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Abstract 
 
Electrochemical oxidation of Norfloxacin (NOR) in sodium sulphate media has been 

comparatively studied in an undivided and in a divided electrolytic cell both containing 

either a boron doped diamond (BDD) or a novel Sb-doped SnO2 ceramic anode under 

galvanostatic operation. The electro-oxidation was found to occur with first order 

kinetics mainly when using both anodes. The results showed the great oxidizing power 

of BDD in relation to the ceramic anode to convert NOR and all the intermediate 

accumulated into CO2. In the case of the BDD, although a 92 % of TOC abatement was 

achieved, the complete mineralization was not possible probably due to the carboxylic 

acids still present in solution. On the contrary, for the ceramic electrode, which 

presented a maximum value of TOC removal of about 63 %, the total mineralization of 

the aromatic oxidation intermediates was not reached under the experimental 

conditions.  

 

 The use of a membrane divided cell showed positive aspects in terms of molecule 

degradation, degree of mineralization and current efficiency since prevents the 

intermediate products formed during the NOR oxidation process from being reduced 

on the cathode. 

 
 
Keywords: BDD anode, SnO2 ceramic anode, electrochemical oxidation, Norfloxacin, 

total organic carbon.
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1. Introduction 

 

In recent years, pharmaceuticals and personal care products have been identified as 

emerging contaminants threatening natural environment and human health, being the 

antibiotics one important category of these trace organic contaminants [1]. The 

presence of antibiotic compounds in surface waters is an emerging environmental 

issue since many of these substances are not biodegradable, toxic and capable of 

accumulating in single aquatic organisms (algae). Antibiotics might also lead to adverse 

environmental effects, including the development of antibiotic resistance to aquatic 

bacteria, direct toxicity to microorganism and possible risks to human health through 

drinking water and/or food-chain [2]. 

 

Pharmaceuticals industries, hospitals or simple civil buildings represent important 

points of antibiotic discharge into the environment, which produce a non-negligible 

effect on the physical, chemical and biological composition of receptor water bodies 

[3]. In fact, occurrence of antibiotics in the environment has been reported worldwide, 

such as in rivers of Europe [4,5] surface water of America [4,6], rivers of Australia [7] 

and seas and rivers of Asia [8,9]. 

 

Fluoroquinolones are a type of antibiotics applied in veterinary and human medicine 

since they were developed in the 1980s. Norfloxacin belongs to fluoroquinolone 

antibiotics, and has been used to treat a wide range of gastrointestinal, urinary and 

respiratory tract infections; ocular and skin infections as well as in patients with 

intraabdominal infections in combination with antianaerobic agents [10].  

 

These compounds are not effectively removed from contaminated urban wastewaters 

by conventional municipal treatment plants [11] and may be transferred to soil treated 

with the digested sludge as fertilizer [12], thus representing an additional entry route 

into the environment. Several water treatment technologies have been investigated 

for the removal of organic load from contaminated effluents. Additional treatment 

techniques, such as membrane processes [13,14] or methods based on adsorption 

processes, such as biosorption onto microbial biomass [15], adsorption on carbon 

nano-tubes [16] or in magnetic molecular imprinted chitosan/y-Fe2O3 [17] has been 

investigated. However, they only transfer the contamination from one phase to 

another and the further disposal and treatment of adsorbents limit their application.   

 

Therefore, powerful methods must be developed and applied to remove these 

pollutants from wastewaters for avoiding their possible adverse health effects on 

humans, animals and the environment. Several advanced oxidation processes may be 

used to remove antibiotics from wastewater, but ozonation, Fenton/photo-Fenton and 

photocatalysis have been the most tested ones [18,19]. Numerous researches have 
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promoted the electrochemical oxidation as a promising alternative technique to treat 

wastewaters containing toxic and/or refractory organic pollutants [3,19,20]. 

Versatility, efficiency, good cost-effective relationship, easy automatization, and 

environmental-friendly are among the main attractive characteristics of this 

technology [20]. 

