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Abstract 

Most technical ceramics require processing up to and including final-stage sintering to 

obtain a high-density bulk while inhibiting grain growth as dominant sintering process as 

far as possible. The literature typically highlights the qualitative interdependence of the 

sintering variables and microstructural parameters, focusing on very simple particulate 

systems. However, a quantitative method to achieve optimum sintering of actual 

polycrystalline solids is still lacking. 

This paper puts forward such a method, which has been satisfactorily tested by the 

authors. The method consists of a mathematical model, based on the physical phenomena 

that take place during solid-state sintering. The method leads to two differential 

equations: a densification rate and a pore-dragged normal grain growth rate equation 

during final-stage sintering, which mainly depend on sintering temperature and shaping 

conditions. Simultaneous numerical integration of these two rate equations allows design 

of an optimal thermal cycle (enhancing densification and controlling grain growth) to 

obtain the targeted sintered polycrystalline microstructure. Application of this method 

yields staggered thermal cycles, in addition to the number of steps, as well as the sintering 

temperature and dwell time in each step. 
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1. INTRODUCTION 

In the manufacture of technical ceramics, body chemical composition and microstructure 

are specified to optimize the mechanical, electric, dielectric, optical, thermal, magnetic or 

other physical property of the resulting product for a particular application. The optimum 

properties are defined by the microstructure. This requires thorough microstructural 

control, including relative density (total porosity) and grain and pore size distributions, 

particularly average grain and pore sizes. Optimal microstructure requires defining and 

controlling the main parameters of the manufacturing process. Sintering is a key step in 

manufacturing ceramic bodies that exhibit a targeted final microstructure, although this 

also depends on green body microstructure (related to shaping conditions). 

Many studies were undertaken in the 20th century to better understand the mechanisms 

involved in solid-state sintering. Good summaries may be found in the literature[1–3]. 

Many of the theoretical models and discussions have been based on hard hypotheses, 

designed to simplify the physical process (e.g. by drastically simplifying pore shape and 

size), and they have usually been applied to systems of few particles and not to 

consolidated solids. These studies have helped understand why and how sintering takes 

place, evidencing the interdependence of the sintering variables and the microstructural 

parameters, generally by deriving theoretical equations that have often been used in 

numerical simulation or modelling[4–11] of unreal solids[1–3]. However, these equations 

only allow qualitative conclusions to be drawn. 

A method of applying the existing models to real solids, enabling determination of 

sintering temperature and time on an industrial scale to obtain a targeted microstructure 
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(usually characterized by relative density and average grain size), is thus still lacking. 

Though this may be deemed a major research aim, most current work focuses on the 

micro- or nano-properties[12–15] of very simple particulate systems (not of bulk solids), 

whereas the main difficulty is holding the intrinsic properties of these simple particulate 

systems during the sintering of bulk polycrystalline solids in industrial practice. 

The present study was therefore undertaken to develop a method, which has been 

satisfactorily tested by the authors[16–18], to quantitatively relate the final sintered 

microstructure of a bulk polycrystalline ceramic to the customary industrial control 

parameters set in the solid-state sintering stage of the thermal cycle used. That is, the 

proposed method establishes the mathematical correlations between the vertices of the 

materials science triangle (processing–properties–microstructure) in order to design the 

final microstructure and thus obtain the targeted product properties.  

To develop this method, the theoretical basis of solid-state sintering was examined first, 

to better understand the force that drives sintering, the mass transfer mechanisms 

involved, the rate at which mass transfer occurs in both densification and grain growth, 

and how these last two processes interact. A brief description of this preliminary study, 

which sets out the fundamentals of the proposed method, follows. 

Sintering thermodynamics and mechanics 

Sintering involves two simultaneous processes, which are parallel and competitive: 

densification and grain growth, which bring the final density of the ceramic body close 

to its theoretical density.  

According to thermodynamics, sintering is driven by the decrease in internal energy at 

the surface (𝛾 · 𝐴), which can be modified by replacing gas–solid surface energy (𝛾𝑠−𝑔) 

with solid–solid surface energy (𝛾𝑠−𝑠) and/or surface area (𝐴). The potential combinations 
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explain the possible processes that can develop in polycrystalline solid materials: 

coarsening, densification, and grain growth (see Figure 1)[19–24]. 

Mass transfer proceeds from convex to concave grain surfaces to achieve thermodynamic 

equilibrium[3]. This mass gradient is evidenced by a total pressure gradient (Young–

Laplace law), atoms or vacancies gradient (Gibbs–Thompson–Freundlich equation), and 

partial pressure gradient (Kelvin equation), mass transfer taking place by diffusion 

according to the Nernst–Einstein equation and Fick’s law[1]. 

Similar to thermodynamic equilibrium, a particulate solid system must achieve an 

equilibrium of mechanical forces, so that the sine, dihedral angle, and wetting angle 

equations must be met (the last equation being just for liquid-phase sintering). If all these 

equations are met, assuming that all grains have the same size, the grain geometry that 

yields maximum packing is the tetrakaidecahedron (a truncated octahedron). This is the 

most commonly used geometry in the sintering models reported in the literature[3]. 

Since thermodynamics allows sintering to take place, the key issue is to determine both 

the densification rate and the grain growth rate, in order to establish the duration and 

temperature of the sintering stage and to ascertain microstructural development. 

 

Densification and grain growth 

The densification process has traditionally been divided into three stages (depending on 

the relative density of the body), while the grain growth process is usually divided into 

normal and abnormal grain growth. Densification and grain growth have typically been 

studied independently, it being assumed that densification takes place without grain 

growth and that grain growth develops in 100% densified bodies. Densification and grain 
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growth are therefore assumed to be consecutive and uncompetitive processes, whereas in 

fact they occur simultaneously and competitively. 

