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Abstract.

The molecular states of conduction electrons in laterally coupled quantum rings

are investigated theoretically. The states are shown to have a distinct magnetic field

dependence, which gives rise to periodic fluctuations of the tunnel splitting and ring

angular momentum in the vicinity of the ground state crossings. The origin of these

effects can be traced back to the Aharonov-Bohm oscillations of the energy levels, along

with the quantum mechanical tunneling between the rings. We propose a setup using

double quantum rings which shows that Aharonov-Bohm effects can be observed even

if the net magnetic flux trapped by the carriers is zero.

PACS numbers: 73.21.-b,75.75.+a,73.22.Dj,73.23.Ra
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1. Introduction

When the energy levels of two tunnel-coupled semiconductor quantum dots are set

into resonance, the carriers localized in the individual nanostructures hybridize forming

molecular-like states, in good analogy with atomic molecular bonds[1, 2, 3, 4, 5, 6].

The possibility to engineer the properties of these ’artificial molecules’, such as the

bond length, the material and shape of the constituent ’atoms’ or the number and

nature of delocalized carriers has opened new paths to learn basic physics of molecular

systems[7, 8, 9].

Vertically-coupled[5, 6, 7, 8] and laterally-coupled[10, 11, 12, 13, 14, 15, 16]

double quantum dots (DQDs) have received particular attention owing to additional

technological implications for the development of scalable two-qubit logic gates[17].

Much less is known about other kinds of artificial molecules, such as double quantum

rings (DQRs). This is nonetheless an interesting problem, as the remarkable magnetic

properties of semiconductor quantum rings (QRs)[18], related to the Aharonov-Bohm

(AB) effect[19], have been thoroughly studied at a single-ring level[20], but their effects

at a molecular level remain largely unexplored.

Molecular states in vertically coupled QRs have been investigated[21, 22, 23, 24,

25, 26, 27], but the hybridized orbitals in such systems are aligned along the vertical

direction. As a result, their response to vertical magnetic fields, which are responsible

for AB effects, is very weak[23]. The electronic states of concentrically coupled QRs

have also been studied[28, 29, 30, 31, 32, 33]. However, the markedly different vertical

confinement of the inner and outer rings leads to carrier localization in individual rings,

preventing molecular hybridization[28, 29, 30, 33].

Recently, we studied the molecular dissociation of yet another kind of structure,

namely laterally-coupled QRs.[34] Interestingly, in such structures the two rings may

have similar dimensions, which grants the formation of covalent molecular orbitals. In

addition, tunnel-coupling takes place in the plane of the rings, thus rendering molecular

orbitals sensitive to vertical magnetic fields. These two ingredients make laterally-

coupled QRs ideal systems to attain magnetic modulation of molecular bonds and their

derived properties. This is the subject of research in the present paper. We investigate

the energy structure of DQRs under magnetic fields, and find that the AB-induced

ground state crossings lead to sudden maxima of the tunnel splitting between bonding

and antibonding orbitals of DQRs, as well as to periodic suppressions of the carrier

rotation within the rings.

Laterally-coupled DQRs also offer the possibility to extend the research of AB

effects, typically restricted to effectively isolated ring structures (see e.g. Refs. [35, 36,

37, 38]), to composite systems, which may unveil subtleties of these purely quantum

mechanical phenomena. As a matter of fact, here we show that, unlike in single

QRs[19, 20], AB effects in composite systems need no finite net magnetic flux to take

place.

The paper is organized as follows. In Section 2 we describe the theoretical model
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employed and give details of the DQR structure under consideration. In Section 3

results are reported: in Section 3.1, the energy structure and tunnel splitting of DQRs

are studied; in Section 3.2, the expectation value of the rings angular momentum is used

as an estimate of the carrier rotation within the rings; finally, in Section 3.3 the AB

oscillations of electrons in single and DQRs are compared. Conclusions are presented in

Section 4.

D
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0 Rin Rout Rin Rout

Figure 1. Schematic of the DQR structure under study and the relevant geometrical

parameters. The confining potential is zero inside the rings and Vc outside.

