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Abstract 

The application of bulky aliphatic cations in the manufacture of moisture´s stable 

materials has triggered the development and application of 2D/3D perovskites as 

sensitizers in stable to moisture solar cells. While it is true the moisture´s stability 

increases, it is also true that the photovoltaic performance of the 2D/3D PVK material is 

severely limited owing to quantum and dielectric confinement effects. Accordingly, it is 

necessary the synthesis and deep optical characterization of materials with an adequate 

management of dielectric contrast between the layers. Here, we demonstrate the 

successful dielectric confinement tuning by the inclusion of a conjugated molecule, as 

bulky cation, in the fabrication of 2D/3D PVK material (C6H5NH3)2(CH3NH3)n-

1PbnI3n+1 where n=3 and 5. The absence of excitonic states related to n≥1 at room 

temperature, as well as the very low concentration of excitons after 1 ps for samples 

where n≥3, are a strong evidence of an excellent ability to dissociate excitons in free 

charge carriers. As consequence films with low n presenting higher stability than 

standard 3D perovskites, improve significantly their performance showing one of the 

highest short circuit current density (Jsc≈13.8) obtained to date for perovskite materials 

within the 2D limit (n<10). 

 

 
 

 

 

 

 

 

 

 



Introduction 

During the last years, hybrid organic-inorganic halide perovskites (PVK), ABX3 where 

A=methylammonium, formamidinium; B=Pb, Sn, Ge; X=Br, I are continuously making 

breakthroughs in optoelectronic devices spanning photovoltaics, light emitting, lasers 

and photodetectors owing to their unique optical and electrical properties. (1, 2) Their 

performance in perovskite solar cells (PSCs) has been exceptionally remarkable, 

solution processed devices now deliver power conversion efficiency (PCE) close to 

23%.(3) However, challenges such as stability under environmental conditions need to 

be addressed thinking in commercial application.(4, 5) 

The inclusion of bulky hydrophobic organic cations, in perovskite´s chemical 

formulation, is one of the most successful strategies followed to overcome the issue 

related to stability towards moisture. The generated material adopts a layered 

arrangement named 2D or 2D/3D PVK of general chemical formula R2R´n-1PbnX3n+1 

(R=aryl-, alkyl- cation, R´=methylammonium, formamidinium, etc; X=Cl, Br I and 

n=number of inorganic layers). This structural arrangement adopts the form of a natural 

multi quantum well structure, producing two important phenomena: 1) the excitons (or 

charge carriers) are confined to inorganic layers (the wells) owing to a very different 

band gap compared to the organic layers (the barriers); consequently, it is possible to 

see highly stable excitonic transition, with high binding energy, inclusive at room 

temperature (quantum confinement effect); and 2) a stronger difference in dielectric 

properties between the inorganic and organic layers produce a still more intense 

coulombic interaction of the exciton than systems where a less pronounced dielectric 

contrast is observed (dielectric effect). (6) The dielectric mismatch, and its effects in the 

exciton binding energy, has been described previously by Ishihara.(7, 8) From that 

study, it is possible determine that the dielectric confinement can be modulated through 

the organic cation. Several works have been reported where bulky cations have been 

successfully applied in the synthesis of layered materials, with applications in solar cells 

highly moisture´s stable.(9-11) Despite that stability of the device is improved, the poor 

photovoltaic performance of the 2D/3D PVK material confirms the disadvantages 

related to quantum and dielectric confinements effects. A quick glance at the reported 

results, it becomes evident that the principal reason should be related to the aliphatic 

nature of all the cations used. The Fig. S1 shows the chemical structure of the principal 

bulky cations used in the fabrication of solar cells. These organic molecules are 



represented by butylammonium (BA) (and propyl, not showed) iodide, (11-14) valeric 

acid derived ammonium iodide (AVA), (15) 2-iodoethylammonium iodide (EA),(16) 

phenylethylammonium bromide (17) or iodide (9, 18) and anilinium iodide.(19) 

Recently, it was demonstrated that the inclusion of polarizable guests, within crystal 

lattice of 2D materials, leads to a significant reduction of the excitons´ confinement, 

owing to a very important decrease in the exciton binding energy.(20) Analyzing the 

polarizability as key parameter to improve the photovoltaic performance through 

decreasing the exciton binding energy, the aliphatic derivatives (BA or propyl, the later 

not showed), have just σ-electrons located between the non-polar covalent bonds (C-C), 

such that the polarizability (ε) is very low. Conversely, the inclusion of aromatic rings, 

with free and polarizable π electrons, lead to a higher ε than the observed in aliphatic 

chains.(7, 19) The case of AVA(15) and EA(16) is very interesting. In spite of their 

structures are formed by a non-polar carbon backbone, with slightly polarizable 

electrons clouds (butyl and ethyl chains), the inclusion of the acid (COOH) and iodide 

functionalities confer them a polarizable fragment. 

