Predicting the internal model of a robotic system from its morphology
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Abstract

The estimation of the internal model of a robotic system results from the interaction of its morphology, sensors and
actuators, with a particular environment. Model learning techniques, based on supervised machine learning, are
widespread for determining the internal model. An important limitation of such approaches is that once a model has
been learnt, it does not behave properly when the robot morphology is changed. From this it follows that there must
exist a relationship between them. We propose a model for this correlation between the morphology and the internal
model parameters, so that a new internal model can be predicted when the morphological parameters are modified.
Different neural network architectures are proposed to address this high dimensional regression problem. A case study
is analyzed in detail to illustrate and evaluate the performance of the approach, namely, a pan-tilt robot head executing
saccadic movements. The best results are obtained for an architecture with parallel neural networks. Our results
can be instrumental in state-of-the-art trends such as self-reconfigurable robots, reproducible research, cyber-physical
robotic systems or cloud robotics, in which internal models would available as shared knowledge, so that robots with

different morphologies can readily exhibit a particular behavior in a given environment.
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1. Introduction

A robot system interacting with a particular environ-
ment is characterized by its morphology and internal
model. The morphology could be considered as a rep-
resentation of the physical properties of the robotic sys-
tem. Most of these properties can be measured. In turn,
the internal model represents the interaction between
the robot system and the environment. Different re-
search areas within Robotics have been established that
differ in the way in which the relations among these
three elements are handled. Thus, in some cases, the
morphology of a robot is determined by its interac-
tion with the environment [1], whereas in other cases,
the simulation of the environment and incomplete self-
knowledge models the robot behavior [2]. A third per-
spective estimates the internal model from the interac-
tion of a particular kind of robot with the environment.
These model learning approaches typically consider ex-
clusively the relationships between states and actions,
and the information about the states and actions of the
past, present and even the expected future is needed to
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model the robot behavior. The process of learning is a
regression problem where the training samples are ob-
tained from the state and controls of the plant along time
[3]. Internal-model-based control theory is well estab-
lished, but internal models are typically expressed as
mathematical models of the plant, normally by means
of a set of differential equations [4].

While classical robotics relies on those manually gen-
erated models, an autonomous cognitive robot needs to
automatically generate internal models based on infor-
mation extracted from data streams accessible to the
robot from the environment [5]. From an operational
point of view, there are two approaches to deal with the
adaptation of the robot internal model: adaptive control
and model learning. Whereas the former uses on-line
parameter identification [6], the latter uses supervised
learning. In our research, we adopt the model learn-
ing approach because it makes no assumption about the
structure of the model and includes all phenomena in a
general function built out of experimental data.

A relationship always exists between the internal
model and the morphology, and they are inseparable
from each other because both affect how information
is processed in the robotic system [7]. The first aim
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of this article is precisely to propose a model to learn
the relationship between the internal and morphological
parameters of a robotic system (section 2). To achieve
this goal, we change the point of view of the problem,
focusing on the environment, because robots need to ap-
proximate the model of the environment to develop their
behaviors. Thus, instead of the problem of one robot up-
dating their internal model according to the changes of
the environment, we look at the problem as one envi-
ronment interacting with many robots with their known
morphology. After learning the internal model, its rela-
tionship with the morphology can be estimated. Since
this relationship is unknown, we propose an approach
based on neural networks to learn it. This kind of meth-
ods are recognized to solve problems when a complete
formulation is not known or a mathematical representa-
tion is not explicitly available [8].

The ability to predict the internal model of a robot
from its morphology has a great interest in the current
state of the art in robotics research and applications.
So-called morphofunctional machines can change their
functionality by modifying their morphology and some
modular self-reconfigurable robots can morph [7] . The
rationale is that much of the functionality of a robot is
due to its particular morphology, and by altering it de-
pending on the task, its performance, adaptivity and ver-
satility, will substantially improve.

In the last decade there has been a growing concern
in the community regarding how progress in robotics
research has been hampered due to differences in hard-
ware that make difficult to compare alternative ap-
proaches, apply benchmarks, or replicate results [9].
The problem is that robots with a similar design still
have differences in their morphological parameters. A
possible solution is to make knowledge transferable to
different embodiments or morfologies. For instance, Fe-
lip et al. [10] proposed a methodology based on ab-
stract state machines that are automatically translated
to embodiment-specific models. Getting the internal
model directly from the morphology will contribute to
progress in this direction.

Arguably, our research can have a high potential for
impact in the 4th industrial revolution, the so-called In-
dustry 4.0. In this context, a robot is no longer regarded
as a standalone machine, but rather as a networked Cy-
ber Physical System [11] [12] endowed with interop-
erability, i.e., the ability to connect and communicate
with other devices via the Internet [13]. In this sense,
the rationale of so-called Cloud Robotics [14][15] is that
instead of trying to increase the performance and func-
tionality of isolated robot systems, knowledge is reused
through the shared memory of multiple robots. Endeav-

ours such as RoboEarth [16] collect, store, and share
data independent of specific robot hardware. However,
for this to be fully operational, internal models should
be available on-line so that different robots can exhibit
the same behavior in a given environment.

Our second goal is to verify how the modeled rela-
tionship can be learned in a real problem. For this, a
case study is presented in section 3; namely, a pan-tilt
robot head executing saccadic movements. As a result,
we remark that learning the relationship between the in-
ternal model and the morphology is a high dimensional
regression problem for the proposed case study. For
managing this machine learning problem, three types
of neural networks are proposed in section 4. The re-
sults of learning the internal model from the morpho-
logical parameters by using the proposed networks are
described in section 5, along with a comparative study,
and followed by a final discussion and conclusions.
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Figure 1: Schema showing the information fluxes and transformations
among the different system components and the environment.

