of residual-based generalised
observers (J. Chen & Patton, 2012; Dong et al., 2017) from a FE perspective.

To show the goodness of the proposed approaches, we apply the strategies presented in this work to the well-
known benchmark for FDI and FTC of wind turbines (Odgaard et al., 2013). Unlike works as (Witczak et al.,
2017; Lan et al., 2016), which just consider the occurrence of a reduced number of possible faults, we achieve the
estimation of all the faults affecting the turbines. We also isolate these faults with a priori guaranteed isolation
performance indices.

1.2 Structure and Notation

The outline of this work is as follows. First, we state the problem in Section 2, where we propose a FE and FI
strategy based on PI observers and decision mechanisms. In Section 3, we present a FE performance-based design
of the observer. In Section 4, we include a co-design of the observer and decision mechanism for guaranteeing
certain trade-off between isolation performance indices. In Section 5, we extend the problem to the case in
which FI becomes necessary for FE because fault isolability conditions are not verified and standard augmented
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observers are not applicable. Finally, Section 6 presents the results of applying the proposed FE and FI techniques
to the wind turbine problem. Section 7 summarises the main conclusions.

Throughout the paper, R denotes the set of real numbers. Expected value, probability and absolute value
are denoted by E{·}, P{·} and | · |. Let A be some matrix and a be some vector. Aij denotes the element
in the i-th row and j-th column of A and ai denotes the i-th element in a. A � 0 means that A is negative
semidefinite and similar applies to �. The rank of matrix A is represented as rank{A} and its trace is given
by tr{A}. Let x be a stochastic process. We write ‖x(k)‖22 , x(k)T x(k) for the Euclidean norm of vector
x(k) and ‖x(k)‖∞ , maxi |xi(k)| for its max norm. ‖x‖22 ,

∑∞
k=0 ‖x(k)‖22 denotes the l2 norm of process x,

‖x‖2RMS , limk↔∞ 1
K

∑K−1
k=0 ‖x(k)‖22 denotes its RMS norm and ‖x‖∞ , maxk maxi |xi(k)| denotes its l∞

norm. In is the identity matrix of size n× n or of appropriate size when the subindex is omitted; similar applies
to 0n×n.

2 Problem Formulation

Let us consider the linear time-invariant (LTI) discrete-time system defined by

x(k + 1) =Ax(k) +B u(k) + Ef(k) +Gv(k) +Dd(k), (1a)

y(k) =C x(k) + Ff(k) +Hv(k), (1b)

where x ∈ Rnx , y ∈ Rny and u ∈ Rnu are the state, output and known input vector; v ∈ Rnv is the process
and sensor noise vector and d ∈ Rnd is the UI vector. Vector f ∈ Rnf includes all the process, actuator and
sensor faults fi (i = 1, . . . , nf ) that affect the system (J. Chen & Patton, 2012)1. We define Mi as the selection
matrix verifying fi = Mi f (i.e., Mi =

[
01×i−1 1 01×nf−i

]
). The following assumptions on the system (1)

are made.

Assumption 1. The pair (A, C) is observable.

Remark 1. Augmented observers require the observability of the model (1) as detailed in works as (Gao, 2015;
Chang, 2006). Hence, Assumption 1 is not restrictive from a FE perspective.

Assumption 2. The faults are detectable, isolable among them and isolable from the UIs.

Remark 2. The transfer matrix from a fault fi to the outputs is given byGfi(z) = C (z I −A)−1Ei + Fi, where
Ei and Fi represent the i-th column of E and F , respectively. The transfer matrix from the UIs to the outputs
is given by Gd(z) = C (z I −A)−1D. We define Gfd as Gfd =

[
Gf1(z) . . . Gfnf

(z) Gd(z)
]
. According

to (Ding, 2008), Assumption 2 implies that

Gfi(z) 6= 0, ∀i,

rank{Gfd(z)} =

nf∑
i=1

rank {Gfi(z)}+ rank {Gd(z)} .

The detectability of the faults in Assumption 2 is a necessary condition for FDI and FE (J. Chen & Patton, 2012;
Ding, 2008). The isolability condition in Assumption 2 is also standard in these frameworks. However, this
condition becomes more restrictive as the number of UIs and faults increases (J. Chen & Patton, 2012; Ding,
2008). Section 5 includes estimation and isolation strategies for the case in which the isolability condition in
Assumption 2 does not hold.

Assumption 3. The noises are zero-mean and of known covariance, i.e., E{v vT } = V . The UIs are norm-
bounded, i.e., ‖d‖∞ ≤ d̄.

1The proposed method entails a more general approach compared with some other existing works that only consider either actuator
faults (Rodrigues et al., 2015) or sensor faults (Aouaouda et al., 2015; M. Liu & Shi, 2013).
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Remark 3. Vector v takes account of zero-mean stochastic disturbances while vector d takes account of non-
zero-mean norm-bounded disturbances. Other disturbances may be also considered in the model (1) by means
of decomposing it into a component included in vector v and a component included in vector d. Pure process
noise (vp) and pure sensor noise (vs) can be modelled by means of zeroing the appropriate columns of G and H

(i.e., v =

[
vp

vs

]
with G =

[
Gp 0

]
and H =

[
0 Hs

]
). For its part, the UI vector can be also used to describe

a number of different kinds of norm-bounded modelling uncertainties (J. Chen, Patton, & Zhang, 1996) (e.g.,
d = ∆Ax with ∆A being the uncertainty regarding the state matrix2).

Assumption 4. The fault discrete derivative δ(k) = f(k + 1)− f(k) is norm-bounded, i.e., ‖δ‖∞ ≤ δ̄.

Any fault signal verifying Assumption 4 (i.e., fault signals with norm-bounded fault discrete derivative δ)
can be modelled as

ξ(k + 1) =AF ξ(k) +BF δ(k), (2a)

f(k) =CF ξ(k), (2b)

with
AF = Inf

, BF = Inf
, CF = Inf

. (3)

Remark 4. Assumption 4 is fairly general because it allows considering a wide range of fault signals which
are common in practical applications. For instance, a step (or abrupt) fault signal is generated through (2)
with an impulse signal δ, and a ramp (or drift) fault signal is generated through (2) with a step signal δ. Note
that Assumption 4 does not imply any restriction over the upper bound of the fault vector f , which reduces the
conservatism compared with some other existing works (Rodrigues et al., 2015; M. Liu & Shi, 2013).

Remark 5. An augmented observer is based on an augmented model including both the system dynamics and
the fault dynamics (Gao, 2015; Gao & Ho, 2004). In the FE literature, fault dynamics verifying Assumption 4
are widely utilised leading to the so-called proportional integral (PI) observers (Chang, 2006; X. Liu et al.,
2018), which are based on the fault model (2)-(3). A stable PI observer leads to bounded steady-state fault
estimation errors when the system is subjected to fault signals verifying Assumption 4. For instance, it leads to
zero steady-state errors under step faults and to constant steady-state errors under ramp faults.

Remark 6. Certain systems may be subjected to complex fault signal forms which do not verify Assumption 4. In
such cases, the fault estimates provided by a PI observer would increase in value but the estimation errors would
not be bounded. To ensure bounded fault estimation errors, the fault state-space matrices (3) must be replaced
by more complex matrices. See, for instance, the state-space matrices in (Wu et al., 2012; Gao & Ho, 2004) for
fault signals in the more general form of a polynomial of the time leading to proportional multiple integral (PMI)
observers. Hence, the model (3) and the strategies developed in this work are easily extensible to fault signals
which do not verify Assumption 4.