In a previous work, we demonstrated that photovoltaic devices, based on anilinium 

(Any) 2D and 2D/3D perovskite,(19) exhibit a higher performance than the ones 

prepared with BA cation, especially due to the higher photocurrent exhibited by the 

former. Based on that result and considering that the choice of the bulky cations has 

direct implications not only in the improved stability but also in the global both 

electronic and photovoltaic performance of devices, we focused our efforts in a 

complete optical and morphological characterization of a new type of material, with the 

principal hypothesis of reduce the stronger effects, as high exciton binding energy, 

through the modulation of dielectric contrast by the introduction of a bulky cation with 

free and polarizable π-electrons. Steady state and transient absorption measurements 

were used to study energy structure and dynamics of photoexcited charge carriers to 

verify the differences in internal charge carrier processes between our samples and 

traditional 2D/3D PVK. We have showed that our samples are capable of efficient 

dissociation of initially generated excitons that is in agreement with expectation of low 

exciton binding energy. Posteriorly, we focused our efforts on the fabrication of a 2nd 

generation of Any2MA4Pb5I16 2D/3D perovskite based solar cells through hot-casting 

method. It was demonstrated the positive´s effect of the temperature in the materials 

properties with a direct correlation between temperature with the crystal sizes and PCE. 



Our champion device, fabricated at T=190 °C, shows a PCE of 7.63% with a Jsc=13.79 

mAcm-2. Additionally, stability studies show that 2D/3D anilinium perovskite-based 

films exhibit a moderately higher resistance to environmental conditions compared to 

3D perovskites based solar cells. 

Experimental Section 

Materials.	PbI2 (99.999%) was purchased to TCI. Anilinium iodide and TiO2 paste (30 

NR-D) and MAI were purchased to Greatcell solar company. Diisopropoxide bis(acac) 

solution (75% in 2-propanol), 4-tert-butylpyridine, bis-(trifluoromethylsulfonyl)imide, 

ethanol, acetonitrile, chlorobenzene, dimethylsulfoxide (DMSO) and 

dimethylformamide (DMF) were purchased to Sigma-Aldrich. All reagents were used 

without further purification.	

Film/device characterization. The XRD pattern of the prepared films were measured 

using X-ray diffractometer (D8 Advance, Bruker-AXS) (Cu Kα, wavelength λ=1.5406 

Å) within the range of 3-40°, step of 0.04° and counting time of 3 seconds per step. 

Scanning electron microscopy (SEM) images were obtained using a Jeol, JEM-3100F 

field emission gun scanning electron microscope with an energy range of 15 kV. 

Surface coating percentage was based on shaded threshold method using imageJ 

software. Absorbance spectra were evaluated with a UV/VIS Varian 20 Cary 300 BIO 

spectrophotometer. Photovoltaic devices were characterized using a Sun 2000 system 

solar simulator from Abet technologies. The light intensity was adjusted to 100 mWcm-2 

using a calibrated Si solar cell. Anilinium cells prepared at 130 ºC and 150 ºC and 3D 

perovskite as a reference cell  were characterize by Impedance Spectroscopy (IS). The 

measurements were carried out under an irradiation of 1 sun (AM 1.5 conditions), and 

different bias potentials that ranged from zero to open circuit voltage and frequencies 

between 1 MHz and 0.1Hz with an AC signal of 20 mV. Devices were measured using 

two masks to define an active area of 0.101 and 0.12 cm2 represented values have been 

properly normalized to area.  

Film fabrication for optical characterization (TAS). The films were prepared on 

glass previously treated in the UVO antechamber (15 min). After that, the glasses were 

heated at 130 °C during 30 min and moved directly to the spin coater for perovskite 

deposition after heating, with no cooling down period just the transport from the hot 

plate to the spin coater. The corresponding solutions of Any2MAn-1PbnI3n+1, with n=3, 5 



were warmed at 70 °C. The perovskite layers were deposited through spin coating 

process of 0.225 M precursor solution (50 μL) at 5000 rpm: 5000 acceleration: 20 s. 

Then they were annealed at 100 °C during 10 min. Perovskite precursor solutions were 

prepared by addition of the necessary amount of the respective reagents to obtain a 

0.225 M solution with respect to PbI2 in 1 mL of DMF and 0.095 mL of DMSO. 

Promptly, a layer of PMMA, (1.8 mg/1 mL chlorobenzene) was deposited at 2000 

rpm/2000 acceleration, 45 s. 

Femtosecond Transient Absorption Measurements. The setup used for femtosecond 

TA experiments was composed mainly of a regenerative amplifier (Legend-USP, 

Coherent) and optical parametric amplifier (OPA, CDP System). This laser system 

generates the pumping (70 fs, 1 – 7 mW, 400, 500, 600 and 700 nm, 1 kHz) and probing 

(50 fs, 1W, 800 nm, 1kHz) laser beams that was used to generate probing white light. 