2. Physical system and theoretical model

We consider QRs in the Coulomb-blockade regime, charged with only one conduction

electron. QRs in this regime may be fabricated using either self-assembly[18] or

litographic[35] techniques. However, control of the nanostructure dimensions and

positioning is only accurate when using litographic methods. Therefore, for illustration

purposes in this work we choose to simulate a DQR system built from etched QRs, as

those of Ref. [35].

Since QRs have much stronger vertical than lateral confinement, we calculate the

low-lying states of the DQRs using a two-dimensional effective mass-envelope function

approximation Hamiltonian which describes the in-plane (x− y) motion of the electron

in the ring. In atomic units, the Hamiltonian may be written as:

H =
1

2m∗
(p+A)2 + V (x, y), (1)

where m∗ stands for the electron effective mass, p is the canonical moment, and V (x, y)

is a square-well potential confining the electron within the DQR structure shown in

Fig. 1. In polar coordinates it has the compact expression V (ρ, θ) = 0 if Rin < ρ < Rout
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and V (ρ, θ) = Vc elsewhere, with Vc as the barrier confining potential. A is the vector

potential. Unless otherwise stated, we use the symmetric gauge, A = B/2 (−y, x, 0),

which introduces a magnetic field B pointing along the growth direction z. Replacing

this vector potential into the Hamiltonian, one obtains:

H =
p̂2‖
2m∗

+
B2

8 m∗
(x2 + y2)− i

B

2 m∗
(x

∂

∂y
− y

∂

∂x
) + V (x, y), (2)

where p̂2‖ = p̂2x + p̂2y. The eigenvalue equation of Hamiltonian (2) is solved numerically

using a finite-difference scheme on a two-dimensional grid (x, y) extended far beyond

the DQR limits.

Following Ref. [35], the QRs we study are made of In0.1Ga0.9As and they are

surrounded by GaAs barriers. Reasonable material parameters for this heterostructure

are barrier confinement potential Vc = 50 meV[35] and effective mass m∗ = 0.05[39].

Unless otherwise stated, the inner radius of the rings is Rin = 15 nm, the outer one

Rout = 45 nm, and the two rings are separated horizontally by a D = 3 nm barrier.

3. Results

3.1. Energy structure and tunnel splitting

In this section we analyze the energy structure and tunnel-coupling of a DQR under

magnetic fields, and compare them to the well-known case of DQDs. The DQD has

interdot barrier D = 3 nm and Rout = 30 nm, which gives a similar area to that of the

DQR. The energy structure of both kinds of artificial molecule are illustrated in the top

panels of Fig. 2. As is known, the DQD energy structure resembles the spectrum of a
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Figure 2. Top row: energy levels vs magnetic field for a DQR (a) and a DQD (b).

Bottom row: tunnel splitting vs magnetic field for a DQR (c) and a DQD (d). The

instets provide schematic representations of the structures under study. Note the non-

monotonic evolution of the tunnel splitting for DQRs.
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quantum disk, but with two-fold levels corresponding to the bonding and antibonding

linear combinations of the single dot states[10, 11]. In a similar fashion, the DQR energy

structure resembles that of a single QR, with the usual AB oscillations, but the levels

are two-fold as corresponding to the bonding and antibonding molecular states[34].

The energy spacing between bonding and antibonding energy levels, the so-called

tunnel splitting, indicates the strength of the molecular bonds, and it has important

practical implications for DQD devices, where it determines the degree of quantum

entanglement[6] and affects electron transport[40]. In the bottom row of Fig. 2 we

compare the ground state tunnel splitting of the DQD and DQR.

For the DQD, the tunnel splitting decreases monotonically with increasing field,

in agreement with experimental data[41] and previous theoretical works[10]. This is

because a higher field implies smaller Landau orbits, i.e. the field squeezes the electron

wavefunction within the dots, thus reducing the amount of charge in the inter-ring

barrier. For DQRs, however, the tunnel splitting no longer exhibits a monotonic

behaviour. In general, it also decreases with growing field, due to wavefunction

squeezing, but in addition it shows sudden peaks at quasi-periodic values of B. Clearly,

the values of the field where such peaks occur correspond to the level crossings in the

energy structure (Fig. 1(a)), i.e. to integer number of AB periods[19]. This tunneling

enhancement, whose origin we explain below, suggests that DQRs enable a stronger

magnetic field-induced modulation of the molecular strength than DQDs, and larger

tunnel splittings may be achieved when operating at finite magnetic fields, which may

be of interest for spin qubit systems, where magnetic fields are used to manipulate spin

states[13, 14, 15, 17]. We point out that this behaviour is characteristic for laterally

coupled DQRs. In vertically coupled QRs, tunnel splitting is constant against the

field[23, 24].