The model (1) is thus augmented as

z(k + 1) =A z(k) + B u(k) + E δ(k) + G v(k) +D d(k), (4a)

y(k) =C z(k) +H v(k), (4b)

f(k) =R z(k), (4c)

where z =

[
x
ξ

]
denotes the extended state vector. The state-space matrices in (4) verify A =

[
A E CF
0 AF

]
,

B =

[
B
0

]
, E =

[
0
BF

]
, G =

[
G
0

]
, D =

[
DT 0

]T , C =
[
C F CF

]
,H = H andR =

[
0 CF

]
. The following

2In practice, FE is performed in stable (controlled or uncontrolled) systems. Hence, if ∆A is bounded, the uncertainty d = ∆Ax is
bounded as x is also bounded.
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model-based PI observer is proposed to estimate the faults in (4)

ẑ(k + 1) =A ẑ(k) + B u(k) + L (y(k)− C ẑ(k)) , (5a)

f̂(k) =R ẑ(k) +K (y(k)− C ẑ(k)) , (5b)

where the design observer gain matrices L and K are of appropriate dimensions. Define the estimation errors
z̃(k) = z(k)− ẑ(k) and f̃(k) = f(k)− f̂(k). It follows that

z̃(k + 1) =Ā z̃(k) + Ḡ v(k) +D d(k) + E δ(k), (6a)

f̃(k) =R̄ z̃(k) + H̄ v(k), (6b)

with Ā = A− L C, Ḡ = G − LH, R̄ = R−K C and H̄ = −KH . Applying the Z transform to (6), we get

f̃(z) = Gδ(z) δ(z) + Gd(z) d(z) + Gv(z) v(z), (7)

with Gδ(z)=M(z)E , Gd(z)=M(z)D, Gv(z)=M(z) Ḡ + H̄ and M(z)=R̄(zI − Ā)−1.
For isolation purposes, we set the following decision mechanisms (i = 1, . . . , nf ) evaluating the fault esti-

mates provided by (5): {
if |f̂i(k)| ≥ Ji Fault i
otherwise No fault i

, (8)

where Ji is the isolation threshold of the i-th fault and must be designed.

Remark 7. For FI, it is not necessary to evaluate the fault estimates f̂ and appropriate simpler signals (i.e.,
isolation residuals) can be generated and evaluated instead, e.g., (J. Wang, Ge, Zhou, Wu, & Jin, 2017; Hwang,
Kim, Kim, & Seah, 2010). In this work, the fault estimates are evaluated in isolation decision mechanisms in
order to decide whether to feed or not an active FTC mechanism with these estimates.

In order to design the observer (5) and the decision mechanisms (8), one must choose the gain matrices L
and K and the thresholds Ji (i = 1, . . . , nf ). The main objective of this work is to solve the following problems

• To provide a design strategy of the observer for guaranteeing certain a priori estimation performance
requirements.

• To provide a design strategy of the decision mechanisms for guaranteeing one a priori isolation perfor-
mance requirement.

• To provide a co-design strategy of the observer and the decision mechanisms for guaranteeing more than
one a priori isolation performance requirement.

3 Fault Estimation

3.1 FE Performance Characterization

The performance of the fault estimator (5) can be described using the following criteria:

e.1 the fault tracking speed,

e.2 the degree of interfault decoupling,

e.3 the degree of UI decoupling and

e.4 the noise attenuation.
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Each elementGδij (z) of the transfer matrixGδ(z) describes the fault tracking error that the i-th fault estimate
(i.e., f̂i) experiences due to the variations of the fault in the channel j (i.e., δj). In particular, each diagonal
element Gδii(z) describes the error f̃i due to δi and each off-diagonal term Gδij (z) with j 6= i describes the
coupling effect that occurs when f̃i increases due to the appearance of a fault in another channel j 6= i (i.e.,
δj 6=i). Since the fault tracking speed is strictly related to the fault tracking error, we make use of theH∞ norm of
the transfer functionsGδii(z) (i = 1, . . . , nf ) to characterise the criterion e.1.. Likewise, the criterion e.2., which
refers to the degree of decoupling between faults, can be characterised through the H∞ norm of the transfer
functions Gδij (z) (i = 1, . . . , nf , j = 1, . . . , i− 1, i+ 1, . . . , nf ).

Remark 8. There may also be a coupling effect when more than one fault vary simultaneously and it is also
desirable to characterise this error. To cope with all these characterizations numerically, we bound each fault
estimation error f̃i due to δ as

lim
K→∞

K∑
k=0

f̃i(k)T f̃i(k) ≤ lim
K→∞

K∑
k=0

δ(k)T Γi δ(k),

where the term Γiii stands for the H∞ norm of Gδii(z), the terms Γijj (j 6= i) stand for the H∞ norm of Gδij (z)
and the off-diagonal terms Γijl (j 6= l 6= i) explain the behaviour of the i-th fault estimate towards simultaneous
faults.

The dynamics in Gd(z) determine the effect of the UIs on the fault estimates. Thus, the criterion e.3 can be
characterised through theH∞ norm of Gd(z). Finally, we characterise the criterion e.4 through the covariance of
the fault estimation error due to noises.

Remark 9. In the absence of UIs and faults, the presence of zero-mean noises leads to zero-mean fault estimation
errors. In this case, the covariance of f̃ , i.e., Σ = limk→∞ E{f̃(k)f̃(k)T }, is given by the Lyapunov equations

Σz =ĀΣz ĀT + Ḡ V ḠT , (9a)

Σ =R̄Σz R̄T + H̄ V H̄T , (9b)

which we obtained from (7) with δ(z) = 0, d(z) = 0 and using an internal realization of Gv(z).

The requirements over these criteria can be thus translated into requirements over different H∞ norms and
covariance bounds of the fault estimation errors. In order to set multiobjective designs with different requirements
over these criteria, we use the formulation based on matrix inequalities which is shown in Theorem 1.

Theorem 1. Consider the observer (5) applied to the system (4). If there exist any matrices L and K, any
positive scalar γd, any symmetric matrices S, Q, Ξ, Pi and any diagonal matrices Γi (i = 1, . . . , nf ) fulfilling

Q Q Ā QD 0
ĀT Q Q 0 R̄T
D̄T Q 0 γd I 0

0 R̄ 0 I

 � 0, (10)

 S S Ā S Ḡ V
ĀT S S 0
V ḠT S 0 V

 � 0,

 Ξ R̄ H̄ V
R̄T S 0
V H̄T 0 V

 � 0, (11)


Pi Pi Ā Pi E 0
ĀT Pi Pi 0 R̄T MT

i

ĒT Pi 0 Γi 0
0 Mi R̄ 0 I

 � 0, i = 1, . . . , nf ; (12)

the following statements hold:
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(i) In the absence of UIs, noises and faults, the extended state estimation error converges to zero.

(ii) The fault estimation error due to UIs is bounded as3

‖f̃‖2RMS ≤ γd ‖d‖2RMS . (13)

(iii) The covariance of the fault estimation error due to noises is bounded as

Σ � Ξ. (14)

(iv) The fault estimation error due to fault variations is bounded as4

‖f̃i‖2RMS ≤
nf∑
j=1

Γijj ‖δj‖2RMS . (15)

Proof. See Appendix A

Remark 10. Optimization-based FE strategies usually characterise the performance of the fault estimation error
vector f̃ w.r.t. the UIs d, the noises v and the fault variations δ, e.g., (Gao et al., 2016; Witczak et al., 2016; Lan
& Patton, 2017). In this work, we alternatively characterise the performance of each fault estimation error f̃i
w.r.t. the noises v (using the bound Ξii) and w.r.t. each fault variation δj (using the bound Γijj). This approach
allows designing estimators satisfying in each fault channel different trade-offs between fault sensitivity and
noise attenuation, which is of practical interest in engineering applications. For its part, we just characterise the
performance of the entire fault estimation error vector f̃ w.r.t. the UIs d because we desire to design PI observers
ensuring UI decoupling.

3.2 Observer Design with FE Performance Requirements

Let us design the gain matrices L and K of the observer (5) for satisfying different requirements over the criteria
e.1, e.2, e.3 and e.4.

From Theorem 1, we deduce that if Γiii in (12) verifies

Γiii ≤ Γ̄iii, (16)

the fault tracking error of the estimate f̂i w.r.t. the variations described by δi is bounded by Γ̄iii. The fault
estimation error can be bounded using the constraint (16); however, from a reliability perspective, constraints
over the criterion e.1 may be of more practical interest. Since the fault tracking speed depends not only on the
fault tracking error but also on the fault signal form, we can choose Γ̄iii to ensure certain fault tracking speed w.r.t.
an specific fault signal form verifying Assumption 4. Conservatively, we consider a ramp fault of slope ∆i 6= 0
occurring in the i-th fault channel5. In this case, the fault tracking speed may be described by the steady-state

fault estimation delay Ti which is bounded as Ti ≤
√

Γiii. To prove it, note that a ramp fault signal is generated
through a constant signal δi (i.e., δi(k) = ∆i) and the steady-state fault estimation error is also constant and
equal to

lim
k→∞

f̃i(k) = lim
z→1

(1− z−1)Gδii(z)
∆i

1− z−1
= Gδii(1)∆i =

¯̃
fi.