The pump fluence of the absorbed photons ranged from 8.2×1012 to 9.0×1012 ph/cm2 

(intensity ~ 90 – 100 µW). All the presented spectra are chirp corrected. The measured 

instrument response function (IRF) of the system was ~ 70 fs. All the experiments were 

performed at 293 K.  

Photoluminescence (PL) and Time Resolved PL (TRPL) as a function of 

temperature. Borosilicate glass was exposed to UV-O3 during 10 min. A compact layer 

of TiO2 was deposited on the substrates by spray pyrolysis process of titanium 

diisopropoxide bis(acac) solution (75% in 2-propanol, Sigma-Aldrich) diluted with 

absolute ethanol in 1:9 v/v proportion, respectively. The 2D/3D perovskite films were 

deposited in similar way that the described in the past paragraph. Posteriorly, samples 

were placed in the cold finger of a commercial closed cycle cryostat (ARS DE-202) that 

allows a temperature variation in the range 20 - 300 K. The excitation laser for time-

integrated PL and TRPL measurements was a 200 fs pulsed Ti:sapphire (Coherent Mira 

900D, 76 MHz of repetition rate) tuned at 808 nm and doubled to 404 nm with a BBO 

crystal. The backscattered PL signal was dispersed by a double 0.3-m focal length 

grating spectrograph/spectrometer and detected by an Andor Newton 970 EMCCD 

camera (for time-integrated PL spectra) placed at the exit of the second spectrometer 

and by a Si Micro Photon Device (MPD) single photon avalanche diode (SPAD) 

photodetector connected at the exit of the first monochromator; this SPAD was attached 

to a time correlated single photon counting electronic board (TCC900 from Edinburgh 

Instruments) for TRPL measurements. 



Morphology and conductivity investigation using Atomic Force Microscopy. The 

morphology of the films was investigated using AFM (Concept Scientific Instrument) in 

resonant mode. The surface potential of the perovskite films were measured using 

KPFM mode, with an applied electrostatic bias 1V in single pass mode. The current 

maps of the films were recorded in cAFM mode using a diamond coated tip at an 

applied bias of 4V in N2 flow. In absence of N2, the results are often not reproducible. 

Device fabrication method. Fluorine doped tin oxide (FTO) substrates were partially 

treated with Zn and HCl 2M and further cleaned with soap (Hellmanex) and deionized 

water, followed by sonication in a) ethanol and b) i-PrOH during 15 min for each step, 

and dried with compressed air. Then, the resultant substrates were exposed to UV-O3 

during 10 min. A compact layer of TiO2 was deposited on the substrates by spray 

pyrolysis process of titanium diisopropoxide bis(acac) solution (75% in 2-propanol, 

Sigma-Aldrich) diluted with absolute ethanol in 1:9 v/v proportion, respectively. The 

mesoporous TiO2 layer was deposited through spin-coating method of a suspension 

prepared from DYESOL-30NRD paste, diluted with absolute ethanol. After drying at 

100 °C during 10 min the substrates were gradually heated to 500 ºC and cooled to 

room temperature. The perovskite absorber layers were deposited through spin coating 

process of 0.225 M precursor solution at 5000 rpm for 20 s. The perovskite precursor 

solutions were prepared by addition of 0.1136 g of PbI2, 0.0218 g of anilinium iodide 

and 0.0313 g of methylammonium iodide (MAI) in a mixture of 1 mL of DMF and 

0.095 mL of DMSO. We use a modified methodology of the successful hot casting 

process. The perovskite precursor solution was heated to 70 °C during all the process. 

On the other hand, the substrates with a compact/mesoporous layer of TiO2 were heated 

at 110 °C, 130 °C, 150 °C, 170 °C and 190 °C during 10 min before to start the 

deposition of the respective perovskite layer. Once the perovskite was deposited by 

spin-coating process (50 µL; 5000 rpm without acceleration; 20 s), the respective 

substrates were heated 10 min more at 100 °C. The substrates should show layer´s 

coloration since green-brown to dark brown, depending on its fabrication´s temperature. 

After the substrates were cooled down to room temperature the hole transporting layer 

(HTL) was deposited by spin coating at 4000 rpm during 30 s. The HTM was prepared 

dissolving 72.3 mg of (2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-

spirobifluorene)(spiro-OMeTAD), 28.8 µL of 4-tert-butylpyridine, and 17.5 µL of a 

stock solution of 520 mg/mL lithium bis-(trifluoromethylsulfonyl)imide in acetonitrile 



in 1 mL of chlorobenzene. Finally, 60 nm of gold was thermally evaporated in the 

vacuum chamber on top of the device to form the electrode contacts. The complete 

device fabrication was carried outside the globe box. 

