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POINTWISE CONVERGENCE TOPOLOGY AND FUNCTION
SPACES IN FUZZY ANALYSIS

D. R. JARDON AND M. SANCHIS

ABSTRACT. We study the space of all continuous fuzzy-valued functions from a
space X into the space of fuzzy numbers (E!, ds) endowed with the pointwise
convergence topology. Our results generalize the classical ones for continuous
real-valued functions. The field of applications of this approach seems to be
large, since the classical case allows many known devices to be fitted to general
topology, functional analysis, coding theory, Boolean rings, etc.

1. Introduction and preliminaries

Fuzzy Analysis has developed a growing interest in the last decades. It embraces
a wide variety not only of theoretical aspects, but also of significant applications
in fuzzy optimization, fuzzy decision making, etc. Among the literature devoted
to this topic we can cite, for instance, [7, 8, 12, 20, 22, 25, 26, 27]. Fuzzy analysis
is based on the notion of fuzzy number. The underlying idea is the following. Let
F(R) denote the family of all fuzzy subsets on the reals. For v € F(R) and A € [0, 1],
the A-level set of u is defined by

[ :={reR:ulx) >}, re€]0,1], [u’:=clg{reR:ulz)>0}.

Let E! be the set of elements u of F(R) satisfying the following properties:
(1) w is normal, i.e., there exists € R with u(x) = 1;
(2) w is convex, i.e., for all z,y € R, u(z) > min {u(z),u(y)} for all x < z < y;
(3) w is upper-semicontinuous;
(4) [u]® is a compact set in R.

Notice that if u € E!, then the A-level set [u]* of u is a compact interval for each

A € [0,1]. We also denote [u]* by [u~(A),ut()\)]. Notice that each real number
r € R can be regarded as an element of E! since r can be identified with the element

of E! 7 defined as
1 ift=r,
7(t) == ]
0 ift#r

E! is the so-called set of the fuzzy numbers, which were introduced by Dubois
and Prade ([10]) to provide formalized tools to deal with non-precise quantities.

Notice that we could consider E! as a set endowed with a family of representable
interval orders indexed in ]0,1]. Indeed, for any A € ]0,1], the element u € E! is
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represented by the interval [u=(\),u"(\)]. Then the binary relation < defined on
E! by declaring u < v if and only if u*(\) < v~ ()) is a representable interval order
for any A €]0,1]. (See e.g. Ch. 6 in [5], or [4] for details).

Goetschel and Voxman proposed an equivalent representation of such numbers
in a topological vector space setting, which eased the development of the theory
and applications of fuzzy numbers (see [15]).

Theorem 1.1. Let u € E! and [u]* = [u=(A\),uT(N\)], A € [0,1]. Then the pair of
functions u=(\) and u*(X\) has the following properties:

]}.

(i) u= () is a bounded left-continuous non-decreasing function on ]0,1
0,1);

(ii) u™(N) is a bounded left-continuous non-increasing function on |0,
(iii) u=(X) and ut(X\) are right-continuous at A = 0;

(iv) (1) <ut(1).
Conversely, if a pair of functions a(X) and B(X) from [0,1] into R satisfy the above
conditions (i)-(iv), then there exists a unique u € E such that [u]* = [a()\), B(N)]
for each A € [0,1].

The previous result allows us to consider different topologies on E! defined by
means of different types of convergence on families of functions. From now on, we
endow E! with the topology of the uniform convergence, that is, a net (uq)aer C
E! converges to u € E! if the net (u;)aesr converges uniformly to v~ and the
net (ul)aer converges uniformly to u™. Equivalently, the topology of uniform
convergence is induced by the supremum metric do, defined by using the Hausdorff
distance on the hyperspace of all nonempty compact intervals ([9, 15]), that is, if
u,v € B!, then

doo(u,v) = sup max {Ju”(A) —v~ V)], Jut(A) —vT(N)|}.
X€[0,1]

It is a well-known fact that (E!,d) is a nonseparable, complete metric space.
It is worth noting that the set of real numbers equipped with its usual topology
induced by the Euclidean metric d. is a closed subspace of (E!,d..,). Moreover,
since the cardinal of the set of all monotone real-valued functions on [0, 1] is the
continuum, a consequence of Goetschel-Voxman’s theorem is that the cardinality
of E! is the continuum. As usual, B,(x) denotes the ball of center x and radius
of (E', dwo).

In this paper we deal with Cp,—theory in the setting of fuzzy analysis. In the clas-
sical case, the pointwise topology is a powerful tool in itself and in its applications
to general topology, functional analysis, coding theory, Boolean rings, etc. (see for
instance, [2, 3, 6, 18, 23, 24]). Our aim is to make the starting point of a similar
theory for fuzziness. Throughout all spaces are assumed to be Tychonoff, that is,
completely regular and Hausdorff. Given two spaces X and Y, C,(X,Y) stands
for the space of all continuous functions from X to Y endowed with the pointwise
convergence topology which is generated by the sets of the form

1, ..., xn; Un, .. Up] ={f € Co(X,)Y) : f(xg) €Uk, k=1,2,...,n}

where z, € X and Uy, is an open set of Y (kK = 1,2,...,n). In other words, the
topology of C,(X,Y) is the one induced by the product topology on YX. When
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Y = (E',ds) (respectively, Y = (R,d.)) we write simply C,(X,E!) (respectively,
Cp(X)). Notice that a neighborhood base of a function f for the topology of
Cp(X,E) is the family of all the sets of the form

(fio1,. . Tns€) = {g € Cp(XvEl) tdoo(f(z), 9(21)) < 6} k=1,2,....,n

for all ¢ > 0 and @1, 22, ...,7, € X for all n € N. Closedness of (R, d.) in (E!,d.,)
implies that C,(X) is a closed subspace of C,(X,E").

The paper is organized as follows. In Section 2 we introduce some basic properties
of the space (E!,d,) including the fact that the addition and multiplication are
continuous. Section 3 is devoted to the properties of the space C,(X,E!). In
Section 4 we deal with several properties related to compactness in Cp(X,E'). In
particular, a version of the celebrated Grothendieck’s theorem on compactness of
countably compact subsets of C),(X) is achieved.

Although our notation and terminology is standard, some comments are in order.
A cardinal function is a function I' assigning to every topological space X a cardinal
number I'(X) such that I'(X) = T'(Y) for any pair X, Y of homeomorphic spaces.
For a subset A of a space X, we denote by A the closure of A in X. The cardinality
of a set X is denoted by | X|. As usual, the continuum is denoted by ¢. N stands for
the natural numbers and R for the cardinality of N. The smallest cardinal number
m > N such that every family of pairwise disjoint nonempty open sets of X has
cardinality < m is called the Souslin number (or cellularity) of the space X and it is
denoted by ¢(X). If ¢(X) = Rg, we say that the space X has the Souslin property.