From the item (iv) in Theorem 1, we have that if d = 0 and v = 0,

1

K

K∑
k=0

f̃i(k)2 ≤ 1

K

K∑
k=0

Γiii δi(k)2.

3It is also bounded as ‖f̃‖2RMS ≤ γd n2
dd̄

2 because ‖d‖RMS ≤ nd ‖d‖∞ and ‖d‖∞ ≤ d̄.
4It is also bounded as ‖f̃i‖2RMS ≤

∑nf

j=1 Γi
jj δ̄

2 because ‖δj‖RMS ≤ ‖δ‖∞ and ‖δ‖∞ ≤ δ̄.
5A constraint regarding the fault tracking speed w.r.t. ramp faults is conservative because it covers the worst-case fault signal form

considered in Assumption 4 (i.e., a ramp fault of slope ∆i = δ̄).
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Provided that δi(k) = ∆i, taking the limit when K → ∞, and computing the square root of the result leads to

| ¯̃fi| ≤
√

Γiii ∆i. Taking into account that the slope ∆i describes the proportionality between the increase of fi
and the time elapsed between two different samples, we get the previous bound. Then, if Γiii verifies (16), the

estimation delay Ti under ramp faults is bounded as Ti ≤
√

Γ̄iii.

Remark 11. Other fault signal forms verifying Assumption 4 could be considered to achieve a constraint over
the criterion e.1. For instance, consider a constant fault of size f̄i 6= 0 occurring in the i-th fault channel. In
this case, the fault tracking speed may be described by the cumulative squared error defined as Ei = ‖f̃i(k)‖22.
It is straightforward to prove that Ei ≤ Γiii f̄

2
i . Then, if Γiii verifies (16), the cumulative squared error Ei under

unitary step faults is bounded as Ei ≤ Γ̄iii.

Regarding the criterion e.2, if Γijj in (12) verifies

Γijj ≤ Γ̄ijj , (17)

certain degree of interfault decoupling between f̂i and δj 6=i is guaranteed. We define perfect interfault decoupling
as the characteristic of an estimator verifying Γijj = 0 for all i and for all j 6= i. A numerically sound way of
adding these constraints to a semidefinite programming problem involving (12) is to set the constraint (17) for
all i and for all j 6= i and to fix

Γ̄ijj := εjj (18)

with εjj = ε tr{Ξ}/f̄j , ε being a small number (e.g., ε ≤ 10−6) and f̄j being the maximum expected value of the
j-th fault, which can be derived from the physical constraints of the system. The value (18) in the constraint (17)
makes the estimation error due to fault variations in other channels negligible w.r.t. the estimation error due to
noises and we claim that practical interfault decoupling is achieved whenever (17)-(18) is satisfied for all i and
for all j 6= i. For its part, the use of diagonal matrices Γi cancels the errors due to simultaneous variations of
faults (i.e., the fault estimation error due to the product δj δl with j 6= l is cancelled).

Similarly, certain degree of decoupling from the UIs (criterion e.3) is guaranteed if γd in (10) verifies

γd ≤ γ̄d. (19)

We define perfect UI decoupling as the characteristic of an estimator verifying γd = 0. Similarly to (18), we
numerically address this issue through

γ̄d := εd (20)

with ε = εtr{Ξ}/d̄. Thus, if (19)-(20) is fulfilled, the fault estimation error due to UIs becomes negligible w.r.t
the error due to noises and we claim that practical UI decoupling is achieved.

Remark 12. Note that certain degree of interfault and UI decoupling is achievable regardless of the isolability of
the faults and UIs. Perfect interfault and UI decoupling are achievable because the system (1) verifies Assump-
tion 2 (i.e., the faults are isolable among them and from the UIs). If perfect UI decoupling is achieved, claims
(iii) and (iv) in Theorem 1 do also hold in the presence of UIs. We consider that they also hold when practical
UI decoupling is guaranteed and the UIs are present in the system.

Remark 13. The most extended strategy to build an observer guaranteeing perfect UI decoupling is the use
of some algebraic constraints as the ones presented in (X. Liu et al., 2018; Gao et al., 2016; Ding, 2008)
for the design of UIOs. Then, the remaining design freedom can be used in a second-step observer design to
achieve certain requirements over other performance criteria. Alternatively, we propose to use the numerical
constraints (19)-(20) in a design problem involving (10) to achieve practical UI decoupling. The proposal leads
to an homogeneous formulation of all the performance criteria and allows achieving practical UI decoupling
together with other estimation performance requirements in a single-step multiobjective optimization problem.
Practical UI decoupling refers then to the numerical approach to achieve UI decoupling. In practice, numerical
(or practical) UI decoupling is equivalent to structural (or perfect) UI decoupling, which is achieved using
algebraic constraints.
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Table 1: Overview of observer design strategies for guaranteeing estimation performance requirements.

Target
Target Observer

Formulation Design
Practical UI decoupling γd ≤ εd Optimization

problem
(22)-(23)

Practical interfault decoupling Γijj ≤ εjj , ∀i, j 6= i

Bounded ramp fault estimation delays Ti ≤ T ∗i , ∀i
Minimised marginal variances due to noises min f(Σ11, . . . ,Σnfnf

)

Practical UI decoupling γd ≤ εd Optimization
problem
(24)-(25)

Practical interfault decoupling Γijj ≤ εjj , ∀i, j 6= i

Bounded marginal variances due to noises Σii ≤ Σ∗ii, ∀i
Minimised ramp fault estimation delays min f(T1, . . . , Tnf

)

Finally, if matrix Ξ in (11) verifies
Ξii ≤ Ξ̄ii, (21)

certain noise attenuation (criterion e.4) is guaranteed in the i-th fault estimation channel. Particularly, (21) implies
that the marginal variance of f̃i is bounded as Σii ≤ Ξ̄ii.

The following two multiobjective design strategies, summarised in Table 1, show a proposal of how to use
these results for designing the fault estimator (5) guaranteeing different estimation performance requirements.

Strategy 1. Let us assume that we want to design a fault estimator (5) that minimises certain linear function
f(·) of the marginal variances of the fault estimation errors due to noises while it guarantees practical UI and
interfault decoupling, and certain fault estimation delays under ramp faults, with T ∗i being the maximum allowed
delay in the i-th fault channel. To address this design, we solve the following optimization problem

minimise f(Ξ11, . . . ,Ξnfnf
)

subject to {(10)− (12), (16)− (20), ∀i, j 6= i}
(22)

with
Γ̄iii := T ∗i (23)

in (16) and along the variables S, Q, P i, Ξ, Γi, K, L and γd with i = 1, . . . , nf and j = 1, . . . , nf .

Strategy 2. Let us assume that we want to design a fault estimator (5) that minimises certain linear function
f(·) of the fault estimation delays under ramp faults while it guarantees practical UI and interfault decoupling,
and certain marginal variance of each fault estimation error, with Σ∗ii being the variance requirement in the i-th
fault channel. To address this design, we solve the following optimization problem

minimise f(Γ1
11, . . . ,Γ

nf
nfnf )

subject to {(10)− (12), (17)− (21), ∀i, j 6= i}
(24)

with
Ξ̄ii := Σ∗ii (25)

in (21) and along the variables S, Q, P i, Ξ, Γi, K, L and γd with i = 1, . . . , nf and j = 1, . . . , nf .

3.2.1 Conservativeness and Solvability of the Observer Design

The multiobjective optimization problems in Strategy 1 and Strategy 2 are based on the results of Theorem 1,
whose conditions are standard in norm-based designs (Guerra, Márquez, Kruszewski, & Bernal, 2018; Zhou,
Doyle, Glover, et al., 1996). The use of independent closed-loop Lyapunov functions Q and Pi (i = 1, . . . , nf ),
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which are different from the matrix bound S, guarantee non-conservative designs based on the inequalities (10)-
(12) because the estimation error model (6) is LTI. However, these designs become nonlinear optimization prob-
lems entailing bilinear matrix inequalities (BMIs).

These nonlinear problems can be solved using different solvers such as the ones presented in (Henrion,
Löfberg, Kočvara, & Stingl, 2005; Kočvara & Stingl, 2003). Unfortunately, these solvers introduce certain degree
of conservatism because they only guarantee local solutions. Alternatively, it is possible to iteratively solve the
BMIs through a sequence of problems of linear matrix inequalities (LMIs) following different approaches such
as the ones presented in (El Ghaoui, Oustry, & AitRami, 1997). Note that recovering convexity by enforcing
Q = S = Pi for all i is not suitable because this approach is too conservative. However, a compromise solution
can be also adopted by introducing a slack variable as detailed in works as (Guerra et al., 2018; de Oliveira,
Bernussou, & Geromel, 1999).