To understand the large values of the DQR tunnel splitting in the vicinity of level

crossings, in Fig. 3 (right panel) we zoom in on the lowest-energy levels around the

first crossing point. At this point, in a single QR one would expect a series of level

crossings[20]. However, Fig. 3 reveals a crossing between the second and third levels

only, the first and fourth states being pushed away by apparent anticrossings. This

is because the point group symmetry of a QR under vertical magnetic fields, C∞, is

lowered to C2 in a DQR. The DQR electron states are then classified by the irreducible

representations A and B, indicating even and odd symmetry under a rotation of π

degrees, respectively. The symmetry of each level can be ellucidated by inspecting the

wavefunctions before the anticrossing (left side of Fig. 3). The energy increases from

bottom (ground state) to top (fourth state). Only the real part of the wavefunction is

illustrated, as it suffices to capture the relevant aspects of the symmetry. It is clear that

the first and second (third and fourth) levels form bonding and antibonding molecular

states built from the same ’atomic’ orbitals. On the other hand, it can be seen that the

first and third levels have symmetry A (even) while the second and fourth ones have

symmetry B (odd). Therefore, the symmetry sequence of the four lowest-lying levels

shown in Fig. 3 is A B A B before the anticrossing, and A A B B after it.



Characteristic molecular properties of one-electron double quantum rings under magnetic fields6

0.5 0.7 0.9 1.1 1.3

5

5.2

5.4

5.6

B (T)

en
er

gy
 (

m
eV

)

A

B

A

B

A

A

B

B

Figure 3. Right side: zoom of the four lowest-energy levels of Fig. 2 DQR in

the vicinity of the first anticrossing. Solid (dashed) lines are used for states with

irreducible representation A (B). Point group symmetry is C2. Left side: contours of

the wavefunction real part for the first (bottom panel) to the fourth (top panel) energy

level at B = 0.5 T. White stands for positive and black for negative wavefunction.

Dotted lines indicate the DQR limits.

Since the second and third states have different symmetry, they simply cross each

other. By contrast, the first and third (second and fourth) states have the same

symmetry, so that they undergo anticrossings. The anticrossings prevent a smooth

magnetic field dependece of the tunnel splitting. Hence the non-monotonic evolution of

Fig. 2(b).

Insight into the tunnel-coupling strenght can be obtained by observing Fig. 4, where

we plot the charge density of the ground state before, during and after the anticrossing.

At the anticrossing point, where the interaction between the first and third levels is

at its maximum, the charge is pushed towards the inter-ring barrier, leading to the

tunnel-coupling enhancement reported in Fig. 2(b).

Figure 4. (Colour online). Contour of the ground state charge density before (left

panel), during (central panel) and after (right panel) the anticrossing. Dotted lines

indicate the DQR limits. Note the enhanced tunnel-coupling of the ground state at

the anticrossing point (B = 0.9 T).
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3.2. Expectation value of angular momentum

An intrinsic property of QRs, closely related to the AB effect, is the appearance of one-

electron ground states with finite angular momenta, which give rise to an equilibrium

current arising from carrier rotation within the structure[20]. In isolated QRs, this

current is proportional to the ground state azimuthal angular momentum mz. In DQRs,

due to the lowered symmetry, the angular momentum is no longer a good quantum

number. However, the expectation value of the angular momenta within each of the

constituent rings can still be taken as a measurement of the carrier rotation within the

nanostructure. Thus, in Fig. 5 we compare 〈mz〉 for a single QR, a DQR with high

(Vc = 500 meV) inter-ring barrier and a DQR with regular (experimental-like) barrier

height.‡

In the single QR case, Fig. 5(a), 〈mz〉 is a step function, decreasing in one unit of

angular momentum with every ground state crossing[20]. A similar behaviour is found

in the DQR case with high inter-ring barrier, solid line in Fig. 5(b), as the QRs are

almost isolated. However, a new feature appears in the vicinity of the level crossings

(B = 2.5, 4.1 and 5.7 T). Here, 〈mz〉 rapidly goes to zero, which implies as a sudden

quenching of the carrier rotation. The introduction of full tunnel-coupling in the DQR,

solid line in Fig. 5(c), further modifies the magnetic field dependence of 〈mz〉. First, 〈mz〉

no longer takes integer values. Instead, it takes fractional values, reduced as compared

to the case of weakly-coupled rings. This is because the charge density in the tunnel

barrier, which is now increased, does not contribute to the rotation within the rings.