Given a space X, the smallest cardinality of a base for the topology of X (re-
spectively, of a dense subset of X) is called the weight (respectively, the density)
of X and it is denoted by w(X) (respectively, by d(X)). The character of a point
z in X is defined as the smallest cardinal number of a neighborhood base for X at
the point z; this cardinal number is denoted by x(z, X). The character x(X) of a
topological space X is defined as the supremum of all numbers x(z, X) for x € X.

For a given space X, a family N of subsets of X is called a network of X if
for any open set U of X there is M C N such that |[JM = U. The cardinal
nw(X) = min{|JN| : N is a network of X} is called the network weight of X.

Recall that a function f : X — Y is called a condensation if it is a continuous bi-
jection. Let 4w (X) = min {|«| : there is a condensation of X onto a space of weight
< k}. The cardinal iw(X) is called the i-weight of X. The tightness ¢(X) of a space
X is the smallest cardinal such that for each set A C X and any point x in the
closure of A there is a set B C A for which |B| < ¢(X) and x belongs to the closure
of B. We refer the reader to [11] for further information on these topics.

2. The Space (E!,d.,)

Given two fuzzy numbers u and v, we define its addition u + v and its multi-
plication uv by means of the typical interval operations. To be precise, for each
A € [0,1], the A-level of w4+ v and wwv are defined, respectively, by the rules (see
[10])

(u+v)(A) =[u"(N) +ov~(A),ut () + v (\)]
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and
(uv)(A) =
[min{u™ (Ao~ (A), ™ (Ao (A), u™ (Ao~ (A), u™ (Ao F (M)},
max{u~ (Ao~ (A),u” (Aot (A),uT (Ao~ (A\),u™ (Mot (A)}].
The following result is probably known but we were not aware of any suitable
reference.

Proposition 2.1. If u,v,w € E! and k € R, then
(1) doo (U,U) = doo(u +w,v+ 'LU);
(i) doo ity bv) = [KJdoc (1, 0);
(iil) doo (wu, wv) < max{|w™(0)|, |w*(0)|}doo (u, v);
(iv) wv =0 if and only if u=0 or v =0;
(v) the equation u+ x = 0 has solution if and only if u € R.

Proof. Notice that claims (i) and (ii) hold true by the definition of the metric duo

(iii) Let r denote max{|w™(0)|,[(w)*(0)|}. For any ¢t € [0,1], we have —r <
w (t) < wt(t) < wh(0) < rso that |lw™(t)] < r and |wh(¢)] < r. Thus, for any
t € [0, 1], the following inequalities hold

lw= (O)u~(t) —w™ ()™ ()] < rlu”(t) —v= (1)l

[wF ()u™(t) —wr Qv (¢)| < rlu™(t) — v~ (1)l

lw™ ()ut(t) —w™ (v (E)] < rlut () —vT (@),

[wF (E)u™ (t) — wr (EoT ()] < rlut(t) —v* ()]
Therefore

|(wu) ™ (t) = (wo)~ ()] < rmax{|u”(t) — v~ (B)], [u*(t) = v (D)},
) |

|[(wu)*(t) = (wo)* (t)] < rmax{|u(t) — v~ (t)
max{|(wu)~(t) — (wo)~ (@)}, |(wu)*(t) — (wo)*(t)|
< rmax{|u”(t) — v~ ()], [u™(t) — v ()]},
for any ¢ € [0, 1]. We have just shown that
doo (wu, wv) < max{|w ™ (0)|, |w" (0)|}duo (u, v).

(iv) Assume, without loss of generality, that both u and v are different from zero.
Take distinct A1, A2 € [0, 1] such that

(1) either u= (A1) # 0 or u™ (A1) #0, and

(2) either v~ (A2) # 0 or v (Ag) # 0.

It follows from (1) (respectively, from (2)) that v~ (A1) = 0 and v*(\) = 0
(respectively, u~(A2) = 0 and ut(Ay) = 0). This leads us to a contradiction
because u~ is not decreasing and v is not increasing. Thus, the proof is complete.
(v) Let u = [u=(\),u™(A\)] and & = [z~ (\),z+(A\)]. Since for any A € [0,1] u~(A\) +
z=(A\) = 0 and ut(A\) + vT(A) = 0, we have 27 (\) = —u~(A\) and 2T (\) =
—uT(\) (A € [0,1]). Being the functions u~ and 2~ = —u™~ non-decreasing and the
functions v+ and vT = —u* non-increasing, we obtain that v =, u*, x~ and =T are
constant in [0, 1] so that v~ = u™. Therefore u = [u™ (\),u™(\)] € R. O
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We finish this section with several useful properties of (E!, dy).
Proposition 2.2. The Souslin number of (E!,dy,) is c.

Proof. For each a € (0,1] define the fuzzy number u, = [u; ,u}], where u; (A\) =0
and

() = 1.if)\€[0,a],

0if A € (a,1],
for any A € [0, 1]. It is easy to see that By a(ua) N Byja(up) = () for any a,b € (0, 1],
a # b. Hence {B1/3(uq) : a € (0,1]} is a pairwise disjoint family of nonempty open
sets of (E!,d). Since the cardinality of (E!,ds) is ¢, so is the Souslin number of
(E, ds). O

Proposition 2.3. The space (E', d,) is not locally compact at any fuzzy number
u € EL

Proof. Tt is easy to see that the sequence {v, : n € N} C (E!,dy,) where v, (A\) =0
and v;F () = (1 — X\)™ for any A € [0, 1] does not have any convergent subsequence.

Fix v € E!. For a given number ¢ > 0, define the sequence of fuzzy numbers
{w, : n € N} by the rule w, (A\) = v~ (\) and w;(A) = ut(N) + (1 — A\)™ for
any A € [0,1]. Notice that {w, : n € N} has no convergent subsequences and it is
contained in B(u). Therefore u does not have any compact neighborhood. This
completes the proof. O

The interested reader is referred to [13] for a characterization of compact sets in
(E', ds).

Recall that a space X is called cofinally Cech-complete if there exists a locally
compact space Z and an embedding e: X — Z of X into Z satisfying x(e(X), Z) <
Ng. Among other reasons, cofinally Cech complete spaces are interesting because
a metrizable space admits a cofinally complete metric if and only if it is cofinally
Cech complete (see [21]).

Corollary 2.4. The space (E!,d.) is not cofinally Cech-complete.

Proof. Tt follows from Proposition 2.3 that the set of points of (E!, d.,) that have
no compact neighborhood is not compact. By [14, 19], (E!,dy) is not cofinally
Cech-complete. O

A space X is hemicompact if in the family of all compact subspaces of X ordered
by inclusion there exists a countable cofinal subfamily. The completion of E! with
the pointwise uniformity is a hemicompact space (see [12] for details). However,
since any hemicompact first countable space is locally compact ([1]), we have

Proposition 2.5. The space (E!,dy,) is not hemicompact.

