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Abstract 

Several studies have identified complex interactions between photogenerated carriers 

and the crystal lattice in perovskite materials for photovoltaics, which are regarded to 

have an inherently soft character. Light is known to induce phase segregation in mixed 

halide perovskites, enhances piezoelectricity, and changes dipole moments of the unit 

cell. Therefore, it is appealing to consider photogenerated variations in the bulk 

polarizability and dielectric properties. Light-induced bulk polarization changes should 

be observable by capacitance measurements, preferentially at intermediate frequencies 

where the geometrical capacitance dominates. However, capacitance spectra are 

influenced by several capacitive and resistive mechanisms, which are also modulated by 

light. Capacitances may arise from dielectric bulk polarization, space-charge depletion 

zones, chemical electronic bulk storage and interfacial accumulation mechanisms. This 

variety of capacitive mechanisms may induce wrong interpretations and produce 

misleading outcomes when uncritically connected to the bulk polarization response. It is 

shown here how capacitance-voltage analyses performed at a given frequency are 

influenced by overlapping effects that mask the actual value of the geometrical 

capacitance. Careful analyses are then needed before attributing the light-induced 

modulation of the measured capacitance to hybrid perovskite dielectric changes. 
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Introduction 

Hybrid perovskites have emerged as outstanding materials to be incorporated into 

many different optoelectronic and energy technologies, from photovoltaics,1-6 light-

emitting devices7-8 and wave guides9 to ion intercalation electrodes for batteries.10 

Among other useful features, high light absorption, excellent carrier transport, reduced 

charge recombination11-12 and low-cost processing are fostering academic and 

technological studies to fully understand its operating mechanisms. The scope of the 

present work is approaching hybrid CH3NH3PbI3 perovskite and related variants, which 

are currently in the focus of research in the field of photovoltaics.13 Other hybrid 

perovskites where, for instance ferroelectric behavior has been verified,14 are beyond 

the objectives of our analysis. 

Key properties to be thoroughly examined are dielectric parameters of the material, 

and specially bulk polarizability variations with composition, structure, and incoming 

light. It is recognized that hybrid perovskite materials are inherently soft, even in the 

dark. The organic cation exhibits positional dynamic disorder thus contributing to the 

increase in polarizability.15 PbI6 octahedra that make up the perovskite unit cell 

structure rotate around the c axis.16-17 Moreover, cooperative ionic off-centering might 

contribute to local polarization, eventually giving rise to long range ion displacement 

and macroscopic polarization.18 By modulated electro-absorption spectroscopy, a light-

induced change in the dipole moment of the unit cell, exceeding that of the ground state, 

has been detected.19 It is proposed that this effect is related to different mechanisms as 

ionic polarization, rotation of molecular dipoles and charge migration.20 Photogenerated 

hot carriers interact with the inorganic lattice inducing rotational disordering and 

broadening of iodine-iodine correlation at picoseconds time scale.21 It is also observed 

that mixed halide perovskites undergo reversible phase segregation upon illumination.22 

All those are examples of the complex interactions occurring between photocarriers and 

perovskite lattice that would suggest light-induced changes in the dielectric constant 

.23-25  

Dielectric properties can be investigated through capacitance (C ) measurements in a 

given range of frequency ( f ). Capacitance spectra )( fC  obtained by impedance 

spectroscopy (IS) from perovskite-based solar cells of different configurations usually 

exhibit the trends shown in Figure 1a, as reported in our previous papers.26-29 At 

intermediate frequencies a plateau is identified that is mainly determined by the 
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geometrical capacitance (per unit area) LCg /0 , which varies with geometrical 

factors (layer thickness L ), and dielectric properties of the perovskite, being 0  the 

vacuum permittivity. For conductive-enough contacting layers, the absorber perovskite 

bulk mainly originates the experimentally-determined gC .26-29 The low-frequency part 

of the spectra usually shows an excess capacitance that results light-dependent. It is 

attributed to the polarization of the interfaces between the perovskite and the contact 

layers through the response of electronic accumulation zones formed in the vicinity of 