The individual kinetic study of these processes allows their physical development to be 

understood, the variables involved to be determined, and the influence of these variables 

on kinetics to be ascertained. However, the applicability of the assumptions made in the 

kinetic models will depend on how far removed such assumptions are from the actual 

system. 

Densification of pore solids without grain growth 

Stages I, II, and III of the densification process were widely studied in the 20th century. 

The simplest theoretical model put forward for initial-stage sintering (stage I) has been 

the two-particle model. Similarly, intermediate- and final-stage sintering (stages II and 

III) has generally been described using the tetrakaidecahedron model, this being the 

geometry that provides mechanical equilibrium. In the intermediate stage, the pores are 

described as cylinder-shaped, located along tetrakaidecahedron grain edges. In the final 

stage, the pores are assumed to be sphere-shaped, located at the corners of the 

tetrakaidecahedron grains[1–3,25]. 

The physical models used in these three sintering stages are based on the same mass 

transfer mechanisms: (i) Mass transfer from solid–gas surface to solid–gas surface, which 

leads to coarsening but not densification. The mass transfer mechanisms in this case are 

evaporation–condensation and diffusion (through the gas phase, and surface or bulk (or 

lattice) diffusion). (ii) Mass transfer from solid–solid surface (grain boundary) to the 

solid–gas surface, this being the only mechanism enabling body densification. The mass 

transport mechanism in this case is diffusion, through the grain boundary and/or bulk (or 

lattice) diffusion. 
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The main mass transfer mechanism is diffusion[6], which follows Fick’s law. The kinetics 

equation can be obtained from the mass balance, and its integration form provides a 

relationship between relative density and time[3]. 

In the mass transport process, the rate of atom movement depends on the forces acting on 

the atoms. As noted above, the difference in particle curvature leads to a concentration 

difference, which generates atom transfer. This concentration difference is the movement 

force, which is related to the atomic rate of the transfer phenomena by a proportional 

coefficient, atomic mobility (𝑀𝑎). Einstein thus defined atomic mobility as the quotient 

of atomic rate and force (𝑀𝑎 = 𝑣𝑎/𝐹𝑎)[26]. 

Grain growth without densification 

Fully dense solids 

Most studies have focused on normal grain growth (abnormal grain growth only being of 

interest when there was a material property that needed a spatial orientation). The 

understanding of normal grain growth is grounded on the Ostwald ripening effect, which 

is based on the concentration gradient due to grain curvatures: smaller grains having 

smaller curvature radii cause mass transfer to bigger grains. Mass transfer could be 

controlled by diffusion or interfacial reaction. Subsequent authors proposed a kinetic 

equation to model the Ostwald ripening effect. Their model, known as the LSW model[3], 

though quite simple, satisfactorily describes most experimental observations in 

precipitate growth. 

The first model used for understanding grain growth in polycrystalline solid materials 

was proposed by Burke and Turnbull[3]. In this model, grain growth takes place by 

atomic mass transfer through the grain boundary, caused by a chemical potential gradient 

due, again, to surface curvature. Einstein’s definition of atomic mobility was extended to 
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the concept of grain boundary mobility, defined as the quotient of grain boundary rate 

and the force causing this movement (𝑀𝑔𝑏 = 𝑣𝑔𝑏/𝐹𝑔𝑏). Applying mass balance to the 

grain boundary, together with Fick’s law, these authors put forward a parabolic law 

relating grain size to sintering time (similar to Ostwald ripening controlled by interfacial 

reaction). In practice, however, a power law must be used instead of the parabolic law in 

the theoretical model. 

Nevertheless, the most interesting feature of the Burke and Turnbull model was that it 

provided an understanding of the different mechanisms that controlled grain boundary 

mobility, in order to decrease or even inhibit the grain growth process. The model shows 

that grain boundary mobility can basically be changed either by a physical procedure 

(adding smaller secondary particles) or by a chemical procedure (adding chemical 

dopants). 

When secondary particles are dispersed in a polycrystalline solid, they hinder or even 

inhibit grain growth. This is usually known as the pinning effect and was modelled by 

Zener [1–3] assuming that secondary particles exert a physical friction force (drag force), 

which decreases grain boundary mobility. Considering this drag force in the Burke and 

Turnbull model enables the new grain growth rate to be obtained. It is also enables 

maximum grain size to be determined when grain growth halts because of the drag force. 

Although the Zener model has been refined by various researchers[1–3], it remains 

essentially valid and allows grain size to be controlled. 

When a small quantity of chemical dopant (solute) is added to a (host) polycrystalline 

solid, it dissolves in the grain boundary, forming a solid solution with a different chemical 

composition to that of the host. Dopants modify the chemical composition of the grain 

boundary, thus causing dopant and host atom diffusivities through the grain boundary to 

change. When the grain boundary moves, the solute concentration profile in the grain 
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boundary becomes asymmetrical, generating a frictional or drag force of a chemical 

nature, decreasing the grain boundary migration rate. The driving force acting on the grain 

boundary now depends not only on the host atom concentration gradient through the grain 

boundary but also on the solute atom concentration gradient. Cahn, Lucke, and Stuwe 

applied mass balance and Fick’s law to mass transfer through the grain boundary of host 

and solute atoms[1–3]. They modelled the system, concluding that the inverse of grain 

boundary mobility (1/𝑀𝑔𝑏) was the sum of the inverses of original grain boundary 

mobility (without dopants) (1/𝑀0), which was only due to the host atom concentration 

gradient because of surface curvature, plus grain boundary mobility, due only to the solute 

atom concentration gradient (1/𝑀𝑠). 