3. The Space C,(X,E')

From now on, if no confusion is possible, we will denote the metric space (E!, dx,)
by E!. We begin by showing a basic but helpful property of the fuzzy-valued
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functions. As usual, given two functions f,g from a space X into E!, by f 4+ g
(respectively, fg) it is understood the pointwise addition (respectively, the pointwise
multiplication).

Proposition 3.1. Let X be a space. If f,g: X — E! are two continuous functions,
then f+ g and fg are continuous.

Proof. Take a point g € X and € > 0. We can choose open sets Uy, Us containing
xg such that f(Uy) C Be/2(f(x0)) and f(Usz) C Bej2(f(z0)). Consider the open set
U=U;NU,. If y e U, then

doo (f(y) + 9(y), f(x0) + 9(w0)) < doo(f(y) +9(y), f(y) + 9(w0))+

+dso (9(y), 9(20)) + doo (f (1), f(x0)) < 5§+ § = €.

Hence f + ¢ is continuous at xzg.

Now we prove that fg is continuous. For this, take as above a point zy € X and
choose an open set W such that g € Wy and f(W7) C Bi(f(zg)). If y € W7, then
doo (f(y), f(z0)) < 1. Hence, for any A € [0, 1],

max{[(f(y))~(A) = (f(z0))~ (W] (f(®)T(N) = (f(zo) T (M[} < 1.
Thus, for any A € [0, 1], we have

[(F@)~ NI <T+[F@) " (@)l [(F) TN < L+ 1(f() " (o)l

and

max{|(f(y)) ()], [(f () (0)[} < 1+ max{|(f(z0))”(0)|,[(f(20)) " (0)[}.
Let r (respectively, s) denote max{|(f(xo))~(0)],](f(x0))T(0)|} (respectively,

max{|(g(x0))~(0)], [(9(x0))* (0)[}).

Choose open sets Wy and W3 in X containing xo such that f(Ws) C Be, (f(z0))

. €
and f(Ws) C Be,(g(x0)) with e = Trr1s
Consider the open set W = Wy N Wy N W3, 1t is clear that zg € W. Now, if

y € W, then
d(f(y)g(y), f(zo)g(zo)) < d(f(v)9(y), f(y)g(xo)) + d(f(y)g(xo), f(w0)g(z0))

<(147) € n se (I+7+s)e

r = = €.
1+r+s 14+r+s 1+7r+s

Therefore fg is continuous at the point xg. |

We look now at three properties which are interesting in themselves and for
future applications.

Proposition 3.2. Let X be a space. If x1,xo,...,x, are different points of X and
UL, U, . .., U, € B, then there exists a continuous function f: X — E! such that
flxy) =wuy; foranyi=1,2,... n.

Proof. Since X is Tychonoff, there exists,for all i = 1,2,...,n, a continuous func-
tion f; : X — R such that f;j(z;) =1 and f;(x;) = 0 whenever i # j . The function
f: X — E! defined by the rule f(z) = fi(z)u; + fa(z)uz + - + fu(2)u, is well
defined and continuous by Proposition 3.1. Notice that
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f(xi) = fi(@i)us + fo(@i)uz + - + fi(wa)ui + -+ + fa(@i)un
which implies that f(x;) =u; (i=1,2,...,n). O
sex (EY), where each (E'),

coincides with E!. In other words, (E)¥X is the space of all functions from X into
E! equipped with the pointwise topology.

From now on, (E)X stands for the product space []

Proposition 3.3. For any space X, the function space Cp(X,E') is dense in
(B,

Proof. Take an arbitrary function f € (E')* and the open set in (E!')* defined
as U = (f;x1,xa,...,2y;€) with € > 0. The previous Proposition 3.2 tells us that
there exists a function g € C,(X,E') such that g(z;) = f(x;) forany i =1,2,...,n.
It is evident that g € U. This proves that C,,(X,E!) is a dense subset of (E})X. O

Another interesting property of the space C,(X,E!) is

Proposition 3.4. For any space X, the space Cp(X,E') is homeomorphic to
Cp(X, B1(0)).

Proof. Consider the homeomorphism o = 2“% : R — (—=1,1). Now, if f €
Cp(X,E), let o(f) : Cp(X,E') — C,(X,B1(0)) be the function defined by the
rule (f)(z) = [a(f(z)7),a(f(z)T)] for all z € X. Since « is non-decreasing and
F(@)=(N\) < f(x)T(N), we have that a(f(z)~(N\)) < a(f(z)T(N)). Moreover, since
the functions f(z)~ and « are non-decreasing so is a(f(z))”. In a similar way, we
have that the function a(f(z))* is non-increasing. It follows from the continuity
of a and the properties of f(z)~ and f(x)* that o(f)(z) € Bi(0). Take now
J € Cp(X,E') and an open set W = (h;z1,...,2,;€) (in Cp(X, B1(0))) containing

h=o(f).
Now, since the function « is uniformly continuous, there exists ¢ > 0 such that
la(z1) — a(z2)| < § whenever |21 — 22| < d. Define now U = (f;z1,...,2,;0)

and take g € U. For all A € [0,1], it follows from doo(f(zk),g(zr)) < d that
[f (@)~ (A) = g(@r) = (M) < 6 and [ f(z)"(A) — g(zr) T (M) < d forany k =1,...,n.
Thus,

[ f(ax)~ () = alglar)~ (V)] < 5 and |a(f(zr)* (V) = algler) (V)| < 3

for all A € [0,1]. Then duo(@(f)(zx), v(g)(zx)) < § < € (k = 1,2,...,n) which
implies that ¢(g) € W. We have just proved that the function ¢ is continuous.

We now prove that ¢ is a bijection. Injectivity is an easy consequence of the fact
of being « injective. Moreover, if f € C,(X, B1(0)), then, for any € X, define
h(x) = [”an(g(r)i), ”an(g(‘r)ﬂ]. It is easy to see that h € Cp,(X,E!) and (h) = f.
Thus, ¢ is surjective.