2. Model description

2.1. The relationship between morphological and inter-
nal model parameters

The proposed methodology in this article, considers
a robotic system (i) immersed in a particular and stable
environment (Figure 1). From the robot point of view,
its sensors transform the data flux (E,) from the envi-
ronment and generate an input (X;) for the robot inter-
nal model. This one processes the inputs and generates
the outputs (Y;) to the robot actuators which modify the
state of the environment by using an output data flux



(E,) in some way. The flux E, only depends on the en-
vironment state, however the X; input depends on the
robot morphology (generally on the sensor parameters
(FE‘Y) ) and E,. This input flux is processed by the in-
ternal model (f) which takes into account the internal
model parameters l"?p ) = {yl(.ﬁ),yf”;), ""7’5,[1?}’ where k is
the number of internal parameters for (i) system. The
function f embodies everything there is to know about
the relationship X; and Y; through the internal model
parameters. Finally, the output flux that modifies the
environment will be a function of the parameters of the
robot actuators (FE”)). The set I; = {l"gs) U FEP U 1"5“)}
represents the parameters of the robotic system, both
morphological and those of the internal model. The set
" =Y ur®) = (795, ...7} contains the
morphological parameters of the system, and 4 is the
total number of sensor and actuator parameters.

Now, the point of view is changed to focus on the en-
vironment. The input flux to the environment will be the
output flux of the internal model (Y;). From the environ-
ment point of view the relationship (e) between Y; and
X; depends only on the morphological parameters of the
system (1"5’")) and X;. Whereas from the system point of
view, the relationship between Y; and X; is only a func-
tion of the internal model parameters (f (I" f.p ), X;)). For
a suitable interaction with the environment, the internal
model (f) must be an approximation of the real model of
the environment (e). The correlation between the mor-
phological and internal model parameters is given by
the following functional relationships (figure 1):

I = g (M

This statement will be true if the internal model is
properly learned and the morphological parameters sat-
isfy:
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This equation (2) defines the notion of morphological
parameters in our formalism, in the sense that they must
accomplish the condition that they are independent of
the input and output data fluxes from and to the envi-
ronment for system (i). For example, the focal length of
the camera is considered as a morphological parameter
if its value does not vary with the input information; i.e.,
it is not in autofocus mode.

In general, the relationship defined by function f, is
estimated using the inputs (X;) and outputs (Y;) of the
system, and the g transformation is embodied in the en-
vironment data flux transformations. The inputs X; and

outputs Y; are represented by a sequential set of vec-
tors X; = {X;1,X;2, ., Xiw} and Y; = {y; 1, ¥i05 0 ¥i}
where u is the number of samples (D; = {X;, Y;}). We
assume that each pair of components of 9; are indepen-
dent measures of the system. In model learning frame-
works, the optimal model structure should be obtained
from training data [5], and the model can be fitted into
the following function:

Y= X T + e ST = ¢X)'T ()

From a probabilistic point of view, f (X,-,l"g” )) can be
considered as a conditional expectation E(Y; | Xj),
therefore ¢; is an expectational error term that can be
expressed as ¢ = Y; — E(Y;|X)).

The model is defined by the value of the internal
model parameters FE” ). Due to the independence of the

measures in D;, the likelihood function for I“Ep ) is:
1 u
LY 1 D) = = > log(Di ITY) (4
u s=1

Maximizing the function Lu(r?” | D;), we obtain the
maximum likelihood estimator (MLE) for l"f"’ ) as:

" € argmax £,(T" | D)) >
l—fﬂ)

There exist many optimization procedures to solve
this equation (5). The above definition is not complete
because there is no guarantee that such a maximum ex-
ists or, when it does exist, it is unique. That is, the pro-
posed system is not able to properly learn the environ-
ment model. Depending on the similarity between the
real model of the environment and the model proposed
by equation (3), this statement will be true. We suppose
all proposed systems are able to learn the environment
model. As a result of equation (5), two properties are
satisfied: first, MLE for Fl(.p ) is consistent, that is, when
u is large enough, the estimator lA"l(.p )
ability to T'":

converges in prob-

lim p (| P - > 5) -0 (6)
Consequently, the value of lA"l(.p ) can be considered con-
stant when u is large enough. That is, there exists a
unique set of optimum parameters IA"EP ), that leads to
the best approximation of the true function by a cer-
tain model. Second, the maximum likelihood estimator
is asymptotically normal. That is, as u becomes large,
IA“E" ) converges in a multivariate normal random variable
whose variance is a diagonal matrix. The asymptotic



normality of the maximum likelihood estimator is ex-
pressed as:

Vi (F7 - 17) 5 N (0,0%,1) @

where 0—12I/IL is called the asymptotic variance of the esti-

mate fg‘” ), Asymptotic normality says that the estimator

not only converges to the unknown parameter I“E” ), but
it converges fast enough, at a rate 1/ /u.

2.2. Extracting knowledge from multiple robotic sys-
tems

If instead of only one system (i), we have v similar
systems with different morphologies', and each one has
an internal model whose properties are fitted into (3),
the result is a set of pairs ({®) rmy = {{ffp), Fgm)}\v’i €
[1,v]}. From a statistical point of view, both variables
are considered as random because we randomly define
'™ as the system morphology in a particular range of
values and each IA“gp ) was obtained from independent tri-
als. Therefore, a regression model such as (3) can be
used to learn the relationship between them:

[0 = g@™, W) + & @™, W) = 0T™)'W  (8)

As in the previous case, a maximum likelihood esti-
mator for W can be used for fitting the values of mor-
phological parameters to ['” obtained for each system.
Once the value of W is calculated, a prediction model
can be used to obtain an estimation of lA"EP ) from the spe-
cific morphological parameters. Given a new system
(j), defined by its morphological parameters, its internal
model parameters can be estimated as:

fif’)* = q>(r<j’”>)TW 9)

2.3. Machine learning problem

Our aim is to find the function g, mapping the mor-
phological parameters and the internal model parame-
ters, as defined by (1). For this, we will need v robotic
systems. Each one of these v systems will have pre-
viously interacted with the same environment in order
to obtain its set of internal model parameters I E” ). The
size of this set depends on the number of inputs and out-
puts of the robotic system and the adaptation solution
used for estimating the internal model. In turn, the size
of FE'") is related to the complexity of the system mor-
phology, and the number of morphological parameters

Same number and kind of morphological parameters but different
values

is usually substantially smaller than the number of inter-
nal model parameters FE‘” ). Finally, a machine learning
tool is needed to approximate equation (8). This tool
should be flexible and sometimes it will have to man-
age a great number of components for l"fp ) and FE’") . An
appproach based on neural networks is feasible due to
the scalability of the resulting architectures. Since typi-
cally the number of components in FE” ) is large, the high
dimension of the neural network output is a challenging
problem [17] and we need to test several approaches to
solve it.