Pore solids 

The grain growth process in solid-state sintering actually takes place in a porous matrix. 

In most cases, sintering is intended to produce fully dense or quasi-fully dense bodies, in 

order to obtain good physical properties, therefore requiring sintering to start from high-

dense green bodies. This makes it particularly interesting to understand grain behaviour 

in the presence of pores in final-stage sintering. Quantitative approaches have been based 

on an ideal structure containing spherical pores on the grain boundaries, the pores being 

classified as either mobile or immobile.  

Immobile pores are described using the Zener model for secondary particles: the pores 

exert a pinning effect on the grain boundary, inhibiting boundary migration, or are trapped 

inside the grains. However, there is no convincing evidence regarding pore immobility 

during sintering of polycrystalline materials. In contrast, much evidence is available on 

pore mobility[27–30]. 
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The Brook model allows theoretical analysis of grain growth in a porous matrix[27]. 

Mathematical simulation enables very useful, albeit only qualitative, conclusions to be 

obtained from a conceptual point of view.  

Mobile pores move together with the grain boundary and, in analogy to atomic mobility 

and grain boundary mobility in fully dense solids, pore mobility is defined as the quotient 

of the pore rate and the force causing this movement (𝑀𝑝 = 𝑣𝑝/𝐹𝑝)[1–3]. The moving 

grain boundary, caused by boundary curvature, exerts a force on the pore, changing pore 

form. The difference in curvature produces an atomic concentration gradient that gives 

rise to mass transfer (by evaporation/condensation, gas, surface and/or bulk diffusion) 

from the leading surface to the trailing surface of the pore. Pore mobility is related to a 

power law of the inverse of pore radius, and the value of the exponent depends on the 

mass transfer mechanism. Pore mobility allows the pore–grain boundary interaction and 

its influence on grain growth kinetics to be analysed.  

Two situations are reported in the literature[6,7,27,31]: (i) The pore breaks away from the 

grain boundary. This occurs when a pore moves more slowly than the grain boundary and 

therefore becomes trapped in the grain (blue area in Figure 2). (ii) The pore moves 

together with the grain boundary. This occurs when both move at the same speed (two 

reddish areas in Figure 2). These two areas are delimited by the so-called separation 

curve. 

If pores move together with the grain boundary (entire reddish area in Figure 2), there are 

also two scenarios: pore control and grain boundary control. Pore control takes place 

when pore mobility is lower than the product of grain boundary mobility and number of 

pores per grain (𝑀𝑝 < 𝑀𝑔𝑏 · 𝑁), which usually occurs for big pores having slow mobility. 

Otherwise, grain boundary control takes place when pore mobility is higher than the 

product of grain boundary mobility and number of pores per grain (𝑀𝑝 > 𝑀𝑔𝑏 · 𝑁), which 
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generally occurs with small pores that do not exert a significant drag force on the grain 

boundary. These two scenarios are delimited by the so-called isomobility line. 

In the above two situations and scenarios, grain size again follows a power law with time. 

The aim is to work as far as possible away from the separation area: however, the real 

challenge is to know how to achieve this aim when sintering an actual bulk material. 

Microstructural development: sintering (simultaneous densification and grain 

growth) 

As noted above, sintering involves two simultaneous competitive processes: densification 

and grain growth. Each process is extremely complex and influences the other. In fact, to 

perform a theoretical analysis by coupling the two processes is very difficult. Moreover, 

both processes take place in a porous matrix. 

Few approaches have developed quantitative relationships between density, grain size, 

and sintering temperature and time owing to the difficulties posed, which include the large 

number of variables that need to be studied. Most available theoretical models are non-

predictive models, which only allow a priori general guidelines and an a posteriori 

qualitative explanation of the resulting final microstructure to be obtained. Studies 

reported in the literature[28–30,32–34] are based on an ideal microstructure at final-stage 

sintering start: the grains are tetrakaidekahedron-shaped, the pores are virtually spherical 

and located at the grain edges, the number of pores per grain is constant, there is no pore–

grain boundary separation and, finally, the densification and grain growth mechanisms 

do not change during sintering. 

The studies mentioned indicate that both sintered body density and grain size depend on 

the densification rate and the grain growth rate according to the following generalized 

equations: 
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1

𝜙(𝑡)
∙

𝑑𝜙(𝑡)

𝑑𝑡
= 𝐽1𝑖 ∙

[1−𝜙(𝑡)]𝑘

𝜙(𝑡)∙𝐺(𝑡)𝑚
        (1) 

1

𝐺(𝑡)
∙

𝑑𝐺(𝑡)

𝑑𝑡
= 𝐽2𝑖 ∙

1

[1−𝜙(𝑡)]ℓ∙𝐺(𝑡)𝑛
       (2) 

where  is relative density (ratio of density to theoretical density) and 𝐺 is average grain 

size.  

Equations 1 and 2 apply to the densification and pore-drag normal grain growth rates 

(pore control or grain boundary control areas in Figure 2) during final-stage sintering. 

Both equations, relating relative density () and average grain size (𝐺) to sintering time, 

have been put forward in the literature[3,28–30] for determining the microstructural 

development of sintered polycrystalline specimens. Owing to the difficulty of 

simultaneously integrating these equations, only qualitative conclusions are usually 

reported in the literature. 