Second, 〈mz〉 goes to zero every time an AB period is completed, in such a way that

the periodic quenching of the ring current starts from weak magnetic fields.

The origin of the 〈mz〉 peaks in Fig. 5(b) and (c) is the interaction between the

first and third levels of the DQR at the anticrossing points, discussed above. Away

from the anticrossing, the first and third levels have angular momenta 〈mz〉1 and 〈mz〉3,

solid and dashed lines in Fig. 5. Since these levels are the two lowest bonding orbitals,

their angular momenta are similar to those of the two lowest levels in a single QR.

At the anticrossing, however, the strong interaction couples 〈mz〉1 and 〈mz〉3 in such a

way that the ground state tends to 〈mz〉gs = 〈mz〉1 − 〈mz〉3 and the excited state to

〈mz〉ex = 〈mz〉1 + 〈mz〉3. Thus, at the first anticrossing 〈mz〉ex ≈ 0 + (−1) = −1, at

the second one 〈mz〉ex ≈ −1 + (−2) = −3, at the third one 〈mz〉ex ≈ −2 + (−3) = −5,

etc. By contrast, the ground state does not reach the expected 〈mz〉1 − 〈mz〉3 value,

because it tends to deposit a large amount of charge density in the tunneling barrier

(recall Fig. 4 center). This provides maximum stabilization for the (bonding) ground

state, but it also leads to 〈mz〉gs ≈ 0.

In typical QR structures, the physical observable is the persistent current[42], which

‡ For the DQR structures, the 〈mz〉 is calculated as the sum of the left and right QR local angular

momenta, i.e. the expectation values defined from the origin of each QR.
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Figure 5. Expectation value of the ground state angular momentum vs. magnetic

field in (a) a single QR, (b) a DQR with high inter-ring barrier, and (c) a DQR

with regular inter-ring barrier height. The dashed lines in (b) and (c) represent the

expectation value of the third level. The insets are schematics of the structures.

is proportional to the magnetization[43]:

M = −
∂Egs

∂B
. (3)

Here Egs is the ground state energy. The persistent current includes not only the

current arising from the electron angular momentum, but also that coming from the
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interaction with the magnetic field vector potential[44]. Thus, rather than presenting

complete suppressions, the persistent current looks as in Fig. 6, where the magnetization

is represented. While in single QRs the magnetization would give a saw-tooth

picture[43, 45, 46], here rounded edges are obtained. This is a usual signature of lowered

symmetry, which allows additional interactions among the states[47]. The interactions

are particularly strong at the crossing points, thus producing the rounded edges.
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Figure 6. Magnetization of DQR. The C2 symmetry is responsible for the rounded

edges of the curve.

3.3. AB oscillations in DQRs with zero net magnetic flux

The energy level oscillations of charged carriers confined in QRs under magnetic fields, as

those shown in Fig. 2(a), constitute a manifestation of the AB effect, i.e. an action upon

the quantum system exerted by the vector potential A[19]. The action is induced by the

magnetic flux enclosed in the trajectory described by the carrier, Φ =
∮
A dl =

∫
B dS.

Every time this flux is a multiple of the unit flux quantum, Φ0 = 2πh̄/e, the energy

spectrum retrieves the zero field structure[48] and the system is said to accumulate one

AB phase unit[20]. Experimental evidence of such AB oscillations have been reported

in different types of mesoscopic[37] and nanoscopic semiconductor QRs.[35, 36].

In this section, we report on the (to our knowledge) first study of AB effect in

composite systems, and reveal a new aspect of this phenomenon, namely that AB

oscillations can be found even when the total flux trapped by the carriers is Φ = 0,

provided the flux threading the individual rings is finite. To this end, we consider two

magnetic field configurations:

(i) a uniform positive magnetic field goes through the entire system. Hereafter we refer

to this as parallel field, Bp.
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(ii) a local positive field goes through the right side of the structure, while a negative

one goes through the left one. Hereafter we refer to this as antiparallel field, Ba.