3. Case study

In this section, we describe a robotic system that we
will use as a case study to test our framework for re-
lating the internal model parameters with the morpho-
logical parameters, and using neural networks as ma-
chine learning tools. Namely, a pan-tilt robot head ex-
ecuting saccadic movements. There are a number of
reasons that justify the selection of this particular ex-
ample. First, it is a well-known and extensively tested
case, with an abundant literature (see for instance the
work of Rucci, Edelman and Wray [18] [19] in which
they report data of relevant robotic studies using neural
network models to adapt gaze shifts to perturbations of
the robot morphology); second, the head is composed of
sensors and actuators that can be modeled analytically;
and, importantly, the proposed regression problem (8)
can be separated in two: one can be addressed with a
simple neural network, whereas the other is a high di-
mensional regression. It is to be noted that we need
many variations of the robot head; in fact, we will use a
huge amount of morphologies in order to be in a data-
rich situation, as we explain further ahead. Thus, we
can look as this case as having many different pan-tilt
heads, with different morphologies, interacting with the
same environment, and exhibiting a particular behav-
ior. The environment will be the visual space in front of
the robotic system, and the behaviour will be saccadic
movements.

3.1. The morphology of the robot system

A simulated robot head is considered as the robotic
system for testing the proposed model. This system
presents morphological parameters that correspond both
to actuators and sensors, since it is composed of two
cameras and three controlled DOF. Eight additional
prismatic joints are defined in the model so that changes
in the head morphology can be easily introduced, result-
ing in a total of eleven DOF (Figure 2). Table (1) de-
scribes the Denavit-Hartenberg model for the left-hand



side of the head, the right side has the same descrip-
tion and it shares the first joint p,. The prismatic joints
{92, 43, 94> q6}iesr and {q2, g3, qa, ge}rign: define the ge-
ometry of the head and do not modify their values while
the head is executing a task. The values of these eight
parameters (1"5“) € R?®) describe the robot morphology
in terms of head actuators. Since the aim of this case
study is to check whether or not the proposed approach
is feasible as a tool for estimating the system internal
mode, we assume, in order to avoid interferences, that
the joint movements are precise enough so that noise
does not need to be added to the model.

Figure 2: Example of the head model. In this schema, there are
two overlapping kinematic chains. The three revolute joints are rep-
resented by cylinders. Joint number one is shared by both chains.
Prismatic joints, that modify the head morphology, are represented by
parallelepipeds.

The system is completed with two camera sensors,
and the pinhole model is taken to simulate their behav-
ior. Each camera can be described by using at least four
parameters: focal length (f), pixel size (s) (supposed
squared), width (w) and height (%) of the images. There-
fore, the parameters {f,s,,w, h}ir and {f, s,, w, h},ign
are regarded as the morphological sensor parameters
(l"fs) € R3 ). Thus, there are a total of 16 morpho-
logical parameters for each robotic head configuration
" e R'0).

3.2. The environment

The environment is a limited physical space in front
of the pan-tilt head where a virtual object is randomly
placed within the field of view of the two cameras. The

Table 1: Denavit-Hartenberg model of the left side of the head. p, p
are the revolute joints for the pan and common tilt motors. The model
for the right-hand side is the same, and it shares the p; joint

joint  p(rad) r(m) a(m) a(rad) Offset  Type

q1 Pt 0 0 /2 /2 R
17 0 0 0 -m/2 0 P
q3 /2 0.055 0 /2 0 P
q4 /2 0.055 0 /2 0 P
qs Pp 0 0 /2 T R
g 0 0.01 0 /2 0 P

size of this space is between 0.5m and 2.5m. This ob-
ject is static while the head is moving. The error in the
stimulus position is ignored, since it is out of the scope
of this work.

3.3. The behavior of the robotic system

The system will exhibit a certain behavior as a result
of its interaction with the environment. Varied different
types of tasks or behaviors could be considered. One
source of inspiration is biology. Since the robotic head
is endowed with two cameras, and the environment de-
fines a visual stimulus, there exists a natural similarity
with the movements of eyes in some animals. A number
of real robotic systems exist, that fit into the proposed
morphology [18] [19] and some are inspired by the neu-
roscience of visuomotor coordination [20]. Thus, in this
case study, the proposed robot head has to move its cam-
eras in a way corresponding to the saccadic movements
of the eyes. A saccade is a fast eye movement that shifts
the gaze towards a target point of interest; it can also be
used to scan the visual space [21]. The retinotopic posi-
tion of the stimulus (i.e., its position on the image cap-
tured by the camera) has to be converted into a shift of
the eye (camera) position. The saccadic gaze shifts are
planned in 3D. Therefore, from the robot point of view,
generating a saccade requires to solve an inverse con-
trol problem. In this saccadic behavior, the visual posi-
tion of the stimulus in relation to a target position of the
eyes is open loop with respect to vision. Learning this
transformation requires to learn the inverse kinematic
model of the robot head. For doing this, we use feed-
back error learning (FEL) [22]. This model consists of
two inverse controllers: a fixed feedback controller (B)
slowly drives the system toward the target and provides
a learning cue to a second adaptive controller (C). This
last one yields an inverse model of the robot head which
is used to rectify the output of B (Figure 3). The per-
formance of the system is evaluated by the visual error
after a saccadic movement. The visual stimulus should



be centered in the image after a saccade, but the approx-
imation P~'(t’) ~ Bt’ introduces an error in the model
(see Figure 3), even though the noise in the visual stim-
ulus is not considered. Improving the execution of sac-
cadic movements is not the goal of this work, but rather
we use this specific behavior as a test case to illustrate
and validate our model.