2. THEORETICAL BASIS FOR DEFINING A GENERAL METHOD 

A quantitative method for determining sintering temperature and time in real solids on an 

industrial scale, by applying equations 1 and 2, is still lacking. Such a method needs to 

allow microstructure development (𝐺 and 𝜙) with sintering time (𝑡) to be predicted, in 

order to obtain a targeted final microstructure.  

From a process engineering point of view, such a method would be very useful, as 

technical ceramics require processing up to and including final-stage sintering in order to 

obtain a high-density body while inhibiting grain growth as far as possible[3]. According 

to equations 1 and 2 and to the literature, in a non-pressure-assisted sintering process, 

there are three ways of enhancing a material’s densification process: (i) by increasing 

sintering temperature (implicit in 𝐽1𝑖 and 𝐽2𝑖); (ii) by decreasing the mean particle size of 

the raw materials, making the raw materials more reactive (initial 𝐺); and (iii) by 
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increasing green density (initial 𝜙). However, it is physically impossible to increase the 

relative density of a specimen without also promoting particle growth[35].  

The best approach thus appears to be design of a suitable thermal cycle, particularly as 

the chemical composition must not be altered.  

In this paper, a mathematical solid-state sintering model is therefore proposed, based on 

the physical phenomena that take place during the sintering stage. The model enables 

equations 1 and 2 to be solved, yielding: 

i) a densification rate and a grain growth rate equation. 

ii) design of an optimal thermal cycle to increase the densification rate, while 

controlling the grain growth rate, in order to obtain a highly densified sintered 

body with low grain growth (microstructural control).  

iii) the material transport-controlling mechanisms in densification and grain 

growth. 

However, in contrast to what is commonly found in the literature[3,15], equations 1 and 

2 need to be expressed as follows[5,28–30]: 

𝑑𝜙

𝑑𝑡
= 𝐽1𝑖 ∙

(1−𝜙)𝑘

𝐺𝑚          (3) 

𝑑𝐺

𝑑𝑡
= 𝐽2𝑖 ∙

1

(1−𝜙)ℓ∙𝐺𝑛−1
         (4) 

in order to have a system of two differential equations (equations 3 and 4), which can be 

easily integrated using a numerical method.  

In addition, equations 3 and 4 contain non-homogeneous units: the densification rate is in 

s-1 while the grain growth rate is in m∙s-1. It is therefore convenient to introduce a new 

variable, dimensionless grain size , as the quotient of grain size (𝐺) and mean particle 
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size before sintering start (𝑑50). In accordance with the definition of dimensionless grain 

size, equations 3 and 4 may then be rewritten as follows: 

𝑑𝜙

𝑑𝑡
= 𝐾1𝑖 ∙

(1−𝜙)𝑘

𝜂𝑚      (𝑠−1)        (5) 

𝑑𝜂

𝑑𝑡
= 𝐾2𝑖 ∙

1

(1−𝜙)ℓ∙𝜂𝑛−1      (𝑠−1)       (6) 

Equations 5 and 6 can be numerically integrated. They have an independent variable (t) 

and two time-dependent variables (𝜙 and 𝜂). As dimensionless grain size affects the 

denominator of both rates, in real systems, dimensionless grain size will either have the 

same effect on both rates (𝑚 = 𝑛 − 1) or will affect both rates differently (𝑚 ≠ 𝑛 − 1). 

Note, however, that relative density appears in the numerator in equation 5 and in the 

denominator in equation 6 (taking into account that exponents k and ℓ are equal to zero 

or higher). 

The relative influence of relative density and dimensionless grain size on both rates 

cannot be compared a priori, because both variables are interrelated. This has led some 

authors to draw erroneous conclusions on comparing both rates. Sometimes, however, 

equations 5 and 6 have been compared, disregarding the fact that such a comparison is 

only possible if one of the two dependent variables (𝜙 or 𝜂) is assumed to be constant 

throughout sintering, which is far removed from what occurs in real sintering[3]. 

The values of coefficients 𝑘 and 𝑚 in equation 5 are related to the mass transfer 

mechanism (diffusion path) (Table 1). The values of the ℓ and 𝑛 coefficients in equation 

6 are not just related to the mass transfer mechanisms in pore-drag grain growth, but also 

depend on the conditions of grain boundary migration (pore or grain boundary control) 

(Table 2). 
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In the proportionality constants 𝐾1𝑖 and 𝐾2𝑖 in equations 5 and 6, ‘1’ refers to the 

densification process (equation 5) and ‘2’ to the grain growth process (equation 6), while 

subscript ‘𝑖’ depends on the material transport mechanisms controlling each of these 

processes. According to Tables 1 and 2, there are 10 possible combinations of mass 

transfer mechanisms.  

𝐾1𝑖 and 𝐾2𝑖 include the effect of sintering temperature and green microstructure. They are 

mathematical functions relating to the number of pores per grain (𝑁), the diffusion 

coefficients for densification (𝐷𝑑) and grain growth (𝐷𝑔), solid–gas surface energy (𝛾𝑠−𝑔), 

molar volume of the diffusing species (Ω), Boltzmann constant (𝐾), absolute temperature 

(T), and average particle size (𝑑50), while 𝐶𝑑 and 𝐶𝑔 are constants relating to the mass 

transfer-controlling mechanism in densification and grain growth, respectively. 𝐾1𝑖 and 

𝐾2𝑖 are usually experimentally determined for every sintering system. They are related to 

sintering temperature through an empirical Arrhenius-type equation as follows: 

𝐾1𝑖 =
𝐶𝑑∙𝑁∙𝐷𝑑∙𝛾𝑠−𝑔∙𝛺

𝑘∙𝑇∙𝑑50
𝑚 ≈ 𝐾1𝑖0 ∙ 𝑒𝑥𝑝 (

−𝐻

𝑇
)      (7) 

𝐾2𝑖 =
𝐶𝑔∙𝑁

1
𝑛−1∙𝐷𝑔

𝑑50
𝑛−1 ≈ 𝐾2𝑖0 ∙ 𝑒𝑥𝑝 (

−𝐿

𝑇
)       (8) 

where the pre-exponential terms (𝐾1𝑖0 and 𝐾2𝑖0) and the exponential terms (𝐻 and 𝐿) of 

equations 7 and 8 are likely to be empirically related to some shaping parameter 

determining green microstructure, such as the pressing pressure used for shaping the 

ceramic bodies by uniaxial pressing[17]. 