The two cases can be modeled using a Coulomb gauge vector potential A = B (0, x, 0)

for the right side of the plane, and A = ±B (0, x, 0) for the left one, where the positive

(negative) sign applies for parallel (antiparallel) fields. Note that this gauge choice

grants continuity of A and ∇A in the whole domain The Hamiltonian now reads:

H =
p̂2‖
2m∗

+
B2

2 m∗
x2 ± i

B

m∗
x
∂

∂y
+ V (x, y), (4)

where the negative sign of the linear term in B applies for Ba and x < 0.

We diagonalize Eq. (4) to calculate the energy structure of a single QR and that

of a DQR under parallel and antiparallel magnetic fields. The results, corresponding

to rings with Rin = 15 nm and Rout = 35 nm (D = 3 nm for the DQR), are shown in

Fig. 7. For a single QR, while Bp (gray lines) yields usual AB oscillations, Ba (black

lines) yields a featureless spectrum, affected by the diamagnetic shift only. This is the

expected difference between the cases where finite and null magnetic flux is trapped by

the carrier. A strikingly different response is however obtained for the DQR, as the

energy structure looks almost the same regardless of the magnetic field configuration.

This is surprising, because in the antiparallel case, the magnetic flux penetrating the

left and right rings cancels out, so that the net flux enclosed by the electron is again

zero, and one may not expect AB manifestations.

To gain some insight into the different behavior of the single and double QR, in

Fig. 8 we depict the angular momentum expectation value for the left (〈mz〉l) and right

(〈mz〉r) halves of the each structure, as a function of Ba. Clearly, the antiparallel

field induces opposite left and right angular momenta for both structures. Therefore,

〈mz〉 = 〈mz〉l + 〈mz〉r = 0, which is consistent with the systems picking a net zero AB

phase[20]. Yet, only the single QR energy spectrum shows no AB oscillations.

This can be interpreted as follows. The antiparallel field induces clockwise and

anticlockwise carrier rotation in each half of the structure. For a single QR, the two

currents cancel each other out, the angular momentum of the ring is always zero and

then the states are insensitive to the linear term of the magnetic field (responsible for

the AB effects). By contrast, for a DQR, the are finite (though opposite) currents in

each of the rings. Thus, if the left and right rings were uncoupled, it is immediate that

both would trap magnetic flux and hence show AB oscillations. Moreover, from the C2

symmetry of Hamiltonian (4), it is easy to show that the energy spectrum of the two

uncoupled QRs would be identical but with reversed sign of the angular momenta (in

other words, the currents are identical in magnitude but opposite in sign).

Switching on the tunnel-coupling enables the electron to delocalize over the two

rings while keeping the net trapped magnetic flux zero. Still, as can be seen in

the bottom panel of Fig. 7, the spectra under parallel or antiparallel fields remain

similar. This is because the tunnel-coupling for the two magnetic field configurations is

qualitatively similar (although not identical) as can be seen in Fig. 9, where gray lines
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Figure 7. Energy levels of a single QR (top panel) and a DQR (bottom panel)

vs. absolute value of the magnetic field. Black (gray) lines stand for the case of

antiparallel (parallel) fields applied on the left and right halves of the structure (see

text). The insets are schematics of the structures under study. Note that parallel

and antiparallel fields yield dramatically different responses in a single QR, but almost

identical in a DQR.

represent the tunnel splitting under Bp and black lines that under Ba. Note also that, in

the antiparallel field case, the tunnel splitting increases with |B|, this being responsible

for the differences in the energy spectra of Fig. 7. The same behaviour is found in DQRs

with stronger tunnel-coupling, as shown in Fig. 9 inset, where the tunnel splitting of

DQRs with a thin (D = 1 nm) barrier is plotted.

We then conclude that both the individual ring energies and the tunnel-coupling

are similar for Bp and Ba, which explains the appearence of similar spectra in Fig. 7.