We will finish the proof by showing that ¢~ is continuous. We will use the
fact that, for any 0 < r < 1, the function g(z) = % is a uniformly continuous
function from the real interval [—r,r] into R. Take f € C,(X,B1(0)) and V =
(7 f);x1,. . yapse). If k€ {1,...,n}, then —1 < f(a)~(0) < flar)~(A\) <
flxe)T™(N) < f(zr)T(0) < 1 forall A € [0,1]. Now choose r € R and § > 0 such that

1
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—1 <=1 < far)7(0) < flae)T(0) <r <L, —r < fax)7(0) = 6 < fax)*(0) <
flxp)T(0) + 0 < rand [B(21) — B(22)| < § for 21,25 € [—r,7] with |21 — 25| < 4.
Define Z = (f;x1,...,2,;0). If g € Z and k € {1,...,n}, then |g(xg)~(N) —
f(zk)~ (V)] < 6 and |g(xk)T(A) — fzg)T(N)] < d for all X € [0,1]. It is easy to see
that g(zx)~ (), g(xk) T(N), f(xr) = (N), f(xk)T(X) € [-r,r] for all X € [0,1]. Hence
1B(g(xk) = (N) = B(f(2r)~ (V)] < 5 and [B(g(xx)T(N) = B(f(zx)T(N)] < § for all
A € [0,1] which implies that de (@™ (f), ¢ (g)) < § < €. Therefore p=(Z) C
V and, consequently, ¢! is continuous. Hence C,(X,E') and C,(X, B1(0)) are
homeomorphic. ([

A helpful property is

Proposition 3.5. Let A be a closed susbet of a space X. If x1,xo,..., 2, € X\ A
and uy, Uy, ..., u, € E, then there exists a continuous function g: X — E' such
that gla = [ and g(x;) = u; for anyi=1,2,... n.

Proof. For any ¢ = 1,2,...,n there exists a continuous function g;: X — R such

that g;(AU{z1,22,..., 20} \ {z:}) = {0} and g¢;(x;) = 1. Consider now a function

h: X — R such that h(A) = {1} and h({z1,22,...,2,}) = {0} and let g be the

function from X into E! defined as g(z) = h(z)f(z) + X ju;g;(z). If a € A, then
g(a) = h(a)f(a) + X wigi(a) = f(a) +0 = f(a).

Observe that, for 1 < k < n, we have

9(@k) = h(we) f(zr) + i uigi(zn) = urge(zr) = up.
Therefore the function g satisfies all the desired properties. ([l

Two functions which play an important role in Cp—theory are the so-called res-
triction function and dual function.

Definition 3.6. Let Y be a subset of a space X. The function my: C,(X,E!) —
Cp(Y,E') defined by 7y (f) = f|y is called the restriction function.

The following proposition follows from Propositions 3.2, 3.3 and 3.5. Recall that
a function f: X — Z is called open if f(V') is an open set of Z whenever V' is open
in X.
Proposition 3.7. IfY is a subset of a space X, then the restriction function wy
on'Y enjoys the following properties:
(i) my is a continuous function and my (Cp(X,E1)) = C,(Y,E');
(ii) my is injective if and only if Y is dense in X ;
(iii) if the function 7|y is a homeomorphism, then Y = X;
(iv) if Y is closed in X, then w|y is an open function.
Definition 3.8. Let ¢: X — Y be a continuous function. The function
©*: Cp(Y,E') — Cp(X,EY)

defined by the rule ¢*(f) = f o for all f € C,(Y,E') is called the dual function
of .
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The following result follows from Propositions 3.2, 3.3, 3.5 and 3.7. A function
p: X — Y is said to be a closed function if ¢(A) is closed in Y whenever A is a
closed set of X.

Proposition 3.9. If p: X — Y is a continuous function, then the following con-
ditions hold:

(i) The dual function ¢* is continuous;
(ii) if o(X) is surjective, then ©*: Cp(Y,EY) — o*(Cp(Y,E') C Cp(X,E!) is a
homeomorphism;
(iii) if (X)) is surjective, then p*(Cp(Y,E') is dense in Cp(X,E') if and only if
@ s a condensation;
(iv) if (X) is surjective and ¢ is a closed function, then ¢*(Cy(Y,E') is closed
in Cy(X,EY).

The following result establishes an important difference between C,(X) and
Cp(X,EY). Tt is well known that for any f € Cp(X) the function ¢; : Cp(X) —
Cp(X) defined by ¢¢(g9) = f + g is a homeomorphism. However, we have

Proposition 3.10. If f € C,(X,E'), then the function p¢: Cp(X,E') — Cp(X,E')
is continuous and injective. Moreover, the following assertions hold:

(i) If f € Cp(X), then @y is a homeomorphism;
(ii) if f € Cp(X,EY) \ Cp(X), then ¢¢ is not surjective.

Proof. Take go € C,(X,E!) and an open set W = (f + go; 21, ..., Zn;€). Consider
the open set U = (go;x1,...,Zn;€) and choose h € U. It follows from Proposi-
tion 2.1 that deo(f(zx) + h(zk), f(zk) + go(zk)) = deo(h(xk), go(zk)) < € for any
k =1,...,n. Then ¢;(U) C W which implies that ¢, is continuous. Now, if
g,h € Cp(X,E') with f # g, choose a point zog € X for which g(zo) # h(z). Since
doo (F(30) + 9(30), £(20) + h(z0)) = doc(g(0), h(0)) # 0, we have (f + g)(zo) 7
(f + h)(zo). Hence ¢y is injective.

Suppose now that f € C,(X,R) and take g € C,,(X,E'). The function f has an
opposite with respect to addition h = — f € Cp,(X,R). Hence p¢(g+h) = f+g+h =
g. Thus, ¢y is surjective. Moreover, the function ¢, : Cp(X,E') — C,(X,E') is
continuous and w;l = p, because v (¢5(g9)) = en(f+g) = f+g+h = f. Therefore
¢ is a homeomorphism. This shows (i).

To conclude the proof, let f € Cp(X,E')\C,(X) and choose a point zy € X such
that f(zo) € E* \R. If g € C,(X,E!), then the equation f(xo) + g(zo) = 0 does
not have a solution in E'. This fact shows that ¢y is not surjective: indeed, there
is no function g € C,(X,E') such that ¢¢(g) = f + g = 0. This proves (ii). O

A subset A of E! is called support bounded if there exists a positive real number
L such that max {{u=(0)], |ut(0)|} < L for all u € A. By using the metric dy, this
is equivalent to saying that there is a ball B,.(0) containing A. It is a well-known
fact that every compact subset of E! is support bounded.

We will prove two properties of C,(X,E') which imply that X is countable.
These results are motivated by the well-known fact that C,(X,Y) is metrizable if
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and only if X is countable and Y is metrizable. Note that this result implies that
Cp(X,E) is metrizable if and only if X is countable.

Proposition 3.11. If there exists a compact subspace K C Cp(X,E') such that
X(K,Cyp(X,EY)) <w, then X is countable.