the contact.30 The accumulation capacitance sC  accounts for the increase in charge 

density near the interfaces that exceeds by several orders of magnitude that occurring in 

the bulk.30 It has been observed that the low-frequency capacitance (in the dark) exhibits 

a thickness-independent trend reinforcing the interfacial origin of its underlying 

mechanism.28, 30 At higher frequencies the effect of the series resistance is viewed as a 

decrease in the capacitance value. The set of spectra in Figure 1a are commonly 

observed when perovskite solar cells are probed at varying illumination intensities, with 

accumulation mechanisms sC  well separated from the dielectric response gC .31 

A question naturally rises as the appearance of light-induced influences on the 

dielectric properties. If bulk polarizability really changes with light, the electrical 

response could vary accordingly opening as a consequence room for new kind of 

applications. This is indeed an appealing possibility suggested by several light effects 

reported for hybrid perovskites such as phase segregations,22 light-enhanced 

piezoelectricity32 and increased ionic conductivity.33 But light-induced bulk polarization 

changes should be observable by capacitance measurements, preferentially at 

intermediate frequencies where gC  dominates. (This is indeed suggested in a recent 

work.25) It is discussed here that several mechanisms modulated by light, but not related 

to any change in the bulk polarizability, are able to introduce distortions in the 

capacitance spectra. This may induce wrong interpretations and produce misleading 

outcomes when uncritically connected to the bulk polarization response. Careful 

analyses are then needed before attributing the light-induced modulation of the 

capacitance values to material dielectric changes. 
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Figure 1. (a) Capacitance spectra measured under short-circuit conditions at varying 

irradiation intensities corresponding to a device of planar structure 
FTO/TiO2/CH3NH3PbI3/spiro-OMeTAD/Au. Solid lines correspond to fits using the equivalent 

circuit in the inset seriesR  accounts for the series resistance. sC  and gC  are the surface 

accumulation capacitance and geometrical capacitance, respectively. 1R  and 2R  are related to 

the recombination current flux. Adapted with permission from ref. 34. Copyright 2016 American 
Chemical Society. (b) Experimental capacitance spectra at short-circuit conditions (dots) in dark 
and under 1 sun illumination of a CH3NH3PbI3-based device with TiO2 mesoporous electron 
contact matrix and fittings (solid lines) to equivalent circuit inset in (a). Experiment performed 

at room conditions. Some effects when numerically varying parameters sC , gC , 1R  and 2R

are shown with dashed lines, as indicated, to illustrate circuit elements influence on capacitance 
spectra.  

Experimental section 

The fabrication of the devices followed the recipes as described in ref. 35. For the IS 

measurements a PGSTAT-30 potentiostat from Autolab was used and the AC 

perturbation was of 10 mV. The illumination was supplied by a Sun 2000 system solar 

simulator from Abet Technologies and the temperatures were controlled with a Quatro 

Cryosystem from Novocontrol Technologies. The room conditions were of 10-20% 

humidity and 295-300 K temperature.  
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Results and discussion 

In the following, several modulating effects of the capacitance spectra are 

introduced, which do not rely in any change of the material bulk polarizability. In 

practical terms, the geometrical capacitance makes part of a more or less complex 

equivalent circuit (inset in Figure 1a), which gives rise the entire capacitance spectra 

)( fC . Light may influence resistive parameters as well and modify the capacitance 

spectra. Also the onset of the sC  contribution is observed in some cases to appear at 

frequencies as high as 10 kHz, as shown in Figure 1b, which corresponds to capacitance 

spectra of solar cells comprising TiO2 mesoporous scaffold. At frequencies in the range 

of 1-10 kHz in Figure 1b, the numerical modification of circuit elements yield different 

capacitance values without changing the bulk polarization, i.e.
 gC :  (i) by reducing the 

device resistances (dashed blue line), (ii) by increasing the series resistance (dashed 

green line). Certainly, one expects also capacitance variations by enhancing gC
 
upon 

light irradiation increment as simulated (dashed red line). As noted, distortions appear at 

the intermediate-frequency plateau from a resistive coupling effect. If the response time 

of low-frequency subcircuit sCR1  is well-separated, one can estimate the capacitance 

value at the plateau that equals )/( 22 seriesg RRRC  . If seriesRR 2  as usually 

observed for low series resistance devices, the plateau value approaches gC . However, 

2R  decreases at high irradiation intensities as recombination processes are enhanced. 