Results and discussion 

As first step, we focused on the fabrication of thin films with formula Any2MAn-

1PbnI3n+1, hereafter AnyPbn, with n=3 and 5 and their morphological characterization by 

X-ray diffraction XRD and scanning electron microscopy SEM. Although the n=1 film 

represents exactly the 2D material his low absorption across the visible range restricts 

his application as sensitizer in useful photovoltaic devices. XRD pattern and SEM 

images of thin films prepared by hot-casting method(11) are shown in the Fig. 1, (for 

methods see SI). The XRD patterns for both materials display peaks at 14.2 and 28.5°. 

These peaks have been associated to horizontal (111) and vertical (202) preferential 

growth in 2D perovskites.(12, 21) Additional peaks located at 20.1 and 31.9° rises with 

n, and they have been associated to (112) and (312) planes, respectively, in 3D 

perovskite.(22) Morphological characterization by SEM, demonstrate that the 

nucleation points are composed by leaf type grains with an impressive size over 1 µm. It 

is evident that the particle´s size rises with n, together with the percentage surface 

coating. The determined values are approximately 47 and 67%, for n=3 and 5, 

respectively (Fig. S2). 

	

Fig. 1 Morphological characterization by XRD and SEM. (a y c) Any2MA2Pb3I10, (b y 
d) Any2MA4Pb5I16. *FTO xPbI2  



Regard the optical properties, the absorbance spectra of 2D PVK films (n=1-5) 

chemically formed just by aliphatic chains,(12, 14) and inclusive 

phenylethylammonium,(9, 18) (see Fig. S1)  are characterized by an easily recognized 

exciton transition at the edge of the absorption band, exhibiting a red-shift progression 

on going from lower to higher n.(9, 12, 18, 23) Such intense excitonic absorption, with 

huge oscillator strength, was related to an intense Coulomb interaction between the 

charge carriers and, therefore, a very large exciton binding energy, affecting negatively 

the photovoltaic performance.(24) Unlike previous reports, the absorbance spectra of 

our material exhibits a direct red shift to 760 nm for both n=3 and 5, without observing 

traces of QW-like optical transitions. On the other hand, the photoluminescence (PL) 

spectra, measured for n=3 and 5 at room temperature, are practically identical (Fig. 2a, 

b). The main PL peak detected at ≈ 770 nm is close to reported values for 3D PVK. In 

addition, both films exhibit a very similar PL temperature-dependent behavior (Fig. S3).  

 

Fig. 2 Optical characterization. (a,b) Steady-state absorbance and PL of 2D/3D 
perovskite based on Any2MAn-1PbnI3n+1 (n=3, 5). PL spectra were acquired under 
continuous wave excitation at 405 nm. (c) PL spectra registered at different 
temperatures (under pulsed excitation at 405 nm) in the film prepared nominally for 
n=2. Contribution of quantum wells (QWs) from n=1 to n=7 (the five most important 
are labeled) and 3D-like are observed. The arrows indicate that QW-like PL 
components are not changing significantly (only intensity) with temperature until 250 K 
as compared to the case of the 3D-like PL band that shifts to the blue. (d,e) stand for the 
Arrhenius plot of the integrated PL intensity and non-radiative time (radiative and non-
radiative times were calculated by assuming unit quantum yield at around 110 K where 
PL quenching begins and decay time extracted from fitting of the TRPL curves) as a 
function of 1/kT. The continuous lines correspond to the exponential fit of these 
experimental data where the slopes stand for the activation energy of the PL quenching. 



Temperature dependent PL for a film with nominal value of n=2 exhibits emission 

peaks that can be assigned as excitonic transitions for layers from n=1-7 (being the most 

intense that related to n=3) other than the n=infinite band at 760 nm at room 

temperature, demonstrating the 2D/3D nature of this sample, Fig. 2c. The PL intensity 

quenching with temperature can be accounted for by an activation energy in the range of 

23-53 and 21 meV for n=3 and n=5 samples, respectively (Fig. 2d, e). The temperature 

dependence of the non-radiative recombination time is also consistent with the PL 

intensity quenching. TR-PL experiments as function of the temperature shows an 

exponential dependence where the decay time can be deduced (see Fig. S3). In this way, 

non-radiative decay time can be extracted  from measured decay times and the PL 

intensity at the different temperature by assuming unit quantum yield at around 110 K, 

and it is characterized with 8-21 and 23 meV for n=3 and 5 samples, respectively (Fig. 