Practical interfault and UI decoupling, which are required in Strategy 1 and Strategy 2, are achievable be-
cause the system (1) verifies Assumption 2. Hence, the solvability of the optimization problems (22) and (24)
depends on the restrictiveness of the values which are chosen for the performance requirements T ∗i and Σ∗ii
(i = 1, . . . , nf ), respectively. The solvability limits of the performance requirements can be found using the
following problems.

• The most restrictive requirements T ∗i (i = 1, . . . , nf ) guaranteeing the solvability of the design problem
in Strategy 1 satisfy T ∗i := Γiii, with Γiii being the solution to the following problem:

minimise f(Γ1
11, . . . ,Γ

nf
nfnf )

subject to {(10), (12), (16)− (20), ∀i, j 6= i}

along the variables S, Q, P i, Γi, K, L and γd with i = 1, . . . , nf and j = 1, . . . , nf .

• The most restrictive requirements Σ∗ii (i = 1, . . . , nf ) guaranteeing the solvability of the design problem
in Strategy 2 satisfy Σ∗ii := Ξii, with Ξii being the solution to the following problem:

minimise f(Ξ11, . . . ,Ξnfnf
)

subject to {(10), (11), (17)− (21), ∀i, j 6= i}

along the variables S, Q, P i, Ξ, K, L and γd with i = 1, . . . , nf and j = 1, . . . , nf .

4 Fault Isolation

4.1 FI Performance Characterization

Motivated by the characterization presented in (J. Chen & Patton, 2012; Ding, 2008), we describe the perfor-
mance of the fault isolator (8) through the following indices:

i.1. the false isolation rates,

i.2. the minimum isolable faults,

i.3. the acknowledgement times and

i.4. the isolation times.

Let us first define a persistent fault fi satisfying
|fi(k)| = 0 if k < k0

|fi(k)| ∈ (0, fi
¯

) if k ∈ [k0, k¯
)

|fi(k)| ≥ fi
¯

if k ≥ k
¯

. (26)
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We define the false isolation rate of the fault i, which we denote as φi, as the probability of rising an isolation
alarm of the fault i when fi = 0:

φi = P{∃k : |f̂i(k)| ≥ Ji}. (27)

Provided fj 6=i = 0, v = 0 and d = 0, we define the minimum isolable fault i, which we denote as ψi, as the
smallest value fi

¯
that ensures the isolation of the fault (26):

ψi =

{
min fi

¯s.t. ∃k ≥ k
¯

: |f̂i(k)| ≥ Ji

}
. (28)

Under these conditions (i.e., fj 6=i = 0, v = 0 and d = 0), we define the acknowledgement time of the fault i,
which we denote as ϑi, as the time elapsed between k

¯
and the first sample of isolation of the fault (26):

ϑi =

{
min
k≥k

¯

k − k
¯

s.t. |f̂i(k)| > Ji

}
. (29)

We define the isolation time of the fault i, which we denote as τi, as the time elapsed between the appearance of
the fault (26) at k0 and the first sample of isolation of this fault:

τi = k
¯
− k0 + ϑi. (30)

4.2 Mechanisms Design with FI Requirements

Assume that the model-based observer (5) has been designed through the strategies presented in Section 3.2 and
the fault estimate f̂i provided by such observer (with prefixed stabilising gains L and K) is used in the decision
mechanism (8). In the following, we show how to design the threshold Ji of the decision mechanism (8) for
guaranteeing certain requirement over one isolation performance index.

Regarding the index i.1, if fi = 0 and perfect UI and interfault decoupling are achieved, the fault estimate f̂i
is zero-mean and its variance is given by the marginal variance Σii, which can be computed through (9). Then,
through Chebyshev’s inequality6 and the definition (27), we have that

φi ≤ Σii/J
2
i , (31)

and we can set Ji as
Ji :=

√
Σii/φ∗i . (32)

to guarantee the bound φi ≤ φ∗i .

Remark 14. Provided UI and interfault decoupling, if the noises v are Gaussian, we have that f̂i ∼ N (0,Σii)
and we can set Ji to fix the index i.1 to φ∗i as

Ji := Φ−1
Z (1− φ∗i /2)

√
Σii, (33)

with Φ−1
Z (·) being the inverse cumulative distribution function of a standard normal variable7.

The minimum isolable fault i depends on the form of the fault signal fi, see the definition (28). Then, we can
just ensure certain index i.2 w.r.t. an specific fault signal form verifying Assumption 4 and the conditions (26).
The straightforward case is the occurrence of a non-zero step fault in the i-th fault channel because the minimum
isolable fault coincides with the threshold of the isolation mechanism, i.e.,

ψi ≡ Ji. (34)

Hence, we can fix the minimum isolable constant fault i to ψ∗i by setting

Ji := ψ∗i . (35)
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Figure 1: Time isolation indices in the presence of a ramp fault.

Table 2: Overview of mechanism design strategies for guaranteeing one isolation performance requirement.

Target
Target Mechanism

Formulation Design

Bounded false isolation rate φi ≤ φ∗i Obtain Σii with (9) Equality (32)†

Certain minimum isolable constant fault ψi ≡ ψ∗i Equality (35)
Certain ramp fault isolation time (slope ∆i) τi ≡ τ∗i Equality (37)

†Equality (33) with Gaussian noises ensures φi ≡ φ∗i .

The time indices i.3 and i.4 do also depend on the form of the exogenous fault signal fi, see (29) and (30).
Then, we can just ensure certain time indices w.r.t. an specific fault signal form verifying Assumption 4 and the
conditions (26). In analogy to the estimation performance criterion e.1, we consider the occurrence of a ramp
fault of slope ∆i 6= 0 in the i-th fault channel, see Fig.1. If the estimation error has achieved the steady state
when the fault exceeds Ji, the acknowledgement time of the fault i is the steady-state estimation delay Ti (i.e.,
ϑi ≡ Ti) and the isolation time of the fault i satisfies

τi ≡ Ji/∆i + Ti, (36)

where Ji/∆i characterises the time that the ramp fault requires to achieve Ji. In all, ϑi ≡ Ti is determined by
the observer and it cannot be modified by varying Ji. Provided certain Ti, we can set

Ji := ∆i(τ
∗
i − Ti) (37)

to fix the isolation time to τ∗i (i.e., τi ≡ τ∗i ) if τ∗i > Ti and ∆i is known. Note that the slope ∆i is not generally
known and requirements over the acknowledgement time ϑi are more general.

The mechanism design strategies presented in this section are summarised in Table 2. Note that once Ji is
designed to guarantee one isolation performance index, the other indices can be computed through (31), (34)
and (36).

4.3 Co-design with FI Requirements

The strategies presented in Section 4.2 show how to design the decision mechanism (8) to ensure one requirement
over the index i.1, i.2. or i.4 when the gain matrices L and K of the observer (5) are prefixed (i.e., the gains are
already designed). In order to achieve an isolator guaranteeing two or more requirements over these indices,
it is necessary to perform a co-design of the observer (5) and the decision mechanisms (8). The following

6If a > 0 and x is a random variable of mean µ and variance σ, then P{|x− µ| > aσ} ≤ 1/a2.
7Note that the threshold Ji defined as (33) ensures φi ≡ φ∗i in the case of Gaussian noises while the threshold Ji defined as (32)

ensures the bound φi ≤ φ∗i regardless of the statical distribution of the noises.

13



strategies, summarised in Table 3, show a proposal of how to perform this co-design for guaranteeing more than
one isolation performance requirement.

Strategy 3. Assume that we desire to ensure altogether certain false isolation rates φ∗i (i = 1, . . . , nf ), cer-
tain minimum isolable constant faults ψ∗i (i = 1, . . . , nf ) and minimum acknowledgement times under ramp
faults (and thus minimum isolation times under ramp faults). To ensure these requirements, we first design the
observer (5) through Strategy 2 with the value

Σ∗ii := φ∗i ψ
∗
i

2 (38)

in (25) for all i. Second, with the obtained gains L and K, we compute Σ through (9)8 and we set the isolation
thresholds through (32) with φ∗i for all i.

Remark 15. If the noises v that affect the system (1) are Gaussian, the constraint (38) can be replaced by

Σ∗ii := ψ∗i
2/Φ−1

Z (1− φ∗i /2)2 (39)

and each isolation threshold can be set through (33) with φ∗i .