 

Electro-oxidation of organic pollutants can be performed in several different ways, 

including direct oxidation, in which the pollutant is oxidized by electron transfer 

directly to the anode material; and indirect oxidation, in which the electron transfer is 

mediated by an oxidant species [21]. This depends on the interaction between the 

hydroxyl radical and the anode material. In this way, anodes with low oxygen evolution 

overpotential (low oxidation power anodes) like Pt, IrO2 and RuO2 yield chemisorbed 

“active oxygen” and only permit the partial oxidation of organics, while anodes with 

high oxygen evolution overpotential (high oxidation power anodes) like boron-doped 

diamond (BDD), PbO2 and SnO2, which have a “nonactive” behavior, yield physisorbed 

·OH radicals and favor the complete oxidation of the organics to CO2. In this context, 

BDD anodes have the highest overpotential for oxygen evolution and have been largely 

used in the electrochemical degradation of pollutants [21–23].  

 

In this context, several investigations have been conducted on the removal of 

fluroquinolones by electrochemical oxidation. Coledam et al. [19] evaluated the 

electrochemical mineralization of NOR using a filter-press flow reactor with BDD 

anodes of distinct characteristics. The small number of aromatic by-products formed 

and the high values of the extent of electrochemical combustion attested the high 

oxidation power of the BDD anode, which led to a high CO2 conversion independently 

of the boron-doping level. Jara et al. [3] performed electrooxidation tests in solutions 

containing two types of antibiotics with different electrodes. Among the different 

anodes tested, the Ti/Pt electrode showed the highest specific electrocatalytic activity 

towards organic oxidation due to the strong tendency of organic species to adsorb on 

the platinum electrode surface, as well as by its easy generation of active oxygen 

species. The DSA type electrodes have rather limited oxidative performances, mainly 

since they favor both a direct oxygen production from water electrolysis and worse 

adsorption characteristics of the organic molecules with respect to the Ti/Pt electrode. 

The electrochemical degradation of the fluoroquinolone antibiotic norfloxacin (NOR) 

on Ti/IrO2 anodes, in several aqueous matrices was also evaluated by Sierra et al. [20]. 

The results revealed that the degradation of NOR could occur through both direct 

elimination at the electrode surface and mediated oxidation, via the electrogeneration 

of oxidative agents, such as active chlorine species and percarbonate ions.  

 

Sb-doped SnO2 electrodes have been also widely applied to treat different organic 

pollutants containing antibiotics due to numerous advantages, such as high oxygen 
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evolution over-potential, excellent electro-catalytic performance, cost efficiency and 

ease of preparation [24]. However, their major drawback is a low stability under 

anodic polarization that limits their practical applications [25].  

 

A possible alternative are the Sb-doped SnO2 ceramic electrodes. Massive ceramic 

electrodes are becoming important in the electrochemical technology such in fuel cells 

[26,27] and in electrochemical wastewater treatment [28–30]. These promising 

electrodes present a low price, a high active area due to its porosity; a high chemical 

stability and their manufacture is relatively easy [31]. Taking into account that the 

electrooxidation of fluoroquinolone antibiotic has been scarcely investigated, the aim 

of the present work is to compare the performance of a new microporous Sb-doped 

SnO2 ceramic electrode with that of a BDD electrode. These electrodes have been 

applied to the electrochemical degradation of NOR in an electrochemical cell in the 

presence and absence of an ion-exchange membrane. 
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2. Experimental. 