Therefore, resistance reduction explains the slight decrease in the intermediate 

capacitance with light intensity. This is indeed the case observed in Figure 1a at 

frequencies 1−100 kHz.  

One would also expect a contribution introduced by the chemical capacitance C  

which appears as a consequence of a change in the occupancy of electronic bulk states 

(density-of-states DOS) caused by a displacement of the carrier Femi levels that shift 

upon illumination in the absorber perovskite bulk. However, recent estimations have 

shown that the relatively small effective conduction (and valence) band DOS36-37 entails 

values for C  that lie below gC
 
and sC  for common light intensities. Hence, this 

contribution is believed to be masked by other capacitive mechanisms.38 

Also significant alterations of the intermediate-frequency capacitance stem from the 

voltage modulation of the space-charge depletion zone. Doped semiconductors form 
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Schottky junctions in contact with metals or heterojunctions with other semiconductors. 

A depletion zone is built in the vicinity of the contact, which gives rise to an excess 

capacitance wCdl /0 , being w the width of the depletion zone. Because Lw   one 

expects gdl CC  .37 This type of excess capacitance also acts at intermediate 

frequencies in those cases in which the perovskite layer contains a sufficiently large 

density of defects, as illustrated by the constant charge density profile in the inset of 

Figure 2a. Figure 2a,b are experimental examples of the depletion layer effect in the 

form of capacitance-voltage VC   and Mott-Schottky VC 2 plots. As observed, 

only those devices with defect density exceeding ~ 1710 cm-3 are able to yield a 

distinctive capacitance feature at frequencies in the range of 1−100 kHz. For defect-free 

or intrinsic perovskite layers the increment cannot be distinguish from the geometrical 

capacitance background.  

 
Figure 2. (a, b) Illustrative Mott-Schottky plots of perovskite solar cells (left axis, black 

filled dotted) and respective capacitance-voltage curves (right axis, gray open dotted). (a) Using 
CH3NH3PbI3-xClx, three voltage regions can be distinguished and constant charge density profile 
can be approached as in the inset. (b) Using CH3NH3PbI3 depletion layer capacitance cannot be 
identified. In both cases, devices comprise a mesoporous TiO2 matrix in a 
FTO/TiO2/perovskite/spiro-OMeTAD/Au structure. The measurements were carried out in the 
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dark, at room temperature and the AC perturbation was 10 mV at 10 kHz. Adapted from ref. 27 
with permission from American Institute of Physics.  

 

Furthermore, independently of dlC  effects, two VC   regimes are highlighted in 

Figure 2, which dominates at reverse and small forward bias ( gC ) and close and/or 

above the built-in voltage ( sC ). Since sC  is sensitive to increments of charge by 

injection,27, 30, 34  it only affects dark capacitance at 1-100 kHz measuring frequency 

range for large forward bias, overlapping possible bulk carrier storage observation 

through C .25, 39 However, under illumination sC  influences the capacitance in the 

whole DC bias window, producing larger capacitances for higher illumination. This 

effect is illustrated in Figure 3a for a ITO/PEDOT:PSS/CH3NH3PbI3/PCBM device, aka 

inverted cells, which are acknowledged to present a lesser sC  effects than cells 

comprising oxide contacting layers. This is also traduced in a nearly hysteresis-free 

behavior in the current density-voltage ( J V ) curves.35, 40-41  

In Figure 3a the capacitance spectra in dark and under 1 sun illumination are 

presented, and the corresponding C V  curves are displayed (Figure 3b) for 1 kHz and 

