

Universitat Jaume I (Castellón de la Plana, España)

Degree in Video Game Design and Development

FINAL DEGREE PROJECT’S FINAL REPORT

INTERACTIVE VIRTUAL ENVIRONMENT FOCUSED ON
GAMIFIED TOURISM

Authored by: Francisco Alfaro Moscardó

Tutored by: Cristina Rebollo Santamaría

1

A mi hermano y a mis padres.
Por inspirar. Por luchar.

Por creer y crear por encima de todo.
Por las lecciones en cada caída.

A Aure, a José María y a Nacho.

Por la confianza depositada en mí.
Por vuestro apoyo infinito.

Por las sabias palabras en los momentos más complicados.

Esto ha sido posible gracias a vosotros.
Gracias, de corazón.

“… Es el momento de hacer algo.” Misión cumplida.

2

Summary
The present document constitutes the Final Degree Project’s Technical Report of the

Video Games Design and Development Degree offered by the Universitat Jaume I. The
work to be developed consists in creating an interactive virtual gamified environment
focused on tourism, through geolocation and augmented reality tools based on
smartphones. It covers aspects about the planning, decision making and conceptual
design of the final product and implementation details involved in the development of
the complete application during the course of a few months by Francisco Alfaro
Moscardó, student of the before mentioned Degree.

The aim of the project is providing both residents and visitors some knowledge
about the main monuments and places of interest of the Valencia city historical centre
(Spain). The application has been developed using Unity 3D game engine combined with
a set of current libraries that allow to have a better performance and management of the
event interaction and Augmented Reality. The geolocated system is based on the Global
Positioning System (GPS) and is fully integrated with two different augmented reality mini
games that are part of the whole experience and give players some added challenges
before giving them the historical information about the monuments. Furthermore, the
application communicates remotely with Google servers to provide services such as the
modification of the database where the areas data is stored or the use of the Google user
account for unlocking achievements and be part of a worldwide ranking.

Keywords

Geolocation, GPS, Augmented Reality, tourism, Unity3D.

3

Index

1. Technical Proposal ... 8

1.1. Introduction .. 8

1.2. Context .. 8

1.3. Motivation ... 9

1.4. Objectives ... 11

1.5. Software and tools ... 13

1.6. Planning .. 16

1.7. Technical limitations and work environment ... 18

2. Game Design Document .. 24

2.1. Overview ... 24

2.2. Target platforms .. 25

2.3. Target audience ... 25

2.4. Aims ... 25

2.5. Main game flow .. 26

2.6. Kind of challenges .. 28

2.7. Resources and entities .. 29

2.8. Types of actions or mechanics ... 30

2.9. Construction and articulation of the levels ... 30

3. Analysis .. 31

3.1. Geolocation system ... 32

3.2. Augmented Reality ... 38

4

4. Implementation details ... 46

4.1. Running the app: Game Manager .. 46

4.2. Geolocation system ... 48

4.3. Scene managing: Persistence and runtime loading .. 55

4.4. Saving and loading data locally .. 57

4.5. Game flow inside an area ... 59

4.6. Minigames .. 62

4.7. Reactive web manager .. 68

4.8. Google Play Games Services ... 73

5. Artistic design ... 77

5.1. Colour schemes ... 77

5.2. The user interface .. 78

5.3. 3D modelling .. 80

5.4. Shaders and additional effects ... 83

6. Results and conclusions .. 88

7. Further work ... 89

8. Bibliography .. 90

5

Figures Index
Figure 1: Augmented Reality is living an era of experimentation and transformations. 9

Figure 2: Pokémon GO was one of the mass phenomena worldwide that showed the possibilities of
geolocated augmented reality. ... 10

Figure 3: Augmented reality can be used by tracking both images and even physical objects 19

Figure 4: Most used augmented reality SDKs in 2018. ... 21

Figure 5: Image Target detection vs. Ground Plane detection in Vuforia .. 23

Figure 6: K.A.I.'s game image target. ... 23

Figure 7: The player reaches an area and starts the augmented reality system. 26

Figure 8: One of the two different minigames appears before unlocking the touristic information. .. 27

Figure 9: The monument building with a hologram look is showed and provides the player the
information. ... 28

Figure 10: Geographical situation of all areas in Valencia city centre. ... 31

Figure 11: Radial vs. polygonal Geo-fencing. ... 33

Figure 12: Definition of an area. .. 33

Figure 13: When current coordinates are updated, system checks if player is inside an area. 34

Figure 14: Diagram that shows how an area check and update its status. ... 36

Figure 15: Locked area notification. .. 36

Figure 16: Points where the areas were defined. Left: Google Maps. Right: Map HUD. 37

Figure 17: Flow of the areas data, from the web to the app. ... 38

Figure 18: K.A.I. after scanning the environment. ... 40

Figure 19: Version of Simon electronic game. ... 40

Figure 20: AR memory game ... 41

Figure 21: Complete memory minigame game cycle- .. 42

Figure 22: Pattern recognition game. ... 43

Figure 23: Complete pattern recognition minigame game cycle. ... 44

Figure 24: Example of data synchronization between the cloud and local areas lists. 47

6

Figure 25: Area and GeoLocCoordinates C# classes. ... 48

Figure 26: C# implementation of updating and checking the current position methods. 50

Figure 27: Representation of a geodesic arc formed by two points P and Q. The segment that joins
them is their great-circle distance. ... 51

Figure 28: C# implementation of Haversine formula. .. 54

Figure 29: C# implementation of the function that checks if the player is inside an area. 54

Figure 30: A player is inside an area if the distance from their position to the area's centre is less than
the area’s radius. ... 55

Figure 31: Default scene is loaded when the app starts running. ... 56

Figure 32: When the player selects to interact with an area, the default scene is unloaded and the area
scene is loaded. ... 56

Figure 33: GameData C# Class. ... 57

Figure 34: SaveGame and LoadGame methods diagrams. .. 58

Figure 35: Main flowchart variables used in each area. ... 60

Figure 36: Diagram of the complete implementation cycle of an area (I). ... 61

Figure 37: Diagram of the complete implementation cycle of an area (II). .. 62

Figure 38: Memory game in augmented reality. ... 64

Figure 39: GenerateNewSequence() method C# implementation. ... 65

Figure 40: Gesture being drawn while a symbol comes to the range. ... 66

Figure 41: The black points set defines a candidate gesture that is classified against the red set, which
was previously defined... 68

Figure 42: Relation between the both web and Unity clients with the cloud storage server. 69

Figure 43: Table with all areas data. Each row represents an area and the columns mean its attributes.
... 69

Figure 44: Constructor method for creating a new Area instance in TypeScript.. 70

Figure 45: Google Maps pop-up used to add an area. ... 71

Figure 46: C# asynchronous request to the web service. .. 72

Figure 47: Google Play Games Services official app main menu. .. 73

Figure 48: "Linked applications" tab of the K.A.I.’s games services on the Google Play Console. 74

7

Figure 49: "Achievements" tab of the K.A.I.’s games services on the Google Play Console. 75

Figure 50: C# example of call to ReportProgress function to indicate that an achievement has been
accomplished. ... 75

Figure 51: Left: Achievents pop-up. Right: Leaderboards pop-up. .. 76

Figure 52: Google Play Services HUD buttons. .. 76

Figure 53: Map scene colour scheme. .. 77

Figure 54: Cel shaded holograms and K.A.I. colour scheme. ... 78

Figure 55: Default scene User Interface, which includes map, areas location and status, current player
location and game completed percentage. ... 79

Figure 56: Dialog box. ... 80

Figure 57: Process of modeling of Lonja de la Seda building. ... 80

Figure 58: Molding details of the Lonja de la Seda and Estación del Norte models. 81

Figure 59: All monument 3D models on SketchUp editor. ... 82

Figure 60: Shader parameters adjustment in the Unity's inspector view. ... 83

Figure 61: Hologram shader integrated with a building model. ... 84

Figure 62: Cel shading effect applied to Torres de Serrano in augmented reality. 85

Figure 63: Orange from memory minigame with a cel shading effect applied. 85

Figure 64: K.A.I. entity is divided in three separated layers. .. 86

Figure 65: Left to right: Model of K.A.I. in SketchUp, shader hologram and face expressions included,
cel shading included and final result. ... 87

Figure 66: Left: Final logo design. Right: Variation with Valencia's skybox. ... 87

8

1. Technical Proposal

1.1. Introduction

This project aims at designing, creating and learning about a geolocated augmented
reality application for smartphones by mixing both a touristic and educational experience
and casual minigame playing.

In this introductory section, several aspects of the project will be covered as an
overview, such as the context it was created in and the main motivations that led me to
develop this concept. In addition, the objectives I set myself up when facing this project
and the justification of why this project was a good proposal to develop and enhance
some of the skills I learned and improved during the last four years as student are also
exposed.

1.2. Context

Tourism is a sector that attracts thousands of people every day to Valencia, but,
over the years, the use of conventional leisure systems and attractions to visit a city have
been degraded and new ways of knowing an urban environment have appeared.
Technology is in many cases related to these new trends, and facilitates the inclusion of
new users in the concern to know the environment they visit or live, through various
systems of the so-called Smart Cities [1].

This situation is highly related to a change on the paradigm of the access to the
information that we are living though the new generations. Nowadays, books have been
deprecated in favour of other useful online tools that provide people with all the
information about anything they need at the moment in an extremely simple way.
However, we have to be aware that new generations who are born in a pure technological
bosom have fully assimilated this access and many times they find it difficult or even
tedious to navigate through pages and pages with letters and images expressed in the
same way as their predecessors, textbooks. This is why we, as developers, have the great
opportunity and responsibility for improving the way we pass on knowledge (not only
information) to young people in order to generate the interest on the different fields of
study that the current society requires.

9

1.3. Motivation

In recent years there has been an exponential growth of general interest in new
visualization technologies, such as virtual reality, augmented reality or the mixed reality
[2], both by large companies in the sector and by the established niches of players who
are looking for expanding their gaming experience to other areas. In this context, it is not
surprising that a large number of new devices have been proposed and started to be
developed by leading technology companies representing the industry: Google,
Microsoft, Lenovo, Xiaomi and recently Apple are some of them.

This situation has brought a large number of developers begin to create new
products adapted to the so-called technological demand. Some examples of these
applications are the innovative toy called AR Terminator, which uses a physical gun with
an adapter for the smartphone, or AR City, which wants to revolutionize navigation using
augmented reality maps (Figure 1). Nowadays, developers are using these new tools to
generate original content, not only video games, but content applied to different fields,
such as medicine, education and culture, construction, hospitality, catering, etc. The
interest in the nature of these new technologies is obvious and inevitable, in addition to
the unimaginable amount of uses and wealth that can be given to the society.

Figure 1: Augmented Reality is living an era of experimentation and transformations.

10

For the reasons expressed above, today there is a strong trend at the level of
development that advocates to expand those market niches in new technologies and give
them practical uses adapted to the current social reality. One of the sectors that demand
this type of technological restructuring the most is education, since, as we have seen,
knowledge can be transmitted in a very varied and equally plausible ways. One of them
is making use of contemporary innovations like these. With all this in mind, in this project
we will focus on the transmission of cultural knowledge through augmented reality,
focusing on two main purposes: education and tourism.

Perhaps Pokémon Go [3] is the clearest example of an augmented reality and
geolocation based application (Figure 2). Its system of spontaneous capture of Pokémon
[4] and visit of certain places to collect different utilities captivated millions of people and
managed to make them leave their homes to capture new Pokémon while visiting places
physically. This project aims to follow that line, but adding a more playful section to the
fact of going to the place and taking an action. The user must, apart from going to the
point of interest, face a challenge there, in the form of a videogame. The user has to play
(many times, play concerted) and after that, he/she will always be awarded with some
interesting information about that place, so that the entire system will act as a single piece
of learning.

Figure 2: Pokémon GO was one of the mass phenomena worldwide that showed the possibilities of

geolocated augmented reality.

11

Thus, in this project it has been researched how to know Valencia’s city centre from
another point of view and how to achieve producing more people's curiosity to know the
historical patrimony where they live or they are visiting, through several gamified systems
and an attractive augmented reality context, and bring common gamers another ways of
playing outside an screen, by using the physical environment as their main game board
to develop and improve their gaming skills.

1.4. Objectives

The main objective of the project is to develop a smartphone
application that manages geolocated information combined with
augmented reality to transmit the most relevant information about
certain places of the city centre of Valencia while playing video games
within a narrative context.

To achieve this, several ways of motivating users to go out and get to know new
places have been applied by many applications. However, there are not many geolocated
applications in the mobile market based on augmented reality and at the same time
focused on the preservation and transmission of information related to cultural heritage
from divulgation and education.