Robotic
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Figure 3: FEL. The visual position of the stimulus (t) and the current
eye position e are converted into a motor command Ae by summing
up the contributions of a fixed element B and adaptive element Cy.
Changing the C; state requires a motor error P~ '(t') ~ Bt'.

The input of the controller is the visual target (t) and
the current eye position (e), while the output is the sac-
cade command (Ae). The robot head actuators receive
this command and they move the head accordingly. Af-
ter the movement, the inverse controller C; is adapted
using the new visual position of the stimulus t” con-
verted into a motor error. Using this approach, the adap-
tive filter learns to compensate the poor response of the
fixed feedback control (B).

An a priori estimation of B is needed to convert the
visual target into a movement of the eyes. The proce-
dure to estimate the fixed controller is based on the fix-
ation of the stimulus in the center of the camera images.
Afterwards, motor babbling is generated [23]. Under
these conditions, the variation of the visual target po-
sition (At = t) in the images can be correlated with
the motor command (Ae). Therefore, if a set of b pairs
{t;, Ae;} = {{t;j, Ae; ;} Vj € [1, b]} for a particular robotic
system (i) is generated by motor babbling, B; can be di-
rectly obtained from least squares regression:

B; = At (tt) (10)

When Cy is learning, the mean visual error of a sac-
cade movement decreases until the system reaches a
point in which it learns so slowly that the adaptive con-
troller barely changes. A general approach to learn the
proposed Cy is to use a neural network with on-line
adaptation. In the first attempts of the training process,
the neural network used for representing C; controller
gives a poor performance because the weights of the

neural network (6,) are untrained. After a number of in-
teractions with the environment, the visual error should
be reduced and the weights of the neural network (6;)
barely change at this point. These weights store the in-
formation from the interaction of the system with the
environment. Both the fixed controller parameters B;
and the adaptive controller parameters (the neural net-
work weights 6;) represent the internal model of the
robotic system in this example IA“I(.” ) = {B;,6;}.

3.4. The dataset creation

For estimating the relationship between the morpho-
logical I'™ and the internal model I'”) parameters de-
fined by (8), we have proposed a particular robot mor-
phology which can properly be changed to generate
many different robotic heads, and all of them exhibit the
same behavior interacting with the same environment.

3.4.1. Generating multiple robot heads

A number of different setups of robot heads
(v=44271) have been randomly simulated with the mor-
phological parameters described in the previous section.
For avoiding unfeasible configurations, a reasonable in-
terval is defined for each parameter. The head morphol-
ogy is generated by randomly selecting a parameter for
the left side within the interval shown in the first col-
umn of Table (2), and then the value for the correspond-
ing parameter for the right side is calculated by adding a
random value within the range in the second column of
the table. For creating the dataset some morphological
parameters were scaled to avoid errors in the learning
algorithm, e.g. the height and the width for the camera
images were converted to decimeters using pixel size. In
this way, all morphological values had the same magni-
tude.

3.4.2. Learning the robot behavior

Learning the fixed controller. Using the motor babbling
procedure described in section 3.3, we generate a set
of b pairs {t;,Ae;}Vj € [1,b]. In this case, t; is the
stimulus image position in both cameras after the head
movement. Due to the fact that the stimulus is in the
center of both images before the onset of the move-
ment, t; represents the visual variation in the stimulus
position (t; € R*). Furthermore, each head has three
joints to control, then its joint space has three dimen-
sions (Ae; € R?). According to equation (10), ma-
trix B; has dimensions 3 x 4. B; is computed for all
v head setups. Parameter b has to be selected so that
a good estimation of B; is obtained, but trying to re-
duce the computation time. A number of head setups



Table 2: Morphological parameters to generate the robotic system
dataset.

Prismatic joints (cm)

Left side Right side

I, = g € [-0.054,0.054]
I, = g3 €10,0.07]

I7s = g4 € [-0.02,0.054]
I, = gs €[0,0.01]

r{fz =q = rf] +10,0.01]
r§f4 =q; = rf3 +1[0.035,0.07]
[fg = g4 = 75 +10,0.02]
l—‘fg =qe6 = rlp7 + [0,001]

Cameras parameters: F(Px); s(m/px);w(px);h(px)

Left camera Right camera

Iy = fi € [340,1920] 7\ = fr = T7y +10,200]
7, =s5€[3.1076,7.107%] 7, =5 €[3.107,7.1076]
I7)5 = hy € [340,1920] 7, = hy =T} 5 +10,200]
7 s = wy € [340,1920] 7 =wr=T7 < +1[0,200]

Py 7 T Py 7 T
if 1153 > U yso swap(ly 5,15 15) i1y, > Ty, swapdy 1, T )

(1000) were chosen randomly. The values in B; were es-
timated by varying the number of iterations (b) for the
selected robot heads. Afterwards, the calculated B; is
used to predict the visual stimulus position after a move-
ment. The mean square error between the real stimulus
position variation in the images and the predicted posi-
tion shift can be considered as a quality measure for B;.
Figure (4) illustrates the high stability of the B; estima-
tion after some 500 iterations. Therefore, we selected a
value for b greater than 500 (b = 600).

Mean square error of Ae=Bt estimation
+10° depending on iteration number

mse
= M w = w (=)} ~l oo

0 200 400 600 800 1000
iterations

Figure 4: Mean square error for B; estimation with 1000 robot head
setups versus the number of iterations

Learning the adaptive controller. We trained on-line
every head setup to learn their adaptive controllers.
A neural network with a single hidden layer was
used, keeping the same architecture for all the setups.
Namely, an input layer with seven neurons: four neu-
rons for stimulus position in the image (t) and three
for the head motor commands (e); the output layer has
three neurons according to the control command vari-
ations (Ae). Gaussian activations using random sparse

features [24] are used for the hidden layer. The random-
ness of these features allows us to use this set of features
for all neural networks. In this way, these features are
considered as a component of the neural network archi-
tecture. A unique set of random sparse features is gener-
ated (€2,,) and they are used for the training and valida-
tion processes. Incremental sparse spectrum gaussian
process regression (I-SSGPR) [25] is used for adapt-
ing the weights of the neural network. The parame-
ters of the training algorithm have been previously tuned
[25]: variance of the model (0',% = 0.1), signal variance
(0'?. = 1.0) and number of projections (D=300), there-

fore Q,, € R, Each neural network used for learning
the adaptive controller of each head setup is initialized
using random weights (9?). As indicated in [25], a co-
variance matrix (A) and a vector (b) are needed to train
the neural network using a gaussian process (algorithm
1 in [25]). The weights of the networks are adapted
using (A) and (b). Once the network is trained, these
two elements are not used to estimate the network out-
put since the mapping between the inputs and outputs is
given by the trained weights 6; only, regardless of how
the weights were learned.