10 kHz measuring frequencies. It is clear that for larger frequencies lesser capacitances 

are reported. That capacitance extracted at a given frequency varies with light as a 

consequence of an overlapping effect caused by the accumulation capacitance sC , that 

ultimately produces the measured capacitance value. It is also observable in Figure 1b 

for regular structures. For inverted samples, the overlapping can be as broader as in 

Figure 3a, or in a more local frequency range, as shown in Figure S1 (see Supporting 

Information) where the evolution of capacitance spectra with irradiation intensities is 

also shown. It is evident that no light-induced change in dielectric properties of the 

perovskite material can be derived from these measurements. 
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Figure 3. (a) Short-circuit capacitance in dark (filled dots) and under 1 sun illumination 

(open dots) of a ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Ag device and (b) corresponding C-V 
curves at two frequencies, as indicated. Measurements made at room conditions. 

 

So far we have pointed out the masking effect produced by the overlapping between 

the accumulation capacitance sC  and the geometrical/chemical value. As clearly visible 

in Figure 1 and Figure 3, sC  at low-frequencies exceeds gC  by several orders of 

magnitude. The frequency onset at which accumulation capacitance effect equals the 

geometrical capacitance may be located at frequencies even larger than 10 kHz, 

depending on the coupling sCR1  time constant. It is known that sC  is a prominent 

effect not only at forward bias but even at reverse bias or short-circuit conditions.34 The 

capacitance overlapping at intermediate frequencies is particularly important for 

perovskite solar cells comprising TiO2 (and other oxides) as electron selective contact 

but also observable using inverted structures with fullerene contacting layers (Figure 3). 

Any VC   analysis at a given frequency that directly captures the capacitance value is 
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influenced then by the sC  overlapping effect identified here. Again, one cannot infer 

bulk dielectric changes induced by light.  

However, minor polarization alterations could be observed as produced by a heating 

effect under illumination. A thermally-induced change in the dielectric constant is 

expected to occur, as evidenced in the capacitance-frequency spectra in Figure 4, also 

for an inverted cell. Once again taking 1 kHz and 10 kHz as example, an exponential 

increase of capacitance with temperature is experienced that abode 300 K may exhibit a 

temperature coefficient as high as -2 -12 nF cm K  when heating the cell. This is an 

important factor to take into account regarding the time scale of light soaking and 

temperature control during the measurement of illuminated C V  curves. Furthermore, 

depending on the perovskite material, even crystal transition phases could be thermally 

originated due to long term illumination whose impact in the dielectric constant might 

be important.28, 42-43 In addition to this effect at operational temperatures, particularly 

around 140-180 K several perovskite absorbers present an abrupt gap in the dielectric 

constant due to transition phases.44 This can be also observed in Figure 4, clearest 

around 10-100 kHz, as previously pointed out in the literature.28, 35 

        

 
Figure 4. Temperature dependence of dark short-circuit capacitance spectra of a 

ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Ag device. In the inset: capacitance as a function of 
temperature at two different measuring frequencies. Measurements made in dark vacuum. 

 

Conclusions 

A survey on different capacitive processes occurring in hybrid perovskite materials 

and solar cells has been provided. Capacitances may arise from dielectric bulk 

polarization, space-charge depletion zones, chemical electronic bulk storage and 



  10 

 

interfacial accumulation mechanisms. The analysis is focused on the effect of these 

capacitors on the capacitance spectra )( fC , and how parameter variations influence 

final spectra. Although several studies suggested that light might induce changes in the 

dielectric properties and polarizability of the perovskite bulk, it is shown here that the 

observed enhancement of the capacitance at a given frequency in a capacitance-voltage 

VC   experiment is easily originated by the overlapping effect of interfacial 

accumulation capacitances. Therefore, simpler explanations exist and allow discarding 

light-induced variations of the dielectric properties in the perovskite bulk. When 

uncritically connected to the bulk response, VC   measurement induces wrong 

interpretations and produces misleading outcomes. Careful analyses are then needed 

before attributing the light-induced modulation of the capacitance values to dielectric 

changes in hybrid perovskites.    
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