Proof. Let B = {W,, : n € N} be a countable base of K in C,(X,E'"). Given
a natural number n € N, choose, for any f € K, an open neighborhood Uy =

(fixd, ... ,xif;eﬁ such that U} C W,,. The family {U} : f € K} is an open cover
of K. Take a finite subcover {U},...,U} } of K and consider the finite set

A, = {x{l,...,x£>17...,x{’",...,mﬁ;n}.
Now define the countable set A = [J{A, : n € N}. We will prove that A = X.
To proceed by contradiction, suppose that there exists € X \ A and consider the
function e, : Cp(X,E') — E! defined by e,(f) = f(z). Since the set e,(K) C E!
is compact, there exists a real number r, such that e,(K) C B, (0). It is easy to
see that K C (0;z;r,) = [z; By, (0)] and, consequently, there exists W,, € B such
that K C W,, C (0;257,). Then K C U{Uy, : i = 1,...,m} C (0;2;7;). Thus,
Up = (fu L ,xi?l s€r,) C (0525 7,). It follows from Proposition 3.2 that there

is h € Cp(X,E') such that h(z]") = f(a/*) forany i = 1,.. .k, and h(z) =1, +1.
Hence h € U} and h ¢ (0;2;7,) which is a contradiction because U7 C (0;2;7y).
Therefore X = A and X is countable. O

A space X is called Cech-complete if the remainder SX \ X is the union of
countably many closed sets of SX where, as usual, X denotes the Stone-Cech
compactification of X.

Proposition 3.12. The space C,,(X,E) contains a dense Cech-complete subspace
if and only if X is countable and discrete.

Proof. Let Z C Cp(X,E') be a dense and Cech-complete subset. Suppose that X
is not discrete and choose a non-open singleton subset A of X. Consider now the
function f € R¥\ Cp(X,R) defined by the rule f(A) = 0 and f(X\A) = 1. Since f
has an opposite with respect to addition in (E!)%, it follows from Proposition 3.10
that the function : (E')* — (E')X defined as ¢(g) = f+g is a homeomorphism.
Then the space f+Z = {f4+¢: g € Z} is a dense Cech-complete subspace of (E')¥
and f+Z C (EV)*\ C,(X,E!). Consequently, Z N (f + Z) = (. This fact leads us
to a contradiction because the intersection of two dense Cech-complete subspaces
of a Tychonoff space cannot be empty. Therefore X is discrete.

Moreover, since Z is Cech-complete, we can find a compact set K C Z with
X(K,Z) < w. Being Z dense in Cp(X,E'), we have x(K,C,(X,E")) = x(K,Z) <
w. By Proposition 3.11, X is countable.

To see the converse, assume that X is countable and discrete. Then Cp(X,E') =
(E1)* and the result follows from the fact that (E')* is a Cech-complete space
(because it is a complete metric space). O
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An interesting question in Cp-theory is under what conditions the algebraic
and/or topological structure of C,(X,E') determines the space X. We turn now
to the study of this problem. A function ¢: C,(X,E') — E! is said to be an
additive functional if o(f + g) = ¢(f) + ¢(g9). Notice that if ¢ is an additive
functional, then ©(0) = 0. Indeed, ¢(0) = (0 + 0) = ¢(0) + ©(0) so that, for all
A €[0,1], 9(0)™ (A1) = (¢(0)+¢(0))~ (A) = ¢(0)~ (A1) +¢(0)~ (A1) and (0)* (A1) =
(©(0)+¢(0))T(AN) = ¢(0)T (A1) +(0)T(A1). Thus, ¢(0) = 0. Our first result states
an important property of additive functionals on Cp(X,E").

Proposition 3.13. If p: C,(X,E') = E! is an additive functional, then o(Cp(X))
is a subset of R.

Proof. By (v) of Proposition 2.1, a function f € C,(X,E!) has an opposite with
respect to addition if and only if f € Cp(X). Thus, if f € Cp(X) and g = —f, then
o(f +9) = ¢(f) + ¢(g) = 0 which implies ¢(f) € R. O

An additive functional ¢: C,(X,E') — E! is called a linear functional if p(uf) =
up(f) for all f € C,(X,E') and all w € E!, and it is said to be a linear multiplicative
functional if p(uv) = p(u)p(v) for all u,v € El. It is easy to prove that (1) =1
whenever ¢ is a linear multiplicative functional. Note that every linear multiplica-
tive functional is a linear functional. A homeomorphism ¢: Cp,(X,E!) — C,(Y,E!)
is called a topological isomorphism if £(f + g) = &(f) + &(f) and &(fg) = £(f)E(g)
for all f,g € C,(X,E'). In this case, we say that C,(X,E!) and C,(Y,E') are
topologically isomorphic. The corresponding definitions for Cp,(X) and Cp(Y) are
self-explanatory.

Proposition 3.14. Given two spaces X and Y, the following conditions are equi-
valent:

(i) Cp(X,E') and C,(Y,E') are topologically isomorphic,

(ii) Cp(X) and CL(Y) are topologically isomorphic,

(iii) X and Y are homeomorphic.

Proof. (i)=>(ii) Suppose that ¢ is a topological isomorphism from C,(X,E!) into
Cp(Y,E'). Let fo € Cp(X,E') denote the constant function fo(z) = 0 for any z €
X. Since £(fo) = &(fo+fo) = &(fo)+&(fo), we have that £(fo) = ho where ho(y) =0
forany y € Y. Thus, if f € Cp(X,R) and g = —f € C,(X,R), then {(f)+£(g) = ho.
Consequently, if y € Y, then the equation &(f)(y) + £(g)(y) = ho(y) = 0 has a
solution if and only if £(f)(y) € R. Hence {(f) € Cp(Y,R). In a similar way we
can show that £~ (Cp(Y,R) C Cp(X,R) so that &|c, (xr) : Cp(X,R) = Cp(Y,R) is
a topological isomorphism.

(ii)=(iii) It suffices to apply Nagata’s theorem ([16]).

(iii)=(i) If r: X — Y is a homeomorphism, then Proposition 3.9 tells us that
r*: Cp(Y,E') — r*(C,(Y,EY)) C Cp(X,E!) is a homeomorphism. Now, for any
[ € Cu(X,E'), consider the function g = f or~!. Notice that 7*(g) = go
r = for lor = f which implies that r*(C,(Y,E')) = C,(X,E!). Therefore
Cp(X,E') and C,(Y,E!) are homeomorphic. If f,g € C,(Y,E'), then r*(f +
9)(@) = (f+g)or(x) = f(r(x)) +9(r(x)) = r*(f)(x) +r*(9)(x) and 7" (fg)(x) =
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(fg) o r(z) = [f(r(@)lg(r(z))] = [r*(f)(@)][r"(g9)(z)] for any z € X. Hence
r(f +g) = r*(f) +*(g), 7*(fg) = v*(f)r*(g) and r* is an isomorphism. Thus,
Cp(X,E') and Cp(Y,E!) are topologically isomorphic. O

Let L(X) denote the set of all continuous linear functionals on the function space
Cp(Cp(X,EL),ED).
Proposition 3.15. Let X be a space. The set L(X) is closed in Cp,(Cp(X,E'),E).