For training, a virtual object is placed in the environ-
ment, the cameras of the i robot head acquire the images
and the visual position of the object is estimated. Using
the current output of the neural network (Cy;) and the
value provided by the fixed controller, previously cal-
culated (B;), an incremental control action for the head
motors is generated. The head moves according with
these control commands and the cameras acquire the
new visual stimulus position on the images. The neural
network is adapted using the visual error in this position
[21]. After a number of iterations, the neural network
weights converge to stable values and the visual error is
stabilized. To ensure convergence is reached, and con-
sidering the time consumption of the training process,
each robot head is trained for 1000 iterations. At this
point, the resulting weights of each neural network rep-
resenting an adaptive controller are considered as part of
the internal model parameters, since they partially de-
termine the behavior of the system. Each trained weight
matrix is represented by 6; € R®®3, This training pro-
cess has been repeated three times for each head setup
and the final §; values are taken as the mean of the three
trials.

After the training process, the estimated C; and B are
used for executing saccadic movements. In particular,
to estimate the error in the training process, each robot
head setup was tested using 500 random saccades. Fig-
ure (5) shows the probability density function (pdf) for



the visual mean error based on these tests.
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Figure 5: Visual error probability density functions (pdf) for the
44271 trained head setups using the estimated B and Cy for each one.
The error for the two cameras and the average are shown. The con-
sidered measure of the final visual error is the mean visual distance in
pixels between the stimulus position and the gaze point, for each cam-
era. Thus, these three curves represent the visual error after training
for the proposed set of morphologies. These pdfs fit fairly well into a
log-normal distribution. The estimation of their parameters expressed
in pixels are: for the mean (1 = 4.6,00 = 2.26); left camera (u = 4.3,
o = 2.08); right camera (u = 4.9 and o = 2.4).

Finally, a huge dataset composed of 44271 vectors
and matrices has been created after learning the robot
behavior. The structure of the dataset is: T’ f,m) €
RIS, T = (B; e R¥4,6, e R} | j e [1,v = 44271].
The challenge is to solve the regression problem formu-
lated in (8). Fortunately, the problem can be decom-
posed into two parts for the proposed case study: on the
one hand B = g1 @

B = g, (I, W) + &80 (T, W1) = @, (1) W,
(11)
and on the other hand 8 = g, (I"™):

0=28 (l"(m), W2) +62382 (F(m), Wz) =, (F(m))T W,
(12)

4. Proposed neural networks

4.1. Solving the regression problem for the fixed con-
troller

The regression problem in equation (11) can be
solved using a basic single layer neural network. The
input layer contains 16 neurons corresponding to the 16
morphological parameters. In turn, there are 12 neurons
in the output for 3x4 B parameters.

4.2. Solving the regression problem for the adaptive
controller

Solving equation (12) can be hard due to the curse
of dimensionality, with 16 input neurons and 1800 out-
put neurons. When the dimensionality of the inputs is
increased, the number of training samples needs to be
increased exponentially for a nonparametric model re-
gression [26]. The next sections present three neural
network architectures for solving the problem.

4.2.1. The single layer feedforward neural network

Feedforward neural networks are the most
widespread tool for solving regression problems.
We propose a single layer network with 16 inputs units
corresponding to the morphological parameters (™),
1800 units in the output layer related to the internal
model parameters (¢) and a variable number of units in
the hidden layer {500, 1000,2000}. The neurons in the
hidden layer use the hyperbolic tangent as nonlinear
function whereas the output layer is linear (Figure 6).
The algorithm to train the network is scaled conjugate
gradient backprogation (SCG) [27].

Figure 6: Schema of the single layer feedforward neural network pro-
posed for learning the relation between the weights of the adaptive
controller and the morphological parameters. The value / is the num-
ber of units in the hidden layer

4.2.2. The deep neural network

We propose a deep neural network architecture com-
bining two stacks of autoencoders. An autoencoder
(AE) is a simple learning circuit which aims to trans-
form inputs into outputs with the least possible amount
of distortion [28]. The autoencoder neural network is
an unsupervised learning algorithm which tries to learn
an approximation of the identity function subjected to
several constraints, such as limiting the number of the
hidden units. An autoencoder has two parts, a decoder
and an encoder. The output of the encoder is a represen-
tation of the input, whereas the output of the decoder is
the input reconstruction from the encoder representation
[29]. The autoencoders have been tested and compared
with other classical methods, such as principal compo-
nent analysis (PCA), to reduce the data dimensionality
[30].



Depending on the number of hidden units of the au-
toencoder in relation with the number of neurons in the
input layer, two kind of the autoencoders can be consid-
ered. In the contractive autoencoders (CAE), the num-
ber of neurons in the hidden layer is smaller than the
number of neurons in the input layer; therefore, the au-
toencoder is forced to learn a short representation of the
input. In turn, when the input layer has less neurons
than the hidden layer and a sparsity constraint is im-
posed, the autoencoder will still discover an interesting
structure in the data [31][32]. This kind of autoencoder
is called sparse autoencoder (SAE).