Unlike the usual approach[3], the ratio of grain growth rate to densification rate (Γ) needs 

to be calculated as follows: 

𝛤 =
𝑑𝜙

𝑑𝑡
𝑑𝜂

𝑑𝑡

=
𝑑𝜙

𝑑𝜂
=

𝐾1𝑖

𝐾2𝑖
∙

(1−𝜙)𝑘

𝜂𝑚

1

(1−𝜙)ℓ∙𝜂𝑛−1

=
𝐾1𝑖

𝐾2𝑖
∙ (1 − 𝜙)𝑘+ℓ ∙ 𝜂𝑛−𝑚−1   (9) 
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integration of which yields the following relationship between 𝜙 and 𝜂: 

(1 − 𝜙0)1−𝑘−ℓ − (1 − 𝜙)1−𝑘−ℓ =
𝐾1𝑖

𝐾2𝑖
∙

(1−𝑘−ℓ)

(𝑛−𝑚)
∙ (𝜂𝑛−𝑚 − 𝜂0

𝑛−𝑚)   (10) 

However, equation 10 is not mathematically valid when 𝑚 = 𝑛. Instead, integration of 

equation 9, considering 𝑚 = 𝑛, yields the following expression: 

(1 − 𝜙0)1−𝑘−ℓ − (1 − 𝜙)1−𝑘−ℓ =
𝐾1𝑖

𝐾2𝑖
∙ (1 − 𝑘 − ℓ) ∙ 𝑙𝑛

𝜂

𝜂0
    (11) 

The plot of dimensionless grain size versus relative density results in a curve, for a given 

green microstructure, such as the one shown in Figure 3 (for any 𝑘, ℓ, 𝑚, and 𝑛 

coefficients).  

3. DEVELOPMENT OF A GENERAL METHOD 

Figure 4 provides an overview of the general method set out in this paper for simultaneous 

determination of densification and grain growth in final-stage solid-state sintering, with 

a view to defining the optimal thermal cycles, as explained below. 

3.1. Experimental data needed 

The experimental data needed for physical–mathematical modelling to design the thermal 

cycle are the dimensionless densification (𝜙) and dimensionless grain size (𝜂) of the 

polycrystalline specimens shaped under different conditions (depending on the green 

process selected) and sintered at different temperatures (𝑇) and different dwell times (𝑡) 

(see Figures 5 and 6). 

Specimens with the same green microstructure must be sintered at different sintering 

temperatures (𝑇) and times (𝑡). Generally, relative density (𝜙) is calculated as the quotient 

of experimental density (𝜌), determined by the Archimedes method, and theoretical 

density (𝜌𝑡). Average grain size (𝐺) is measured from the grain size distribution, 
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determined by image analysis of the cross-sectional area of the rectangular thermal etched 

surface of each cylindrical sintered specimen, observed by scanning electron microscopy 

(SEM).  

In overall terms, the following may be inferred from Figure 5 (for a given green 

microstructure): (i) 𝜙 increases quickly at short sintering times and slowly at long 

sintering times, tending to a constant value. This change in tendency is more abrupt at 

higher sintering temperatures, and smoother at lower ones. (ii) The higher the sintering 

temperature, the higher the value of 𝜙, a shorter sintering time therefore being required 

to achieve this. (iii) The densification rate increases with sintering temperature, as the 

tangent to the curve at each point. 

In overall terms, the following may be inferred from Figure 6 (for a given green 

microstructure): (i) 𝜂 increases with sintering time in a certain sintering temperature range 

(depending on the nature of the material). Higher sintering temperatures yield huge 𝜂 

values (i.e. abnormal or exaggerated grain growth), which remain practically constant 

with sintering time. Lower sintering temperatures yield very small 𝜂 values, which may 

even be very similar to initial particle size when sintering temperature is particularly low. 

(ii) In the normal grain growth range, 𝜂 increases more quickly at shorter sintering times 

and more slowly at longer ones, tending to a constant value. This change in tendency is 

more abrupt at higher sintering temperatures, and smoother at lower ones. (iii) The higher 

the sintering temperature, the higher the value of 𝜂, a shorter sintering time therefore 

being required to achieve this. (iv) The grain growth rate increases with sintering 

temperature, as the tangent to the curve at each point.  

These trends are similar for any green microstructure, whereas 𝜙 and 𝜂 change with the 

selected shaping parameter. 
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The experimental data need to be analysed, first, by a differential method in order to 

determine the 𝑘, ℓ, 𝑚, and 𝑛 coefficients in equations 5 and 6 and, secondly, by an 

integration method to determine the densification and grain growth rate equations. 