Proof. Take p € L(X), f,g € Cp(X,E') and u € E'. First we prove that ¢(f+g) =

©(f) + ¢(g). To do so, let € > 0 and choose ¢ € (¢; f, g, f +g;5) N L(X). Since

doo (V(f),(f)) < 55 doo(¥(9),(9)) < § and doo (V(f + 9), 0(f +9)) < 5, we have
doo(o(f +9),0(f) +¢(9)) < doo((f +9),0(f +9))

des (V(f +9),0(f) + ¢(9))

% + dos (W (f) + 0 (9), 0(f) + ©(9))-

VAN

Notice that

doo (Y (f) +9(9), 0(f) +9(9)) < (
+  doo(P(f) +(9), (f) +9(9))
= doo(¥(9),9(9)) + doo(V(f), 0(f))

<

and, consequently, doo(p(f + 9), 0(f) + ¢(9)) < §+ % = e Thus, deo(p(f +
9), o(f) +¢(g)) = 0. We have just shown that o(f +g) = ¢(f) + ©(9).

Now we prove that ¢(uf) = up(f). Let r denote max{|u~(0)[, |u™(0)|}. Given
€ > 0 and a continuous linear functional p € (¢; f,uf; 57) N L(X), we have

deo(0(f), p(f)) <

€

s doo(p(uf), p(uf)) < et

€
r+l
and
doo(p(uf), up(f)) < doo(p(uf), p(uf)) + doc(p(uf), up(f)).
Since doo(p(uf),up(f)) < St doo (up(f),up(f)) < =1 T 747 = 6 we have
o(uf) =uwp(f). Therefore p € L(X) and, consequently, L(X) is a closed subspace
of the function space C,(C,(X,E!),E!). O

Let A be a subset of C,(X,E'). For each x € X define the function e': A — E!
by eA(f) = f(x) for all f € A. The function eZ belongs to C,(A,E!) because it is
the restriction to A of the projection of (E')* onto the 2-coordinate. The function
et: X — Cp(A,E') defined by the rule e?(x) = eZ is called the evaluation function.
We now take a look at some properties involving the evaluation function.

Let X, Y be two spaces. A family of functions A C C,(X,Y) is said to separate
points and closed sets of X if for every x € X and every closed set G of X such
that = ¢ G there exists f € A for which f(x) ¢ f(G). The family A separates the
points of X if f(z) # f(y) whenever z # y for all 2,y € X.

Proposition 3.16. For each space X, the following properties hold:
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(i) The evaluation function e*: X — Cp(A,E') is continuous;
(ii) the evaluation function e?: X — Cp(A,E) is injective if and only if A sepa-
rates the points of X ;
(iil) the evaluation function e*: X — e(X) C Cp(A,E') is a homeomorphism if
and only if the family Ua = {f~Y(U) : f € A and U is an open set of E'} is
a subbase of X;
(iv) if A separates points and closed sets of X, then the evaluation function

e X = eM(X) € Cy(AEY)
is a homeomorphism.

Proof. (i) For a given z € X take an open set U = (e”(2); f1,. .., fn; €) of Cp(A,Eb).
For k = 1,...,n, the set Vi = f "(Bc(e2(f1))) = fr '(Be(fx(x))) is an open set
containing = and, consequently, x belongs to the openset V. =n{V; : k=1,...,n}.
It is easy to see that e4(V) C U and hence e is continuous at the point z. Being
x an arbitrary point of X, we have proved that e? is continuous on X.

(ii) If e4 is injective, then for any pair of different points z,y € X we have that
e(x) # e (y). Hence there exists f € A such that f(z) = e (f) # e} (f) = f(y).
Conversely, if A separates the points of X, given z,y € X with x # y there exists
f € A such that f(x) # f(y). Thus, e2(f) # e;/“(f) and e? is injective.

(iii) Assume that e? is a homeomorphism. Since D = {[f;U] Ne}(X) : f €
A and U is an open set of E'} is a subbase of e4(X) C C,(A4,E!) with [f;U] =
{o € CL(AEY) : o(f) € U}, the family B = {(e”)"}(W) : W € D} is a subbase of
the topology of X. Now, if W € D, it is easy to see that (e4)~(W) = f~1(U) and
hence B= {f~1(U): f € A and U is an open set of E'}.

To see the converse, choose two different points x,y € X and assume that £ =
{f~Y(U) : f € Aand U is an open set of E'} is a subbase of the topology of X.
Then there exist n € N and f;*(U),..., f; ' (U,) € & such that = € ON{f; (U;) :
i=1,...,n}and y ¢ N{f;,"(U;) : i =1,...,n}. Tt is easy to see that there is i
for which y ¢ f;l(Ui). This implies that £ separates the points of X. Moreover, it
follows from (i) and (i) that e# is continuous and injective.

Next take a function f € e4(X) and a basic open set (of X) W containing
(e)~(f). Then there exists f; *(U1),..., [, "(U,) € & such that (e*)~(f) €
N7 W) i =1,...,n} € W. Consider now the set Z = N{[fi;U;] N eA(X) :
i=1,...,n}. Z is an open set of e?(X) containing f and it is easy to see that
(eA)~Y(Z) c W. This proves the continuity of (e)~!. Therefore e# is a homeo-
morphism from X into e4(X).

(iv) Suppose that A separates points and closed sets of X. Take a point x € X
and an open set (of X) U such that x € U. There exists f € A such that f(x) ¢

F(X\U) and hence the set E! \ f(X \ U) is open and contains f(z). Therefore

€ fHE!\ f(X \ U)) which implies that
Us={f""(U): f € Aand U is an open set of E'}

is a subbase of the topology of X. It follows from (iii) that e4 : X — e4(X) is a
homeomorphism. O



14 D. R. Jardén and M. Sanchis

Proposition 3.17. Let X be an arbitrary space. If e: X — Cp,(Cp(X,EY),E') s
the evaluation function, then e: X — e(X) C Cp(Cp(X,EY),EL) is a homeomor-
phism.

Proof. For any x € X and any closed set G of X with « ¢ G, there exists a
continuous function f: X — E! such that f(z) = 1 and f(G) = 0. Observe
that f(z) ¢ f(G), hence Cp(X,E") separates points and closed sets of X. Thus,
Proposition 3.16 (iv) applies. |

We now turn to some results related to cardinal functions. In our first result we
use the well-known fact that | X| = x(Cp(X)).

Proposition 3.18. Given a space X, the equality
w(Cp(X,EN) = [X|c = x(Cp (X, EY))c
holds.
Proof. 1t is easy to see that w(C,(X,E')) < |X|c. On the other hand,
X[ = x(Cp(X)) < X(Cp(X,EN)).
Then
w(Cp(X,EY) < [ X|e < x(Cp(X,EN))e < w(Cp(X,EY)e.
Since w(Cyp(X,E')) > ¢ for any space X, we have

w(Cp(X,EN)) = X(Cp(X,EN)e = [ X]e.
0

Corollary 3.19. Let X be a space. If |X| > ¢, then w(Cp(X,EY)) = |X|.
Proposition 3.20. Given a space X, the equality nw(Cy(X,E')) = nw(X)c holds.