 

Solutions composed of 100 mg·L−1 of NOR (Sigma-Aldrich) and 2 g·L-1 of Na2SO4 as 

supporting electrolyte were treated in the undivided reactor which consists of a Pyrex 

glass of 250 cm3 whereas the two-compartment electrochemical reactor containing 

the ionic membrane is made of two Pyrex glass chambers with a Nafion 117 (from 

Dupont) cation-exchange membrane placed between them. An equal volume (250 

cm3) of anolyte and catholyte was poured in their respective chamber after cell 

assembly. The same solution as that used in the undivided reactor was filled in the 

anodic compartment whilst in the cathodic compartment of the divided reactor, a 

solution composed of 2 g·L-1 of Na2SO4 was used as electrolyte. The solutions were 

vigorously stirred with a magnetic bar to ensure mixing and the transport of reactants. 

Na2SO4 was of analytical grade from Panreac. All solutions were prepared using 

distilled water.  

 

In both cases, the electrode acting as counter electrode was a 20 cm2 AISI 304 stainless 

steel sheet and a standard Ag/AgCl saturated KCl electrode was used as the reference 

electrode. Two different materials were tested as anode: a Boron-doped diamond 

(BDD) electrode with a doping level of 2500 ppm purchased from NeoCoat SA 

(Switzerland), and a new microporous Sb-doped SnO2 ceramic electrode, both with a 

submerged geometric surface area of 12 cm2.  

 

The synthesis of the ceramic electrode is well described in a previous work [31]. A 

prismatic specimen of 80 x 20 x 5 mm was obtained by unidirectional dry pressing at 

250 kg·cm-2 with a laboratory uniaxial manual press (Robima S.A., Spain). Finally, the 

sample was sintered in a laboratory furnace (RHF1600, Carbolite Furnaces, UK) at a 

temperature of 1200 ºC, heating at 5 ºC·min-1 from room temperature to the 

maximum temperature. It was kept one hour at the maximum temperature and then 

cooled. The electrical resistivity of the sintered sample was measured by a four points 

method with a Fluke 743B equipment (Fluke Corporation, USA), with a homemade 

setup. Then, bulk density was also measured by mercury immersion. The pore size 

distribution was obtained by mercury intrusion (AutoPore IV 9500, Micromeritics, 

USA). In addition, SEM images were taken with a FEG-SEM (QUANTA 200 F, FEI Co, 

USA) from polished sections of the sintered specimen.  

 

Electrolysis experiments were performed under galvanostatic control at different 

applied current densities (33, 50 and 83 mA·cm-2) using a power supply. Samples were 

taken from the electrochemical reactor every 30 min, and electrode potential, current 

and cell voltage, were recorded during the electrolysis. The degradation was followed 

by measuring the change in the absorbance at 275 nm using an Unicam UV4-200 

UV/vis Spectrometer [32]. Mineralization of NOR was followed by total organic carbon 
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(TOC) determined on a Shimadzu TNM-L ROHS TOC analyzer. Measurement of 

inorganic ions (NH4
+, NO3

- and F-) was performed on a Metrohm Ionic Chromatograph 

883 Basic IC Plus. All the experiments were performed at room temperature during 4 

hours. 

 

From these data, the extent of the electrochemical combustion () of the removed 

NOR [33] was calculated as the ratio between the percentages of [TOC] and [NOR] 

removal [19,33]: 

 

𝜙 =
%𝑇𝑂𝐶𝑟𝑒𝑚𝑜𝑣𝑒𝑑

%𝑁𝑂𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑
 

      (1) 

 

 is an indicative of the conversion rate of the NOR molecules into CO2, therefore, this 

parameter presents values between 0, without combustion, or 1, with total 

combustion, in relation with the initial compound removed.  

 

The mineralization current efficiency (MCE) values at a given time t (min) were 

computed according to the following equation [34,35]: 

 

     
𝑀𝐶𝐸 =

𝑛𝐹𝑉∆�𝑇𝑂𝐶 𝑡
7.2 × 105 𝑚𝐼𝑡

 
(2) 

 

Here (TOC)t is the removed organic carbon (mg carbon·L-1) at a given time, n is the 

number of electrons exchanged in mineralization process, m is the number of carbon 

atoms in a norfloxacin molecule (16), F is Faraday constant (96,487 C·mol-1), V is 

volume of the treated solution (L), I is the applied current (A) and 7.2x105 is the 

conversion factor for homogenization of units (60 s·min-1 x 12,000 mg carbon·mol-1). 