2d,e). These activation energies responsible of the non-radiative recombination 

mechanism in our samples could be ascribed to the exciton dissociation process as 

referred for PVK in literature.(25, 26) 

In order to obtain information about the dynamics of excited charge carriers and 

thus the influence of π-free electrons in the anilinium on charge carrier 

recombination and transfer properties of our samples, we carried out femtosecond 

(fs) time-resolved transient-absorption (TA) studies of the films. The TA UV-Vis 

spectra of Any2MAn-1PbnI3n+1 (n=3, 5 and 3D) films observed at 0.5 ps pump-

probe delay are presented in Fig. 3a. TA spectra of n=3 and 5 show weak excitonic 

signature in the region of 505 nm, that can be associated to n=1 related excitonic states 

Fig. 2c. When pump-probe delay time is increased to 2 ps, strong positive (PIA3, 735 

nm) and negative (PB2, 770 nm) bands are detected for both n=3 and 5 samples. The 

positive bands can be related to signal from absorption on free charge carriers, [(27, 28)] 

while the NIR negative band has been recently observed in the TA spectra of 2D/3D 

perovskite samples of n≥3, and it was related to photobleaching of low energy states 

(states related to layers of high n). (26, 29, 30) The comparison of optical properties of 

2D/3D and 3D PVK exhibit significant differences. 3D PVK spectrum at 0.5 ps pump-

probe delay consist of two bleaching bands at 480 nm (PB1) and 760 nm (PB2), and 

less intense broad photoinduced absorption (PIA) band (600–750 nm) which are absent 

in the spectra of our material, indicating that our materials are composed by 2D/3D 

PVK. The different IR TA behaviour of 2D/3D versus 3D perovskites can be 



interpreted on the basis of different charge carrier generation and transfer 

mechanisms.  

 

Fig. 3 UV-Vis transient absorption spectra of 2D/3D PVK (n=3, 5 and 3D) films at 0.5 
ps pump-probe delay. The inset shows the transient spectra at 2 ps pump-probe delay. 
For clarity, the intensity of the spectrum of 3D perovskite film (3D) is multiplied by 
factor 0.5. (c) Transient absorption decays of 2D/3D perovskite upon excitation at 400 
nm and observation at 485 nm (3D film) and 510 nm (n=3 and 5). The TA signals were 
obtained upon excitation at 400 nm using a fluence of the absorbed photons of 8.2×1012 
ph/cm2 (3D film) and 9.0×1012 ph/cm2 (2D/3D films). The solid lines in (c) are from the 
best biexponential fits. The explored films were fabricated at 130 °C. 

 

While in 3D MAPbI3 perovskite, the charges are free after excitation and relax 

within <1 ps, in 2D/3D perovskite the charges are primary generated in the 

excitonic form due to the intrinsically higher exciton binding energy.(31, 32) For 

samples with n≥3, it is expected that these excitons dissociate and are transferred 

to energetically lower states,(26, 29) that is in agreement with the presented 

temperature-dependent measurements, Fig. 2d, e. The Fig. 3b shows the 

normalized representative fs-transients for n=3 and 5 at 510 nm, and 3D 

perovskite at 485 nm. These decays were well fitted using a bi-exponential 

function (Table S1), which has been successfully applied to analogous systems. 



(26, 29, 30, 33) The dynamics of all the samples show fast initial decay followed 

by a slower decrease of the residual signal intensity. For the transients of all 

2D/3D samples, we got similar time constants of ~ 0.5 and 18 ps, although their 

components differ in amplitudes, indicating different influence of the most 

probably faster/slower exciton deactivation mechanism among the samples.(26) 

The n=3 and 5 samples show no offset and high amplitude of the faster decay 

component (87% and 89%, respectively), thus almost 90% of the TA signal are 

lost within 1 ps. Thus, excitons are extremely effectively deactivated within these 

samples. Additionally, the TA dynamics gated at 735 and 770 nm exhibit rising 

time constants of ~ 0.5 and 40 ps and very slow decays (taken here only as 

offset). The values of rising amplitudes are comparable to the ones detected at 

500 nm region for both samples (A1=88% and A2=12%, respectively, see Table 

S2, Fig.s S4 a,b). The difference between the second time constants observed in 

both spectral regions (18 Vs 40 ps) can be interpreted in terms of the presence of 

trapping/releasing or other processes that could extend transport time of the 

charges originating from the more stable excitons. However, deeper studies 

beyond this work are needed. The similarity between the excitons decay at 500 

nm region and rise of the TA NIR signal are a strong support to the expected 

mechanism of exciton deactivation in our samples based on excitons dissociation, 

followed by a transfer of the free charges to lower energy states.(26) 

For further clarification of the charge carrier processes in our samples, the TA 

measurements of 2D/3D PVK n=5 sample upon excitation at 500, 600 and 700 nm were 

done and compared to the one obtained using 400 nm excitation (Fig. S4c-e). The TA 

spectra at 2 ps pump-probe delay show comparable spectral shapes (minimal signal in 

visible spectra interval and strong signal in red and IR), suggesting that independently 

on excess energy the photoexcited charges are transferred to states at 770 nm (Fig. S2c). 