Personally, I believe that geolocated augmented reality has a great potential to
exploit in this field and with the correct creation of a gamified system it is possible to
achieve an increase in the people’s curiosity about the cultural heritage. This is the final
goal of the project: to raise awareness about the importance of cultural heritage, transmit
information while playing and promote curiosity about what they visit.

1.4.1. Project justification

Throughout this section, the skills and abilities to be developed during the project
creation process will be covered. These are the fundaments why I think it is a good job to
finish my Bachelor’s academic studies in the field of video game development. Firstly, the
skills required for the correct performance of the subject to which the present project
belongs will be presented, and later some details about the skills developed will be given,
classified in each of the subjects of the degree that are most related to the creation of
this game.

12

As the teaching guide establishes, the Final Degree’s Project subject expects a set of
results that every student must obtain based on some skills developed before and during
this subject. These are detailed below:

● Skill 1: Ability to individually develop, present and defend in front of a university
tribunal an original exercise, consisting of a game design and development related
project of professional nature, in which the student synthesizes and integrates the
skills acquired during his/her studies.

● Result 1: Individually plan and implement an original game design and
development related project of professional nature, in which the student
synthesizes and integrates the skills acquired during his/her studies.

● Result 2: Write a technical report in English, presenting and defending in front of
a university tribunal an original game design and development related project of
professional nature, in which the student synthesizes the skills acquired during
his/her studies.

1.4.2. Related subjects

• VJ1208 - Programming II

This course gave me the basics about the POO and the C # programming language,
currently the most widespread for Unity scripting.

• VJ1211 – Mathematics II

As a basic competence in the fields of computer science and videogames, this
course allowed me to develop my knowledge of trigonometry and algebra.

• VJ1220 - Databases

This subject gave me a wide knowledge about the conceptualization,
implementation and management of relational databases.

• VJ1222 - Conceptual Videogame Design

Thanks to this subject I acquired a more critical and analytical vision of the game, as
well as the elements that make it up and how they relate to each other.

• VJ1227 - Game Engines

13

In this subject, I developed my second integral project in Unity 3D and I learned the
basics of a game engine, its execution cycle and its differentiating aspects with respect to
others.

• VJ1234 – Advanced Interaction Techniques

This course allowed me to start learning techniques related to machine learning. I
was able to better understand the pattern recognition algorithms thanks to this subject.

1.5. Software and tools

Unity 3D 2017.3.0f3 (64-bit) - Unity 2018.1.0f2 (64-bit) [5]

Unity3D is nowadays among the most important game engines and it is used to
design and develop interactive applications and video games. It offers a good option for
the development of the project in question because of its extensive active user
community on platforms such as the Unity Forum, YouTube or GitHub, the technical
resources (in its own Asset Store) and the learning. It also helps the ease to export to
different platforms (such as Android [6], iOS [7] or Windows Phone [8]), the native support
for these platforms, the good complementation with the official APIs of Google services
and the simple handling of input data from external devices, such as the accelerometer,
gyroscope, vibration or GPS [9] . In addition, the experience that I have acquired with the
game engine during the last years of the Bachelor studies and through personal projects
has been really useful.

Visual Studio Community 2017 [10]

Unity3D offers a good integration with multiple Integrated Development
Environments (IDE). However, this Microsoft’s IDE has the most complete support in this
field and is widely used, thanks to its fast debug tools and comfortable movement
between classes, functions and, in general, the POO-based structure of different
interconnected C# scripts.

14

SketchUp Make 2017 (and extensions) [11]

This tool of graphic design and modelling in three dimensions is usually used to
generate models based on architecture, civil engineering or industrial design thanks to
its rapid conceptual prototyping and its use of Boolean structures based on faces. In
addition, it allows, in a very simple and precise way, measuring at real size and
reproducing them. This has been very useful when modelling certain buildings or points
of interest in each of the most relevant areas. As we will see later, its millions of extensions
and the extensive library of geolocated 3D models directly connected to Google Maps
[12] has also been useful in certain aspects of the project. The tool could have a better
integration with Unity, since it is somewhat limited in certain aspects and the handling of
complex models is not good. However, for the purpose of the project it is more than
enough, since it meets all the requirements and it has not been necessary to create
figures with more level of detail.

Git and GitHub [13]

As one of the most powerful Git-based version control platforms on the market,
GitHub is a good option to create code with caution and have better control over what is
being developed. Despite carrying this project out alone, the tool is fantastic when it
comes to organizing and provides a great help and time saving when having to discard
the changes in the code for some unexpected reason.

Adobe Photoshop CC 2018 [14]

Without a doubt, this image processing tool (or similar) is essential in any work that
has a certain visual component, since it allows with some speed or ease to edit any
texture or sprite that is required and integrate it using the .psd file in Unity itself.
Photoshop has been used since the modification of certain textures in visual effects or
shaders (such as transitions or animated background textures) as well as others related
to robot face animation or the creation of some Head-up Display (HUD) elements and
dialogues.

Trello [15]

This project managing software based on agile development methodologies was
used to keep track of the development of the project and task planning. Even for only one
person, it is really useful, as it allows to identify and check all the little tasks in an
organized and quick way.

15

Firebase [16]

For the development of the backend system, the Google’s Firebase platform has
been used, since thanks to its Firestore service [17], it was possible to store the
information via the web in a secure manner and then request it through the application.
Firebase acts as a real-time database that also allows great integrations with external
API’s written in languages such as JavaScript or Go.

Angular 6 and Angular CLI [18]

Angular framework, perfectly integrated with firebase, was used to create the web
client that communicates with the server. The website and service controller was
generated by using Angular CLI and was used to communicate with the Firebase data.
Then, the component and the web template were created so that the developer could
add and remove areas from a simple visual interface.

Microsoft Word 2013 [19]

This text-processor was used to write this memory, integrated with the Mendeley
Desktop app [20]. Thanks to both, it was easier to correctly make citations and
bibliographic references using the IEEE referencing standard.

External frameworks

In order to streamline and optimize certain parts of the project's development, it
was investigated how to implement various basic functionalities that the design required
and was conscientiously evaluated which tools to use to cover these needs. The Unity3D
community is extensive and usually feeds on valuable resources. In addition, the Asset
Store has lots of good free downloadable packages that save a lot of effort in terms of
implementation.

As professionals of the sector, we must be attentive and up-to-date with all these
tools provided by the community of users that sometimes make life easier and allow us
to focus on developing time, among other things beyond mere implementation. Some of
them were known through personal research and others thanks to recommendations
from people involved in games development. All of them were tested and evaluated
before implementing them at last.

16

The main external needs that appeared when planning and designing the project
were the following:

1. Create a stable dialog system that allows to interact with the characters and
transmit textual or visual information.

The research on how to make the dialog system was a bit complex, because
although there are different tools in the market, the initial purpose was to make
one's own or at least sufficiently extend some of them to create the dialogues from
an external document (such as JSON, txt or csv) and then load the text in the game.
However, for the final purpose of the game, this was not too relevant and it was
decided to look for integrated alternatives. The options were to use Ink [21], Yarn
[22] or Fungus [23]. All three are great tools to create dialogue systems, but after
testing them all, it was decided to use Fungus; since, in addition to dialogues, it
offered a complete impressive event management system to create the game flow
that was needed within each area.

2. Find the right tool for the implementation of the augmented reality system
based on the available resources.

After observing different alternatives, the SDK offered by Vuforia [24] was
used, since it offers a series of varied tools, with good performance and support
for a multitude of platforms. Details about the different Vuforia tools are detailed
in “Technical limitations and Work environment” section.

1.6. Planning

1.6.1. Task list

Below is a list of the tasks that were planned and have been carried out
chronologically throughout the development of the project, bearing in mind that a work
rate of between 35 and 40 hours per week was approximated. Each of the rows in the
table corresponds to a task with its description and the estimated time to carry it out.

Task Description Hours

1 Planning of the game design and main concept. This includes: sketching the
initial class diagram, researching about how to implement the areas system
and delimit the physical location where the project is based.

20

17

2 Initial implementation of the geolocation classes and the base architecture of
the app, following a Singleton-based pattern design.

15

3 Geolocation input research. This includes: searching for reference apps that
use this type of implementation and testing several methods of getting the
coordinates data.

15

4 Scene persistence methods research and implementation. 20

5 Creation and depuration of the monuments’ 3D models. Integration and
animation on each area scene.

25

6 Research of pattern recognition methods and implementation of symbols
minigame.

20

7 Integration of Vuforia SDK. 10

8 Modelling and animation of K.A.I’s main features. Research and integration of
the hologram shader.

20

9 Implementation of memory minigame. 15

10 Research of different ways to implement dialog systems and testing of some
libraries.

20

11 Integration of Fungus and creation of all the flowcharts and graphic event-
management diagrams.

30

12 Creation of the areas status and integration with flowchart variables and the
new data structures.

20

13 Design, implementation and animation of the full map system. 20

14 Implementation of the functionalities to saving and loading the game data
into a file.

10

15 Progress percentage implementation, cel shading and user interface
improvements.

10

16 Addition of the Firebase backend and the Angular web. 20

18

17 Addition of the Google Play Games Services. 20

1.7. Technical limitations and work environment

The platform for which the project will be developed will necessarily be Android
(from 4.3 Jelly Bean) or iOS operating systems in smartphones.

The complete video game creation has been developed on a PC with the following
technical specifications:

● Intel Core i7-6700HQ 2.60GHz
● RAM 8 GB
● SO Windows 10 x64

And the final application has been tested in a featured smartphone:

• Xiaomi Mi5
• Internal storage 32 GB
• Snapdragon 820 (1,8 Ghz) // Adreno 530
• RAM 3 GB
• MIUI 7 on Android 6.0
• Battery 3000 mAh

The size of the final application is 68 MB. This value will not increase even if new
areas are activated from the web application, since the fixed areas are created in the
project's own build interchangeably. On the other hand, the application has been
developed entirely in Spanish, so initially it will be destined to tourism carried out by
Spanish speakers. In the near future it is expected to implement a wider range of
languages.

19

1.7.1. Augmented reality features and justification

Because of its final scope, the project was designed to cover as amount of target
audience as possible, always taking into account the limitations of the technologies used
and its performance on the supported devices. Is for that reason that initially was needed
a research to delimit which functionalities could be covered and developed and which
devices would support that. Currently, there are a lot of middle-high range devices that
support Augmented Reality features, both in Android and iOS operative systems, but
depending on which AR tool or platform is used, they will allow some functionalities or
other. Down below these aspects will be covered deeply. Because of these original
limitations, some design aspects were iterative and had to be adjusted when adding AR,
as they was strongly linked to the final results and functionality.

In order to avoid to make this point too extensive, first it will be explained some of
the most common functionalities that exist in the current market of the AR and that
delimit the possibilities for the generation of content with this technology (Figure 3) and
next there will be observed the different tools that implement them and that were
investigated in order to decide which one fitted well the objectives and the scope of the
project.

Figure 3: Augmented reality can be used by tracking both images and even physical objects

20

Currently there are different ways to show content in augmented reality. Since
Vuforia integrates the vast majority of these, it has been decided to directly use the
explanation about its features it provides, as it is clear and concise [25]. Some common
uses are the following:

With targets

● Image Targets
Images that the AR SDK is able to detect and track comparing its significant

features against a known target resource database. Once the Image Target is
detected, the SDK will track the image as long as it is at least partially in the
camera’s field of view.

● Multi Targets
Multi Targets are for objects with flat surfaces and multiple sides, or that

contain multiple images. Just as Image Targets allow a developer to choose an
image ahead of time that the app recognizes, User-Defined Targets allow an end
user to pick an image at runtime. In outdoor scenarios the results are sometimes
unpredictable.

● Object Targets
Object Targets are a digital representation of the features and geometry of

a physical object. They are distinct from image based target types, such as Image
Target, Multi Targets and Cylinder Targets that require the use of a planar source
image. An Object Target is created by scanning a physical object using some
scanner tool.

● Model Targets
Model Targets allow you to recognize objects by shape using pre-existing 3D

models. Firstly, the physical object has to be modelled by hand or by using
photogrammetry technology. After that, the model has to be treated in an external
editor and imported to the game engine.

Without targets

● Plane detection

21

Plane detection (Ground Plane in Vuforia) enables digital content to be
placed on horizontal surfaces in your environment, such as floors and table tops,
without needing physical image targets. It supports the detection and tracking of
horizontal surfaces, and also enables to place content in mid-air using Anchor
Points.

At this point and knowing some of the possibilities offered by augmented reality, it
was necessary to decide which SDK to use and define the scope of the project. The
features and performance of the exposed functionalities vary slightly depending on which
SDK is used, but there were other circumstances that were more relevant and had to be
taken into account. On the one hand, as mentioned before, the preference was always to
reach an as broad as possible user base, which is determined by using a tool with support
for as many devices as possible. On the other hand, we also had to take into account
some limiting factors, such as that the application should be able to run without problems
on the outside and in the largest time slot as possible without having tracking issues.

