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We give an alternative derivation for the explicit formula of the effective Hamiltonian describing the evolution

of the quantum state of any number of photons entering a linear optics multiport. The description is based on

the effective Hamiltonian of the optical system for a single photon and comes from relating the evolution in the

Lie group that describes the unitary evolution matrices in the Hilbert space of the photon states to the evolution

in the Lie algebra of the Hamiltonians for one and multiple photons. We give a few examples of how a group

theory approach can shed light on some properties of devices with two input ports.

I. LINEAR QUANTUM-OPTICAL NETWORKS

The evolution of the quantum states of light when they pass

linear optical networks can be described from the classical

scattering matrix of the network S. In classical electromag-

netism, S relates the amplitudes of the input fields in m input

modes with the amplitudes of the m output modes and has

many applications in microwave circuit design1.

In quantum optics, we can replace the field amplitudes with

the probability amplitudes in the wavefunction of a photon

and use S to see the evolution of the creation operator in each

mode.

However, when there are multiple photons, the evolution

does not only include wave interference effects, like in clas-

sical electromagnetic waves, but also purely quantum effects

related to the bosonic nature of the photons. A most striking

example is the Hong-Ou-Mandel effect in which two inde-

pendent photons that reach simultaneously the two separate

inputs of a beam splitter always come out together2. These

interactions have no classical counterpart and are behind the

ability of linear optical systems to give an efficient solution to

the boson sampling problem, a task that is strongly believed

to be inefficient in any classical computing machine3.

In this paper, we describe the quantum evolution of pho-

tons through linear optical elements from results from group

theory. We work with photonic states

m
⊗

k=1

|nk〉k = |n1〉1 |n2〉2 ... |nm〉m = |n1n2 ...nm〉 (1)

with n photons that are distributed into m orthogonal modes.

In the most general case, these modes represent any set of

orthogonal single photon states so that

k 〈1|1〉l = δk,l . (2)

The modes can be different paths, which gives a very intuitive

picture of the network, but they can also represent orthogonal

temporal wavefunctions, different directions in the same spa-

tial path, photons in orthogonal polarization states, photons

with different orbital angular momentum or with a different

frequency.

We consider linear optical systems where the number of

photons is conserved

m

∑
k=1

nk = n. (3)

In passive lossless systems the total energy is conserved,

which fits well with the description in terms of classical fields.

The quantum equivalent is a conservation of probability. If we

have a superposition of n photon states, the output will be a

different superposition where all the photon states must sum

to a probability of one. The input and output states are related

by a unitary operator

|ψ〉out =U |ψ〉in . (4)

The same mathematical description could be extended to

active linear systems as long as the number of photons is pre-

served. In principle, it could include elements where a change

of frequency introduces an energy change, provided that the

total number of photons in the m modes of interest does not

change.

In quantum optics and quantum information we usually find

states living in a finite-dimensional Hilbert space and the op-

erators can be written as matrices. Our states live in a Hilbert

space H of a size M =
(

m+n−1
n

)

. A generic state |ψ〉 can be

described as a linear combination of the basis elements from

Equation (1) that exhaust all the possible ways to distribute n

photons into m modes. The problem is equivalent to counting

the number of ways to place n balls into m boxes.

A. Unitary evolution

In this finite-dimensional Hilbert space, we can write the

states as complex column vectors and the unitary operators

U as M ×M unitary matrices. For systems with exactly one

photon S =U and the quantum state of the photon in mode k,

|1〉k, is represented as a column vector with m rows that are

zero except for the kth row, which has a one.