The number of electrons exchanged in the mineralization process per mole of NOR was 

assumed as 66 considering that the overall mineralization of the antibiotic involves its 

conversion into CO2, F− and mainly NH4
+ from N degradation via reaction [36]: 

 

         (3) 
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3. Results 

 

Regarding with the ceramic electrode characterization, the measurement of the 

resistivity of the sample, gave a value of 0.0411 ·cm, which is low enough to be used 

as electrode. The pore size distribution of the sintered sample reveals a mean value of 

pore diameter of 0.24 m (Figure 1) and an open porosity of 47.7 %. On the other 

hand, the SEM image of the ceramic electrode (inset of Figure 1) shows the pores 

distributed along the ceramic matrix as larger white particles.  

 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.01 0.1 1

in
tr

u
si

o
n

 v
o

lu
m

e 
(c

m
3
·g

-1
)

pore diameter (µm)  
 

Figure 1. Pore size distribution of the ceramic electrode sintered at 1200 ºC. Inset: SEM 

image 

 

The effect of the applied current density (i) on the kinetics of NOR degradation in the 

divided and undivided reactors using the BDD and the ceramic electrodes is studied in 

Figures 2 a) and 3 a), respectively. As shown in both figures, the higher the applied 

current the higher the velocity of the NOR degradation. For an electrolysis time of 30 

minutes, in the case of the BDD electrode, the percentages of NOR degradation in the 

undivided reactor were 40%, 51% and 64% for the corresponding current densities of 

33, 50 and 83 mA·cm-2, and 64%, 81% and 92% for the same current densities in the 

case of the divided reactor. For the ceramic electrode, the percentages of NOR 

degradation were 15%, 30% and 46% in the undivided reactor, and 29%, 42% and 51% 

in the divided one.  
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The increase of the velocity of the NOR degradation with the applied current is mainly 

due the enhancement of the generation of active oxidant species, especially the ·OH 

radicals formed at the surface of the anode, which improve the destruction of the 

organic pollutants [37]. Hence, the BDD electrode allows a very weak electrode-·OH 

interaction which results in a much greater O2-overvoltage than in the case of SnO2 

(ceramic electrode). This have been confirmed in the voltammograms obtained for 

BDD and the ceramic electrodes (not shown) which revealed that the Sb-SnO2 ceramic 

electrode presents an onset potential of 1.9 V O2 evolution, consistent with the 

literature data [38], whereas that obtained for the BDD was 2.5 V. All this data has 

been included in our previous work [31]. The much higher onset potential for O2 

evolution of the BDD explains why this electrode possesses is more efficient for 

pollutant oxidation.  

 

Additionally, Figures 2 b) and 3 b) show the decay of the relative NOR concentration as 

a function of the applied charge per unit volume of electrolyzed solution (Q) in the 

divided and undivided reactors using the BDD and the ceramic electrodes, respectively. 

It is interesting to note that in each reactor, the curves are overlapped as the process is 

under mass transport control, and the electrooxidation process only depends on the 

transport of the organic species from the bulk solution to a region close to the anode 

[19]. 

 

For a given value of current density and for both electrodes under study, the velocity 

of NOR degradation is always higher in the presence of the cation-exchange 

membrane, since it allows to have an acid environment in the anodic compartment 

which enhances the kinetics of electron transfer and chemical reaction. Indeed, acid 

dissociation represents a precursor reaction for the electrochemical oxidation pathway 

[3]. In this sense, it must be highlighted that the complete NOR degradation is possible 

after 60 minutes of electrolysis using the BDD electrode in the electromembrane 

reactor for the applied currents densities of 50 and 83 mA·cm-2. 