A stack of autoencoders is built by chaining the hid-
den layer activations of one autoencoder as inputs for
the next one [33]. In this way, the autoencoders gen-
erate a hierarchical stack. One of these stacked of au-
toencoders is composed by CAEs and the other one is
built using SAEs. Both are linked with each other using
two single feedforward neural networks (Figure 7). The
underlying idea to propose this architecture is to take
advantage of the properties of both classes of autoen-
coders for compensating the huge difference between
the inputs and outputs. Therefore, the morphological
parameters (I'™) are the inputs of the sparse autoen-
coder stack. Since these autoencoders expand the infor-
mation provided by the morphological parameters, the
condition (u; > u) is satisfied. In turn, the adaptive
controller parameters (6) are the inputs of the stack of
contractive autoencoders. In this case, the compression
of the information is intended, therefore u, < uy (see
Fig. 7).

We have tested many combinations of these network
architectures. One of their advantages is the possibil-
ity to train each level of the network separately. How-
ever, our conclusion is that if the number of layers is
large for the contractive autoencoders, the hidden layer
activations are saturated whenever their size is smaller.
In turn, the activation of the hidden layers of the stack
of sparse autoencoders tend to zero when the number
of layers is greater. To address this problem, the best
configuration for the network layout is to use two con-
tractive autoencoders and two sparse autoencoders. The
activation function of the hidden layer for all autoen-
coders is the logistic function and the output function is
linear.

The last activation layer of the stack of sparse au-
toencoders is the input of a single feedforward neural
network with #} units in its hidden layer. The output of
this neural network is the last layer of the stack of con-
tractive autoencoders. The inverse single feedforward
neural network can be trained too. These single net-
works have a hyperbolic tangent as activation function.

Both the autoencoders and the single neural networks
use the SCG algorithm for training.
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Figure 7: The proposed deep neural network architecture. It is com-
posed of two stacks of autoencoders connected by two feedforward
neural networks. The parameters {{uo, u1, uz}, {ug, u, uj}, {ur, up }}
are the number of neurons in each layer.

4.2.3. The parallel feedforward neural network

Thus far, the properties of [”) described in section
2.1 have not been considered. As stated in equation (7),
['” tends to a multivariate normal distribution with a
diagonal matrix as variance. Therefore, each compo-
nent of I'” can be viewed as an independent, normally
distributed variable, and this applies also to the compo-
nents of & = {¥1,¥2, - ¥i}. At this point, the problem of
discovering the relationship between ' and I'? is de-
composed into many small problems which have easier
solutions. Formally, equation (12) is decomposed into
many simpler equations:

F1=e1(T™, wy) + &1;e1 T, ) =¥ T™) w,

72=€2(F,(-m)7 w2) + E236(T™, w2)=Y2(I'"™) w, (13)

e=ex (T, wi) + & ex (T, W)=Y [T™)T wy

In this particular case, for each trained robotic system
i, a 6; has been obtained, therefore ¥;, is an element of
the matrix 6; where i € [1,44271],¢ € [1,1800]. Fig-
ure 8 shows the proposed decomposition in a graphical
way. Each of these equations is dealt with by using a
single layer feedforward neural network. Now, 1800
neural networks with 16 inputs and one output can be
used, instead of one network with 16 inputs and 1800
outputs. These neural networks have to be trained in
parallel since they share the same input but have differ-
ent outputs. In this case, for all networks the activation
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Figure 8: Proposed regression problem decomposition into many
straightforward regressions.

function in the hidden layer is a hyperbolic tangent and
the unique output corresponds to a weight of the adap-
tive controller. The input layer is shared by all networks
and has 16 units. The architecture of each neural net-
work corresponds to the one shown in figure (6) but with
only one neuron in the output layer.

5. Experimental results

Once the case study was defined and the dataset was
created, the three proposed approaches, based on dif-
ferent neural networks, were tested. The purpose is to
evaluate their performance as methods for learning the
relationship between the internal model and the mor-
phological parameters. The selection of the best neu-
ral network model to solve this learning problem can
be treated as a model selection problem, noting that the
proposed architectures are really different. Two strate-
gies have been applied to the three approaches. The first
strategy is based on using a sequential test. As we al-
ready mentioned, we used a huge amount of morpholo-
gies for training, in order to be in a data-rich situation.
Therefore, the best approach to model selection accord-
ing to Hastie et al. [34] is to divide the dataset in three
parts: a training set (26500 head setups), a validation set
(4500 head setups) and a test set (13271 head setups).
This last set is used for assessment of the generalization
error of the final chosen model. This procedure has been
repeated three times. To compare the different models,
the average of the mean square error (MSE) of each trial
for each neural network is estimated.

The second strategy is based on information criteria.
Whereas the network complexity is not explicitly con-
sidered in the case of sequential tests, the information
criteria addresses the model complexity by means of
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generalized degrees of freedom (GDF) [35]. This sec-
ond strategy is usually applied to compare the different
approaches, only when the final network architecture for
each approach has been decided.

Mean square error of fixed controller estimation

«103 depending on number of units in the hidden layer
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Figure 9: Mean square error obtained by different neural network hid-
den layer setups. The red line represents the standard deviation for
three repetitions of the training

5.1. Learning the correlation between morphological
and internal model parameters

5.1.1. Learning the fixed controller

In section 4.1 we defined the neural network for es-
timating the fixed controller. The main parameter for
tunning is the number of neurons in the hidden layer.
Several variations of the same neural network schema
have been trained by changing the number of hidden
layer units. The optimization algorithm for training is
SCG and the hidden units have hyperbolic tangent as ac-
tivation function. The training process and its posterior
test have been repeated three times. Figure (9) shows
the obtained results for the mean and standard deviation
of the mean square error for B estimation after training.
From these results, the best performance for this dataset
is reached using 20 neurons in the hidden layer. There-
fore, the best training performance for the estimation of
Bis: MSE = (0.763 + 0.043)1073%).

This selected neural network solve the regression
problem defined by equation (11).

5.1.2. Learning the adaptive controller using a single
layer feedforward neural network

In section 4.2.1, the proposed neural network archi-

tecture has been described. For tunning its performance,

different number of units in the hidden layer were tested

with the generated dataset. In particular, we considered



500, 1000 and 2000 units in the hidden layer. These
neural networks were trained three times with the val-
idation and training datasets. Once this procedure is
finished, they were tested using the test dataset for pre-
dicting 8 and solving the regression problem defined by
(12). The obtained results are shown in Figure 10. The
best performance is reached for a network configuration
with 500 neurons in the hidden layer. In this case, the
value of MSE is (1.064 + 0.034)1073.