For n photons there is a known, more involved transfor-

mation that gives U in terms of S. The evolution matrix U
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of the system with n photons belongs to the unitary group

U(M) and S ∈ U(m). We can define a group homomorphism

ϕ : U(m)→U(M).
A nice description of the properties of ϕ and a verification

that it is indeed a homomorphism between groups is given

in Aaronson and Arkhipov’s paper3. We content ourselves

with noticing the physically relevant fact that the homomor-

phism preserves the group operation to compose operators,

which is matrix multiplication in our description. If we have

a succession of N optical networks, the first with a matrix S1

and the last with SN , the total system has a scattering ma-

trix S = SN ...S2S1. Their effect of n photons can also be

described by multiplying the corresponding unitary operators

with U(S) =U(SN) ...U(S2)U(S1), as expected.

Here and in the following sections, we work with the usual

photon creation and annihilation operators â
†
k and âk

4. Their

effect on states with nk photons in mode k is

â†
k |nk〉k =

√

nk + 1 |nk + 1〉k, (5)

âk |nk〉k =
√

nk |nk − 1〉k , n ≥ 1, âk |0〉k = |0〉k . (6)

There are a few equivalent ways to write ϕ . For our pur-

poses, we prefer the description in terms of the evolution of

the operators in the Heisenberg picture, which shows how all

the operators a
†
k evolve for all the indices from 1 to m5. For

any n-photon input state

|n1n2 ...nm〉=
m

∏
k=1

(

â
†nk

k√
nk!

)

|00 ...0〉 (7)

the output state is given from the elements of S as

U |n1n2 ...nm〉=
m

∏
k=1

1√
nk!

(

m

∑
j=1

S jkâ
†
j

)nk

|00 ...0〉 . (8)

Each element of U can be deduced from Equation (8).

For an input state |n1n2 ...nm〉 and an output |n′1n′2 ...n
′
m〉,

〈n′1n′2 ...n
′
m|U |n1n2 ...nm〉 gives the corresponding matrix el-

ement for the transition. If we number the states in the basis

and write |q〉= |n1n2 ...nm〉 and |p〉= |n′1n′2 ...n
′
m〉 as column

vectors filled with zeros and a 1 for the qth or pth row, re-

spectively, Upq = 〈p|U |q〉. |Upq|2 is the transition probability

from |q〉 to |p〉 for the optical system under study. The total

probability of finding a photon in an output state |n1n2 ...nm〉
can be interpreted as the Feynman sum of all the possible pho-

ton paths that end with the desired number of photons in each

mode.

Apart from this description of ϕ , we can write the elements

of U from the permanent of different submatrices of S6,7.

B. Effective Hamiltonians

Photons are bosons and do not interact directly. Any Hamil-

tonian involving only photons must be indeed an effective

Hamiltonian and all the changes come from the interaction

with an intermediate material system. The molecules in the

different media of the optical elements of a linear optics mul-

tiport can be modelled with great accuracy by a collection of

two-level systems. If the photons are far from the resonant fre-

quencies of each medium in the system, we can use adiabatic

elimination to factor out any explicit coupling to the atoms of

the optical elements8, much like we can describe a passive di-

electric only by its index of refraction instead of speaking of

multiple absorptions and reemissions.

There are two related points of view when describing the

evolution of photons in linear optics: the unitary evolution

operators, U , and the Hamiltonians, H.

The evolution of a quantum state |ψ(t)〉 with time is the

solution of the Schrödinger equation

ih̄
d |ψ(t)〉

dt
= H |ψ(t)〉 , (9)

with a Hamiltonian H and the reduced Planck’s constant h̄.

The initial state evolves according to a unitary operator as

|ψ(t)〉=U(t) |ψ(0)〉 (10)

with U(t) = e−
itH
h̄ .

We can absorb −h̄ into the Hamiltonian. Similarly, we can

do away with time. Light crosses the whole optical network

and partial evolution is generally not interesting except for

some cases in which the fractional depth of a photon into a

uniform optical system can play a role equivalent to t. In our

finite-dimensional description with a fixed number of photons,

n, the unitary evolution matrix U = eiHU is the matrix expo-

nential of iHU for a Hermitian matrix HU which gives the ef-

fective Hamiltonian.