Strategy 4. Now, assume that we desire to ensure altogether certain false isolation rates φ∗i (i = 1, . . . , nf ),
certain acknowledgment times under ramp faults ϑ∗i (i = 1, . . . , nf ) and we desire to minimise the minimum
isolable faults. To ensure these requirements, we first design the observer (5) through Strategy 1 with the value

T ∗i := ϑ∗i (40)

in (23) for all i. Second, with the obtained gains L and K, we compute Σ through (9)8 and we set the isolation
thresholds through (32) (or (33) if the noises are Gaussian) with φ∗i for all i.

Remark 16. Note that if we desire to ensure altogether certain acknowledgement times under ramp faults ϑ∗i
(i = 1, . . . , nf ), certain minimum isolable constant faults ψ∗i (i = 1, . . . , nf ) and we desire to minimise the
false isolation rates, we just have to design the observer (5) through Strategy 1 with the value T ∗i := ϑ∗i and set
Ji := ψ∗i for all i.

Remark 17. In order to achieve an isolator which guarantees certain isolation times τ∗i under ramp faults of
slope ∆i (i = 1, . . . , nf ), certain false isolation rates φ∗i (i = 1, . . . , nf ) while it minimises the minimum isolable
constant faults, we must design the observer (5) through Strategy 1 with T ∗i := τ∗i −1/∆i

√
Ξii/φ∗i in (23) for all

i. The constraint (23) becomes, then, nonlinear. Provided this nonlinearity and given that slope ∆i is generally
unknown, we use Strategy 4 whenever requirements over time isolation indices appear in the co-design.

5 FI and FE with a Bank of Observers

In this section, we address the case in which the faults and the UIs in the system (1) are not isolable (i.e.
rank{Gfd(z)} <

∑nf

i=1 rank {Gfi(z)} + rank {Gd(z)}) and, thus, it is not possible to build model-based ob-
servers that guarantee both decoupling from the UIs and appropriate fault estimates. Then, we design several
observers (i.e., a bank of observers), each of them taking only into account a subset of all the faults to which the
system is prone. Assuming that all the faults in the system are not simultaneous, we build a bank of decision
mechanisms for the bank of observers which enhances, first, FI and, then, FE.

Remark 18. As detailed in Remark 12, certain degree of UI decoupling is achievable regardless of the isolability
of the faults from the UIs. In this section, we assume that practical UI decoupling is required and intermediate
solutions guaranteeing certain degree of UI decoupling do not fulfil the required performance.

8Strategy 2 guarantees practical UI and interfault decoupling and thus, in the fault-free scenarios, signal f̂i is zero-mean and its
variance is given by the marginal variance Σii.
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Table 3: Overview of co-design strategies for guaranteeing isolation performance requirements.

Target
Target Observer Mechanisms

Formulation Design Design
Bounded false isolation rates φi ≤ φ∗i , ∀i

Optimization problem
(24)-(25)†

Σ∗ii := φ∗i ψ
∗
i

2, ∀i

Obtain Σ (9)
Equality (32)‡

Bounded minimum isolable constant
faults

ψi ≤ ψ∗i , ∀i

Minimised ramp fault isolation times min f(τ1, ... , τnf
)

Minimised ramp fault acknowledge-
ment times

min f(ϑ1, ... , ϑnf
)

Bounded false isolation rates φi ≤ φ∗i , ∀i
Optimization

problem (24)-(25)
T ∗i := ϑ∗i , ∀i

Obtain Σ (9)
Equality (32)‡

Bounded ramp fault acknowledgement
times

ϑi ≤ ϑ∗i , ∀i

Minimised minimum isolable constant
faults

min f(ψ1, ... , ψnf
)

Bounded minimum isolable constant
faults

ψi ≤ ψ∗i , ∀i
Optimization

problem (24)-(25)
T ∗i := ϑ∗i , ∀i

Equality (35)Bounded ramp fault acknowledgement
times

ϑi ≤ ϑ∗i , ∀i

Minimised false isolation rates min f(φ1, ... , φnf
)

†Σ∗ii := ψ∗i
2/Φ−1

Z (1− φ∗i /2)2 with Gaussian noises.
‡Equality (33) with Gaussian noises.

Remark 19. Consider the case in which certain requirements over estimation or isolation performance indices
compromise FE or FI w.r.t. other performance indices. Although not being necessary in terms of isolability
conditions, the use of a bank of observers leads to a better performance w.r.t the compromised indices at the
cost of new restrictions over the simultaneity of faults. This situation gives a further motivation to the strategies
developed in this section.

5.1 Bank of Observers and Decision Mechanisms for FI and FE

Let us denote the set of all possible faults as S = {f1, . . . , fnf
} and the set of the corresponding ordered indices

as π = {1, . . . , nf} (i.e., πi = i). We split the model (1) into a bank of m submodels. Each submodel b (with
b = 1, . . . ,m) takes account of a subset Sb ⊂ S of ns < nf faults (with ordered indices πb ⊂ π) while it ignores
the other faults. Every fault of the system is at least considered by one submodel in the bank (i.e., S =

⋃
b S

b)
and Sb 6= Sc for b 6= c. The number of submodels in the bank is thus

m = C
nf
ns =

nf !

ns! (nf − ns)!
. (41)

We denote the vector that stacks the faults which are taken into account by the b-th submodel as f b and the vector
that stacks the faults which are ignored by this submodel as f\b. The b-th submodel is

x(k + 1) =Ax(k) +B u(k) + Eb f b(k) +Gv(k) +Dd(k), (42a)

y(k) =C x(k) + F b f b(k) +H v(k), (42b)

with Eb and F b being the result of stacking the columns of E and F indexed by πb. The size ns of the subsets
Sb must be chosen in order to guarantee the isolability of all the fault vectors f b in the presence of UIs. For all b,
we must have that

rank{Gfbd(z)} =

ns∑
l=1

rank
{
Gfbl

(z)
}

+ rank {Gd(z)} , (43)
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with Gfbl (z) = C (z I − A)−1Ebl + F bl and Gfbd(z) =
[
Gfb1

(z) . . . Gfbns
(z) Gd(z)

]
. Due to the additive

nature of the faults and the UIs in (1), it is not possible to guarantee the condition (43) if ns > ny − nd. Then,
we set ns as the maximum number less than or equal to ny − nd such that the condition (43) holds for all the
submodels in the bank.

In analogy to (4), we augment each submodel (42) with the dynamics of the fault vector f b (i.e., AbF =
Ins , B

b
F = Ins , C

b
F = Ins). Then, likewise to (5), we build a bank of observers in the form of

ẑb(k + 1) =Ab ẑb(k) + Bb u(k) + Lb(y(k)− Cb ẑb(k)), (44a)

f̂ b(k) =Rb ẑb(k) +Kb (y(k)− Cb ẑb(k)) (44b)

with Lb and Kb being the observer gain matrices of the b-th observer of appropriate dimensions. Vector f̂ b is the
estimated fault and ẑb is the estimated extended state.

Note that (42) models the behaviour of the system (1) when the faults f\b are not present in the system (i.e.,
f\b = 0). Then, f̂ b is only reliable when f\b = 0. We know that a fault fi is zero if f̂ bl = 0 with πbl = i for some
estimator b. If ns or more simultaneous faults occur, there are no zero-value fault estimates and all the estimates
provided by the bank are thus corrupted. This means that it is only possible to discern reliable estimates when no
more than ns− 1 simultaneous faults are present in the system and that FE and FI are only possible if ns > 1. In
all, Algorithm 1 summarises the strategy to build the bank of observers guaranteeing the isolation and estimation
of the maximum possible number of simultaneous faults.

Remark 20. Assume that the condition (43) does not hold for all submodels b if ns > 1.

• If (43) holds at least for some submodels b when ns > 1 and all the faults fi (i = 1, . . . , nf ) are
considered within these submodels, we extend them with AbF = Ins , B

b
F = Ins , C

b
F = Ins and we

build the corresponding observers (44). We extend the other submodels which do not verify (43) with
AbF = 0ns×ns , B

b
F = Ins , C

b
F = Ins and we build the corresponding observers (44). In this case,

the latter observers are only used for FI purposes and allow discerning the reliability of the outputs pro-
vided by the first group of observers, which are used for FE purposes. See the details in (Sales-Setién &
Peñarrocha-Alós, 2018)9.