 

Moreover, ions chromatograms obtained in the treated solutions at the end of the 

electrolysis revealed the accumulation of NH4
+ and F- in all cases for every reactor and 

electrode under study. Nitrate ions concentration was negligible in comparison to that 

of ammonium. 
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Figure 2 a). Effect of i on the decay of the relative concentration of NOR as a function 

of time for the BDD electrode. Solid points represent the reactor without membrane 

and empty points the membrane reactor.  
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Figure 2 b). Effect of i on the decay of the relative concentration of NOR as a function 

of the applied charge per unit volume of electrolyzed solution for the BDD electrode. 

Solid points represent the reactor without membrane and empty points the 

membrane reactor. 
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Figure 3 a). Effect of i on the decay of the relative concentration of NOR as a function 

of time for the ceramic electrode. Solid points represent the reactor without 

membrane and empty points the membrane reactor.  
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Figure 3 b). Effect of i on the decay of the relative concentration of NOR as a function 
of the applied charge per unit volume of electrolyzed solution for the ceramic 
electrode. Solid points represent the reactor without membrane and empty points the 
membrane reactor. 
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The decay of the relative NOR concentration with the electrolysis time follows an 

exponential trend for both types of electrodes and reactors, according with a pseudo-

first-order kinetics typical of a mass transfer controlled process, which is predicted by 

Equation (4). This behavior is indicative of the formation of a steady concentration of 

reactive ·OH at each current density, which is much greater than that of NOR reaching 

the electrode surface [34,36,39]: 

 

𝑙𝑛
𝐶0

𝐶
= −𝑘𝑎𝑝𝑝 𝑡 

       (4) 

 

The fitting of the NOR concentration values to the previous equation gives good linear 

correlations as shown in the inset of Figures 2 a) and 3 a). From these results, the 

apparent kinetic constant values (kapp) are calculated, and are presented in Figure 4. As 

observed, higher values of kapp are always obtained in the divided reactor regardless of 

the anode under study since the velocity of the NOR degradation is higher in the 

presence of the cation-exchange membrane, as mentioned previously. However, the 

fact that kapp is not directly proportional to i, suggests that a smaller proportion of the 

generated ·OH becomes inefficient to react with organics as current density rises. This 

fact affects mineralization current efficiency (MCE) as will be better clarified below. 
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Figure 4. Effect of i on the apparent kinetic constant:  BDD electrode in the undivided 

reactor (), BDD electrode in the divided reactor (o), ceramic electrode in the 

undivided reactor (), ceramic electrode in the divided reactor (). 
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According to these data, it is inferred that the BDD electrode is more active than the 

ceramic one. This activity difference can be partially explained by the difference in the 

hydroxyl radical concentrations at the different electrode surfaces (S). It has been well 

established that anodic oxidation of organic pollutants in the potential region of O2 

evolution on the BDD and Sb-SnO2 electrodes involve generation of adsorbed hydroxyl 

radicals, S(·OH) [40]:   

 

S + H2O  S(·OH) + H+ + e-        (5) 

 

S(·OH) can then either be further oxidized to generate O2 gas, or react with pollutants 

(R) to produce CO2, H2O, etc: 

 

S(·OH)  S + 0.5O2 + H+ + e-        (6) 

R + S(·OH)  S + CO2 + H2O +…       (7) 

 

Usually, reaction (5) is easy, and thus not a rate-determining step. The activity of an 

electrode is highly dependent on the rate of reaction (6). Since the BDD electrode has 

much higher overpotential for O2 evolution than the Sb-SnO2 ceramic electrode, the 

rate of reaction (6) on the BDD electrode should be much lower than that of the 

ceramic one. This leads to a more significant accumulation of the hydroxyl radicals on 

the BDD electrode surface, and therefore it can oxidize pollutants more effectively 

under the same conditions. Moreover, diamond is well known to have weak 

adsorption properties due to its inert surface. Therefore, the hydroxyl radicals 

produced on the BDD electrode are very weakly adsorbed and accordingly are very 

reactive in pollutant oxidation. In contrast, the hydroxyl radicals produced on the 

ceramic electrode are expected to be more strongly adsorbed and are less reactive 

towards pollutant oxidation [38]. 