In the following, we will directly speak only of these ma-

trices. While the Hermitian matrices we find can be inter-

preted as effective Hamiltonians, we can think solely in terms

of group theory with a description of the transformations in

the Lie groups of the quantum evolution matrices and the cor-

responding transformations in the associated Lie algebras.

The multiphoton Hamiltonian can be deduced from differ-

ent points of view. Using a Heisenberg picture approach, we

can envelope the creation and annihilation operator vectors

with matrices derived from S and write the effective Hamilto-

nian for any known optical network made from beam splitters,

phase shifters and parametric amplifiers9. The multiple pho-

ton Hamiltonian for linear optical networks can also be de-

duced from the scattering matrix by working with a coherent

state representation10. Alternatively, the decomposition of the

single photon Hamiltonian HS in terms of the basis matrices

of the corresponding algebra gives us a way to compute HU

using the Jordan-Schwinger map11,12.

In this paper, we present an approach which, while resting

on an analysis in the Heisenberg picture, describes the effec-

tive Hamiltonian for n-photon states in a way which reminds

of the Schröndinger’s picture. A description in terms of the

Lie algebra (Hamiltonian) behind the unitary evolution gives

us a simple way to study linear optical systems from the dif-

ferential of the homomorphism.
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II. THE HAMILTONIAN FOR MULTIPLE PHOTONS

We work with unitary matrices S and U and Hermitian ma-

trices HS and HU so that S = eiHS and U = eiHU . We call S to

the unitary m×m matrix that gives the evolution for a single

photon state, which can be identified with the classical scatter-

ing matrix of the linear optical system. We call U to the matrix

describing the evolution for a general state of n photons.

In terms of group theory, the unitary matrices belong to

the unitary group of dimension m and M, with S ∈ U(m) and

U ∈ U(M), and the Hermitian matrices, up to a factor i, be-

long to the corresponding associated unitary Lie algebra with

iHS ∈ u(m) and iHU ∈ u(M). All the results we present can

be directly adapted to an alternative description of quantum

optics using the special unitary group and its algebra. The

unitary matrices would have determinant 1 and the Hermitian

matrices would be traceless. The results would hold up to an

unmeasurable global phase eiΦ in S that becomes einΦ in U .

We consider U(m) and U(M) as (compact) Lie groups.

This means they are compact manifolds and their Lie algebras

u(m) resp. u(M) are the tangent spaces to U(m) resp. U(M)
at the identity Im resp. IM. Moreover, the exponential

map u(M) → U(M) is well-defined and surjective (cf.13

(Sect. 18.4)).

We want to write the algebra homomorphism that allows us

to write HU in terms of the elements of HS. First we need to

show:

Lemma II.1. The photonic homomorphism ϕ is C∞.

Proof. This is trivial, since the entries of U = ϕ(S) are poly-

nomial expressions in the entries of the matrix S (see Equation

(8)).

This allows us to prove:

Theorem II.2. Let ϕ : U(m) → U(M) be the photonic ho-

momorphism and consider the differential map dϕ : u(m) →
u(M). The diagram

u(m) u(M)

U(m) U(M)

exp

dϕ

exp

ϕ

is commutative, i.e., ϕ(exp(X)) = exp(dϕ(X)) for every X ∈
u(m).

Proof. This follows from Warner14 together with Lemma II.1.

We can now express the differential in terms of creation-

annihilation operators as follows:

Theorem II.3. Let dϕ : u(m) → u(M) and HS = (HSi j) ∈
u(m), |q〉= |n1n2 ...nm〉 and |p〉= |n′1n′2 ...n

′
m〉, then

iHU pq = dϕ(iHS)pq = 〈p| i
m

∑
j=1

m

∑
l=1

HS jl â
†
j âl |q〉 (11)

for â
†
j resp. âl the creation resp. annihilation operator in the

j-th resp. l-th mode.