• Otherwise, a transformation of the system, as proposed in (Z. Li, Mazars, Zhang, & Jaimoukha, 2012),
must be done (leading to new a fault vector f ).

In noisy environments, there are not zero-value fault estimates. This means that decision mechanisms based
on thresholds are necessary for both FI and FE. Likewise to (8), we set the following decision mechanism which
enables FI when no more than ns − 1 simultaneous faults occur{

if |f̂ bl (k)| ≥ Jbl ∀(b, l) : πbl = i Fault i
otherwise No fault i

. (45)

with Jbl being the isolation threshold of the l-th fault in the b-th bank.
For FE, we rely on f̂ bl as an estimate of fπb

l
whilst no fault in f\b has been isolated through (45). If a set B of

more than one estimator in the bank provides a reliable estimation of a fault fi, we define f̂i through the reliable
estimator with better performance w.r.t. certain isolation performance index

f̂i(k) := {f̂ b∗l (k) : i = πb
∗
l }, (46)

with
b∗ = {argmin

b∈B
αbl : πbl = i},

and αbl certain isolation performance index reflecting and improved isolation performance as it decreases.

9Once a fault is accommodated, the observers in the bank must be reset to avoid the existence of wrong initial conditions derived
from the previous presence of ignored faults.
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Algorithm 1 Strategy to construct the bank of observers.
1: ns ← ny − nd
2: while ns > 1 do
3: compute m with (41)
4: construct m subsets Sb verifying S =

⋃
b S

b and Sb 6= Sc for b 6= c
5: construct the bank of m sumbodels (42)
6: if the condition (43) is verified for all b then
7: construct the bank of m observers (44)
8: end algorithm
9: else

10: ns ← ns − 1
11: end if
12: end while
13: if ns = 1 then
14: apply the strategies in Remark 20
15: end if

5.2 FI Performance Characterization and Co-design with FI Requirements

The isolation index i.1 of a fault i, φi, depends on the false alarms of every pair f̂ bl and Jbl with πbl = i, i.e.,

φi = P

 ⋂
(b,l):πb

l =i

∃k : |f̂ bl (k)| ≥ Jbl

 , (47)

when fi = 0. Note that the events Xj = “ ∃k : |f̂ bl (k)| ≥ Jbl ” in (47) (with j = 1, . . . , nj and nj the number
of pairs (b, l) satisfying πbl = i) are not independent and φi depends on the conditional probability of each event
Xj subject to the occurrence of the others. Starting from event X1, we have that

φi = P {X1} · P {X2/X1} · . . . · P
{
Xnj/X1 ∩ . . . ∩Xnj−1

}
. (48)

This equality holds when starting from any event Xj and, thus, we have that

φi ≤ P {Xj}

for j = 1, . . . , nj . The conditional probabilities in (48) are close to 1 because, in practice, the same noises affect
all the observers simultaneously. Hence, we deduce that φi is tightly bounded by

φi ≤ min
(b,l):πb

l =i
φbl , (49)

where φbl satisfies (27) for the b-th estimator. Regarding the index i.1, the minimum isolable constant fault i, ψi,
is given by

ψi = max
(b,l):πb

l =i
ψbl , (50)

where ψbl satisfies (28) for the b-th estimator. Analogous definitions apply to the time indices i.3 and i.4.
In order to design the observers and decision mechanisms of the bank for satisfying global isolation per-

formance requirements, we make use of these characterizations. The following two strategies show a proposal
of how to perform the co-design of each observer and the corresponding thresholds for guaranteeing different
isolation requirements.

Strategy 5. Assume that we desire to ensure altogether certain false isolation rates φ∗i (i = 1, . . . , nf ), certain
minimum isolable constant faults ψ∗i (i = 1, . . . , nf ) and minimum acknowledgement times under ramp faults.
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To ensure these requirements, we performm independent designs. In each of them, we design a different observer
b of the bank and the corresponding thresholds Jbl (l = 1, . . . , ns) through Strategy 3 with requirements φ∗i and
ψ∗i whenever πbl=i.

Strategy 6. Assume that we desire to ensure altogether certain false isolation rates φ∗i (i = 1, . . . , nf ), certain
acknowledgement times under ramp faults ϑ∗i (i = 1, . . . , nf ) and we want to minimise the minimum isolable
constant faults. To ensure these requirements, we perform m independent designs. In each of them, we design
a different observer b of the bank and the corresponding thresholds Jbl (l = 1, . . . , ns) through Strategy 4 with
requirements φ∗i and ϑ∗i whenever πbl = i.

6 Case of Study: FE and FI in a Wind Turbine

The benchmark in (Odgaard et al., 2013) describes a three-bladed horizontal wind turbine which consists of four
main systems: the generator and converter, the drive train, the blade and pitch and the controller. The strategies
developed in this paper are independent of the control scheme and can be implemented regardless of the control
law. In this section, we apply the proposed fault estimators and isolators to the first three systems.

6.1 State Space Models

In the following, we model the wind turbine systems through the continuous model

ẋ =Ac x+Bc u+ Ec f +Gc v +Dc d, (51a)

y =Cc x+ F c f +Hc v. (51b)

The sate-space matrices of the realizations are detailed in Appendix B. Reference (Odgaard et al., 2013), which
is referred for further modelling details, specifies that the noises that affect the wind turbine benchmark are
Gaussian.

Generator and Converter System. This system can be modelled as a first order closed-loop system between
the torque reference, τg,r, and the non-deviated torque τg,n. The actual generator torque, τg, is given by τg =
τg,n + ∆τg,n, where ∆τg,n is the offset representing the converter fault. Let τg,m and vτg be the measurement of
τg and the corresponding additive noise; then, we have

x , τg,n, u , τg,r, y , τg,m, f , ∆τg,n, v , vτg , d , ∅.

Drive Train System. The drive train dynamics is represented by a two-mass model involving the rotor speed,
ωr, the generator speed, ωg and the torsion angle of the drive train, θrg. This system is fed with the actual
generator torque, τg, and the aerodynamic torque from the wind, τa. Provided that the real generator torque is not
available, we model this input as the difference between its measurement, τg,m, and the corresponding additive
sensor noise, vτg,m . The aerodynamic torque may be obtained through the wind speed and the power coefficient,
Cp, which is a nonlinear function of ωr, the wind speed and the pitch angles of the turbine. In practice, it is very
difficult to know the real distribution ofCp and the measurements of the wind speed provided by anemometers are
rather inaccurate. Thus, we consider τa to be an UI, which is a widely extended assumption in the bibliography,
see (Odgaard, Stoustrup, Nielsen, & Damgaard, 2009). Both drive train speeds are measured by the redundant
sensors ωr,m1 , ωr,m2 , ωg,m1 and ωg,m2 and we model their possible faults as the additive signals ∆ωr,m1 , ∆ωr,m2 ,
∆ωg,m1 and ∆ωg,m2 . Similar applies to their corresponding sensor noise. In all, the state-space vectors are

x ,
[
ωr ωg θrg

]T
,

u , τg,m,

y ,
[
ωr,m1 ωr,m2 ωg,m1 ωg,m2

]T
,

v ,
[
vωr,m1

vωr,m2
vωg,m1

vωg,m2
vτg,m

]T
,

f ,
[
∆ωr,m1 ∆ωr,m2 ∆ωg,m1 ∆ωg,m2

]T
,

d , τa.
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Figure 2: Architecture of the pitch system.

Blade and Pitch System. The hydraulic pitch system of each of the blades p = 1, 2, 3 is modelled as a
second order closed-loop system between the reference angle provided by the wind turbine controller, βr, and
the averaged measurement, βm(p), provided by two redundant sensors, βm1(p) and βm2(p). Both sensors entail
measurement noises that disturb the closed loops. Provided that only the closed-loop indices (ωn0 and ξ0) are
known, we model these disturbances as additive signals vβ1(p) and vβ2(p) which affect both the measurements and
the reference. Similar applies to sensor faults, which we denote as ∆βm1(p) and ∆βm2(p) (See Fig.2).

The pitch actuator may also suffer from dynamic changes. If we denote the deviations of ωn0 and ξ0 as
∆ωn(p) and ∆ξ(p) (i.e., ωn(p) = ωn0 + ∆ωn(p) and ξ(p) = ξ0 + ∆ξ(p)), the actuator fault can be modelled as an
additive signal in the form of

fβa(p) = (∆w2
n(p) + 2wn0∆wn(p))(βr − β(p))− 2 (ξ0∆wn(p)+ wn0∆ξ(p) + ∆ξ(p)∆wn(p))β̇(p).