5.1.3. Learning the adaptive controller using a deep
neural network

We tested a large number of network setups and train-
ing parameters in order to come up with the proper ar-
chitecture for the network described in section 4.2.2. Fi-
nally, we fixed the number of layers and the regulariza-
tion parameters for defining the sparse and contractive
autoencoders of each layer. In this way, three networks
setups were defined (Mirror;, Mirror, and Mirrors).
Their parameters are summarized in Tables 3 and 4. Af-
ter training, the neural networks were evaluated using
the test dataset. The best performance is achieved by
Mirror, (Fig.10). The obtained MSE value for this neu-
ral network setup is (0.484 + 0.034)1073.

Table 3: Parameters used for training each autoencoder. These are
fixed for the three network setups.

Type CAE CAE SAE SAE
L2. reg 10°° 102 10 10°°
Sparsity. reg 10®  107* 107 107°
Sparsity.prop 1072 102 107" 107!

Table 4: Distribution of the neurons in the different hidden layers of
the autoencoder stacks and the feedforward neural networks (see Fig.
7). The layers ug and ug are common to every architectures and they
have 1800 and 16 neurons respectively.

Neurons
Layer U U ur ur u u;
Mirror; 600 300 100 100 300 50
Mirror, 600 150 100 100 150 60
Mirrors 900 300 100 100 300 100

5.1.4. Learning the adaptive controller using parallel
networks

One single neural network is generated for each out-

put and they are trained sequentially. Three different

numbers of neurons in their hidden layers have been

used: 5, 10 and 20. After training, these parallel
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networks are tested using the training dataset for es-
timating the mean square error. The achieved results
are summarized in figure (10). The best result is ob-
tained for 20 units in each hidden layer. The mean
square error after three training and testing procedures
is (0.226 + 0.093)1073.

Mean square error of adaptive controller estimation weights
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Figure 10: Mean square error obtained for different neural network
setups. The red line represents the standard deviation over the three
repetitions of the training.

mip, mirror, pnnyg
MSE-10-3 1.064 + 0.034 | 0.484 +0.020 | 0.226 + 0.093
R? 0.222 0.643 0.866
AIC 1.256 0.843 0.517
Waic 0.272 0.335 0.393
GDF 2,736 3,184 3,525
P 910,300 2,377,421 649,800

Table 5: Different performance indicators for model selection are
shown with the purpose of comparing the network architectures.
(AIC) Akaike’s Information Criterion [36] and R? [37]. The values
of GDF have been computed according to [35]. P is the number of
weights in each architecture. The value of Wy;c represents the poste-
rior probability of each model according to [38].

5.2. Testing the result of predictions

The various performace indicators obtained for each
method served to compare the different methods. The
aim now is to check whether the proposed methods are
actually able to learn the relationship between the in-
ternal model and the morphological parameters. To
achieve this goal, 500 head setups were selected from
the test dataset. Each one of these robot heads is char-
acterized by its morphology, defined by I'™. Using the
proposed machine learning methods, equations (11) and



(12) are modeled to predict the internal model parame-
ters for each head setup {B;, 6;}. For estimating the fixed
controller of these 500 head setups, the network config-
uration with the best performance, as described in sec-
tion 5.1.1 (20 neurons in the hidden layer), predicts B;
from FE’") for each head. In turn, the initial adaptive con-
troller parameters are estimated for different cases:(7)
Taking their initial values randomly @®, randomly). (ii)
Using previously trained weights (with 1000 iterations)
0, trained). (iii) Employing the three described neu-
ral networks in previous sections with the best perfor-
mance for initializing the weights of the adaptive con-
troller (mlp;, Mirror, and pnnyj). In addition to the
weights to run the updating process according to [25],
the covariance matrix (A; = RZTR,) and the transforma-
tion of the input vectors (b,) are needed. We consider
that the initial matrix (Rg) used for training all the adap-
tive controllers represents the maximum covariance of
the system. From this, by is computed as: by = Rg Rob.
Each of these 500 robot heads undergo a training pro-
cess using the estimated (B, 90,} for the different five
cases. The mean visual error with respect to the num-
ber of iterations is shown in Figure 11. The standard
deviation of the visual error for the training process is
depicted in Figure 12.

Mean learning curves for 500 head setups with different initial weights

mean visual error (px)

0 50 100 150 200 250 300 350 400 450 500
iteration

Figure 11: Mean of the visual error for 500 robot head setups during
the training process using the estimations of the fixed controller and
the initialization of the adaptive controller from the morphological
parameters for different machine learning procedures

6. Discussion

6.1. Neural network selection

Different performance indicators for model selection
are shown in Table 5, with the purpose of comparing
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o(visual error) for 500 head setups with different initial weights

o(visual error) (px)
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Figure 12: Standard deviation of the visual error for 500 robot head
setups during the training process using the estimations of the fixed
controller and the initialization of the adaptive controller from the
morphological parameters for different machine learning procedures

the network architectures. From that table and Figure
10, we can conclude that the best option for learning
the relationship defined by equation (12) is the parallel
neural networks (pnn,) with 20 neurons in each hidden
layer. Even though the deep network solution (Mirror;)
is close to these results, it does not reach the same pre-
cision. The worst behavior is that of the single layer
feedforward neural network (mip;).

Comparing the three methods, and taking the best
performance as base, the MSE for Mirror, is around 2.4
times the value of pnn,,, and the MSE for mlp, is about
4.7 times the value of the best performance. mlp; is
clearly affected by the curse of dimensionality due to
the high dimension of the output.