Proof. We work with the differential map and the basis states

to find

iHU |n1n2 ...nm〉= dϕ(iHS) |n1n2 ...nm〉 . (12)

The elements of HU are deduced from the effects of U =
ϕ(S) = ϕ(eiHS) on the basis states as shown in Equation (8).

We take the elements of S in terms of the exponential of iHS

and work around the identity taking S = eiHSt so that S = Im

and U = IM for t = 0. Then

iHU |n1n2 ...nm〉=
d

dt
ϕ
(

eiHSt
)

|n1n2 ...nm〉
∣

∣

∣

∣

t=0

=
d

dt

m

∏
k=1

(

∑m
j=1 e

iHSt

jk â
†
j

)nk

√
nk!

|0 ...0〉

∣

∣

∣

∣

∣

∣

t=0

=
m

∑
l=1

1√
nl!

d

dt

(

m

∑
j=1

e
iHSt

jl â
†
l

)nl
∣

∣

∣

∣

∣

t=0

∏
k 6=l

(

∑m
j=1 δ jkâ†

j

)nk

√
nk!

|0 ...0〉

=
m

∑
l=1

(

√
nl

m

∑
j=1

iHS jl â
†
j

)

â
†nl−1
l

√

(nl − 1)!
∏
k 6=l

â
†nk

k√
nk!

|0 ...0〉

=
m

∑
l=1

√
nl

m

∑
j=1

iHS jl â
†
j |n1n2 ...nl − 1 ...nm〉

=
m

∑
l=1

m

∑
j=1

iHS jl â
†
j âl |n1n2 ...nl ...nm〉 . (13)

If we number the basis states, with |q〉 = |n1n2 ...nm〉 and

|p〉= |n′1n′2 ...n
′
m〉, the elements of iHU are

〈p| iHU |q〉= 〈p|
m

∑
l=1

m

∑
j=1

iHS jl â
†
j âl |q〉 . (14)

The evolution can be written as a sum of terms involving a

single photon changing its mode, including changes from one

mode to itself, where we have the photon number operator

n̂l = â
†
l âl . We can interpret the evolution in terms of single

photon processes from the weighted sums

iHUqq =
m

∑
l=1

inlHSll (15)

for the diagonal and

iHU pq =
m

∑
l=1

∑
j 6=l

i

√

(n j+1)nlHS jl〈p|n1n2 ...n j+1 ...nl−1 ...nm〉

(16)

when p 6= q. The terms of iHU coming from a different state,

〈p|q〉 = 0, can only include one element of HS. There is a

contribution only if the input state |n1n2 ...nm〉 is “one photon

away” from the output state |n′1n′2 ...n
′
m〉. If 〈p|q〉 6= 0, we

keep all the terms where the photons move to their original

mode and there is one photon number operator n̂l per occupied

mode (a sum of HSll terms multiplied by the corresponding nl

factor).
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In the starting effective Hamiltonian HS we have a Hermi-

tian matrix with complex conjugate terms at indices jl and l j,

HS jl = H∗
Sl j, so that in Equation (14) we can rewrite the sums

as

m

∑
l=1

m

∑
j=1

HS jl â
†
j âl =

1

2

m

∑
l=1

n̂lHSll +
m

∑
l=1

m

∑
j<l

HS jl â
†
j âl + c.c. (17)

As expected, the resulting operator commutes with the total

photon number operator

n̂ =
m

∑
k=1

â
†
k âk (18)

so that

[HU , n̂] = 0, (19)

showing the number of photons is preserved in the linear op-

tical system.

The description we have used is limited to linear systems

that do not change the number of photons. For these systems

we have a clear model and we know how to use passive el-

ements to build a physical system implementing any desired

S matrix15. There are, however, linear optical operations that

are not covered by this description. The most general possible

linear operation is given by Bogoliubov transformations of the

form

âi → ∑
j

(ui jâ j + vi jâ
†
j) (20)

which include phenomena like squeezing that give Hamiltoni-

ans with terms âiâ j or â
†
i â

†
j that do no preseve the total photon

number and require more sophisticated optical equipment17.