 

The previous differences observed between both materials are also evident in the 

evolution of the UV-visible spectra as a function of the electrolysis time as shown in 

Figure 5, where two peaks in the ultraviolet region are mainly observed. One peak at 

275 nm, which is associated with the aromatic ring absorption, and another peak at 

330 nm caused by the quinolones nitrogen atom with n→π* (HOMO−LUMO) 

electronic transition [32]. After degradation, the absorption intensity decreased at 330 

nm, indicating the degradation of the quinolone, while the decreased absorbance at 

275 nm suggests the opening of the aromatic ring [41]. Comparing the different 

reactors, it is inferred that the height of both peaks decreases faster in the divided 

reactor as the velocity of the NOR degradation is higher.  

 

As observed, in the case of the BDD electrode, Figures 5 a) and b), both peaks reduce 

their height as the electrolysis proceeds, reaching their complete disappearance at 90 
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minutes in the divided reactor, and 180 minutes in the undivided one. At the same 

time, a new absorption band appears for a wavelength range from 200 to 220 nm 

which is probably due to the presence of oxidation by-products in the form of short 

chain carboxylic acids [19]. According to the work of García-Segura et al. [42], the high 

concentration of these species, which are formed as a previous step to the CO2 

generation, is a further indication of the high oxidation power of the BDD anode.  

 

In the case of the ceramic electrode, Figures 5 c) and d), the decrease of the 

absorbance peak at 275 nm is less significant, indicating that the aromatic rings of the 

molecule are less affected by the electrolysis process. After 4 h of treatment, this peak 

still is evident; this indicates the persistence of the aromatic rings. This fact also 

explains why the absorption range between 200 to 220 nm remains almost invariable 

with time, since the formation of the carboxylic acids mainly takes place after the 

oxidative ring opening reactions.  
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Figure 5. Evolution of the UV-visible spectra with the electrolysis time for a current 

density of 33 mA·cm-2 in the following conditions: a) BDD electrode in undivided 

reactor, b) BDD electrode in divided reactor, c) ceramic electrode in undivided reactor, 

d) ceramic electrode in divided reactor.  

 

The degree of NOR mineralization was monitored through the total organic carbon 

(TOC) evolution, which represent the accumulation of all the organic compounds 

present in solution. The initial values of TOC measured are between 63 and 69 mg L-1
. 
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This value coincides with the theoretical value calculated for a solution composed of 

100 mg·L-1 of NOR. The evolution of the relative TOC concentration in the divided and 

undivided reactors using the BDD and the ceramic electrodes is studied in Figures 6 

and 7, respectively, as a function of the applied current density (i). In all the cases, the 

relative TOC concentration decreases with the electrolysis time as observed in Figures 

6 a) and 7 a). For an electrolysis time of 30 minutes, in the case of the BDD electrode, 

the mineralization degree in the divided reactor was 20%, 23% and 44% for the 

corresponding current densities of 33, 50 and 83 mA·cm-2, and 9%, 10% and 24% for 

the ceramic electrode in the same experimental conditions. These findings 

demonstrate the great oxidizing power of BDD in relation to the ceramic anode to 

convert NOR and all the intermediate accumulated into CO2. In spite of this, the 

complete mineralization in the divided reactor is not possible for any of the applied 

currents under study, having a residual TOC concentration of about 5 mg L-1 when 

using the BDD. This fact suggests that carboxylic acids are still present in solution as is 

also confirmed by the data presented in Figure 5. 