The additional performance indicators for model se-
lection based on information criteria, that are shown
in Table 5, support the above result to the effect that
pnny, is the preferred option. Indeed, AIC (Akaike’s
Information Criterion for model selection) [34], yields
the smallest value for pnn,,. wa;c (AIC-weights) is a
normalized AIC, and represents the a posteriori likeli-
hood of a model given the set of the three network mod-
els. The highest likelihood corresponds to (pnnag). R?
backs this up too (even though it is more reliable for
linear regression). GDF (generalized degrees of free-
dom) for each model has been computed beforehand
to estimate the AIC indexes. In nonlinear regression
problems, GDF (equivalent to the number of parame-
ters in linear regression) can be used as a measure of the
complexity of a general modeling procedure [35]. Also
shown in table 5, the number of weights for each model



(P) is appreciably higher than GDF, being the lowest
value for (pnnyo) and the highest value for (mirror,).
However, the value of GDF is higher for pnny, than it
is for mirror,; this suggests a better exploitation of the
network weights in the case of pnnyg

The key to understanding this behavior is to analyze
the traits of 6, i.e. the outputs of the proposed neural
network models. 6 are the final weights of an on-line
neural network that estimates the adaptive controller for
the robot head (Cr). When the robot starts to adapt, it is
really learning the model that is defined by the environ-
ment. This knowledge is partially stored in the weights
of the on-line neural network in such a way that their
values barely change once the model has been learned.
These weights correspond to the maximum likelihood
estimator . When Cy is regarded as learned, equation
(7) is accomplished, and therefore each weight compo-
nent is probabilistically independent of the rest of them.
This is a particularity that only applies to the parallel
network model. For the other two network models the
weights are statistically related.

6.2. Learning improvement for new robot morphologies

The experiment described in section 5.2 evaluates to
what extent the different proposed neural networks im-
prove the performance of the training process. Using
equations (11) and (12), a fixed and an adaptive con-
troller are predicted for a particular morphology, and
then the adaptation process continues. In this way, if the
prediction were perfect, the adaptation process should
continue at that point. In Figure 11 the visual error is
used as a measure of the real performance of the sys-
tem.

The curve (8y randomly) represents the learning curve
when there is no previous information about the system.
Additionally, the (6 ftrained) curve represents that the
networks starts the adaptation process initializing the
adaptive controller with previously trained weights. In
this case, the visual error is stabilized after just a few it-
erations. This short updating period of the visual error is
due to the I-SSGPR algorithm that needs to update other
parameters beside the weights (e.g. the system covari-
ance matrix), which are initialized to start the training
process with the same value for all setups. The curve
(6y trained) represents that previous information about
the system is known and it is virtually as if it would con-
tinue the training at the point where it was. The more
similar a training curve is to (8 trained), the better its
performance is.

The learning curves for the three proposed methods
lie between (6y randomly) and (6 trained). Their rel-
ative performances correspond to their mean square er-
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ror as described in section 5.1. As expected, (6y pnnap)
is the most similar to (8y trained), whereas the curve
for mip, yields the worst visual error after the untrained
network case, and (6y Mirror,) is an intermediate case.
This order is confirmed when the standard deviation is
considered. In the updating process, the standard devi-
ation decreases until a constant value. Figure 12 illus-
trates how these variations are grouped; indeed, for (6
trained) it is very close to (6y pnnag), and similarly for
(6p Mirror,) and (68y mlp;). That confirms that the be-
havior of the training curves using the values predicted
by pnnyg is very similar to (6y trained), that uses the
trained weights.

7. Conclusions

A framework for predicting the internal model of a
robotic system from its morphology has been presented.
We show how, given the morphological parameters of
the system, its internal model can be estimated, as sug-
gested by equation (1), and following the hypothesis
that the internal model is an approximation of the envi-
ronment model. Moreover, if the internal model param-
eters are learned as a MLE, each one of these parameters
is statistically independent (equation (7)).

Learning the internal model of a robotic system from
its morphology can be a high-dimensional regression
problem. This was indeed the case for the particular
real example that we chose to verify how the modeled
relationship can be learned in a real problem: a pan-
tilt robot head executing saccadic movements. To ad-
dress this problem, the internal model parameters were
decomposed in two sets. The first one is a set of inter-
dependent parameters for the proposed fixed controller.
The estimation for this set was done using a single layer
feedforward neural network. The second one is an inde-
pendent set of parameters corresponding to the weights
of the adaptive controller which was implemented using
an on-line neural network with the I-SSGPR algorithm
for its adaptation. In this second case, three different
neural network architectures were proposed. Then, the
best model was selected according with different perfor-
mance indicators, such as MSE and indexes for model
selection based on information criteria. Also, an exper-
imental evaluation was conducted using the predictions
of the proposed models to improve the online-training
process for a new robotic system. Our conclusion is
that in all cases the parallel neural network had better
performance than the other two with a smaller number
of weights. The independence condition of the learned
weights (equation(7)) has proved to be essential for se-
lecting the proper architecture for the learning tool.



7.1. Potencial impact

We have illustrated our ideas with a robot head ex-
ecuting saccades, but this is just a particular example
and the possible applications of our model are count-
less. We mentioned in section 1 morphofunctional ma-
chines and self-reconfigurable robots that can modify
their morphology to change their functionality [7]. For
them, having the knowledge to rapidly generate their
updated internal models after a change in morphology
will greatly enhance their performance, adaptivity and
versatility.

Similarly, in the current trend towards benchmark-
ing and reproducible research [9], getting the internal
model directly from the morphology can significantly
contribute to effectively implement the same solutions
in robot designs that, being similar, differ in their con-
figuration parameters.

Finally, the greatest potential can be expected in the
context of Industry 4.0. and Cloud Robotics. Cyber-
Physical Robotic Systems will have access to big data
in the form of libraries of global datasets; cloud com-
puting for statistical analysis and learning; as well as
collective robot learning [15]. Given the large variety
of existing robot designs —and variations in the param-
eters of similar designs— for shared knowledge in the
Cloud to be fully operational, internal models should be
readily available there, as pre-computed datasets or as
computing service on demand, so that different robots
can actually take advantage of that knowledge and ex-
hibit a rational behavior without extensive learning. We
believe that the research presented in this paper can sig-
nificantly contribute to progress along these lines.
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