III. PROPORTIONALITY RULES FOR TWO MODES

In this section, we give two simple examples in which

working with Lie algebras gives an insight on the behaviour

of linear optical systems with two input ports and an arbitrary

number of photons. This kind of analysis shows the power

of using group theory in the study of quantum optics. For

two ports, the unitary evolution matrices belong to the SU(2)
group, which can be mapped to the rotation group in three di-

mensions. This has been used in the past to study photon evo-

lution from angular-momentum transformations16 and has a

particularly nice description in terms of the Jordan-Schwinger

transformation11.

In order to simplify the proofs in this section, we will fix

the global phases and we will consider the homomorphism

ϕ : SU(m) → SU(M). We restrict ourselves to the case of

two input modes ϕ : SU(2) → SU(M) (M = n + 1). Since

dϕ : su(2)→ su(M) is a Lie algebra isomorphism, the space

h := dϕ(su(2)) is a subalgebra of su(M). For su(2) we will

choose the following basis {iσx, iσy, iσz} where σx,σy,σz are

the Pauli matrices, i.e.,

σx :=

(

0 1

1 0

)

, σy :=

(

0 −i

i 0

)

, σz :=

(

1 0

0 −1

)

.

with the well-known commutation relations

[σx,σy] = 2iσz, [σy,σz] = 2iσx, [σz,σx] = 2iσy.

Then, since dϕ is a Lie algebra isomorphism, iJx := idϕ(σx),
iJy := idϕ(σy), iJz := idϕ(σz) becomes a basis of h with the

following commutation relations

[Jx,Jy] = 2iJz, [Jy,Jz] = 2iJx, [Jz,Jx] = 2iJy.

The expression of Jz is really simple in terms of the photon

number operators for each port with

Jz = dϕ(σz) = n̂1 − n̂2.

This is the photon difference operator which appears in the de-

scription of homodyne measurement18,19. Instead of restrict-

ing to the usual case of a balanced beam splitter where one

of the inputs is a photon number state and the second a lo-

cal oscillator described by a coherent state, we give a general

description in terms of photon numbers. This completes pre-

vious similar analyses from a different point of view16,20.

First, we look into the expected values for the photon differ-

ence for an input state |α〉 = |n− k,k〉 entering a linear two-

port with a scattering matrix S, which, at the output, becomes

|β 〉 = ϕ(S) |α〉. The mean photon difference is always pro-

portional to n−2k with a proportionality constant C(S) which

depends only on S and appears for any input state:

Theorem III.1. Given |α〉= |n− k,k〉, for any S ∈ SU(2), let

us denote by |β 〉= ϕ(S) |α〉. Then there exist a constant C(S)
such that

〈β |(n̂1 − n̂2) |β 〉=C(S)(n− 2k).

Proof. Denote U = ϕ(S). Then, U is in the subgroup

ϕ(SU(2))⊂ SU(M) when n ≥ 2 (or we have the trivial iden-

tification ϕ(SU(2)) = SU(2) when there is just one photon,

n = 1). Then,

〈β | iJz |β 〉= 〈α|U†iJzU |α〉 .

Note that U†iJzU is the image of iJz by the adjoint map

AdU†(iJz) (see Warner14, chapter 3). But since U belongs to

the subgroup ϕ(SU(2)), the map AdU† : h→ h is an automor-

phism. Hence, because {Jx,Jy,Jz} is a basis of h, there should

exist three real numbers a,b,c such that

U†iJzU = aiJx + biJy+ ciJz.