In all, the state-space vectors of each pitch system are

x ,
[
β(p) β̇(p)

]T
,

u , βr,

y ,
[
βm1(p) βm2(p)

]T
,

v ,
[
vβ1(p) vβ2(p)

]T
,

f ,
[
fβa(p) ∆βm1(p) ∆βm2(p)

]T
,

d , ∅.
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Table 4: Fault signature matrix in the drive train system (�:Sensitive, �:Ignored).

f̂1
1 f̂1

2 f̂1
3 f̂2

1 f̂2
2 f̂2

3 f̂3
1 f̂3

2 f̂3
3 f̂4

1 f̂4
2 f̂4

3

f1 = ∆ωr,m1 � � � � � �
f2 = ∆ωr,m2 � � � � � �
f3 = ∆ωg,m1 � � � � � �
f4 = ∆ωg,m2 � � � � � �

Table 5: Fault signature matrix in the pitch systems (�:Sensitive, �:Ignored).

f̂1
1 f̂1

2 f̂2
1 f̂2

2 f̂3
1 f̂3

2

f1 = fβa(p) � � � �
f2 = ∆βm1(p) � � � �
f3 = ∆βm2(p) � � � �

6.2 Fault Estimation and Isolation

6.2.1 FE and FI Architecture

We discretise the models (51) with the sample time Ts = 0.01 s and we obtain the matrices A, B, C, D, E, F ,
G and H in (1). The converter faults fulfil the necessary condition for fault isolability in Assumption 4; however,
the drive train and the pitch faults do not verify it. Then, we split these two models as detailed in Section 5. For
the drive train system, the strategy summarised in Algorithm 1 leads to ns = 3 and m = 4:

S1 = {f1, f2, f3}, S2 = {f1, f2, f4}, S3 = {f1, f3, f4}, S4 = {f2, f3, f4},
π1 = {1, 2, 3}, π2 = {1, 2, 4}, π3 = {1, 3, 4}, π4 = {2, 3, 4};

then, FI is only guaranteed if no more than two simultaneous faults occur. For each pitch system, the strategy
summarised in Algorithm 1 indicates that the procedure in Remark 20 must be applied. We get ns = 2 and
m = 3:

S1 = {f1, f2}, S2 = {f1, f3}, S3 = {f2, f3},
π1 = {1, 2}, π2 = {1, 3}, π3 = {2, 3}.

The isolability condition (43) holds for the subsets S1 and S2, and all the faults of the pitch system are considered
within these subsets. For the subset S3 the condition (43) does not hold and we must use AbF = 0, Bb

F = I ,
CbF = I to extend this submodel.

For each of the resulting submodels, we define the observers (44) and the corresponding decision mecha-
nisms (45). The signature matrices are presented in Table 4 and Table 5, where � indicates that the estimate f bl
is devoted to the estimation of the fault fi and� indicates that the fault fi is ignored by the observer b and it may
corrupt the estimates f bl with l = 1, . . . , ns. For each of the resulting submodels, we define the observers (44)
and the corresponding decision mechanisms (45).

6.2.2 FE and FI Design

Let us first perform different observer designs to study the existing trade-offs between the estimation performance
criteria detailed in Section 3.110. Fig.3 (left) shows the estimation performance results for different observers
designed through Strategy 1 for the converter system. One verifies that imposing more restrictive constraints over
the ramp fault tracking delay T11 leads to higher marginal variances due to noises Σ11. Fig.4 includes the details
on the frequency response of the closed-loop transfer function between f and f̂ for some of these observers
(Observer A with T11 = 1 samples, Observer B with T11 = 3 samples and Observer C with T11 = 5 samples).
Provided the physical proprieties of the converter system, the transfer function between f and f̂ coincides with

10The problems are set up in YALMIP (Lofberg, 2004) and we successfully solve them with the PENBMI solver (Henrion et al.,
2005). For sake of brevity, we do not include the value of the obtained gain matrices.
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Figure 3: Estimation and isolation performance trade-offs in the converter system.

the transfer function between v and f̂ . One verifies then that the observers with a higher bandwidth and a lower
phase lag (i.e., fastest response under the appearance of faults) are characterized by higher magnitudes at high
frequencies (i.e., higher noise influence). Fig.3 (left) also represents the effect of performing these designs in
situations of amplified (i.e., 4V ) and attenuated (i.e., 1/4V ) noises, where V denotes the noise covariance in the
benchmark. When the noises affecting the systems increase in variance, the same fault tracking delays imply
higher variances.

Now, we perform the observer and decision mechanism co-design in Strategy 4 with different acknowledge-
ment time requirements. Fig.3 (right) depicts the trade-offs between the isolation performance indices defined in
Section 4.1. Again, imposing more restrictive time constraints leads to higher minimum isolable constant faults
for certain level of false alarms. For its part, increasing the false isolation rate reduces the value of the minimum
isolable constant faults for certain acknowledgement time of ramp faults.

To fulfil the requirements in the benchmark (Odgaard et al., 2013), we now design the observers and decision
mechanisms of the three wind turbine systems through Strategy 4. Although the benchmark (Odgaard et al., 2013)
highlights the necessity of isolating the faults occurring in the wind turbine systems, it only explicitly specifies
requirements over detection performance indices. Thus, we equal the requirements over the false detection rates
and the detection times in the benchmark to the requirements over the false isolation rates and the isolation times,
respectively. In order to directly apply our approach, we approximate the requirements over the isolation times
to requirements over the acknowledgement times of ramp faults and we perform the co-design of each pair of
observer and mechanism in the banks. In number of samples, we have ϑ∗1 = 3 for the converter, ϑ∗{1,2,3,4} = 10
for the drive train system, and ϑ∗1 = 8, ϑ∗{2,3} = 10 for the pitch system. The required false isolation rate is
φ∗i = 10−5 for all the systems. We use the summation (i.e.,

∑ns
l=1 Ξll) as the function f(Ξ11, . . . ,Ξnsns) being

minimised in the optimization problem. The obtained minimum isolable constant faults are indicated in Table 6.

6.3 Simulation Results

The wind turbine benchmark presents an scenario of 4400 s in which different faults occur. Within the listing of
the possible faults, the benchmark test sequences choose the subset of faults in Table 7. The benchmark considers
seven different test signal sets; they are formed by time-shifting the occurrence of the faults defined in the original

Table 6: Minimum isolable constant faults.

Fault Minimum Isolable Fault
∆ωr,m1 0.151 rad/s
∆ωr,m2 0.151 rad/s
∆ωg,m1 0.295 rad/s
∆ωg,m2 0.295 rad/s

Fault Minimum Isolable Fault
∆τg,n 14.300 Nm
fβa(p) 0.933◦/s2

∆βm1(p) 0.063◦

∆βm2(p) 0.063◦
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Figure 4: Frequency response of the closed-loop transfer function between f and f̂ (Converter system).

Table 7: Wind turbine benchmark fault scenario description.

Fault code System Fault signal Fault type Time occurrence TS1
GC-1 Generator ∆τg,n offset t ∈ [3800, 3900] s
DT-1 Drive Train ∆ωr,m1 fixed value t ∈ [1500, 1600] s
DT-2 Drive Train ∆ωr,m2 , ∆ωg,m1 gain factor t ∈ [1000, 1100] s
P1-1 Pitch 1 ∆βm1(1) fixed value t ∈ [2000, 2100] s
P2-1 Pitch 2 ∆βm2(2) gain factor t ∈ [2300, 2400] s
P2-2 Pitch 2 fβa(2) change dynamics t ∈ [2900, 3000] s
P3-1 Pitch 3 ∆βm1(3) fixed value t ∈ [2600, 2700] s
P3-2 Pitch 3 fβa(3) change dynamics t ∈ [3400, 3500] s
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Figure 5: FE in the converter with different observers (test set TS1).

test sequence (TS1), which is described in Table 7.
Illustratively, let us first simulate the time response of the Observers A, B and C defined in Fig.4 to estimate

the converter fault in the test set TS1. Fig.5 (left) shows the estimation results in fault-free samples and Fig.5
(right) shows the estimation results during the fault appearance. The simulation results validate the estimation
trade-offs indicated in Fig.3 (left).