In the current market there are different augmented reality SDKs (Figure 4). The
most famous are: Vuforia (Qualcomm and after PTC), ARKit (Apple) [26], ARCore (Google)
[27], Wikitude (Wikitude GmbH) [28] and Kudan computer vision (Kudan) [29].

Figure 4: Most used augmented reality SDKs in 2018.

22

At the time of choosing which SDK to use, the limitations came marked by the
support that each one gave to the devices, observing if the smartphone in which they
were going to carry out most of the testing (Xiaomi Mi5 32 GB) supported these
functionalities. Finally, the three best performing SDKs were ARKit, ARCore and Vuforia,
after having individually tested each of them and observed how they act in different
environments. ARKit was discarded immediately, because it is facing devices with iOS and,
although Unity3D is integrating it as a hybrid tool with ARCore, it is still in an experimental
phase and could provide unexpected results. On the other hand, the still very limited list
of devices supported by ARCore [30] was verified and it could be checked that the used
smartphone was not among them. Therefore, the possibilities were reduced to Vuforia,
which is possibly the AR software with the most variety of devices supported by its
different tools.

With Vuforia, the different options offered were observed. Some require a complete
scan of a physical object and others directly need a 3D model with exact dimensions for
execution. Unfortunately, there was a lack of some necessary resources to apply it, such
as a photogrammetry-based scanner or 3D models 1:1 scale of each one of the street
elements where AR would be used. Therefore, by the tools previously seen, it was decided
that what could be more interesting for the level of integrity in the development was to
use either simple targets with Image Targets, or to do the same but without requiring a
physical image to show the model in AR (preferable), with Plane Detection. The
differences between them can be appreciated down below in the Figure 5. The other
tools, although also very interesting and not too difficult to implement, were discarded
because of their unpredictable performance outdoors. The answer between these two
would again provide the support given for the devices, so it was investigated. Ground
Planes in Vuforia, sadly, is only supported in the Xiaomi brand for the Redmi 3S, Redmi
Note 3 and Redmi Note 4 [31], so it is not supported by the testing smartphone (was
checked by installing the Unity testing package they offer). Therefore, using Image Targets
and doing it in an original way was the definitive solution, planning the use of the planes
detection in a future expansion.

23

Figure 5: Image Target detection vs. Ground Plane detection in Vuforia

The picture used to act as an image target was an icon that represented both the
geolocated component and the access to information through a fun disk (Figure 6). This
design was kept as the rating of singular points to give the best possible result was high,
thanks to its irregularities in the design and key points of the image.

Figure 6: K.A.I.'s game image target.

24

2. Game Design Document

2.1. Overview

What would happen if, overnight, the whole history of our city was broken down
and fragmented into small units of time and space? Even more, what if, for a mistake or
on purpose, all these pieces of history were lost and there was only one person able to
put back in order and recover that historical heritage legacy? From pre-Roman times,
through the Kingdom of Valencia and reaching the Transition of the twentieth century,
Valencia has been a very changing city in social, artistic, economic and religious aspects.
All that knowledge stored in documents and captured in its streets has quickly degraded
and it is in our hands to recover it.

The previous paragraph summarizes the context in which the action of this project
is located. The idea that has been developed consists on an interactive game environment
that combines the physical reality with an Augmented Reality interface on the screen, to
create an implicit motivation in the player to discover new places and overcome the
challenges he/she will find in them. Therefore, it is, in terms of classification in the
different game genres, a game for exploration and continuous action, since the user must
be attentive to the environment and he/she must to be able to find specific goals and
surpass them in order to visit and recover all the information distributed in different
areas.

To create this heroic environment in which the player is the protagonist, a narrative
context was created that encourages action. Any day, a card falls into the hands of the
player, through which it is possible to communicate with a robot from the year 4025 called
Knowledgekeeper Artificial Intelligence (better known by its initials, K.A.I.). The robot will
explain that it has been sent by scientists of the future to carry out an important mission:
Recompose the pieces of the history of Valencia that have been either destroyed or
forgotten by the people of their time. However, K.A.I. cannot do it alone. The player will
be the one who must guide and take it to the sites to scan and retrieve the information.
Not everything will be so simple, since all the information of the present is digitally
encrypted for security reasons. The player will have to demonstrate his/her worth by
facing the challenges of each monument, which are brief minigames, to overcome this
protection system and save the cultural heritage in the future.

25

2.2. Target platforms

The project is focused on designing an application for smartphone, mainly in the
Android operating system as well as iOS, since smartphones are an ideal platform to
receive geolocated data and be able to estimate in real time the position of the device. It
is intended from the start that the product reaches as many people as possible.

Tools such as the different aspects of the Java SDK combined with the Unity
configuration offer great support for Android. In addition, the publication in the Play Store
marketplace [32] is cheap and fast. For iOS, the process is similar, but a little more
complex, since after having made the final build in Unity, it is necessary to configure it
again in Xcode [33] with the appropriate version to add the registration and identity
information before publishing. The App Store [34] requires, in addition, a review of the
application and an important payment, so the publication process is considerably longer
and more expensive.

2.3. Target audience

The application is not defined for a specific target audience, although a minimum
experience in the use of the smartphone is required, as well as the capacity for reading
and practical understanding. The age range, therefore, could be considered from 8 years
old. The profile of the players, however, must be open and with a tolerance to the
challenges; since the levels will increase in difficulty depending on the progress of the
player. It should be remembered that the project will be used by both regular players
who are not worried about the city's tourism and travellers who are not attracted by video
games.

2.4. Aims

The objective of the game is to find and complete all the given areas of Valencia.
The player has to complete all the challenges of an area to complete it. The data and
information about the places is saved locally, so they players are able to consult it
whenever they want, and all the levels are also replayable as many times as desired once
the corresponding area has been completed. To retrieve the information or play the
minigames, the player must physically return to the place where he first encountered
them.

26

2.5. Main game flow

When the player initializes the game, the avatar menu appears with all the statistics
achieved so far. At this time, only when the application is running, the GPS will start
working and from now on, it will count the travelled distance (with a margin of error) and
detect if there are areas of nearby elements with which to interact. It will also notify when
a new area is entered, by means of a small warning. In short, the smartphone acts as a
scanning device, as it allows the player to move and unlock the elements by playing
minigames on the mobile phone. There are two types of games: a mini-game of repetition
of memory sequences and another of skill and reflexes by drawing gestures. Further
details of all this will be noted in the document.

The flow of actions carried out by the user now is as follows:

1. When the user moves within an area, there is a notification in the app that allows
the player trigger the “connection” and load the Augmented Reality screen in order to
play the corresponding level.

2. Then, when the player presses the "Start communication" button, the phone's
camera is activated and the interaction with augmented reality begins. A message tells
the player to place his card in front of the camera of the device.

3. When the image target associated with the card is detected, the talking robot
K.A.I. appears. After a brief introduction, there is the possibility of playing the minigame
to "decrypt" the information of the area (Figure 7).

Figure 7: The player reaches an area and starts the augmented reality system.

4. The user plays the minigame associated with that area, which can be the memory
minigame or the gestures minigame. He/she has as many opportunities as desired to
surpass all the proposed levels and consequently complete the minigame (Figure 8).

27

5. Once the player solves it, he/she completes that area and unlocks the information
about that element.

Figure 8: One of the two different minigames appears before unlocking the touristic information.

6. The 3D model of the hologram corresponding to that area’s monument becomes
visible. After an animation, several intractable points appear around the building (Figure
9).

7. When the user touches any of these points, an old photo (between 1930 and
1960) of the monument appears along with a brief historical description related to that
particular point in the context of the monument and the time of the photo (Figure 9).

8. At this time, the user has the possibility of returning to a main menu through a
contextual button. There he/she can choose whether to play the mini-game again or to
see the information again.

28

Figure 9: The monument building with a hologram look is showed and provides the player the

information.

It is important to note that, at any time, the user can return to "radar mode" and
leave the augmented reality functionality of the area, even if he/she is inside it. However,
if he/she remains within the interaction with AR and physically leaves the area, the
application will return to the radar automatically and it will show a message pointing out
that it is not in any zone to interact with, until the user reaches another physical range.

2.6. Kind of challenges

2.6.1. Exploration challenge

This is the main global challenge that surrounds every aspect of the game, as from
the beginning the foundation of the project is promoting exploration and getting
information through overcoming different levels with progressive increasing difficulty, so
it is necessary to get access to new areas with new challenging levels. As we will see later,
thanks to the web app, it is possible to attach hidden levels or hidden areas in order to
provoke more curiosity and immersion in players. Promoting curiosity is essential on this
challenge, as the player has to be motivated to keep on playing and exploring new areas
around the city centre. The percentage score and the areas status, always visible on the
map screen, allow the player to know which areas have been visited, which areas have
been completed and what is his/her score so far.

29

2.6.2. Atomic challenges

In order to reach the information hidden in each area, player has to overcome some
obstacles, which will correspond to two different kind of little games that will prove their
memory and reflexes. An area will only be considered as “completed” when the player
passes all the levels of that game. These games constitute a sort of encryption on each
area and are the immediate challenges of the game, as player only can play it when he/her
is within the area. Minigames can be played again once completed, but only if the user is
in the corresponding area. In the analysis section, a more detailed view about each
minigame is provided.

2.7. Resources and entities

2.7.1. Map

The main map is a fundamental entity that helps the player to know where is
him/her and which zones are available, visited or completed. It will fulfil an informative
function, as the user is able to check at any time what is the status of the areas and what
is the percentage of the game that has been completed. In the following analysis section,
a more detailed description of the map is provided.

2.7.2. Score percentage

The percentage of completed game is the value that the player must take into
account if he/she wants to reach 100% of the challenges offered by the application. For
this, it will be necessary to visit all the places and overcome all the minigames in them to
be able to see the tourist information hidden in each one.

2.7.3. Areas

The areas are the minimum game units of the project. They are located in the
physical space of the world and, to access them, it is necessary to be within their
geolocated range. Once inside, the player is able to interact with the elements of the
environment through augmented reality. Each area also has a stored status for each
player that indicates his/her situation in the game: Unknown, available, visited or
completed. As mentioned previously, the player must get all the areas to have a
completed status and be able to complete the game.

30

2.7.4. Touristic information

The tourist information is transmitted through text and relevant images. This type
of information is hidden in each of the points of the 3D models of the monuments in
holographic form, and will only be accessible once the player has completed the
minigame of the area.

To develop this part of the project, it has been necessary to investigate about the
most relevant historical information of each monument or of each zone. To do this, it has
been searched different blogs of culture and historical heritage, such as the main website
of Valencia tourist guide [35], and the acquired information has been synthesized. Then,
the historical heritage information about the monument was expressed in terms closer
to the usual language and summarized in a comfortable way to be inserted into the game.

2.8. Types of actions or mechanics

Since the platform to which the project is destined is an smartphone, all the actions
done by the player will be carried out through interacting on a touch screen, either by a
simple "tap", or by various gestures recognized by the program that allow to trigger the
status of play at different points. Beyond a simple interface where the user interacts,
there have also been presented augmented reality mechanics where the perspective and
movement of the camera around the object play an important role for the progress along
the game (always combined with touching on the right place).

2.9. Construction and articulation of the levels

The levels of the game can be understood from two widely related but also
differentiated spheres. They are going to be distinguished, as has been done throughout
this document, depending on the functionalities that are integrated in the game:
Geolocation services and the use of augmented reality. From a general plane, the game
system is built by the list of areas that the player must visit, with their corresponding
parameters, and all of them framed in a delimited physical space that corresponds to the
historic centre of the city of Valencia. Within each area, the levels have a structure and a
very similar flow of actions, although each of them is developed in a particular way and
has its peculiarities and its singularities. Next, you can see how the areas are distributed
in the physical space of the centre of the city of Valencia in the Figure 10.

31

Figure 10: Geographical situation of all areas in Valencia city centre.

List of areas (from north to south):

1. Torres de Serranos (Serranos Towers).
2. Torres de Quart (Quart Towers).
3. Micalet and Valencia’s Cathedral.
4. Lonja de la Seda.
5. Ayuntamiento de Valencia (Valencia’s city council).
6. Estación del Norte (North Station).

3. Analysis

Next, each of the blocks that make up the project will be covered from a technical
point of view and at a high level. Fundamentally, it has been decided to divide this section
into two main sections, which refer to the two major technical aspects that have been
studied and developed for the creation of the application: the geolocation system and
the interaction in augmented reality when reaching a certain area.