Moreover,

〈α|aJx + bJy + cJz |α〉=(n− 2k)c,

where we have used that 〈α|Jx |α〉 = −i
2
〈α| [Jz,Jy] |α〉 =

−i
2
〈α|(JzJy − JyJz) |α〉= 0 because |α〉 is an eigenstate of Jz,

and likewise 〈α|Jy |α〉= 0. Therefore,

〈β |Jz |β 〉= (n− 2k)c

and the theorem follows.
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The above theorem allow us to state the following rule of

proportionality:

Corollary III.2. Let |α1〉 = |n− k1,k1〉, |α2〉 = |n− k2,k2〉,
assume that k2 6= n/2, denote by |β1〉 = ϕ(S) |α1〉, |β2〉 =
ϕ(S) |α2〉. Then for any S ∈ SU(2),

〈β1|(n̂1 − n̂2) |β1〉=
n− 2k1

n− 2k2

〈β2|(n̂1 − n̂2) |β2〉 .

Observe that the condition k2 6= n/2 is for free when n is

odd. In the particular case when n is even (by setting k1 =
n/2 and k2 6= n/2 in the above corollary), we can state the

following equipartition rule for the |n/2,n/2〉 state:

Corollary III.3. Let k be a nonnegative integer, then for any

S ∈ SU(2), the state |k,k〉 evolves to |β 〉 := ϕ(S) |k,k〉 in such

a way that

〈β | n̂1 |β 〉= 〈β | n̂2 |β 〉= k.

This means that, if we evenly distribute n photons into the

two possible input ports, the expected photon number at each

output is always n/2 for any input port. This result agrees

with previous analyses with Jacobi polynomials16 and it is in

line with our intuition that a two-port is basically some kind of

beam splitter with different coupling ratios which just redis-

tributes the inputs. For equal photon numbers, the terms that

are added and subtracted from each input cancel on average.

By the properties of the Lie algebra su(m), Corollary III.3

can be extended to an arbitrary number of ports:

Theorem III.4. Let k be a nonnegative integer, then for

any S ∈ SU(m), the state |k,k, ... ,k〉 evolves to |β 〉 :=
ϕ(S) |k,k, ... ,k〉 in such a way that

〈β | n̂1 |β 〉= 〈β | n̂2 |β 〉= · · ·= 〈β | n̂m |β 〉= k.

We will only sketch the proof and leave the details for the

reader. The procedure is similar to the case with two ports.

There are m2 −1 generalized Gell-Mann matrices, grouped in

three matrix families, which generate the su(m) algebra for

an arbitrary m21. The photon number difference operator be-

tween any two ports is n̂ j − n̂l = −idϕ(D jl) for a diagonal

matrix filled with zeroes except for the elements D j j = i and

Dll =−i. Now, for an input state with k photons in each input,

− i〈k, ... ,k|U†n̂ j − n̂lU |k, ... ,k〉 (21)

can be written as

− i〈k, ... ,k|AdS†(D jl) |k, ... ,k〉 . (22)

The adjoint map can be computed from the known commu-

tation relations of D jl with the generalized Gell-Mann matri-

ces to show the average photon number difference must be 0

for any pair j and l.

This result agrees well with our intuition that, if a linear

optics multiport can be described a concatenation of two port

beam splitters and phase shifters, which do not affect the pho-

ton number average, then we have a series of steps for which

the mean photon number does not change. In all the two port

splitters we just redistribute the photons and the combined ef-

fect will not modify the final average.

IV. EXAMPLE FOR TWO PHOTONS IN TWO MODES

We can see a simple example of our result for a system with

two photons in two modes (n = m = 2). For two modes, we

define a scattering matrix

S =

(

S11 S12

S21 S22

)

. (23)

and a Hamiltonian

HS =

(

HS11 HS12

HS21 HS22

)

. (24)

If we label the available photon states as |1〉 = |20〉, |2〉 =
|02〉 and |3〉= |11〉, using Equation (8) we obtain the unitary

evolution matrix

U =





S2
11 S2

12

√
2S11S12

S2
21 S2

22

√
2S21S22√

2S11S21

√
2S12S22 S11S22 + S12S21



 . (25)