3.2. Determination of coefficients 𝒌, 𝓵, 𝒎, and 𝒏 and estimation of parameters 𝑲𝟏𝒊 

and 𝑲𝟐𝒊 in equations 5 and 6 by a differential method 

The first step in the differential method is the generation of the 𝑑𝜙/𝑑𝑡 = 𝑓(𝑡) and 

𝑑𝜂/𝑑𝑡 = 𝑓(𝑡) graphical representations, obtained from the 𝜙 = 𝑓(𝑡) and 𝜂 = 𝑓(𝑡) 

experimental curves, as the tangent to the curve at each time. 

The 𝑑𝜙/𝑑𝑡 = 𝑓(𝑡) representation may be linearized by rewriting equation 5 as follows: 

𝑙𝑛 (
𝑑𝜙

𝑑𝑡
) − 𝑘 · 𝑙𝑛(1 − 𝜙) = 𝑙𝑛(𝐾1𝑖) − 𝑚 ∙ 𝑙𝑛(𝜂)     (12) 

and plotting the experimental data of ln (𝑑𝜙/𝑑𝑡) − 𝑘 · 𝑙𝑛(1 − 𝜙) versus 𝑙𝑛(𝜂) (Figure 

7), the 𝐾1𝑖 and 𝑚 values can be estimated and determined, respectively, for the given pre-

set values of 𝑘 from Table 1. The correct value of 𝑘 and 𝑚 will allow the best linear fit 

of the experimental data to equation 12. 

Analogously, the 𝑑𝜂/𝑑𝑡 = 𝑓(𝑡) representation may be linearized by rewriting equation 

6 as follows: 

𝑙𝑛 (
𝑑𝜂

𝑑𝑡
) + ℓ · 𝑙𝑛(1 − 𝜙) = 𝑙𝑛(𝐾2𝑖) − (𝑛 − 1) · ln (𝜂)    (13) 

and plotting the experimental data of ln (𝑑𝜂/𝑑𝑡) + ℓ · 𝑙𝑛(1 − 𝜙) versus 𝑙𝑛(𝜂) (Figure 8), 

the 𝐾2𝑖 and (𝑛 − 1) values can be estimated and determined, respectively, for a given 

pre-set value of ℓ from Table 2. The correct value of ℓ and (𝑛 − 1) will allow the best 

linear fit of the experimental data to equation 13. 

This analysis method has two main drawbacks: (i) the need to draw the curves of the 

experimental data 𝜙 = 𝑓(𝑡) and 𝜂 = 𝑓(𝑡), and (ii) the need to calculate the tangent to the 
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curve at each experimental point in order to obtain the 𝑑𝜙/𝑑𝑡 = 𝑓(𝑡) and 𝑑𝜂/𝑑𝑡 = 𝑓(𝑡) 

representations. Operations (i) and (ii) are critical[36]. Consequently, when sufficient 

information on the system at issue is available, use of the integration method is more 

convenient. 

The above method applies to the test sintering temperature range and to a given green 

microstructure and may be repeated for different shaping conditions. The method may be 

repeated for different green microstructures. It is thus possible to estimate the influence 

of temperature and green microstructure on parameters 𝐾1𝑖 and 𝐾2𝑖, since 

coefficients 𝑘, ℓ, 𝑚, and (𝑛 − 1) remain unchanged. 

3.3. Refinement of parameters 𝑲𝟏𝒊 and 𝑲𝟐𝒊 in equations 5 and 6 by simultaneous 

integration of the rate equations 

Equations 5 and 6 can be rewritten by replacing coefficients 𝑘, ℓ, 𝑚, and (𝑛 − 1) with 

their values, determined either by the above differential method or from the literature. 

Their simultaneous integration allows determination of parameters 𝐾1𝑖 and 𝐾2𝑖, as well 

as of the values of 𝜙0 and 𝜂0 (relative density and dimensionless grain size when sintering 

temperature has been reached, i.e. at zero sintering time). Initial conditions need to be set 

for the integration method, so that a previously estimated value of 𝐾1𝑖 and 𝐾2𝑖 (estimated 

by the differential method) and of 𝜙0 (green relative density) and 𝜂0 = 1 is required. 

Simultaneous integration of equations 5 and 6 also requires use of a numerical 

mathematical method.  

The representation of 𝑙𝑛(𝐾1𝑖) = (1/𝑇) and 𝑙𝑛(𝐾2𝑖) = (1/𝑇) yields two empirical 

relationships between parameters 𝐾1𝑖 and 𝐾2𝑖 and sintering temperature, where the 

exponential (𝐻 and 𝐿) and pre-exponential (𝐾1𝑖0 and 𝐾2𝑖0) factors of equations 7 and 8 

(according to the Arrhenius law) can also be related to the selected shaping parameter 
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(𝑃), yielding a general empirical equation of parameters 𝐾1𝑖 and 𝐾2𝑖 with sintering 

temperature and green microstructure. 

The densification and grain growth rates of the studied polycrystalline material, under a 

given set of conditions, can thus be described by the following general equations:  

𝑑𝜙

𝑑𝑡
= 𝐾1𝑖0(𝑃) ∙ 𝑒𝑥𝑝 [

−𝐻(𝑃)

𝑇
] ∙

(1−𝜙)𝑘

𝜂𝑚        (14) 

𝑑𝜂

𝑑𝑡
= 𝐾2𝑖0(𝑃) ∙ 𝑒𝑥𝑝 [

−𝐿(𝑃)

𝑇
] ∙

1

(1−𝜙)ℓ∙𝜂𝑛−1
      (15) 

which may be expected to satisfactorily reproduce the experimental data (development of 

𝜙 and 𝜂 with time, for any test sintering temperature and green microstructure). 

This analytical method allows refinement of parameters 𝐾1𝑖 and 𝐾2𝑖, estimated by the 

differential method, yielding more accurate values[36]. 