These results suggest that the excited charges are transferred to common low energy 

states, as we observe previously.(19) The TA dynamics observed at 770 nm using all 

excitations are presented in Fig. S4d and S4e, respectively. As can be seen, the initial 

rise dynamics, that are related to charge transport from higher energy states, are similar 

for excitations upon 400 and 500 nm (τ = 0.5 ps) and getting shorter for further increase 

of excitation wavelength (τ is 0.3 ps and 0.2 ps for 600 and 700 nm, respectively). 

Moreover, only TA dynamics obtained using 400 and 500 nm pump wavelength show 

secondary rise component (~ tens of ps). The subsequent slow decay does not depend 



much on the excitation wavelength. This behavior shows that only layers in Any2MAn-

1PbnI3n+1 (n=1) are able create stable excitons in our samples, while only excitation at 

400 and 500 nm can create excitons in these layers. Excitation of thicker layers results 

in fast dissociation of initial excitons and their transfer to energetically lower states. A 

decrease of excitation wavelength from 600 to 700 nm is shortening the rising time 

constants due to closer position of excited and final state of the transfer. The absence of 

signals at 505 nm using 600 and 700 nm excitation is also proving differences between 

low energy states in 2D/3D and bulk 3D PVK, since the signal at 480 nm (PB1) in 3D 

PVK, can be generated by 600 nm excitation.(34)  

Summarizing, the ultrafast dynamics of exited 2D/3D samples of Any2MAn-

1PbnI3n+1 suggests large excitons deactivation in the samples of n≥3. This 

statement is supported by (i) the absence of exciton states related to n>1, (ii) very 

low concentration of excitons after 1 ps for the samples having n≥3 (spectral 

region ~500 nm), and (iii) strong TA signal from PIA and negative band in NIR 

region. The similar TA decays dynamics of both multi-layered samples and 

especially comparable values of TA signals at 735 nm, suggest that the excitons 

in the sample of n=3 are able to dissociate with an efficiency similar to that of 

n=5. This direct comparison is possible because the samples are excited using the 

same fluence of the absorbed photons. In addition, the amplitude (~12%) of the 

second TA rise is lower and faster than the reported for non-conjugated 2D/3D 

perovskite samples (~ few tens of percentage and from tens to hundreds of ps). 

(26, 29, 30, 33) This difference can be also interpreted in terms of a higher 

efficiency of excitons dissociation and charge transfer from initial excitonic states 

to the low energy ones, related to thicker perovskite layers (high n) in Any2MAn-

1PbnI3n+1 sample, in contrast to other 2D/3D perovskite films. 

 

In the next step we focus on the characterization and fabrication of AnyPb5 2D/3D PVK 

based solar cell devices through modified hot-casting method.(11, 19) The choice of 

n=5 as sensitizer was made not only on the basis that the photovoltaic performance of 

solar cells based on 2D/3D perovskites increases with n(18) but also considering that 

the long term stability of the devices decreases with n, as a consequence of the decrease 

of concentration of hydrophobic cations. Considering the deficient coating by our 



2D/3D PVK material previously discussed, and with the aim of improves it, we 

fabricated thin films through a scanning of temperatures from 110 to 190 °C.(35)   

The structural properties of the 2D/3D perovskite layers formed at different substrate 

temperatures have been analyzed by XRD. The XRD patterns are shown in Fig. S5a. 

The obtained values matches perfectly with those described in past section for n=5. In 

addition, the reflection peak observed at 6.9° confirms the 2D/3D nature of this 

material. (17) However, a greater crystallinity´s degree of the material is observed when 

the pre-heating temperature of the substrates increases, which is supported by the Full 

Width-Half Maximum (FWHM) trends. The FWHM of the (111) reflection, at 14.2°, 

reduces from 0.232°, for perovskite films processed at 100 °C, to 0.099° for films 

treated at 170 °C, Fig. S5b. However, when the temperature reaches 170 °C and above, 

it is possible to see diffraction peaks at 12.72°, which can be associated to PbI2 traces. 

The morphology and electrical characteristics of the AnyPb5 films (T=110, 150 and 190 

°C) has been investigated by measuring the topography and also the local current via an 

atomic force microscopy (AFM). Fig. 4a, c and e show the topographical AFM maps of 

the samples processed at 110, 150 and 190 °C, covering the whole temperature range 

chosen in this work. 



 

Fig. 4 Atomic force microscopy (AFM) and conducting AFM (c-AFM) maps of 2D/3D 
perovskites AnyPb5 synthesized at different processing temperature 110 °C (a and b), 
150 °C (c and d), and 190 °C (e and f). The AFM images show a scale of 20 × 20 mm. 
The c-AFM images are taken at an applied bias of 4V, showing absolute values of local 
current. (g) Local current measured at the three different perovskite samples.  