Let us also analyse the effect of the restrictiveness of the time constraints on the sensitivity to parameter
changes in the model. Fig.6 shows the effect produced by a 5% relative change in the parameter defining the
converter dynamics. We verify that the sensitivity to parameter changes increases as the time constraints become
more restrictive. The reader is referred to Remark 3 and equation (7) to obtain the algebraic expression of the
effect of the parameter changes on the fault estimation error11.

11If the uncertainties regarding parameter changes lead to poor estimation results, these uncertainties must be modelled as UIs (see
Remark 3) and certain degree of UI decoupling (i.e., constraint (19)) must be introduced as an additional requirement in the observer
design.
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Table 8: Isolation times (IT) in number of samples of the Monte Carlo simulation.

Fault scenario IT Requirement Minimum IT Mean IT Maximum IT
GC-1 3 2 2.19 3
DT-1 10 2 4.36 11
DT-2 10 2 2 2
P1-1 10 2 2 2
P2-1 10 6 223.8 737
P2-2 8 2 2.56 7
P3-1 10 2 2.46 13
P3-2 8 1145 1793.4 2322

Now, we test the behaviour of the observers and decision mechanics that we have designed with the isolation
performance constraints in the benchmark. If we simulate the different test sets proposed in the benchmark
through several Monte Carlo simulations for different noises, we verify that all the results verify the false isolation
rate restriction tightly. The isolation times of the faults are summarised in Table 8. As an example, Fig. 7 details
the isolation times obtained for the fault DT1-1. Note that the minimum isolation times fulfil the requirements in
the benchmark. The cases in which the time requirement is exceeded refer to scenarios with variable fault signals
which do not always exceed the achieved minimum isolable fault. For instance, there are cases in which the fault
P3-2 is present in the system but the pitch reference is barely zero. In such cases, there is no chance to detect
or isolate the changes experienced by the pitch dynamics. Other proposals available in the bibliography provide
similar results regarding this issue. In any case, if the designer decides that missisolating these small faults may
be prohibitive, it would be possible to redesign the fault isolators through Strategy 5 as explained in Section 5.
Note that numerical comparisons with other strategies in the literature are difficult because most existing works
are devoted to fault detection and fault isolation and estimation are not included. Moreover, they study indices
as the FDR instead of the physically meaningful parameters required on the benchmark (i.e., isolation times,
minimum isolable faults, etc.).

In the following, we include the figures showing the FE and FI results in the test set TS1 (described in
Table 7). First, Fig.8 shows the estimation signal and the corresponding isolation threshold for the converter
system, which is affected by GC-1. Fig. 9 shows the outputs provided by the bank built for FE and FI in the
drive train system, which is affected by DT-1 and DT-2. It is straightforward to verify that applying (45)-(46),
the isolation and the estimation of the faults DT-1 and DT-2 is achieved.

Regarding the pitch system, Fig.10 (details in Fig. 11) shows the results for the third pitch system, which is
affected by both P3-1 and P3-2. The figure includes the fault estimates and the thresholds corresponding to the
relied observers in the bank. Note that the observer which provides the estimate of the fault f3 = ∆βm2(p) (i.e.,
the pair with better isolation optimised performance index) becomes non-reliable when f2 = ∆βm1(p) is present
in the system. In this case, the estimation is provided by another pair in the bank with a poorer minimum isolable
fault. For ease of space, we do not include the results for the first and second pitch systems.
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Figure 9: Bank of observers and decision mechanisms in the drive train (test set TS1).
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Figure 11: Details of FE and FI in the third pitch system (test set TS1).

7 Conclusion

In this work, we have developed performance-based designs of model-based observes and statistical-based de-
cision mechanisms for achieving FE and FI in systems affected by unknown inputs and stochastic noises. First,
we have presented FE performance-based designs of PI observers taking into account the trade-off between the
degree of UI and interfault decoupling, the delay to track fault variations and the covariance due to noises. Sec-
ond, we have presented FI performance-based co-designs of the observers and decision mechanisms taking into
account the trade-off between the false isolation rates, the minimum isolable faults and the isolation times. Fi-
nally, we have extended the results to a scheme based on a bank of observers and decision mechanisms which
provides a solution for FI and FE in systems where fault isolability conditions do not hold and it is not possible
to achieve FE through standard observers. We have applied this procedure to a well-known benchmark that has
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explicit isolation requirements and we have shown that we fulfil all these requirements by just including them as
constraints in the designs.
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A Proof of Theorem 1

The following items prove each statement of Theorem 1.

(i) Let us define the Lyapunov function V Q(k) = z̃(k)T Q z̃(k) at each instant k. In the absence of UIs,
noises and faults (i.e., d = 0, v = 0, δ = 0), after taking Schur’s complements on (10) and premultiplying
the result by

[
z̃(k)T d(k)T

]
and postmultipliying by its transpose, we obtain that V Q(k+ 1)−V Q(k) ≤

0, which assures that the estimation error (6) converges to zero. We get the same result if we define
the Lyapunov functions V S(k) = z̃(k)T S z̃(k) and V Pi(k) = z̃(k)T Pi z̃(k) at each instant k and we
perform similar steps on the first inequality in (11) and on (12) with

[
z̃(k)T v(k)T

]
and

[
z̃(k)T δ(k)T

]
,

respectively.

(ii) In the absence of noises and faults (i.e., v = 0, δ = 0), after taking Schur’s complements on (10) and
premultiplying the result by

[
z̃(k)T d(k)T

]
and postmultipliying by its transpose, we obtain that

V Q(k + 1)− V Q(k) + f̃(k)T f̃(k)− γd d(k)T d(k) ≤ 0.

Considering null initial conditions (V Q(0) = 0) and adding the result from k = 0 to k = K − 1, it yields

K−1∑
k=0

f̃(k)T f̃(k) ≤
K−1∑
k=0

γd d(k)T d(k),

where we have taken into account that Q � 0. Dividing this expression by K and taking the limit when
K →∞, it leads to the second statement in Theorem 1.

(iii) Applying a congruence transformation with
[
S−1 0

0 I

]
to the first inequality in (11) and taking Schur’s

complements on the result lead to

ĀS−1 ĀT + Ḡ V ḠT � S−1.

In the absence of UIs and faults (i.e., d = 0, δ = 0), the covariance of the estimation error z̃, Σz =
limk→∞ E{z̃(k)f̃(z)T }, fulfils the Lyapunov equation (9a). Then, we deduce that Σz � S−1 because Ā
has stable eigenvalues as demonstrated in the first item of this proof. Applying Schur’s complements on
the second inequality in (11) we have that

R̄S−1 R̄T +KH V (KH)T � Ξ.
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In the absence of UIs and faults (i.e., d = 0, δ = 0), the covariance of the estimation error f̃ , Σ =
limk→∞ E{f̃(k)f̃(k)T }, fulfils the Lyapunov equation (9b) and we deduce that Σ � Ξ.

(iv) In the absence of UIs and noises (i.e., d = 0, v = 0), multiplying (12) with
[
z̃(k)T δ(k)T

]
on the left and

by its transpose on the right and performing similar steps as in the second statement, we prove the fourth
statement in Theorem 1.

B State-space Matrices of the Wind Turbine Model

The state-space matrices of the converter model are Ac = −αgc and Bc = αgc. The matrices Cc, F c and Hc

equal the identity matrix of appropriate dimensions while Ec, Gc and Dc are zero.
The state-space matrices of the drive train model are

Ac =

a11 a12 a13

a21 a22 a23

1 a32 0

 , Bc =

0
b
0

 , Gc =

0 0 0 0 0
0 0 0 0 −b
0 0 0 0 0

 , Dc =

1/Jr
0
0



Cc =


1 0 0
1 0 0
0 1 0
0 1 0

 , Hc =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


with a11 = −(Bdt+Br)

Jr
, a12 = Bdt

Ng Jr
, a13 = −Kdt

Jr
, a21 =

ηdt,0Bdt

Ng Jg
, a32 = −1

Ng
, a22 =

−(ηdt,0Bdt+Bg N2
g )

N2
g Jg

,

a23 =
ηdt,0Kdt

Ng Jg
and b = −1

Jg
. We have that Ec = 0 and F c = I .

The state-space matrices of each pitch model are

Ac =

[
0 1

2 c 2wn0 ξ0

]
, Bc =

[
0
−2 c

]
, Ec =

[
0 0 0
1 c c

]
, Gc =

[
0 0
c c

]
,

Cc =

[
1 0
1 0

]
, F c =

[
0 1 0
0 0 1

]
with c = −w2

n0
/2, Hc = I and Dc = 0.

30