32

3.1. Geolocation system

The geolocation system is the basis that gives the application its foundation.
Through the GPS satellite connection, received thanks to the native geolocation services
of the smartphone, it is possible to calculate with a certain precision the position of a
player on the Earth’s surface and, thus, to check if he/she is in a determined point.
Nowadays there are different ways to create a stable geolocated system. Depending on
the desired concept to implement, it is necessary to consider a robust prior design and
find the right tools to do so, either through well-known APIs that manage the information
received on time, such as the variety offered by certain Google services, or through other
custom systems.

One example for a custom system is to compare the data of the current position
received with a series of predefined areas and check if the player is in one of these areas
to trigger the corresponding event. This approach is the one that has been decided to
implement. In an iterative way, the system has been improved as the project progressed,
from the insertion of different status in each area until finally the use of a small back-end
to connect to a dynamic database using Firebase to create the areas and update them
automatically in the application. This systems follow the logic of a well-known technique
called geo-fencing [36], which consists on define an imaginary closed area in a specific
physical space in order to use it, for example, in applications related to geolocation.

Each of the points will be detailed in a chronological order of execution (not
necessarily of implementation) to facilitate the reader's understanding of the system.

3.1.1. Geo-fencing: Shape’s issue

First of all, it was necessary to define the way in which the zones would have to be
distributed along the terrain and how was it going to be divided. Generally, there are two
ways of doing it: delimit the areas by simple regular or not regular polygons or do it by
circles. (Figure 11) This first choice was to determine where the design of the system
would be addressed, since, for example, making the circular zones implied that there
would be certain places where no zone existed or, on the contrary, that there would be
areas that overlapped inevitably, which always implies less precision and control. The
advantage of doing it this way and not by polygons was the simplicity of calculating the
distances between positions by observing the relative distance of the player to the centre
of the area. A method much less complex that maintains integrity and the intuitive factor.

33

Figure 11: Radial vs. polygonal Geo-fencing.

3.1.2. Geolocation data storage

The next step when creating the system was to decide how the information of each
area would be stored. At the conceptual level, it should be an expandable system that
would allow areas to be created quickly and in a personalized manner, since the main
idea was linked to the principle of scalability and flexibility. To do this, we defined the
main parameters that should be composed by each area, which were: name, radius,
latitude and longitude.

Figure 12: Definition of an area.

34

The question that had to be answered then was how to create them, and the
response was outlined along a constant debugging process in which this storage went
away from the code to make it more comfortable, high level and closer to the user.
Without going into details of implementation, what began as tedious lines written by hand
with the coordinates has ended in the online insertion of data visually with the help of
Firebase and an extension of Google Maps.

3.1.3. Receiving and managing GPS data

Receiving GPS data in the device is one of the most delicate tasks and that most
compromises the integrity of the project, since certain factors must be taken into account.
As we have seen, GPS is a signal that is determined through a set of 24 to 32 satellites
and by the mathematical method known as trilateration. The accuracy of the position
data calculated in a moment of time will depend on external factors that we cannot
control a priori (at least, within the scope of this project). Normally, there are three key
factors that can interfere in the connection and generate a certain error: the state of the
satellite, the state of the propagation medium and the state of terrestrial reception. In
addition, another type of factors that usually influence are the signal delay in some layers
of the atmosphere, the rebound of the signal in buildings and mountains, errors in the
satellite's orbit, the number of satellites visible from the reception point in a precise
moment and some possible local error in the GPS clock.

Another disadvantage that must be taken into account when working with mobile
devices is the excessive battery consumption that currently causes the continuous use of
GPS. Being aware of this, it was necessary to create a design that would allow the device
to be turned off at certain moments of inactivity and that this would not have a direct
consequence on the player, but would be integrated with the game system naturally.
Besides, care was taken to update the responsible reception and with a minimum of five
to ten seconds between updates of the current position. This has advantages such as
battery saving and an accuracy margin when entering an area.

Figure 13: When current coordinates are updated, system checks if player is inside an area.

https://www.draw.io/#G1crimHDOFrDyOvzKaKUK0YH3ngz9oTne9

35

3.1.4. Areas status

In order to have greater control over the actions the player has made in the areas
and have the ability to hide them or make them available, a specific status has been
assigned to each area relative to the player. This status can have four different values:

● Locked There is an area in a determined site but the access is not allowed for
the player at that point in the game. By default, there will be areas will be blocked
which will be unlocked after the player has overcome some other areas.

● Available The area has been unlocked and now the player can access it and
start the quest by communicating with K.A.I.

• Visited The player has entered the area but has left without overcoming the
challenge, so it remains pending. A visited area is considered "partially
completed".

• Completed The area has been visited and the challenge has been overcome, so
that the area has been completed. If the player returns to the physical site, the
area can be accessed again and revisited as many times as desired, either to
repeat the corresponding minigame or to see again the tourist information of the
place.

36

Changes in the status of a particular area occur during the course of its execution.
As soon as an available area is accessed, it automatically changes its status to “Visited”
and starts posing the challenge to the player. If this challenge is overcome, the
corresponding tourist information will be displayed and the status will be “Completed”.
Since areas in the “Locked” status cannot be accessed, they will never be loaded.
Therefore, it is not necessary checking that state when the player enters the area,
because it will never happen. In Figure 14, it is possible to observe how status changes in
an area as the player executes actions.

https://www.draw.io/?page=1 - G1crimHDOFrDyOvzKaKUK0YH3ngz9oTne9

Figure 14: Diagram that shows how an area check and update its status.

When a new game starts, there is a certain percentage of areas that remain locked
and to which the player does not have access. That percentage can be configured from
the implementation. If the player is within the range of a blocked area, a message will
appear on the screen indicating it (. When the player completes an area, automatically
one of the blocked areas (if there are any) is randomly selected and it is unlocked. This is,
its status changes from "Locked" to "Available" and becomes accessible to the player.

Figure 15: Locked area notification.

https://www.draw.io/?page=1#G1crimHDOFrDyOvzKaKUK0YH3ngz9oTne9

37

The status of an area is automatically saved in the local data file each time it is
changed. Thus, the information is always up to date and can be accessed from any part
of the program. When any status changes, the global variable of the completed game
percentage is also updated. This information is saved online in the player's Google Play
Games account, so all players are able to check the leader boards and see all others'
scores.

3.1.5. Map displaying

The map is a valuable resource that is only displayed when the player is not
interacting within an area. This, as we will later see, only occurs in the default scene. The
map is largely related to the previous point, since it is where the status of the areas are
visually displayed and this allows the player to know his/her current both game and
geographical situation. The map shows all the areas symbolically through an icon with a
drawing and a colour that express its status (“Locked, “Available”, “Visited” or
“Completed”). If the player is within the range of an area, the placeholder will appear and
indicate where it is. Also, if the area has been viewed, its name will appear at the top of
the screen.

Figure 16: Points where the areas were defined. Left: Google Maps. Right: Map HUD.

38

3.1.6. Storing the areas’ information on the cloud

To scale the application or modify it without upload a new version each time to the
publishing market, it was necessary to create a database in the cloud capable of sending
data in a format such as JSON so that it can be read from the application in Unity each
time it is started and then update the local data from it. To create the web application site
and store the data with the parameters of the areas in the cloud, Firebase was used as
the main data storage database. The web client was created using Angular together with
some libraries, as will be detailed later in the implementation section. The following
Figure 17 shows the process by which the information of the areas is generated on the
web and each device receives the data of the areas and synchronizes them at the
beginning of the execution. All these processes will be detailed later.

Figure 17: Flow of the areas data, from the web to the app.

3.2. Augmented Reality

Augmented reality is the second main component of the application and the one
that provides the player a more direct and close connection with the surrounding
environment. When an area is reached, a contextual message appears on the screen and
invites the player to "initiate communication with K.A.I"; or, what in terms of the game
means, interact with that area and initiate augmented reality functionality. When pressed,
the screen immediately the image received on the device’s camera is showed and a
message indicating the instructions to follow to make the friendly robot appearing is
displayed.

39

As previously mentioned, there are different platforms and tools that offer
implementation services for augmented reality functions. On a practical level, the
complexity of implementation of each other does not change much, but since in this
project one of the objectives was to have a solid base of users and to open it to the
maximum number of possible devices, it was decided to finally use the image targets
method integrated into Vuforia and make the models and dialogs appear only when the
player has tracked the card with the pre-established image. For more information about
this, please see Technical limitations and work environment section.

There are three main stages or components in the area cycle: K.A.I., which acts as
speech moderator and links the actions; the minigames, which are related to the direct
interaction by the player in an environment with defined rules and, at last, the model of
the monument with the corresponding texts, that is, the informative part of the area.

Next, each of the three stages how the player interacts with them will be described.
This has been addressed to enhance the use of augmented reality from different
perspectives: Conversational / narrative with a character set in its own context, interactive
games with experimental mechanics and spatial exploration of a three-dimensional
model.

3.2.1. K.A.I.

The small robot K.A.I. is an adventure mate, experienced guide that will help the
player to reach his goal and complete all the levels. It appears at the beginning of each
area to scan the environment in which the player is located and gives the guidelines to
introduce the corresponding minigame, in case it is the first time the area is visited (Figure
18). At the end, he is the one who generates the three-dimensional model of the
emblematic monument of the place so that the player can interact with him. It is
important to note that in this game the main character of the adventure is the player,
since he/her has the responsibility to complete all the levels in order to recover the lost
information. However, the robot serves every time as support and help and gives player
a weighty reason to fulfil his mission at the same time.

40

Figure 18: K.A.I. after scanning the environment.

3.2.2. Minigames

3.2.2.1. Memory game

This minigame has its foundations in the well-known electronic memory game
called Simon, created by Ralph Baer and Howard J. Morrison in 1978 [37] (Figure 19). As
in its original influence, a series of figures will be illuminated following a sequential order
created randomly. The player will have to repeat the sequence in exactly the same order
as it was generated, touching the corresponding figures on the screen.

Figure 19: Version of Simon electronic game.

41

However, the difference is in the distribution of these figures in space, since this
time it will be in a three-dimensional space that will be observed by the player in
augmented reality. In this way, spatial perception also becomes a relevant factor, in
addition to memory, to overcome each level offered by the game. To make the game
more integrated in the Valencian context, it was decided that each of the objects that the
player would have to touch to complete the sequence would be the oranges of a typical
orange tree. The following Figure 20 shows the final result of the game in augmented
reality.

Figure 20: AR memory game

Once a sequence is overcome, the game will increase its difficulty by adding one or
several figures to the sequence and generating another one in a random way. As usual,
the player manages to reach the end of the game when all the levels are passed. The
difficulty of the minigame and the number of levels depend on the area in which the
player is and the progress of the game. Next, a diagram with the game execution cycle in
the Figure 21 is shown.

42

Figure 21: Complete memory minigame game cycle-

43

3.2.2.2. Pattern recognition game

In this minigame, it is essential to be attentive and put as much concentration as
possible in the reflexes and speed. The symbols appear in a pseudo-random way on all
sides of the screen, and the player must make the corresponding figure at the precise
moment it is over the colored range. The range will change its size throughout the game,
so it will not always be so easy to hit. The following Figure 22 shows the final result of the
game in augmented reality.

Figure 22: Pattern recognition game.

44

The scoring system of this minigame follows a simple logic: the player must achieve
a certain hit ratio (percentage of success), which is different depending on the level of
difficulty. The parameters of each level will be explained in more detail below. The player
will get points every time he draws a symbol correctly. These points will depend on factors
such as the speed of the symbol and the size of the range at the moment in which this
symbol has been successful, based on a small arbitrary formula. In this way, the game is
fairer when it comes to scoring. Next, a diagram with the game execution cycle in the
Figure 23 is shown.

Figure 23: Complete pattern recognition minigame game cycle.

45

3.2.3. Touristic information

Observing the three-dimensional models of monuments, buildings or objects of
interest in each area in augmented reality is a great step forward for the user in the
playable experience, as it allows him/her to explore areas and details of the model
beyond the limitations of a two-dimensional display. Visualizing the body in space makes
user more curious about the all the details the model has, such as a hidden stairway that
had a certain function several centuries ago, the exact width and height of a famous
medieval gate, the situation of each of the faces of a building, etc.

When a mini-game is completed for the first time or the option of showing the
information is selected, the model of the building or object of interest is displayed and
then the player can appreciate it. After a brief animation, several points appear around
the model that show the possible interactions to see the information. When the user
touches any of these points, K.A.I. briefly explains something related to the place you are
visiting and usually also related to that part of the model or object (going back to the
previous example, an information about what happened with that gate or that stairway
in medieval times). In addition, this information will always be visually supported by a
photo taken between 1930 and 1960, to convey more tangibly the change that this area
has given over time and encourage the user to think about it.