 

 

The both AFM and SEM images suggest that the vertical growth of the perovskite 

grains occurs through of nucleation points along the surface of mesoporous TiO2, which 

unfortunately is not completely covered. The 2D/3D perovskite grown on top of 

mesoporous TiO2 presents a leaf-like shape, with its size increasing as temperature rise, 

explaining the higher crystallinity observed by the reduction of XRD FWHM. The 

determined grain size ranging from 1.51±0.04, 2.26±0.10 and 7.1±0.4 µm for films 

prepared at 110, 150 and 190 °C, respectively (Fig. S6). At higher temperature the 

surface coverage improves due to the larger grain size, also influencing the surface 

roughness. The calculated root mean square (rms) roughness over a number of grains is 

11.2±1.0, 13.6±3.3, and 17.4±3.0 nm for 110, 150, and 190 °C, respectively; while the 



coating´s percentage of the surface it was determined to be ≈57% for the films prepared 

at 110 °C, ≈67% for the prepared at 150 °C and ≈79% for those prepared at 190 °C (Fig. 

S7). 

Considering that in 2D/3D perovskites the transport properties are severely 

reduced, in comparison with 3D counterparts, owing to the presence of bulky 

organic cation, we have measured local current maps via a conducting AFM 

under N2 flow at an applied bias 4 V (Fig. 4b, d and f). Interestingly, we note 

nearly an order of magnitude increase in local current for perovskite films treated 

at higher temperature, see Fig. 4g. Systematically, in all the samples, we note a 

lower current at grain boundaries (dark regions), suggesting that grain boundaries 

limit the performance and increase the trap density in the films. We also note a 

minor variation of local current within a single leaf structure (Fig. S8), suggesting 

a highly polycrystalline surface, probably due to mixed phases with different n 

and/or crystalline orientations. This is further confirmed from the surface 

potential maps, recorded via Kelvin Probe Force Microscopy (KPFM) (Fig. S8), 

demonstrating a small variation of the surface potential up to 300 mV for an 

individual grain. We noted a jump in the surface potential value at the grain 

boundary which changes up to 1 V on the film region with no perovskite (or on 

the TiO2 surface). 

 

Absorbance measurements were carried out to determine potential variations in optical 

properties as consequence of the different temperatures of fabrication. The Fig. 5 

displays the absorbance spectra of the fabricated AnyPb5 films. All of them showed 

identical spectral features with continuous absorption rise in IR with decreasing 

wavelength (maximum at 750 nm) and shoulder at around 505 nm. The appearance of 

that excitonic peak can be due to trace amounts of n=1 phase, which is possible to detect 

as a consequence of the great stability that the exciton exhibit even at room 

temperature.(8) The position of the absorption maximum in IR is in agreement with 

TAS measurements (negative bleach Fig. 3b) and is probably related to the presence of 

LES states. (23) In addition to that, the pronounced Urbach tail observed at 800-900 nm 

can be related to other low energy localized states caused by the structural in-

homogeneities of the samples. Interestingly, even though spectral profile have identical 

features, it is possible to see a systematic increase in the absorption properties as the 

fabrication´s temperature rise. Additionally, the Fig. 5 show as the films becomes darker 



as the temperature upsurge. Considering that spectral profile of all the samples display 

the same optical properties, the increase in the absorption can be related to both better 

surface coverage and a thicker film, as can be observed previously by AFM/SEM 

microscopies. 

 

Fig. 5 Absorbance spectra of 2D/3D perovskites AnyPb5 films prepared at different 
temperatures.  

 

  After fundamental characterization of the perovskite material, the photovoltaic 

performance of PSC fabricated with different temperatures of substrate pre-heating has 

been analyzed.(11, 35) The fabrication of our 2nd generation of devices was carried out, 

with n-i-p architecture was carried out i.e., FTO, compact and mesoporous layers TiO2, 

2D/3D perovskite with n=5, spiro-OMeTAD as hole selecting contact and gold. Fig. 6 

shows the current-potential (J-V) curves and the photovoltaic parameters, for champion 

devices, for each of the temperatures evaluated. Regarding the evaluation of 

manufacturing temperature, J-V curves for champion devices show a systematic 

increase in the PCE with increasing temperature from 110 to 190 °C. The PCE values 

obtained are 5.96% for device prepared at 110 °C and 7.63% for the device fabricated at 