To obtain highly densified bulk samples, the sintering stage must be conducted at the 

maximum allowable sintering temperature (according to equation 14). However, high 

sintering temperatures also result in high grain growth rates (equation 15), which could 

lead to abnormal grain growth. It is therefore not advisable to select an extremely high, 

constant sintering temperature because heterogeneous (or even extremely coarse-grained) 

sintered microstructures could be obtained, worsening the final properties of the 

polycrystalline bulk material[7,37,38]. In addition, the grain growth rate is usually higher 

than the densification rate, adding a further challenge to thermal cycle design. 

3.4. Using densification and grain growth rate equations to design an optimal 

thermal sintering cycle 

In light of the above, thermal cycle design needs to observe the following general 

guidelines: (i) Sintering shall take place at the maximum allowable temperature for a 

particular dwell time (𝑡𝑑𝑤𝑒𝑙𝑙,𝑇), defined by the constraint that no exaggerated grain growth 
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take place. (ii) After this dwell time has elapsed, sintering temperature shall be lowered 

and kept constant again for a further period of time, defined by the same constraint. 

Lowering sintering temperature decreases both densification and grain growth rates, 

while allowing the densification process to be kept at the highest possible values, 

controlling grain growth and preventing abnormal grain growth[39,40]. (iii) This gradual 

decrease in sintering temperature may be carried out as often as required, provided 

acceptable values are obtained for the densification rate. 

To determine the dwell time at each sintering temperature, the following method shall be 

followed: (i) simultaneous numerical integration of the densification and grain growth 

rate equations (eq. 14 and 15) at the set temperature, yielding the development of 𝜙 and 

𝜂 with time (𝑡); (ii) substitution of the 𝑡, 𝜙, and 𝜂 values in equations 14 and 15 in order 

to determine the densification rate and the grain growth rate (𝑑𝜙/𝑑𝑡 and 𝑑𝜂/𝑑𝑡) with 

sintering time (𝑡) (Figure 9); and (iii) determination of the vertex of each rate curve in 

Figure 5, calculated as the intersection of the tangents to the two branches of the rate 

curves (corresponding to zero and infinite sintering times).  

As may be observed in Figure 9, two dwell times are obtained: one for the densification 

rate curve (𝑡𝑑) and the other for the grain growth rate curve (𝑡𝑔). The shorter time shall 

be chosen as the dwell time at the set temperature (𝑡𝑑𝑤𝑒𝑙𝑙,𝑇). This value is selected for 

𝑡𝑑𝑤𝑒𝑙𝑙,𝑇 because: (i) it corresponds to the dwell time at which the densification and grain 

growth rates stop dropping sharply and start to decrease more slowly, an effect that is 

usually more pronounced at higher sintering temperatures; and (ii) at longer times, the 

differences between the densification rate and the grain growth rate values are greater 

(distance between the curves). 
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Figure 10 compares a staggered thermal cycle, designed by the above method, with a 

single step-up thermal cycle. The grain growth and densification rates are plotted against 

sintering time for the two (staggered and single step-up) thermal cycles in Figure 11. The 

gradual decrease in maximum sintering temperature is observed to significantly reduce 

the grain growth rate, while hardly changing the densification rate. This may be expected 

to allow densification of the polycrystalline solid material to a relative density close to its 

theoretical value, while providing precise control of grain growth. The figure also shows 

that the grain growth rate is always higher than the densification rate, which is the worst, 

albeit most common, scenario in solid-state sintering of polycrystalline ceramic materials. 

The staggered thermal cycle shown in Figure 10 allows sintered bulk materials with high 

relative density (close to theoretical density) and fine, narrow, homogeneous grain size 

distribution to be obtained, thus assuring the targeted final properties of the materials for 

their specific application. In addition, such staggered thermal cycles may provide an 

important reduction in sintering stage duration, compared with that of the traditional 

single step-up thermal cycle. 

The steps of the proposed staggered thermal cycle could be replaced with an empirical 

continuous mathematical function (polynomial function of time including power and 

exponential terms), representing the gradual decrease in sintering temperature with 

sintering time.  

4. CONCLUSIONS 

1. A new method has been developed to determine the optimal sintering conditions 

for obtaining bulk polycrystalline solids with the appropriate microstructure for 

targeted product performance. This method is valid for final-stage solid-state 

sintering, which is the critical stage in the manufacturing of near fully dense 
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sintered bodies, since the first sintering stages are negligible because of the high 

density of the initial green bodies. 

2. The theoretical bases of this method are reported in the literature and have been 

reviewed in this paper. 

3. Studies in the literature have modelled simple particulate systems, but the 

proposed method can be applied to real particulate solids with high final density.  

4. The method allows a staggered thermal sintering cycle (number of steps, sintering 

temperature, and dwell time) to be set, based on promoting the densification rate 

over the grain growth rate, keeping in mind the main microstructural control 

parameters, average grain size, and relative density in order to achieve the targeted 

performance of the final bulk ceramic. 

5. In addition, the method also enables the mass transfer-controlling mechanisms 

occurring in densification and grain growth to be determined.  