From Equation (14), we can give the Hamiltonian HU in

terms of the elements of HS as

HU =





2HS11 0
√

2HS12

0 2HS22

√
2HS21√

2HS21

√
2HS12 HS11 +HS22



 . (26)

We can check the results for the simple example of the evo-

lution of two photons inside a balanced beam splitter. The

scattering matrix, up to a global phase, is

S =
1√
2

(

1 1

1 −1

)

. (27)

We can find the corresponding Hamiltonian

HS =

(

0.46008 −1.11072

−1.11072 2.68152

)

(28)

either from the results in9 or by computing HS =−i ln(S).
The Hamiltonian HU , substituting in Equation (26), is

HU =





0.92016 0 −1.57080

0 5.36304 −1.57080

−1.57080 −1.57080 3.14160



 (29)

and we can check the result is correct by computing eiHU and

seeing it is, indeed, the unitary matrix

U =







1
2

1
2

1√
2

1
2

1
2

− 1√
2

1√
2

− 1√
2

0






(30)

we expected from Equation (25).

Observe that the expected values of n̂1 and n̂2 for the state

U |1,1〉 = 1√
2
|20〉 − 1√

2
|02〉 are 1, in agreement with our

equipartition rule for the |1,1〉 state. Moreover, the expec-

tation value of n̂1− n̂2 for the states U |2,0〉 and U |0,2〉 is 0 in

agreement, as well, with our proportionality rule (0 = −2
2

0).
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V. DISCUSSION

We have presented an alternative derivation of the formula

for the effective Hamiltonian determining the evolution of n

photons through an m-mode linear optics multiport that pre-

serves the photon number based on the differential form of

the unitary evolution. This description has a reduced number

of degrees of freedom, which makes studying the photon evo-

lution easier. We have m2 real parameters from HS instead of

the M2 parameters of a general M×M Hermitian matrix. The

HU matrix has multiple null entries and, as it is Hermitian, we

only need to compute explicitly the upper or lower triangular

matrix plus the diagonal. Finding the unitary evolution matrix

U still presents some computational challenges. In particular,

computing the matrix exponential can be a bottleneck.

Apart from the computational implications, expressing the

evolution as an algebra homomorphism can be useful to study

linear optical networks. Some quantum optics problems might

be easier to tackle with a description in the Lie algebra using

the wealth of results from group theory, as shown from the

proportionality rules we have described for linear devices with

two input ports.

The presented result also gives a natural way to study op-

tical systems that combine linear and nonlinear optical parts.

Systems which include squeezing or parametric processes are

usually described in terms of their Hamiltonians, which can

be readily combined with the Hamiltonian of the linear part.

In that regard, our analysis can also be extended to general

linear optics networks where the number of photons is not

conserved like in parametric amplifiers22. These systems still

admit a linear description with the Lie group of quasi-unitary

matrices and its corresponding associated algebra9.

ACKNOWLEDGMENTS

This work has been funded by: Spanish Ministerio

de Economı́a y Competitividad, Project TEC2015-69665-

R, MINECO/FEDER, UE and Junta de Castilla y León

VA089U16 (J.C. Garcia-Escartin); DGI-MINECO grant

(FEDER) MTM2017-84851-C2-2-P and Universitat Jaume I,

grant P1-B2016-07 (V. Gimeno); Ministerio de Economı́a y

Competitividad (MINECO), grant MTM2015-65764-C3-2-P,

and Universitat Jaume I, grant P1-1B2015-02 (J.J. Moyano-

Fernández).