46

4. Implementation details

4.1. Running the app: Game Manager

As you can see, a modular attitude has been taken dividing the project code. The
GameManager, on this occasion, has a set of attributes and more general functions that
need to be accessed from some parts of the program. Some attributes are the name of
the default area, the URL from which to obtain the information of the areas via the web
and the set of local areas. This script serves as a link between local data, cloud data and
the connection between the main scripts. From here you can communicate with the
SaveManager in order to save, load, reset the data or obtain the status of the current area.

The first thing you do when you start the app is to create the Singleton instances of
the different managers (GameManager, GeoLocManager, SaveManager, MapManager, etc.).
Immediately after this, the list of areas in the GameManager is created with the default area
as the only element and then an asynchronous method is executed that downloads
through a provided URL the data of all the areas that we have defined and introduced in
the web. The program flow, as it should be, does not operate with the areas until this
operation has been performed.

4.1.1. Synchronizing the areas data

Once the data has been obtained, it is synchronized with the locally stored data. At
this point the saved data is loaded and two situations can occur:

a) It is the first time that the player executes the application:
There is no saved data, so the SaveManager must be responsible for creating a new

GameData object to save the data corresponding to the areas that have just been loaded
into the application. Once it has been done, the newly saved data is loaded and it is not
necessary to do any other operation, since obviously they are already updated.

b) It is not the first time that the player executes the application:

47

Therefore, a file of saved data already exists and it is necessary to verify that
the local data is synchronized with the data of the cloud1. Web data will always
have preference over local data. This means that if, for example, a local area has
been deleted on the web, as soon as the synchronization process is finished, this
area will be locally removed without affecting the others and the percentage of
the game completed by the user will be updated in relation to the current existing
areas. The exact same thing will happen if a new area is added.

The algorithm used to perform this operation is as follows:

1. Add the areas that are in the cloud and are not locally to the local area array.

2. The areas that are locally and not in the cloud are searched and their name is saved as
an identifier in order to be able to eliminate them later.

3. The areas to be removed are traversed and removed from the local area array. Now
the system has been synchronized.

The following Figure 24 shows how the data from the local areas and in the cloud
do not coincide. It may have been assumed that a new area (yellow) has been inserted
into the cloud storage database. In addition, in the cloud it has been previously decided
to eliminate another area (orange). As soon as the application starts, this will be checked
and both data will be synchronized giving priority to the cloud list. The yellow area will be
added to the local list and the orange area will be removed from it.

Figure 24: Example of data synchronization between the cloud and local areas lists.

1 Various situations can occur due to which the data of the cloud have been modified
and do not correspond to the locally stored data. Due to its nature as a database, a new
area may have been added, and an existing area modified or eliminated.

48

After synchronization, it is time to call the event that will start geo-location services
thanks to the GeoLocManager and get the player's current position.

4.2. Geolocation system

GeoLocManager is the class in charge of managing everything related to obtaining
data through the sensors of the device and its internal management. It has information
about the current coordinates and the area in which the player is located, as well as the
time (approximate, remember that it is never exact) of updating the coordinates. Its
function is to periodically observe where the player is in the world and, based on that,
check if it is within an area defined in the GameManager. If it is affirmative, the player will
be visually notified so that he/she can access to upload it whenever he/she wishes.

It is important to note that two support classes have been created to store the
geolocation information: Area and GeoLocCoodinates (Figure 25).

Figure 25: Area and GeoLocCoordinates C# classes.

Once the GameManager has synchronized the areas, the GeoLocManager starts to
work. The current area is set to the default area, as, in order to make the system more
robust, it was decided that the user must always pass through this intermediary area
before having the possibility of accessing another new area. The coordinates of the
default area have been arbitrarily set to latitude = 0 and longitude = 0. The asynchronous
method that will update the coordinates every elapsed time is then started.

4.2.1. Updating coordinates and updating the current area

The method UpdateCoords() is called every certain elapsed time and the
coordinates are updated. After that, UpdateArea() is called to check if the player is within
an area in the current position that has just been updated.

Once the area is updated, there are three possible situations:

49

a) Player has not reached any area: He/she was in the default scene and is still
there, so there is nothing to load.

b) Player has just reached an area: He/she was in the default scene and it is
necessary to inform that there is an available area to be loaded at this time.

c) Player has just left an area: He/she was within the range of an area and has just
come out of it. In that case, the default scene will be loaded again.

The algorithm to update the area is not complex to understand. First it checks if in
the previous update of coordinates the player was in the default area (this is, he/she was
out of some area). If so, it is calculated if its position is inside any of the areas of the main
array (detailed below) and if so, the current area is updated and the OnAreaChanges()
event is called so that, external methods subscribed to it in the rest of the code, perform
the corresponding action (such as, for example, displaying the "Start communication"
button in the default scene to allow the player entering the area).

If it is not in the default area, we check if it is still in an area with the new update. If not, it
means that he/she has just left the area he/she was in and, therefore, it is necessary to
load the default scene.

In order to get a more specific idea of how the player's current position refresh and
the checking works, the C# implementation of the previous functions is shown in the
Figure 26.

50

Figure 26: C# implementation of updating and checking the current position methods.

51

4.2.2. Checking if a point is inside an area

The methods that are going to be detailed below constitute a key part of the
geolocalized system process, since its function is to delimit if the player is inside an area
or not. For this, it was necessary to perform a previous investigation on the mathematical
basis that requires calculating the distance between two points on a spherical surface
such as the Earth to, later, apply a basic mathematical theorem on how to find out if a
point is inside of a circle or not.

According to Geodesy2 principles, it is defined as great-circle distance (also called
orthodromic distance) the shortest distance between two points on the surface of a
sphere, in this case, on the surface of the Earth (Figure 27). A certain level of abstraction
is necessary when calculating this distance, since an ideal situation is assumed where the
surface of the Earth does not have irregularities in the terrain. In addition, the algorithm
does not understand elevation changes, since it is only based on latitude and longitude
measurements. When talking about spaces with curvature, straight lines that defined the
distance between two points in Euclidean space are replaced by geodesics, which are
circles on the sphere whose centres coincide with the centre of the sphere. They are also
called great circles.

Figure 27: Representation of a geodesic arc formed by two points P and Q. The segment that joins

them is their great-circle distance.

2 Geodesy is the science that accurately measures and understands some Earth
properties such as its spherical shape, its orientation in space and its gravitational field.

52

The mathematical theorem used for such a procedure is the Haversine formula.
For any two points on a sphere, the Haversine of the central angle between them is
given by:

Where hav is the Haversine function:

● d is the distance between the two points along the sphere’s surface,
● r is the radius of the sphere, in this case the Earth.
● φ1, φ2: latitude of point 1 and latitude of point 2, expressed in radians,
● λ1, λ2: longitude of point 1 and longitude of point 2, expressed in radians.

Next, the mathematical development that had to be based to simplify the formula
and be able to write it correctly in the code of the program is going to be exposed. Starting
from the definition of the Haversine function, it was chosen to develop it using the
squared sine, the first of the expressions of Haversine (with the power of two in the sine
operation). Thus, clearing the distance:

 To simplify and improve legibility, this expression is parameterized.

53

Now is the time to look for the relationship between the arcsine of a given value (x) and
the corresponding arctangent. It can be easily demonstrated by using a right triangle of
hypotenuse equal to 1 and a leg equal to the value (x).

Therefore, the previous expression is equivalent to the following forms:

It was necessary to use the function atan2, also called the inverse tangent, that
takes two arguments (not both equal to zero) and represent the coordinates of an
arbitrary point (y, x) in the X/Y plane. Without going into deep mathematical details, this
multi-valued function is widely used in programming to avoid the error that the atan
function of an argument produces when it must distinguish between diametrically
opposed directions. With the atan2 function, only one arctangent value is calculated
from two variables, which symbols determine the resulting quadrant.

The correspondence between trigonometric functions can be given in several ways:

The resulting expression, which was written in the function of C#, was:

54

And, as can be seen at Figure 28 the result on the code was:

Figure 28: C# implementation of Haversine formula.

After verifying that the formula had been well expressed and the result offered
fitted with that granted by other online tools such as Google Maps or calculators of
spherical distances, the last step was to check if the point was within the radius of the
area. A trivial solution was made to solve this: simply check if that distance is less than
the radius of the defined area. If it is, it means that the point is within the area and
therefore the player has that available area. If it is greater than the radius value, the player
is outside the area. In the following Figure 29 can be appreciated the C# code and in
Figure 30 the main idea is explained graphically.

Figure 29: C# implementation of the function that checks if the player is inside an area.

55

Figure 30: A player is inside an area if the distance from their position to the area's centre is less than

the area’s radius.

4.3. Scene managing: Persistence and runtime loading

All the actions related to geolocation are carried out by events that are triggered
based on a constant updating and checking of the input data provided by the sensors of
the mobile device. It is for this reason that it was necessary to devise a way to maintain
certain information at a global level (such as game managers, geolocation to update
coordinates and save and load data), while another should be loaded or downloaded
depending on where the player was. The ideal solution for this was to implement a scene
manager based on one persistent scene.

There is a particular default area that is treated as a further area, of coordinates (0,
0) as a "zero zone". This allows that, if the player is not in any area, goes to the default
status simply following the same logic that is being followed with the other scenes.
Greater robustness and homogeneity in the code is achieved in this way. As we will see
later, this default scene is always the same one and does not require to be saved, so
neither it will be created in the persistent data file nor it will be specified through the web
app. The program will be responsible for automatically creating and loading it at the
beginning of the execution (Figure 31).

56

Figure 31: Default scene is loaded when the app starts running.

The persistent scene acts as a "scene container". When the player is within the range
of an available area and decides to interact with it, the script responsible for the scene
management unloads asynchronously the default scene (the one loaded at that moment)
and loads the new scene, as it was a layer system, into a stack over the persistent scene.

Figure 32: When the player selects to interact with an area, the default scene is unloaded and the

area scene is loaded.

57

It may seem to the reader with knowledge of Unity3D that the solution of
implementing each interaction of the areas in different scenes was not optimal, being
that the scenes usually resemble each other a lot and it may seem a priori a greater
workload both computational and development. The decision has been made for ease of
implementation and flexible scalability. Separating each area in a different Unity scene
allowed a better personalized control with the dialog system of each place and with the
3D models that are shown. If, for example, the developers want to add a level to be
unlocked as a DLC, it would be enough to create a new scene from the previous ones and
add the photos, information and the corresponding models. It would be necessary to
carry out a similar process to insert new minigames.

4.4. Saving and loading data locally

As we have observed, player progress data is locally stored. This process is carried
out by the serialization3 of the data of a GameData type instance, which contains three
unique parameters: the status of each area, the percentage of the game completed by
the player and the names of the current locked areas. In the following Figure 33 this class
is shown more detailed.

Figure 33: GameData C# Class.

3 Serialization is a process to encode a set of data as a series of bytes or in a more universal
format to be saved on the hard disk or transmitted.

58

Note that a string key dictionary and enum AreaStatus value has been used to store
the status of each area. This has been decided so that the access and modification of
these values is O (1) and also much clearer in the writing and reading of the code. Please,
see the section Updating the areas status” for more details.

The saved and loaded data corresponds to the SaveManager class. At the beginning
of this section we saw how the GameManager used the LoadGame and SaveGame functions
to interact with this script and save the new GameData instance with the updated data
synchronized with the server. Let's see more about how these methods work in the
following Figure 34:

Figure 34: SaveGame and LoadGame methods diagrams.

Later we will see that the method of saving data is called every time that the status
of some area is updated. The current instance of GameData is modified before saving it:
the new status of the area in the dictionary is searched and updated and then the new
percentage of completed game is calculated.

Resetting all the status is trivial. Just creating and saving a new default instance of
GameData (with the list of areas that we want to save as a parameter), the constructor will
directly mark them as "unknown" or "available" (as desired).

59

4.5. Game flow inside an area

Fungus was the tool I decided to use for creating the dialog system within each of
the areas. It is important to note that Fungus is not just a tool that allows you to easily
display text by screen or contextual menus of options. It's much more than that. By
means of the extension of the tool and a little ingenuity to connect it with the external
scripts, all kinds of events can be controlled.

4.5.1. Fungus flowchart and event management

All the logic of Fungus is found in a visual environment called flowchart and flows
through interconnected block trees. These blocks are sequences of actions of all kinds
that are reproduced one after the other. The actions of the blocks can call other blocks
and branch depending on the parameters entered or the options that the player has
chosen on the screen.

Apart from this, you can also call blocks by events, which are circumstances that
occur at a certain time and that trigger actions. Fundamentally, in any area there are three
types of events that must be taken into account:

a) When the game starts
The block is executed immediately after starting the scene.

➔ In the areas, you must wait for the player to track the image by the camera
to activate the augmented reality, so when you start the scene a message
indicating this will appear.

b) When a message is received

When an event occurs at a certain time, the script that reads it send a
broadcast message identified by a name to the flowchart. If a block is configured
to receive a message with that identifier, it will execute its corresponding actions
when it receives it.