 

The comparative TOC abatement versus the consumed specific charge (Q) for both 

electrodes and reactors under study is presented in Figures 6 b) and 7 b). In both 

Figures, the rate of TOC removal becomes practically independent of current density in 

the case of the divided reactor but it decreases with i for the undivided one. The lower 

degree of TOC abatement at a given Q as i increases observed in the latter case can 

then be explained if the larger amount of hydroxyl radicals formed is destroyed more 

rapidly from reactions (8), (9) and (10) and hence, a lower relative proportion of this 

radical is able to react with organics [34] with the consequent decrease in the 

mineralization current efficiency, as will be discussed ahead. Nevertheless, the 

absolute quantity of reactive ·OH is gradually enhanced at higher i and this causes the 

acceleration of the degradation process with time. The greater proportion of weak 

oxidants (H2O2, HO2 peroxodisulfate ion and ozone) formed could also contribute to 

mineralize some organics. In the case of the divided reactor, the results suggest the 

existence of a comparatively much lower enhancement of parasitic reactions with 

rising current density, so that the small relative proportion of reactive ·OH produced at 

each i remains almost unaltered leading to TOC-Q plots practically i-independent. 

 

 
(8) 

 (9) 

 (10) 
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Figure 6 a). Effect of i on the decay of the relative TOC concentration as a function of 

time for the BDD electrode. Solid points represent the reactor without membrane and 

empty points the membrane reactor.  

 

 
Figure 6 b). Effect of i on the decay of the relative of the relative TOC concentration as 

a function of the applied charge per unit volume of electrolyzed solution for the BDD 

electrode. Solid points represent the reactor without membrane and empty points the 

membrane reactor. 
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Figure 7 a). Effect of i on the decay of the relative TOC concentration as a function of 

time for the ceramic electrode. Solid points represent the reactor without membrane 

and empty points the membrane reactor.  
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Figure 7 b). Effect of i on the decay of the relative of the relative TOC concentration as 

a function of the applied charge per unit volume of electrolyzed solution for the 

ceramic electrode. Solid points represent the reactor without membrane and empty 

points the membrane reactor.  
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It is inferred that the mineralization velocity is always lower than that observed for the 

NOR degradation under the same experimental conditions, being this difference lower 

as the applied current increases. The extend of the NOR mineralization (presented 

in Equation (1),reflects the effect of both processes: the mineralization and the NOR 

degradation degree. The effect of the applied current density on for the BDD and the 

ceramic electrodes is presented in Figures 8 a) and b), respectively, when using the 

divided reactor. As observed for the BDD anode, rises with the electrolysis time and 

then remains practically constant for an electrolysis time between 120 minutes and 

180 minutes since the NOR has been removed and the mineralization of the 

intermediates products of the oxidation has more weight. Besides that, the extend of 

the NOR mineralization (increases with the applied current since higher values of i 

promotes the ·OH generation which are available to react with NOR and with all the 

intermediate products formed, producing its direct mineralization. In the case of the 

ceramic electrode, (Figure 8 b)), although the values of  obtained are lower due to 

lowest mineralization degree obtained for this electrode, the trend of  with time and 

applied current observed is similar to that observed for the BDD.   

 

For both anodes under study, the presence of the membrane prevents the 

intermediate products produced by the NOR oxidation from being reduced on the 

cathode. This fact produces higher values of in the divided reactor than in the 

undivided one (not shown). On the other hand, comparing Figures 8 a) and b) is 

observed that greater values of  are obtained using the BDD electrode in the divided 

reactor. As mentioned previously, the greater efficiency of the BDD anode is due to the 

very weak electrode-·OH interaction, being more ·OH available to react with NOR. The 

differences observed between both materials are similar to those found by other 

authors when comparing the BDD with other electrode materials [34,36,38,43,44]. 
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Figure 8 a). Effect of i on the extend of the NOR mineralization (for the BDD 

electrode in the divided reactor. 
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Figure 8 b). Effect of i on the extend of the NOR mineralization (for the ceramic 

electrode in the divided reactor. 
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Figures 9 a) and b) show the effect of the applied current density on the mineralization 