Proof. 1t is easy to see that nw(C,(X,E')) > ¢ for any space X. Then, since
nw(X) = nw(Cp(X)) for any space X (see, for example, [23, S.172]), we have
nw(X) = nw(Cp(X)) < nw(Cp(X,E")) < nw(X)e

which implies
nw(Cp(X,E")) = nw(Cp(X,EY))e = nw(X)c.

Proposition 3.21. Given a space X, the following assertions hold:

(i) d(X) < iw(Cp(X,EY)) < d(X)e;

(ii) d(Cp(X,E)) < iw(X)e;

(iii) dw(X)e = d(Cp(X,E))e.
Proof. (i) d(X) = iw(Cp(X)) < iw(Cp(X,E')). Take a dense subset ¥ C X
such that |Y| = d(X). Since the function 7|y : Cp(X,E') — 7|y (Cp(X,E)) C
Cp(Y,E') is a condensation, it follows from Proposition 3.18 that

w(ny (Cp(X,EN)) < w(Cp(Y,EY) = [Y]e = d(X)e.

Hence iw(Cp(X,E')) < d(X)e.
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(ii) If ¢: X — Y is a condensation, then Proposition 3.9 implies that ¢* :
Cp(Y,EY) = ¢*(Cp(Y,E!)) C Cp(X,E!) is a homeomorphism and ¢*(C, (Y, E)) is
a dense subset of Cj,(X,E'). Then

A" (C(V,EN))) < mu(" (Cy(Y,EY))) = nw(Cy (V. E) = nuw(¥)e < w(Y)e
so that d(Cy(X, EL)) < d(¢*(C,(VEL)) < iw(X)e.

(iii) It follows from Proposition 3.17 and (i) that iw(X) < iw(C,(Cp(X,E!), EL))
and iw(Cp(Cp(X,E'), E)) < d(Cp(X,E"))c. Moreover, (ii) tells us that

d(Cy(X,EY))e < iw(X)e
which implies that iw(X)ec = d(Cp(X,E'))e. O

Proposition 3.22. If X is a Lindelf space and X C Cp,(Y,E') for some space Y,
then w(K) < |Y].

Proof. For any y € Y consider the set K,, = m,(K) C E! where , is the projection
function onto the y-coordinate. Note that K, is a Lindel6f metrizable space for any
y € Y. Thus, the weight of each K, is countable and, consequently, so is the weight
of [[,cy Ky is < [Y|. The inclusion K C [], oy K implies that w(K) < [Y[. O

Proposition 3.23. The space X™ is Lindelof for any n € N if and only if the
tightness of C,(X,E') is countable.

Proof. Choose f € Cp(X,E') and A C Cp(X,E') such that f € A. Select g, €
AN <f;m1,...,xn;%> for each n € N and z = (z1,...,2,) € X™ . Then, for any
i=1,...,n, we have doo(g:(2;), f(z;)) < 1, and there exists an open set U7 of X
such that z; € U7 with de(g:(2), f(2)) < £ for any x € UZ.

Next, for any z € X", take the open set U7 x --- x U? and consider a countable
subcover W, of the cover U,, = {Uf x --- x U? : z € X"} of X". Define B,, = {g, :
Uf x --- x U? € W,} and consider the countable subset B of A defined as B =
U{B\ : n € N}. Now take an open set (f;r1,...,7n;€) with 0 < e < % and choose
z € X" such that z = (ry,...,7,) € Uf X -+ x UZ. Then doo(g:(rs), f(rs)) < = <e
for any i = 1,...,n. Hence g. € BN (f;r1,...,7n;€) which implies that f € B.
Therefore the tightness of Cp,(X,E') is countable.

To see the converse, it suffices to observe that C,(X) C C,(X,E!) which implies
that ¢(Cp(X)) = w. Therefore the space X™ is Lindelof for any n € N (see [23,
S.149)). O

For a given space X, we say that A C X is support-bounded if for any f €
Cp(X,E') there exists r € R such that f(A) C B,(0). A Baire space is a topological
space in which the intersection of every countable collection of dense open sets is
an open set. Complete metric spaces and locally compact Hausdorff spaces are
examples of Baire spaces according to the well-known Baire category theorem.
Baire spaces have many important applications in several branches of functional
analysis, topological algebra, etc. By the way of illustration, we can comment that
Fréchet spaces are Baire spaces and the Baire category theorem can be applied
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to obtain the Banach-Steinhaus theorem and the open-mapping theorem (see, for
example, [17]).

Proposition 3.24. If C,(X,E!) is a Baire space, then any support-bounded subset
of X 1is finite.

Proof. If A C X is an infinite support-bounded set, then for each n € N the
set D, = {f € Cp(X,E") : there exists x € A with f(z)T(0) > n} is open and
dense in C,(X,E!). Take now an open set (g;x1,...,7n;€) and a point zg €
AN\ A{z1,...,2,}. It follows from Proposition 3.2 that there is a function f €
Cp(X,E') such that f(zo) =n+1 and f(zx) = g(xx) for any k = 1,...,n. Since
f(xo)T(0) =n+1, wehave f € D,, N {g;21,...,Tn;€).

Given f € D, find z € A such that f(z)*(0) > n and define 6 = f(2)*(0) —
n > 0. The set (f;z;0) is open and is contained in D,,. If h € (f;2;d), then
|h(2)*T(0) — f(2)1(0)| < dwo(h(2), f(2)) < &§ which implies that h(z)*(0) > n and
that (f;z;0) C D,,. Therefore D,, is open and dense in Cp,(X,E!) for any n € N.
We will finish the proof by showing that (\{D,, : n € N} = () which contradicts that
Cp(X ,E') is a Baire space. To proceed by contradiction, assume that there exists
f € ({Dy : n € N}. Then, for any n € N, there is z;,, € A such that f(x,)*(0) >n
so that f(z,) ¢ By(0) because doo(f(2n),0) > f(x,)*(0) > n. Hence f(A) is not
support-bounded. This contradiction concludes the proof. ([l

4. Compactness and C,(X,E!)-theory

In real analysis, compactness of subsets of Cp,(X) plays an important role in
functional analysis, general topology and its applications. In this framework, one
of the most celebrated results is Grothendieck’s theorem which states that if X is
a countably compact space and A C C,(X) is a countably compact set in Cp(X)
(i.e., for any infinite set B C A, the space Cp(X) contains a limit point of B),
then the closure of A in Cp(X) is compact. For C,(X,E!) we have the following
version of Grothendieck’s theorem. It may be worth reminding the reader that a
space X is said to be pseudocompact if every real-valued continuous function on X
is bounded.