190 °C. The principal factor that contributes to the improvement of PCE while 

increasing the crystallization temperature is the photocurrent Jsc, up from 10.39 mAcm-2 

for T=110 °C to 13.79 mAcm-2 for T=190 °C. Higher values of photocurrent have been 



reported for 2D/3D perovskites with relatively low n, (11, 36) however the value 

reported here is one of the highest obtained for low-n layered perovskites. For 

comparison, when was used butylammonium iodide (BAI, pure phase, n=5) instead 

anilinium, the maximum value obtained for Jsc was 11.67 mAcm-2. Respect another 

features that characterize the photovoltaic performance, fill factor shows values ~70%, 

which tends to decrease as the temperature increases; while the Voc remains between 

805 and 822 mV. The low Voc observed in our results with respect to previously 

reported values for 3D is probably due to a higher recombination rate as it has been 

studied by impedance spectroscopy, (37-39) see Fig. S9, however, a complete study will 

be reported separately. 

 

 

Fig. 6 J-V curves for champion devices of 2D/3D perovskites AnyPb5 at each evaluated 
temperature. The table shows the photovoltaic values for champion devices.  

 

Briefly, 2D/3D samples present lower recombination resistance (higher recombination 

rate) than standard 3D perovskite at high applied bias, where recombination current is 

important, see Fig. S9a. Different recombination pathways are possible. Among them, 

the incomplete surface coverage of TiO2 mesoporous layer by the perovskite film is 

affecting deleteriously cell performance.(40) This point indicates that there is more 

room for improvement of anilinium based 2D/3D perovskites by the control of crystal 

nucleation/growth processes. It is also interesting to point out that low frequency 



capacitance, associated with charge accumulation driven by ionic diffusion, (38, 41) is 

significantly lower than in 3D samples, see Fig. S9b, pointing to a lower ion diffusion in 

2D/3D materials.  

Interestingly average values obtained for devices fabricated at different temperatures do 

not follow the same trend than champion cells; see Table S3 and Fig. S10. Concerning 

the average PCE values, an improvement is evident with increase in the temperature; 

however, when the processing temperature increases to 170 °C and above, the 

dispersion of the obtained results increases causing that the average PCE gradually 

decreases. This variability observed in the results we suggest is directly related to the 

experimental conditions. Pre-heated substrates are quickly transferred from the hot plate 

to the spin coater, immediately the perovskite precursor solution is added and the spin 

coating process start. When the samples are in a low temperature range, e.g., 110 to 150 

°C, the change of temperatures is less abrupt and the results can be more reproducible 

compared to the higher temperature range. 

Even though the introduction of bulky cation with high value of ε suggest a 

stronger interaction with water than cations with low value of ε (and therefore 

lees moisture stability), we carried out a stability test under ambient conditions 

for the fabricated devices. Their stability was compared with a pure 3D PVK 

based solar cells, (Fig. S11). The devices were kept under ambient humidity over 

40% for a period of 288 h. Interestingly, the devices prepared between 110 and 150 

°C, exhibit higher long term stability than 3D perovskite based devices stored at similar 

conditions. In the other hand, the results showed that the devices fabricated with the 

highest temperatures (170 and 190 °C) exhibit lower long term stability than 3D 

perovskites. Very recently, we have shown that the presence of a reduced amount of 

moisture during the perovskite deposition processes is positive from the stability point 

of view.(42) In this way, the high temperature utilized in the high temperature regime 

could avoid the presence of this little humidity, preventing its beneficial role.	

 

In conclusion, we demonstrate that the use of a conjugated anilinium cation, with a 

cloud of free and polarizable π-electrons, in the preparation of 2D/3D PVK led to obtain 

a material with optical and electrical properties improved. The determinant factor was 

the tuning of dielectric contrast between inorganic and organic layers, which has direct 

influence in the decrease of exciton binding energy. Through steady state and time-



resolved absorption experiments we have proved high efficiency of initially 

generated exciton dissociation even for samples with low n (about 3) and thus 

high potential of these structures in photovoltaics. The scanning of temperature´s 

fabrication stated a relation between temperature and size/crystallinity of the material. 

Thus it was observed a gradual increment in the size of crystallites on going from low to 

high fabrication´s temperatures. When the crystallinity of the material was improved 

through the temperature and a better coverage of the film was achieved, the PCE it got 

better. Importantly, the higher Jsc observed, comparing to the reported values, is a strong 

indicative of both: 1) a lower exciton binding energy by tuning of dielectric contrast 

between wells and barriers and 2) an increase in the electronic transport properties of 

this material. Surprisingly, in spite of the intrinsic nature of the employed cation suggest 

an important interaction with water, the devices fabricated with 2D/3D perovskite 

showed a higher stability (near to 70%) after 288 h than 3D perovskite (less than 40%) 

under the same period and environmental conditions. Further improvement on the 

performance of anilinium based 2D/3D perovskites can be anticipated if higher control 

of the nucleation and crystal growth conditions are obtained, work that it is currently in 

progress. 
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