current efficiency (MCE), calculated using Equation (2), for the BDD and the ceramic 

electrodes, respectively. For both electrodes and reactors, the higher values of MCE 

are obtained at the beginning of the electrolysis process which indicates a rapid 

conversion of the intermediate products into CO2 during the first stages of the process, 

due to the ·OH radicals generated. MCE decreases with time and low values are 

obtained at the end of the experiments due to the small TOC concentration. The 

diminution of MCE with time could be related to the formation of intermediate 

products more difficult to be oxidized by the ·OH than the initial compound, such as 

carboxylic acids, or with the mass transfer limitations [34,35].  

 

In the case of the BDD electrode, the average mineralization current efficiency values 

in the undivided reactor were 7.8%, 3.9% and 2.4% for the corresponding current 

densities of 33, 50 and 83 mA·cm-2, and 12.7%, 9.5% and 7.8% for the same current 

densities in the case of the divided reactor. For the ceramic electrode, these values 

were 3.2%, 1.8% and 3.4% in the undivided reactor, and 6.4%, 5.6% and 4.5% in the 

divided one. As observed, this parameter decreases with i, being this effect more acute 

for the BDD anode, which may be due to the lower amount of ·OH present in solution, 

since this species could be rapidly transformed into O2, reaction (8), dimerized through 

reaction (9), or decomposed by H2O2, reaction (10), as mentioned previously. 

 

Apart from the weak oxidants H2O2 and HO2·formed, the high oxidation power of BDD 
favors the production of other weak oxidizing species such as peroxodisulphate ions 
and ozone, reported in reactions (11) and (12) [21,34,39]. These weak oxidizing agents 
can also contribute to degrade the organic matter. This phenomenon could also 
explain the loss of proportionality of the velocity constant (kapp) with i observed 
previously in Figure 4, since there are other species capable of reacting with organics 
as current density rises.  
  

 (11) 

 (12) 
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Figure 9 a). Effect of i on the mineralization current efficiency (MCE) as a function of 

time for the BDD electrode. Solid points represent the reactor without membrane and 

empty points the membrane reactor.  
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Figure 9 b). Effect of i on the mineralization current efficiency (MCE) as a function of 

time for the ceramic electrode. Solid points represent the reactor without membrane 

and empty points the membrane reactor.  
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Comparing both Figures 9 a) and b), it is inferred the beneficial effect of the 

membrane, since for the same applied current MCE is higher in the divided reactor for 

both electrodes. Although these values are low, they are typical of electrochemical 

oxidation processes of organic compounds with low TOC content [45].  

 

The main drawback of the membrane is the associated increase of the ohmic drop that 

produces an increase of the energy consumption, however, its presence reduces the 

parasite currents, since it avoids the formation of redox couples involving species that 

after oxidization at the anode could be reduced at the cathode. This positive effect is 

higher as the current increases. Similar results are obtained by other authors [3,46].  
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4. Conclusion 

 

Two different types of electrodes have been studied for the electrochemical oxidation 

of Norfloxacin (NOR) in an electrochemical reactor in the presence and absence of an 

ion exchange membrane. The electrochemistry of the oxidation process strongly 

depends on the anode type: the Sb-doped SnO2 ceramic anode has lower oxidation 

power with lower values of TOC removal, while BDD acting as a typical anode with high 

oxidation power mineralizes the organic content to CO2. In spite of this, the results 

obtained in this work demonstrate that the electrochemical oxidation of NOR is an 

attractive method using both types of anodes, especially in an electromembrane 

reactor.  

 

The use of the membrane to separate the anodic and cathodic compartments is highly 

favorable as it enhances the anodic reaction kinetics and improves the current 

efficiency by hampering the occurrence of parasite redox couples. This leads to an 

improvement of the NOR degradation, the degree of mineralization and the 

consequent mineralization current eficiency (MCE) that compensate the increase of 

the ohmic drop introduced by the membrane.  
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