Last, we comment on the fact that the tunnel splitting increases with |B| in the

DQR subject to antiparallel field, Fig. 9. This is an anomalous behaviour, because the

increasing magnetic confinement should lead to reduced charge density in the barrier

and hence to decreasing tunnel splitting, as in the parallel field case[41]. This can be

explained in terms of the sense of the carrier circulation in each ring. For parallel field,



Characteristic molecular properties of one-electron double quantum rings under magnetic fields12

z

z l

z r

z l

z r

z

a

<
 m

  >

< m  >

< m  >

< m  >

< m  >

−0.4

 0

 0.4

 0.8

<
 m

  >

−0.8

−0.4

 0

 0.4

 0  0.5  1  1.5  2  2.5  3  3.5  4

B  (T)

Figure 8. Ground state angular momentum expectation value of the left and right

halves of the structure vs absolute value of the antiparallel magnetic field. Top row:

single QR. Bottom row: DQR. Dashed and dotted lines are used for 〈mz〉l and 〈mz〉r,

respectively. The insets are schematics of the structures.

the electron rotates in the same sense (say clockwise) in the two rings. As a result,

the current in the surroundings of the tunneling barrier is different for each ring (see

schematic representation in Fig. 10(a)). This hinders the charge sharing between the

subsystems. By contrast, for antiparallel field, the sense of rotation in the left and

right rings is opposite. As a result, the current in the surroundings of the tunneling

barrier is now the same (Fig. 10(b)). This in turn favours the charge density sharing.

With increasing field, the current grows and these trends become more important[49].

Indeed, for antiparallel field, the favoured charge sharing is able to compensate for the

wavefunction squeezing.

To illustrate this effect, in Fig. 10(c) and (d) we plot the difference in charge

density between Ba and Bp ground states, for weak (B = 0.5 T) and strong (B = 3.5

T) magnetic fields. White contour regions indicate excess charge density coming from

the antiparallel case, and black regions vice-versa. When the field is weak, the charge

density in the barrier is similar for the two systems. However, for the strong field, it is
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Figure 9. Tunnel splitting vs absolute value of the magnetic field for a DQR with

D = 3 nm. Black and gray lines are for antiparallel and parallel magnetic fields. The

inset shows the results for a DQR with D = 1 nm (enhanced tunnel-coupling).

apparent that the antiparallel ground state deposits much more density in the tunneling

barrier, which results in its enhanced tunnel-coupling.

(a) (b)

(d)(c) B=0.5 T B=3.5 T

Figure 10. (a) and (b): schematics of the currents induced by parallel and antiparallel

fields, respectively. (c) and (d): contour of the charge density difference between

the antiparallel field ground state and the parallel field one, under weak and strong

magnetic fields, respectively. White (black) regions indicate excess of antiparallel

(parallel) field state charge. Dotted lines show the DQR limits. Note that antiparallel

states have larger charge density in the tunneling region for strong magnetic fields.



Characteristic molecular properties of one-electron double quantum rings under magnetic fields14

4. Conclusions

We have shown that the electron states in side-coupled coupled QRs display a

characteristic behaviour when subject to vertical magnetic fields, different from that

observed in other QR and QD structures. In particular, the tunnel-coupling strength

is found to oscillate with the field, showing sharp maxima when the AB effect induces

ground state crossings. This may be of interest e.g. for strong magnetic modulation of

the transport probability between the nanostructures. In these tunnel-coupling maxima,

the carrier rotation within the rings is abruptly supressed, owing to charge accumulation

in the inter-ring barrier. This introduces a characteristic magnetic field dependence of

the persistent currents which may be verified experimentally.[42]

We have also shown that DQRs, as quadruply-connected systems, may reveal new

fundamental aspects of quantum physics arising from the AB effect. In the single QR

structures (doubly-connected systems) investigated to date, a non-zero magnetic flux

piercing the loop is required to produce AB effects, such as AB oscillations. From our

theoretical prediction, it follows that this is not necessarily the case for DQRs, where AB

oscillations are present even if the net magnetic flux piercing the two loops (and hence

the total accumulated AB phase) is zero, provided the flux going through the individual

rings is finite. The experimental setup to prove this should consist of two tunnel-coupled

QRs subject to antiparallel magnetic fields in the left and right rings. DQR structures

can be currently realized with remarkable precision using litographic techniques, as in

Refs. [35, 37], but the antiparallel field realization may be more challenging. Laser-

controlled currents might provide a feasible alternative[50].
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