∗ juagar@tel.uva.es
† gimenov@uji.es
‡ moyano@uji.es; All authors contributed equally to this work.
1 D. Pozar, Microwave Engineering (Wiley, 2004), 4th ed.
2 C. K. Hong, Z. Y. Ou and L. Mandel, “Measurement of subpi-

cosecond time intervals between two photons by interference,”

Physical Review Letters 59, 2044–2046 (1987).
3 S. Aaronson and A. Arkhipov, “The computational complexity of

linear optics,” in “Proceedings of the 43rd Annual ACM Sym-

posium on Theory of Computing,” (ACM, New York, NY, USA,

2011), STOC ’11, pp. 333–342.
4 R. Loudon, The Quantum Theory of Light (Oxford University

Press, Great Clarendon Street, Oxford, UK, 2000), 3rd ed.
5 J. Skaar, J. C. Garcı́a Escartı́n and H. Landro, “Quantum mechan-

ical description of linear optics,” American Journal of Physics 72,

1385–1391 (2004).
6 E. R. Caianiello, “On quantum field theory — I: Explicit solution

of Dyson’s equation in electrodynamics without use of Feynman

graphs,” Il Nuovo Cimento (1943-1954) 10, 1634–1652 (1953).
7 S. Scheel, “Permanents in linear optical networks,”

quant-ph/0406127 (2004).
8 S. Stenholm, “Construction of optical networks,” Quantum and

Semiclassical Optics: Journal of the European Optical Society

Part B, Vol. 7, No. 4, pp. 667–675 (1995).
9 U. Leonhardt and A. Neumaier, “Explicit effective hamiltonians

for general linear quantum-optical networks,” Journal of Optics

B: Quantum and Semiclassical Optics 6, L1 (2004).
10 H.Y. Fan and M. Xiao “Construction of optical networks by vir-

ture of the IWOP technique,” Quantum and Semiclassical Optics:

Journal of the European Optical Society Part B, Vol. 9, No. 1, pp.

53–58 (1997).
11 P. Aniello and R. Coen Cagli “An algebraic approach to linear-

optical schemes for deterministic quantum computing,” Journal

of Optics B: Quantum and Semiclassical Optics, Vol. 7, Is. 12,

S711 (2005).
12 P. Aniello, C. Lupo and M. Napolitano “Exploring Representation

Theory of Unitary Groups via Linear Optical Passive Devices,”

Open Systems & Information Dynamics, Vol. 13, No. 4, 415–426

(2006).
13 J. Gallier, Geometric Methods and Applications: For Computer

Science and Engineering (Springer New York, New York, NY,

2011).
14 F. W. Warner, Foundations of Differentiable Manifolds and Lie

Groups (Springer New York, New York, NY, 1983).
15 M. Reck, A. Zeilinger, J. Bernstein and P. Bertani, “Experimental

Realization of Any Discrete Unitary Operator,” Physical Review

Letters, Vol. 73, No. 1, 58–61 (1994).
16 R.A. Campos, B.E.A. Saleh and M.C. Teich, “Quantum-

mechanical lossless beam splitter: SU(2) symmetry and photon

statistics,” Physical Review A, Vol. 40, Is. 3, 1371–1384 (1989).
17 S. L. Braunstein, “Squeezing as an irreducible resource,” Physical

Review A, Vol. 71, 055801 (2005).
18 S. L. Braunstein, “Homodyne statistics,” Physical Review A, Vol.

42, Is. 1, 474–481 (1990).
19 W. Vogel and J. Grabow, “Statistics of difference events in ho-

modyne detection,” Physical Review A, Vol. 47, Is. 5, 4227–4235

(1993).
20 N.G. Walker, “Quantum Theory of Multiport Optical Homodyn-

ing,” Journal of Modern Optics, Vol. 34, No. 1, 15–60 (1987).
21 R.A. Bertlmann and P. Krammer, “Bloch vectors for qudits,” Jour-

nal of Physics A: Mathematical and Theoretical, Vol. 41, No. 23,

235303 (2008).
22 U. Leonhardt, Essential Quantum Optics: From Quantum Mea-

surements to Black Holes (Cambridge University Press, 2010).

mailto:juagar@tel.uva.es
mailto:gimenov@uji.es
mailto:moyano@uji.es
http://arxiv.org/abs/quant-ph/0406127