➔ This type of logic is used for delimiting when the AR image has been found
and we must show the model. The Vuforia manager script sends a
broadcast message and the corresponding block captures it to check the
status of the area. When ending a minigame, this type of message is also
used.

c) When an object is touched

60

The logic of this type of events keeps a close relationship with the previous
ones, but now the message triggers when an object is touched by the user. Then,
the corresponding block will execute its actions.

➔ The touch of objects in the areas is produced by touching the disk to load
the hologram or each time one an information point is touched.

4.5.2. Updating the areas status

Each flowchart has a set of own variables that can be obtained from certain actions
to create a logical flow between the blocks. These variables have been the key aspect to
relate the status of the game areas with the flowchart of each of the scenes. The trick was
to create an updated copy of the status of the area in an internal variable of the flowchart.
When the area is accessed, the status is obtained and the variable is copied. If an event
that produces the modification of that status occurs (the game is completed, for
example), this status is updated in the game's global data and in turn it is updated in the
variable of the flowchart. In this way, we can call blocks or others comfortably depending
on the value of this variable.

The following Figure 35 shows the main variables that have been used in each
flowchart to define their parameters. In this case, the only dynamic variable is "Status",
since the rest are treated as constants. The variable "Game" allows to define what type of
minigame is going to be played in that area and the name is defined by its label.

Figure 35: Main flowchart variables used in each area.

Now the Fungus way of working has been contextualized, it is time to observe in
greater depth how has this been logically applied to each area. If one block ends and does
not call another, the flow of actions of the flowchart stops until the player performs the
next action.

61

The execution cycle of an area is divided into two parts to make it easier to visualize.
As shown in Figure 36, when the area is loaded the event that shows the instructions that
the player must follow to activate the augmented reality (that is, put the card in front of
the camera of the phone) is triggered. Once the identifier of the target image is detected,
a broadcast message is sent to the flowchart again and the status of the area is obtained
by the GameManager. This state will overwrite the flowchart variable to work more
efficiently. Depending on the state, as seen in Figure x, some actions or others will be
executed. If it is the first time that area is visited or the game has not yet been completed,
the monument information will not be accessible. After a brief dialogue, the game will be
started. Otherwise, it will be showed the options menu that allows playing the minigame
or seeing the monument again.

Figure 36: Diagram of the complete implementation cycle of an area (I).

The part in which the minigame is executed is going to be circumvented, since the
execution cycle of both minigames has already been detailed at the point of analysis of
the application. The attention will now be focused on what happens when the minigame
ends. In any case, a broadcast message will be sent to the flowchart. If the player has not
passed the game, the game restarts. If it has done so, it is checked again if the area was
completed (that is, if the minigame was accessed from the options menu) by means of
the variable of the flowchart that was established when entering the area. If so, it returns
to this menu. If not, the status is updated in both the flowchart and the GameManager
dictionary and the disk with the information of the building's hologram is displayed. When
the player touches the disc, another event is triggered that makes the monument appear.

62

Figure 37: Diagram of the complete implementation cycle of an area (II).

4.6. Minigames

In this section, each of the augmented reality minigames implemented will be
explained, as well as the particular techniques that have been used to build their main
mechanics will be further detailed.

63

4.6.1. Memory Game

4.6.1.1. Overview

In the memory minigame, a sequence of illuminated objects is displayed initially,
and the player must repeat it exactly in the same order. The difficulty increases
progressively, since there will be more objects that are added to the final sequence and
that have to be remembered. When one sequence is failed, another is randomly
generated from the same number of illuminated objects, this is, the same level.

This game is highly inspired by the classic "Simon says", but with the peculiarity that
the two-dimensional space is broken to make way for augmented reality in three
dimensions (Figure 38). This is a factor of difficulty (and fun) extra for the player, since
he/she must also take into account the spatial component.

The implementation has been strongly parameterized in order to give the game as
scalability as possible. This allows infinite levels of difficulty, since, in addition, the
arrangement of the objects in the space is totally customizable. Some of the parameters
are:

● Total number of objects.
● Elapsed time between when an object and the next one light up.
● Initial level.
● Number of game rounds.

64

Figure 38: Memory game in augmented reality.

4.6.1.2. Random sequence generation

The generation of the sequences in a random way was implemented through the
use of two arrays. To begin with, it was necessary to refer to all the objects in the scene
that were going to be part of the sequence and that could be touched later to solve it.
The best option was to save them in an array, with each index of that array identifying
the object. The second array, of a length equivalent to the level of the game in which we
find ourselves, stores the sequence of objects themselves based on a sequence of
indexes (from array of objects). When generating a new sequence, a new array is simply
created depending on the level and it is traversed assigning to each index a random
integer value among all those corresponding to the playable objects. They can, of course,
repeat values. Finally, a counter is updating the index of the array object that the player
must press at that moment. In this way it is possible to check if the sequence succeeds.
At the moment in which this index coincides with the length of the array, it means that all
the objects (played in order) have been successful and must either generate a new
sequence or end the game. If the player makes a mistake, the level will restart with a new
sequence.

65

Figure 39: GenerateNewSequence() method C# implementation.

For the set of sequential animations of this game in particular, DoTween library [38]
has been used, as it allows to manage this type of events one after another in a
magnificent way. By nesting sequences of animations and parameterizing them, the
effects of coloring the oranges and creating all the necessary visual feedback were
achieved.

4.6.2. Pattern recognition game

4.6.2.1. Overview

During the pattern recognition mini-game, several icons will go through the screen
from certain places. The player must destroy them by means of the symbol that indicates
his figure in the precise moment in which these are within a delimited range that will vary
in size. The player will win if he/she draws correctly a certain number of symbols,
depending on the difficulty level and the total number of appearances.

This minigame was designed in such a way that it could be customized and
expanded. Therefore, the difficulty levels have been parameterized based on the
following values:

● Maximum and minimum symbol speed.
● Time elapsed between appearances of symbols.
● Total number of symbols that will appear.
● Percentage of minimum success necessary to overcome the level.
● List of symbols generation points.
● List of ranges for this level of difficulty.

66

With all the previous parameters, it is possible to define as many levels of difficulty
as desired, and thus endow this game with a practically infinite variety when it appears in
the areas.

Figure 40: Gesture being drawn while a symbol comes to the range.

4.6.2.2. Randomness

The reader will have appreciated that certain values, such as the speed of symbols,
appear as a bounded range. This is because the game was given a randomness factor in
several aspects:

● The symbols appear at a random generation point.
● The speed of the symbols is between the two given values for that level of

difficulty.

When a symbol is drawn and it is within a range, an event that checks by means of
a recognition algorithm if the line drawn is correct and corresponds to the symbol within
the range is launched. If successful, a score is arbitrarily weighted based on the speed of
the successful symbol and the size of the range at the time is destroyed.

67

4.6.2.3. P-Dollar Algorithm

The pattern recognition algorithm that uses this little game is called P-Dollar Point-
Cloud Gesture Recognizer (commonly abbreviated $P). It is attributed to Radu-Daniel
Vatavu (University Stefan cel Mare of Suceava), Lisa Anthony, (University of Maryland-
Baltimore County, currently at the University of Florida) and Jacob O. Wobbrock
(University of Washington) [39].

As they explain, “In machine learning terms, $P is an instance-based nearest-
neighbour classifier with a Euclidean scoring function.” In the context of pattern
recognition, it is necessary to extract certain characteristics of the sample to be classified
on which it is going to work. In this case, this set is given by coordinates in a two-
dimensional space, since the patterns are lines formed by the union of points. The
classification procedure to be used is geometric (not statistical) and, as mentioned above,
is based on clustering. Gestures are always compared as collections of points, using the
supervised classification method of the nearest-neighbour (kNN with k = 1) [40].

The algorithm classifies a candidate gesture against a set of training samples that
have previously been defined in a database (in this case, in an XML file). At the time of
classifying it, it is compared with all the stored gestures looking for the one that provides
the highest score.

In Figure 41 it is possible to see how the algorithm acts. Two sets of points which
correspond to two different strokes, black and red, are represented. The red one
corresponds to the set defined in the database (that is, part of the training samples). The
black one corresponds to the stroke drawn by the user at a time of execution. While the
player is defining the stroke, points are generated from time to time. When the user stops
drawing, these two sets of points are compared and a quantitative value that expresses
the similarity between the two is obtained. If this number is satisfactory (depending on
how it was defined in the game), the candidate set is given as valid and, therefore, the
gesture is identified as the gesture stored in the database.

68

Figure 41: The black points set defines a candidate gesture that is classified against the red set, which

was previously defined.

Since the game is going to run on a mobile device, it was decided to simplify the
algorithm and implement a reduced version called $1 Unistroke Recognizer [41]. It
maintains the same classification logic, but only with gestures made with a continuous
line. As the game should be frenetic, it is logical that the symbols are the simplest and
fastest to draw (as well as to recognize). The way it works is similar to the $P one.

4.7. Reactive web manager

As expressed before, during the development a lack of flexibility was detected in
the project that could hinder the action of adding new areas in a simple and fast way, in
order to allow the players accessing to new information. Due to the project’s structure,
the only way to make visible new areas was a new compilation with the consequent
update in the digital market where the application was (in this case, Play Store). From the
developer’s side, this method means an uncomfortable task, since although locally the
areas are stored as objects of code and can be easily edited thanks to Unity serialization
and mechanisms such as Scriptable Objects, it was necessary to write in an imprecise and
non-intuitive way the numerical data of the areas.

For this reason, the need to implement a small tool that allows remotely add,
remove or modify game zones was evaluated. Ideally, the application would load that
information reactive just at the beginning of each execution and the data of the areas
would be updated and synchronized locally. The cloud data always has the priority, so the
local data has to be modified if something changes.

69

The development of this functionality consisted of three basic components: a server
in which to host the information, a controller in Unity capable of consuming it and
processing it well and a web client capable of generating it. In Figure 42 it is observed how
the three components are communicated.

Figure 42: Relation between the both web and Unity clients with the cloud storage server.

The complete development of an area would be much more complex, since it would
be necessary to include several fields with questionnaires associated with each type of
minigame, 3D model to display and each type of information that will be transmitted in
the area. These functionalities would require a more extensive research work in web
development and storage, and integration with the current local system. However, it was
decided to develop a basic version that would allow defining the areas by their basic
attributes: Name, radius and coordinates expressed in latitude and longitude. In addition,
a tag attribute was added to identify the area by its full name that would later be attached
to the project. The great advantage of editing the areas in this way was that thanks to a
Google Maps library it was possible to edit the coordinates in a visual way. This means
that adding an area becomes much more intuitive. In the following Figure 43 the resultant
user interface with a table structure is showed.

Figure 43: Table with all areas data. Each row represents an area and the columns mean its

attributes.

70

After making a brief analysis of the available technologies, it was decided to use
Firebase for the server where the data would be stored. Firebase is a technology offered
by Google that allows control over a database in real time and, in addition, greatly
facilitates the reactive programming4 thanks to a JavaScript API. An updated version of
Angular 4, also perfectly integrated with Firebase, is used for the client.

Next, the most important points of the implementation of both web clients, Angular
and Unity, will be described.

4.7.1. Creating the data with Angular

For the generation of the Web, the Angular CLI library has been used. Angular is
programmed with TypeScript5, so once with the attributes of the conceptually defined
areas, it was easy to implement them in a similar way to their structure in Unity thanks to
this typed language. Next, a service controller was created that communicates with the
database in Firebase. This is possible using the AngularFire2 library [42]. Internally, a code
similar to the creation of an object is used to add a new area to the list (Figure 44).

Figure 44: Constructor method for creating a new Area instance in TypeScript..

4 Reactive programming is a set of patterns and techniques that allows current applications to
react to events (event-driving), react to load (scalability), react to failures (resilience) and react to
users (responsively).

5 TypeScript is a language similar to JavaScript that can be compiled into JavaScript itself. It is a
typed language, which means that it is possible to create classes and methods similar to C #. This
was an advantage at the structural level, since the objects in the areas were created in a very
similar way.

71

Once the class and the communication service were created, the last step was to
create the component and the web template that allowed adding and deleting areas
comfortably. It was decided to design it in the form of a table, with a column
corresponding to each attribute. To obtain the coordinates data introducing them
visually, it was used the AngularGoogleMaps library [43], which allows to display maps
and perform simple operations with them.

The user, that is, the developer, will simply have to select the "Add" button and a
pop-up will appear showing the map of the city centre (Figure 45). Then, by clicking on
any game, an area with a modifiable range will be displayed. The user will choose how
they want the area to be and will put a label on it. Once the operation is confirmed, the
area will be added to the list with the established parameters. When the application
opens next time, the new area will be available to access it.