6. The method has been successfully tested and validated for nickel–zinc micro-

ferrite ceramics, after designing the manufacturing thermal sintering cycle and 

obtaining the mass transport-controlling mechanisms for densification (grain 

boundary diffusion) and grain growth (surface diffusion pore-drag control). 
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NOMENCLATURE 

𝛾: surface energy (J/m2) 

𝛾𝑠−𝑔: solid–gas surface energy (J/m2) 

𝛾𝑠−𝑠: solid–solid surface energy (J/m2) 

Γ: ratio of grain growth rate to densification rate 

𝜂: dimensionless grain size 

𝜌: body density (kg/m3) 

𝜌𝑡: theoretical density (kg/m3) 

𝜙: relative density 

Ω: volume of material moved in association with one ion of the rate-controlling species 

(m3/mol) 

Cd: constant related to the densification-controlling mechanism 

Cg: constant related to the grain growth-controlling mechanism  

d50: average particle size in the green body (m) 

𝐴: surface area (m2) 

𝐻: pre-exponential factor in equation 7, according to the Arrhenius law (K) 

𝐿: pre-exponential factor in equation 8, according to the Arrhenius law (K) 

Dd: diffusion coefficient of the densification process (cm2/s) 

Dg: diffusion coefficient of the grain growth process (cm2/s) 

𝐹𝑎: force acting on the atoms (N) 

𝐹𝑔𝑏: force acting on the grain boundary (N) 
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𝐹𝑝: force acting on the pore (N) 

G: average grain size in the sintered body (m) 

𝐽1𝑖: proportional constant in equation 1 

𝐽2𝑖: proportional constant in equation 2 

K: Boltzmann constant (J/K) 

𝑘: coefficient in equation 1, dependent on the densification mass transfer mechanism  

𝐾1𝑖: proportional constant in equation 5 (s-1) 

𝐾1𝑖0: exponential factor in equation 7, according to the Arrhenius law (s-1) 

𝐾2𝑖: proportional constant in equation 6 (s-1) 

𝐾2𝑖0: exponential factor in equation 8, according to the Arrhenius law (s-1) 

ℓ: coefficient in equation 2, dependent on the grain growth mass transfer mechanism  

𝑚: coefficient in equation 1, dependent on the densification mass transfer mechanism 

𝑀𝑎: atomic mobility (m/N·s) 

𝑀𝑔𝑏: grain boundary mobility (m/N·s) 

𝑀𝑝: pore mobility (m/N·s) 

𝑀𝑠: grain boundary mobility only due to the solute atom concentration gradient (m/N·s) 

𝑀0: original grain boundary mobility, without dopants (m/N·s) 

𝑛: coefficient in equation 2, dependent on the grain growth mass transfer mechanism 

N: number of pores per grain 

P: selected shaping parameter (e.g. pressing pressure) 
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𝑇: sintering temperature (K) 

𝑡: sintering time (h) 

𝑡𝑑: dwell time determined for the densification rate curve 

𝑡𝑔: dwell time determined for the grain growth rate curve 

𝑡𝑑𝑤𝑒𝑙𝑙,𝑇: dwell time at a given temperature in the thermal cycle design  

𝑣𝑎: atomic migration rate (m/s) 

𝑣𝑔𝑏: grain boundary migration rate (m/s) 

𝑣𝑝: pore migration rate (m/s) 
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FIGURE CAPTIONS 

FIGURE 1 Driving forces for solid-state sintering processes 

FIGURE 2 The Brook model: grain size versus pore size 

FIGURE 3 General development of dimensionless grain size (𝜼) with relative density 

(𝝓) at different sintering temperatures (T). (Graph valid for given shaping conditions): 

equations 10 and 11 

FIGURE 4 Overview of a general method for simultaneous determination of 

densification and grain growth in final-stage solid-state sintering in order to define 

optimal thermal cycles 

FIGURE 5 General development of dimensionless densification (𝝓) with sintering time 

(𝒕) at different sintering temperatures (𝑻). (Graph valid for given shaping conditions) 

FIGURE 6 General development of dimensionless grain size (𝜼) with sintering time (𝒕) 

at different sintering temperatures (𝑻). (Graph valid for given shaping conditions) 

FIGURE 7  𝒍𝒏(𝒅𝝓/𝒅𝒕) − 𝒌 · 𝒍𝒏(𝟏 − 𝝓) as a function of 𝒍𝒏(𝜼) for the 𝑲 𝟏𝒊 and 𝒎 

values obtained, for a given 𝒌 value 

FIGURE 8 𝒍𝒏(𝒅𝜼/𝒅𝒕) + 𝓵 · 𝒍𝒏(𝟏 − 𝝓) as a function of 𝒍𝒏(𝜼) for the 𝑲𝟐𝒊 and (𝒏 − 𝟏) 

values obtained, for a given 𝓵 value 

FIGURE 9 Methodology for determining the maximum dwell time (𝒕𝒅/𝒕𝒈) at a given 

sintering temperature (𝒕𝒅𝒘𝒆𝒍𝒍,𝑻) 

FIGURE 10 Single step-up vs staggered thermal cycle for the sintering stage 

FIGURE 11 Comparison of the densification and grain growth rates of a single step-up 

and a staggered thermal cycle  
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TABLES 

TABLE 1 Mass transfer-controlling mechanisms in densification and corresponding 

values of the 𝑘 and 𝑚 coefficients in equation 5 

Diffusion path 𝒊 𝒌 𝒎 

Volume or bulk 

diffusion 
1 1/3 3 

Grain boundary 

diffusion 
2 0 4 

 

TABLE 2 Conditions of grain boundary migration and mass transfer-controlling 

mechanisms in grain growth and corresponding values of the ℓ and 𝑛 coefficients in 

equation 6 

Grain boundary 

migration 
Mass transfer mechanism 𝒊 𝓵 𝒏 

Pore control 

Surface diffusion 1 4/3 4 

Volume diffusion 2 1 3 

Gas phase diffusion 3 1 3 

Evaporation–Condensation 4 2/3 2 

Boundary control Grain boundary diffusion 5 0 2 
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