Figure 45: Google Maps pop-up used to add an area.

72

4.7.2. Getting the data with Unity

For the part of the integration in Unity, it was necessary to modify the GameManager
class to add a coroutine to check if there had been modifications in the cloud as soon as
the application was executed and, if so, to update and synchronize all the data of the
areas. The algorithm used for such a procedure has been detailed in the “Synchronizing
the areas data” section. In the Figure 46 can be observed how the callback call that collects
the data in JSON format from the given URL and converts them to application data has
been implemented in C#.

To carry out the web request, the Unity class called WWW was used. Due to the way
the coroutines are executed, the request is made asynchronously, so this ensures that all
the data will be loaded when the execution cycle continues.

With the created Area class, the challenge here was to fragment the JSON file into
its different fields and then create Area objects depending on them and add them to the
list to be compared with the local data in the SyncronizeGameData() method below. For
the management of this response package, an external library called SimpleJSON [44] was
used, which facilitates the work with JSON-type data structures and acts as a manager.

Figure 46: C# asynchronous request to the web service.

73

With all of the above, the reactive reception system for content areas generated in
the cloud is complete. The developer now is able to edit the information of the areas that
wants to apply to the game at any time, specifying where the areas will be physically. In
all installed applications this information will be updated the next time they are executed,
without avoiding to generate a new .apk file and upload it to the marketplace.

4.8. Google Play Games Services

To finalize the application development, Google Play Games Services (GPGS) [45]
were incorporated, which give the game more versatility and allow it to have intrinsically
a community of users based on their respective Google accounts. First it will be defined
what Google play games Services are about and what they allow to add to the
development and, later, it will be seen how they have been implemented to extend the
application functionality.

The GPGS, as the name suggests, is the set of services offered by Google to connect
an application with its platform for games for smartphones called Google Play Games.
Access to this platform allow the application users sign in with their Google account and
be part of a global ranking with the results obtained in the game (Figure 47). In addition,
it also allows you to configure a wide set of unlockable achievements, cloud storage for
saving data and multiplayer options. Using them, the life of the application and its game
system is greatly extended, since it goes from being local to being hosted by a community
of players that can communicate with each other.

Figure 47: Google Play Games Services official app main menu.

74

To facilitate the visualization and edition of statistical services, such as Google
Analytics [46], the creation of achievements and leaderboards and the tracking of the
game data in the Play Store, the Google Play Console [47] is used. From this platform, it
is possible to configure the resources that will be used in the application and then
download them in XML format and integrate them into the game engine. This resources
can be configured in the scripts related and there trigger some events and update the
data in the cloud at run time.

GPGS is well integrated with Unity, as Google provided, a few years ago, a public API
for developers hosted on the Github [48] that can be downloaded as a Unity Package and
configured in the editor. The most complex and delicate part of the process is to configure
the signature of the application, since it is necessary to have basic knowledge about the
meaning of the identifiers (commonly called tockens) that are used to carry out this
signature.

In order to explain this process briefly, a new Keystore was created for the
application, which is a file that contains the identity that securely connects the game to
the Google Play Console application. The Keystore is generated from a name, an alias and
their respective passwords and it is signed with a key SHA1. This key must be accessed
by command console and it is necessary to link the local application with the Google Play
Console one (Figure 48).

Figure 48: "Linked applications" tab of the K.A.I.’s games services on the Google Play Console.

Once the base configuration is done, it is time to create the leaderboards and the
achievements. The API allows to create both instantaneous achievements (they are only
achieved once) and incremental achievements (a counter is added repeatedly until the
full achievement is achieved), as shown in the list of the Figure 49. When everything is
ready, the resources are obtained, they are incorporated in Unity and the functions of the
library are implemented in order to execute the actions of identification of the user and
of unlocking achievements from code.

75

Figure 49: "Achievements" tab of the K.A.I.’s games services on the Google Play Console.

For example, to report that an achievement has been completed and update it in
the active user's account, the ReportProgress function of the API must to be called,
passing as parameters the token corresponding to the achievement to be unlocked and
the numerical amount of progress of that achievement. In the following Figure 50 there
is an example of an implementation in C#.

Figure 50: C# example of call to ReportProgress function to indicate that an achievement has been

accomplished.

The final result of the implementation of these Google services in the application is
shown in the following Figure 51. The user accesses this information through two buttons
located in the upper left of the default scene and thus he/she can check its progress
associated with his/her Google account. The player also has the option of sign in or sign
out with a third additional button in the upper right corner (Figure 52).

76

Figure 51: Left: Achievents pop-up. Right: Leaderboards pop-up.

Figure 52: Google Play Services HUD buttons.

77

5. Artistic design

From the beginning, the artistic design of the project was strongly linked to give a
distant futuristic atmosphere to the elements that we found, to transmit the sensation of
contrast sought between ancient and past elements and its holographic figure
represented by the robot. In this section, the most important points of artistic design and
how they have been focused are exposed.

5.1. Colour schemes

In every visual project it is necessary to make a good choice of the colour palettes
that are going to be used, since it will be crucial for the user that the contrast, harmony
and chromatic coherence that they find throughout the work complement each other. In
order to transmit a technological and futuristic feeling, a strong emphasis was placed on
three grey tones (#626262, #9CA4A5 and #F3F3F3), since they contribute this mechanical
and electronic extravagance and they imply an imbalanced situation and a non-complete
happiness that must be resolved at the same time. In addition, other two more saturated
colours join the scheme and create a contrast with the predominant grey: Persian green
#00ACA9 and Texas rose #FC565A.

These last colours allow to highlight elements or relevant items in the context
menus of the application. On the one hand, green is used as a synonym of progress in
the game and at all times it is intended that the player identifies it. The green colour will
be displayed when an action is performed correctly, as well as to show on the map that
an area is completed or the bar of the completed game percentage. On the other hand,
red will have opposite uses, generally. This colour will indicate on the map when an area
is blocked and, therefore, is inaccessible. In addition, in the memory minigame, when the
player fails the sequence, all the oranges light up with a very similar reddish colour and
transmit that there has been an error. In addition to this, this colour is used in the map
to indicate the current position of the player when it is within the range of some area. It
was decided to wear this colour for its greater saturation with respect to the rest and by
mere convention with the usual geolocation pin icon. This first colour scheme is mostly
used in the map scene and it is shown in the Figure 53.

Figure 53: Map scene colour scheme.

78

A second important point regarding colour is the use that is given in holograms
(Figure 54). The problem of holograms, as will be seen below, was matching a realistic
and enough visible alpha channel. Transparency really gave the feeling of artificial
generation that was sought, but sometimes it confused the way of interpreting the
monument. The solution was to reach an intermediate point by using a semi-opaque cel
shading effect, which used the light of the scene and the custom colour of the outer line
in the models. So interesting marine green and yellow tones were obtained (#407060,
#93BFB2, #9BF1BB, #F2F2BD and #F2F5F3). These tones are the ones that have finally
defined the hologram models and the exterior of the K.A.I. model, since they provide a
better readability of the models in space and are coherent with the rest of the application.

Figure 54: Cel shaded holograms and K.A.I. colour scheme.

5.2. The user interface

Commonly, the user interface (UI) is defined as the channel or medium that is
between the computer program and the user, and allows him/her to communicate both
by sending input information, as well as by consuming the output information generated
by the game. The objective of a good UI is to be intuitive, easily recognizable and not
saturated with too much items, in order to provide the user with that feeling of comfort
when using the product. In this case, the UI is focused on the main screen of the map,
with its respective elements, the dialogues, the information shown in each one of the
tourist points of the city and the other contextual buttons of the app.

To design the interface of the map (Figure 55) several sketches with different forms
were made: from a square map on the screen to finally ending in a round shape that
stylized the scene better and was in line with the icons indicating the areas.

79

Figure 55: Default scene User Interface, which includes map, areas location and status, current player

location and game completed percentage.

. The background image for the plane was created by taking a street map of the
centre of Valencia and editing it in Photoshop using various filters and techniques to
eliminate any traces of names of the streets and places and give it a simpler look. The
result is a quartered cartoon style image that perfectly delineates streets and buildings
without too much detail. In addition to this, a nice circular radar effect was added to the
map and the hologram shader was gently applied to give it that subtle futuristic approach.
To finish, the circle has a concentric radial slider on the outside that indicates the total
percentage of the game completed by the player. When the scene starts, an animation is
executed and the slider is filled to the current progress value.

A grated design simulating the technological aspect was also used for the dialog and
menus interfaces (Figure 56). A holographic effect was added on the front side, as well as
a dark background was applied to improve the readability.

80

Figure 56: Dialog box.

5.3. 3D modelling

For the modelling of the buildings, the character of K.A.I and other support elements
such as the disk has been used exclusively SketchUp Make software. This program offers
a series of powerful tools for creating models with a low number of polygons. In addition,
it has specialized tools for linear and technical drawing, so it was ideal for designing the
basic architecture of the buildings that were intended to be displayed (Figure 57).

Figure 57: Process of modeling of Lonja de la Seda building.

81

Apart from this series of advantages, its integration with Google Maps allowed to
observe some of the models that are part of the database of the SketchUp community,
called 3D Warehouse [49]. Some of the base models were obtained from there and then
fixed, detailed and customized depending on the sought characteristics. Once with the
vertices, the faces and the profiled details, they could be passed to Unity to integrate the
final materials and the corresponding shaders [50]. Below in the Figure 59 all the models
of monuments available in the game are shown.

The aesthetic that was being sought was something adjusted to reality but not
necessarily exact. That is why some shapes, mouldings and reliefs were exaggerated
when modelling them. Thanks to this decision, the final aspect was much more cartoon
and fun, and once hologram shader effects and cel shading were added, the edges
became much more accentuated and the model became more defined.

In the following Figure 58 it can be seen the details of the mouldings of two
monuments. The features and some faces were extruded and exaggerated to give more
prominence to the model when it is visualized in augmented reality.

Figure 58: Molding details of the Lonja de la Seda and Estación del Norte models.

82

Figure 59: All monument 3D models on SketchUp editor.

83

5.4. Shaders and additional effects

5.4.1. Hologram shader

 As it was desired to give it the most technological aspect possible, one of the visual
resources that most helped achieve the effect was the use of a holographic shader. After
researching about it, it was fortunate to find an Andy Duboc’s resource protected under
a copyrighted MIT license with no restrictions of use [51]. This was the shader that was
finally used to produce the holographic effect in the models of the monuments. The
objective then was to obtain the highest possible visual quality. Therefore, it was decided
avoid using materials or textures beyond those provided by the effects of the shaders.
Once the models were clean and with the correct topology, in Unity the shader
parameters were adjusted and reinforced with external directional lights (Figure 60).

Figure 60: Shader parameters adjustment in the Unity's inspector view.

84

This shader was inserted in all the models of the buildings. The following Figure 61
shows the result of coupling it with different parameters in the Torres de Quart model.

Figure 61: Hologram shader integrated with a building model.

5.4.2. Cel shading effect

The cel shading is a method of rendering images that try to imitate the drawings by
hand or sketches with flat shadows, as if it were comics or cartoons. Since the project
required a visually striking and pleasing component, it was looked for ways to highlight
those objects in three dimensions that were to be displayed in augmented reality. The
addition of this effect had a multiple function, since on the one hand it avoided
photorealism, it delimited the objects shown in augmented reality with the rest of the
environment and allowed to make the models more solid.

This shader has been applied fundamentally to the models of the monuments in
combination with the hologram shader, creating a white base layer with the scaled edges
that were then covered by the grated effects of the hologram.

85

Figure 62: Cel shading effect applied to Torres de Serrano in augmented reality.

In addition, it has also been used in special cases that required a greater distinction
of the elements, such as the oranges hung from the memory minigame tree. In that case,
other materials and maps of relief and depth were used to give the pseudorealistic effect
with flat shadows shown in the Figure 63.

Figure 63: Orange from memory minigame with a cel shading effect applied.

86

5.4.3. K.A.I.’s design

The power of the transparency of the hologram shader was also used to create
another instance of a material and insert it into a curved plane generated to give the
retro-screen effect with stripes moving to the K.A.I.’s face. This allows to appreciate that,
actually, the final entity of the robot is formed by three layers joined with a separate
function each. We find in the frontal part this plane with the material of the shader,
between both other plane with a series of associated images that correspond to each one
of the gestures that the face of the robot can show and, finally, the model created in
Sketch Up of the solid body of the device. The three layers can be seen clearly separated
in the Figure 64.

Figure 64: K.A.I. entity is divided in three separated layers.

The model of K.A.I. He suffered various modifications throughout the process. The
most important thing is that it was not a model that overloaded the scene, since it was
simply a support entity and should not have many details. The futuristic tablet format
was created, which, paradoxically, had a floppy disk slot on its left side, in order to load
the unlocked information and thus display the hologram that contained the disk. In Figure
65 a little further down you can see the development of the entity of the robot, from its
model in Sketch Up to the tests in Unity with the three animated and running layers and
the subsequent inclusion of the cel shading effect and lighting.

87

Figure 65: Left to right: Model of K.A.I. in SketchUp, shader hologram and face expressions included,

cel shading included and final result.

5.4.4. Logotype

For the main logo design, it was looked for something minimalist that showed the
idea of a geolocated application. That is why the classic GPS geolocation pin icon should
be incorporated somewhere. The word chosen to represent the app was "KAI", this time
without points for mere visual balance. The pin icon was incorporated in the centre of the
letter "A" thanks to the use of the figure-background in an original way.

Following the most used design patterns nowadays in a wide range of apps, flat
colours were used with a very small range: white for the background and the Persian
green used throughout the project for the typography and was drawn an irregular frame
surrounding the title, which made the icon less serious and more charismatic. Finally,
variations were made adding a slight skybox with the most important monuments of the
city in which the application is based, in this case Valencia, with the idea of expanding it
in the future to more cities. The final result can be seen below, in the Figure 66.

Figure 66: Left: Final logo design. Right: Variation with Valencia's skybox.

88

6. Results and conclusions

The development of this project has meant a huge personal learning in all aspects.
From the beginning, the idea of the game to be developed was very much linked to
creating an application that took advantage of the geolocation tools currently offered by
mobile devices in a different way. The intention was to create an autonomous and
scalable product that explored the interaction with the environment beyond the point of
view of a videogame. That is why I decided to develop an interactive application focused
on culture and education. Investigating and observing with my own eyes how applications
are being used to transmit educational content in a more simple and effective way, I came
up with the idea of using the physical environment so that the player could experience in
a close way what he was observing. Since my place of residence during the development
of the project has been Valencia and, as a lover of travel who likes to see what piece of
history the rocky walls of the monuments of the cities have, I thought that there was no
better occasion to know the cultural heritage of the city that making a game about it. Also,
all that illusion could be shared in the way that I would love to receive it when I travel to
a city or town.

Although the project was difficult to focus on in its beginnings, the final result has
been satisfactory to a large extent, and a large part of what has been planned has been
implemented. Development has been a very iterative process, since the critical vision of
the projects themselves always makes us look for different ways to improve what has
been done, either internally in terms of the architecture of the code, or at an external
level. Raising constantly how the user will interact with the application and what are the
strengths and weaknesses of a project is crucial to continue with this process of constant
improvement and its consequent learning. This has been, independently of the results,
the best feedback that I get from this process. Having faced for the first time such a broad
project to develop from start to finish has been a challenge, since planning, research,
decisions, implementation times and the level of demand that oneself make on several
occasions the pressure play against. All this means a direct learning that, in the last pages
of what has been the most extensive project at individual level that I have developed, I
appreciate.

Creating a game that sometimes goes off the screen and links the player to the real
world has been a great experience, and I sincerely hope that those who have the
opportunity to run it on their smartphones and tour the city of Valencia observing every
detail of what they have in front of them enjoy it with as much enthusiasm as I had
creating it.

89

7. Further work

Although the objectives and ideas raised at the beginning regarding the total
implementation of the project have been met, it is true that there are some application
aspects of the application that would be perfect to continue and thus provide new
possibilities for the geolocation system.

• One of them, fundamental, is the translation of the project into different
languages, since apart from being an educational and informative application, it is
conceived as a tourist application. Right now it fulfils its role with local tourism, but I would
like to extend it and internationalize its use.

• Exporting the project to other cities beyond Valencia, using a similar system, would
be fantastic, since it would allow exploring new areas and greatly expand the gameplay
and the community.

• The creation of more different mini-games for each type of monument, as well as
the direct relationship of these with what is being visited, seems to me a crucial point to
take into account in the future development of the application. This is also linked to the
inclusion of more achievements in GPGS to motivate users. Also, once people start testing
it, feedback will be evaluated to improve interactivity and make the gaming experience
more enjoyable.

• Finally, it would be very interesting if the user could have direct access to the
information he has visited from a comfortable interface and without necessarily finding
himself in the place. Thus, the key points of buildings and relevant data could be revised
(also with augmented reality options to visualize them) as a comparison between the
historical moments of their creation. This would be a much more enriching experience at
cultural and tourist level.

I hope you have enjoyed reading this memory and that this approach has seemed
interesting and inspiring. The borders of videogames have still a diffuse contour that is
still to be defined, and, as mentioned at the beginning of this report, experimenting with
new technologies to apply them in our society is a responsibility and a privilege that we
have as developers nowadays. Maybe in the future digital gamification is much more
present in our lives than it is even now. Perhaps the solutions to the most complex
problems are found in the simplest programs, so let's never stop experimenting. Let's
never stop creating.

90

8. Bibliography

[1] [Online]. Available: https://en.wikipedia.org/wiki/Smart_city.

[2] P. Milgram, H. Takemura, A. Utsumi and F. Kishino, "" Augmented reality: a class of

displays on the reality-virtuality continuum, ",» Telemanipulator and Telepresence Technologies,

vol. 2351, p. 282-293, 1995.

[3] «Pokemon GO,» [Online]. Available: http://www.pokemongo.com/

[4] Wikipedia. [Online]. Available: https://es.wikipedia.org/wiki/Pok%C3%A9mon.

[5] U. Technologies. [Online]. Available: https://unity3d.com/es.

[6] «Android,» [Online]. Available: https://www.android.com/

[7] «IOS (Apple),» [Online]. Available: https://www.apple.com/en/ios/ios-11/.

[8] «Windows Phone,» [Online]. Available: https://www.microsoft.com/es-es/store/b/mobile.

[9] United States government, "Global Positioning System," [Online]. Available:

https://www.gps.gov/.

[10] M. V. S. Community. [Online]. Available: https://www.visualstudio.com/en/downloads/.

[11] S. Make. [Online]. Available: https://www.sketchup.com/es.

[12] «Google Maps,» [Online]. Available: https://www.google.es/maps

[13] GitHub. [Online]. Available: https://github.com/.

[14] «Adobe Photoshop,» [Online]. Available:

https://www.adobe.com/products/photoshopfamily.html.

[15] Trello. [Online]. Available: https://trello.com/.

[16] F. (Google). [Online]. Available: https://firebase.google.com/?hl=es-419

[17] «Firestore,» [Online]. Available: https://firebase.google.com/docs/firestore/?hl=es-419

[18] Angular. [Online]. Available: https://angular.io/.

[19] M. W. 2013. [Online]. Available: https://products.office.com/es-es/word.

91

[20] «Mendeley,» [Online]. Available: https://www.mendeley.com/.

[21] Ink. [Online]. Available: https://www.inklestudios.com/ink/.

[22] Infinite Ammo Inc . [Online]. Available: https://github.com/InfiniteAmmoInc/Yarn.

[23] Fungus [Online]. Available: http://fungusgames.com/.

[24] «Vuforia (PTC),» [Online]. Available: https://www.vuforia.com/

[25] Vuforia (PTC), «Vuforia features,» 2018. [Online]. Available:

https://www.vuforia.com/features.html.

[26] «AR Kit,» [Online]. Available: https://developer.apple.com/arkit/

[27] «AR Core,» [Online]. Available: https://developers.google.com/ar/discover/

[28] «Wikitude,» [Online]. Available: https://www.wikitude.com/.

[29] «Kudan,» [Online]. Available: https://www.kudan.eu/.

[30] «ARCore Supported devices,» [Online]. Available:

https://developers.google.com/ar/discover/supported-devices

[31] «Ground Plane Supported Devices (Vuforia),» [Online]. Available:

https://library.vuforia.com/articles/Solution/ground-plane-supported-devices.html.

[32] «Google Play Store,» [Online]. Available: https://play.google.com/store/apps?hl=en

[33] «Xcode (Apple),» [Online]. Available: https://developer.apple.com/xcode/.

[34] «App Store,» [Online]. Available: https://www.apple.com/es/ios/app-store/.

[35] «Tourist Guide Valencia,» [Online]. Available: https://www.valencia-tourist-

guide.com/es/general/valencia-espana-historia.html.

[36] Wikipedia, «Geo-Fencing,» [Online]. Available: https://en.wikipedia.org/wiki/Geo-fence.

[37] «Simon Game,» [Online]. Available: http://www.freesimon.org/.

[38] «DoTween - Demigiant,» [Online]. Available: http://dotween.demigiant.com/.

https://en.wikipedia.org/wiki/Geo-fence

92

[39] R.-D. Vatavu, L. Anthony and JO Wobbrock, "Gestures as point clouds: a $ P recognizer for

user interface prototypes," by ICMI '12 Proceedings of the 14th ACM international conference on

Multimodal interaction, Santa Monica, California, USA, October 22 - 26, 2012.

[40] Columbia EE, "Nearest Neighbor Classifiers," [Online]. Available:

http://www.ee.columbia.edu/~vittorio/lecture8.pdf.

[41] University of Washington, "1 Unistroke Recognizer," [Online]. Available:

http://depts.washington.edu/madlab/proj/dollar/.

[42] AngularFire2 - Github, [Online]. Available: https://github.com/angular/angularfire2.

[43] AngularGoogleMaps - Github, [Online]. Available:

https://github.com/SebastianM/angular-google-maps

[44] Unity Community Wiki, «SimpleJSON,» [Online]. Available:

http://wiki.unity3d.com/index.php/SimpleJSON.

[45] Google, «Google Play Games Services,» [Online]. Available:

https://developers.google.com/games/services/.

[46] «Google Analytics,» [Online]. Available: https://www.google.com/analytics/

[47] «Google Play Console,» [Online]. Available: https://play.google.com/apps/publish/

[48] «GPGS for Unity - GitHub,» [Online]. Available: https://github.com/playgameservices/play-

games-plugin-for-unity.

[49] «SketchUp 3D Warehouse,» [Online]. Available: https://3dwarehouse.sketchup.com/

[50] Unity, "Materials, Shaders and Textures," [Online]. Available:

https://docs.unity3d.com/current/Manual/Shaders.html.

[51] Andi Duboc's hologram shader., «Github,» [Online]. Available:

https://github.com/andydbc/HologramShader.

	1. Technical Proposal
	1.1. Introduction
	1.2. Context
	1.3. Motivation
	1.4. Objectives
	1.4.1. Project justification
	1.4.2. Related subjects

	1.5. Software and tools
	1.6. Planning
	1.6.1. Task list

	1.7. Technical limitations and work environment
	1.7.1. Augmented reality features and justification

	2. Game Design Document
	2.1. Overview
	2.2. Target platforms
	2.3. Target audience
	2.4. Aims
	2.5. Main game flow
	2.6. Kind of challenges
	2.6.1. Exploration challenge
	2.6.2. Atomic challenges

	2.7. Resources and entities
	2.7.1. Map
	2.7.2. Score percentage
	2.7.3. Areas
	2.7.4. Touristic information

	2.8. Types of actions or mechanics
	2.9. Construction and articulation of the levels

	3. Analysis
	3.1. Geolocation system
	3.1.1. Geo-fencing: Shape’s issue
	3.1.2. Geolocation data storage
	3.1.3. Receiving and managing GPS data
	3.1.4. Areas status
	3.1.5. Map displaying
	3.1.6. Storing the areas’ information on the cloud

	3.2. Augmented Reality
	3.2.1. K.A.I.
	3.2.2. Minigames
	3.2.2.1. Memory game
	3.2.2.2. Pattern recognition game

	3.2.3. Touristic information

	4. Implementation details
	4.1. Running the app: Game Manager
	4.1.1. Synchronizing the areas data

	4.2. Geolocation system
	4.2.1. Updating coordinates and updating the current area
	4.2.2. Checking if a point is inside an area

	4.3. Scene managing: Persistence and runtime loading
	4.4. Saving and loading data locally
	4.5. Game flow inside an area
	4.5.1. Fungus flowchart and event management
	4.5.2. Updating the areas status

	4.6. Minigames
	4.6.1. Memory Game
	4.6.1.1. Overview
	4.6.1.2. Random sequence generation

	4.6.2. Pattern recognition game
	4.6.2.1. Overview
	4.6.2.2. Randomness
	4.6.2.3. P-Dollar Algorithm

	4.7. Reactive web manager
	4.7.1. Creating the data with Angular
	4.7.2. Getting the data with Unity

	4.8. Google Play Games Services

	5. Artistic design
	5.1. Colour schemes
	5.2. The user interface
	5.3. 3D modelling
	5.4. Shaders and additional effects
	5.4.1. Hologram shader
	5.4.2. Cel shading effect
	5.4.3. K.A.I.’s design
	5.4.4. Logotype

	6. Results and conclusions
	7. Further work
	8. Bibliography