Proposition 4.1. If X is a countably compact space and 'Y is a closed pseudocom-
pact subspace of Cp(X,E'), then Y is compact.

Proof. For any x € X we know that the evaluation function e® : C,(X,E!) — E!
defined by e*(f) = f(z) for all f € Cp(X,E!) is continuous. Consequently, for
any r € X, the set K, = ¢®(Y) C E! is compact because it is pseudocompact and
metrizable. Thus, Y is a subset of the compact space [], .y K, C (E)X. Suppose,
to derive a contradiction, that Y is not compact. Since Y is closed in C,(X,E'),
there exists a discontinuous function f with f € Y \ C,(X,E!) C (E})*. Thus,
there is @ € X and A C X such that a € A and f(a) ¢ f(A). Hence we can find
open sets U,V C E! such that f(a) € U, f(A) CVand UNV = .

By induction on n we now define sequences {f, : n € N} C Y, {U, : n € N},
where U, is open in X and a € U, for all n € N, and {a, : n € N} C A with the
properties
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(i) Upy1 C U, and a, € U, for any n € N,
(ii) fn(U,) C U for any n € N,
(iil) frnt1(a;) € V for any n € N and ¢ < n.

To do so, notice that there exists fo € Y such that fy(a) € U because f € Y.
Since the function fj is continuous, there is an open set (of X) Uy such that a € Uy
and f(Up) C U. The point a belongs to the closure of A and, consequently, there
exists ag € ANUy. Tt is straightforward to see that the triple (fo, Ug, ag) satisfies
the properties (i), (ii) and (iii).

Suppose that f;, U;, a; are defined satisfying properties (i)-(iii) for any i < n. It
is evident that f(a;) € V for any ¢ < n. The set Y Na,ap,...,a,;U,V,..., V] is
nonempty because f € [a,ag,...,an;U,V,...,V] and f € Y. Hence there exists
fot1 €Y C Cp(X,E') for which f,+1(a) € U and fr41(a;) € V for any i < n.
Then there exists an open set U,4; in X such that a € U,41, Upy1 C U, and
frt+1(Uns1) C U. Take any point apy1 € ANUpi1. Then {a;, fi,U; 14 <n+1}
satisfies (i)-(iii). This completes the induction step.

Take now a cluster point b of the sequence S = {a,, : n € N}. It is easy to
see that b € N{U, : n € N} = N{U, : n € N} because, for a given n € N,
we have x; € U, for any ¢ > n. Notice that f,(b) € f.(U,) C U. Define the
countable set D = {y} U {a, : n € N} ant take the restriction function w|p :
Cp(X,E') — C,(D,E). The function 7|p sends Y to a pseudocompact subspace
of the metrizable space C,(D,E'). Since the closure in Cp,(D, E') of {g,, = 7|p(fn) :
n € N} is a metrizable compact space, we can consider that g, converges to some
g € m|p(Y). Moreover, (g;b;€) N {gn : n € N} # ) for any ¢ > 0 and g(b) €
{gn(b) : n € N} = {f,(b) : n € N}. For any n € N we have f,(b) € fn({Uk : k €
N}) C f.(U,) C U which implies that g(b) € U. If follows from continuity of g that
g(b) € {g(a,) :n € N}. If n € N, then fi(a,) € V for any k > n. Hence g(a,) € V
for any n € N which implies that g(b) € V. Thus, g(b) € U NV, which leads us to
a contradiction. Therefore Y is a compact space. ([

As a corollary we obtain a version of Grothendiek’s theorem in the realm of fuzzy
analysis.

Corollary 4.2. Let X be a countably compact space. If A is a countably compact
set in Cp(X), then the closure of Cp(X) is compact.

Recall that a space X is said to be o-compact if it is the union of countably
many compact sets.

Proposition 4.3. If X is a o-compact space, then there exists a compact space K
such that C,(X,E') is homeomorphic to a subspace of Cp(K,E').

Proof. Suppose that X = [J{X,, : n € N} where each X,, is compact and put ¥ =
Cp(X,E'). The evaluation function ¥ : X — C,(Y,E') sends homeomorphically
X to Z = e(X) C Cp(Y,E!). Observe that Z is o-compact and that the family
Ua ={p 1 (U): ¢ € Z and U is an open set of E'} is a subbase of Y because for

any z € X and any open set U C E! we have p,1(U) = ¢, (U) = {h €Y =
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Cp(X,E') : h(z) € U} = [z;U]. Then it follows from Proposition 3.4 that there
exists a homeomorphism ¢ : Cp,(Y,E') — C,(Y, B1(0)). Therefore, if Z = (J{Z,, :
n € N} where each Z,, is compact, then for any n € N the space A, = p(Z,,) C
Cp(Y, B1(0)) is also compact. Consider now, for each n € N, the compact space
K, = {% : f € A} and define K = |J{K,, : n € N} U {h} where h : Y — B;(0)
is the constant function h = 0. Let U be an open cover of A by open sets of
Cp(Y,B1(0)). Then there is W € U such that h € W. We can assume that
W = (h;y1,...,yn;€) for some {y1,...,y,} C Y and € > 0. If we choose m € N
with % < €, then it is easy to see that K, C W for any n > m (notice that
K, C Bé (0) for any ¢ € N). Hence there exists a finite subcover U covering K.
We have just proved that K is compact. It is straightforward to show that K
separates points and closed sets of Y and, consequently, the evaluation function
eX Y — Cp(K,E') sends Y homeomorphically to a subspace of Cp,(K,E!). This
completes the proof. ([l

A space X is said to be scattered if every nonempty subset A C X has an
isolated point relative to A. Recall that a space X is called Fréchet-Urysohn if for
every A C X and every z € A there exists a sequence from A converging to z.
For compact spaces, we have the following relationship between both properties in
Cp—theory.

Proposition 4.4. If X is a compact space, then C,(X,E') is Fréchet-Urysohn if
and only if X is scattered.

Proof. Suppose that X is scattered. Choose f € Cp(X,E') and A C C,(X,E")
such that f € A where the closure is taking in C,(X,E!). Proposition 3.23 tells us
that there exists a countable set B C A such that f € B. Let ¢® be the evaluation
function e? : X — C,(B,E') and Y = e®(X) C C,(B,E'). The product space
(El)B is metrizable; hence Cp(B,El) is also metrizable, which implies that Y is
a scattered compact with a countable base. Thus, Y is countable. Take now
the dual function e : C,(Y,E') — C,(X,E'). By Proposition 3.9 we have that
eB" L OL(Y,EY) — eP7(CH(Y,E)) is a homeomorphism. Since e is a closed
function, Proposition 3.9 tells us that eZ” (C,(Y,E!)) is a closed set of C,(X,E").
It is easy to see that B C B (C,(Y,E')) and, consequently, B C eZ (C,(Y,E!))
which implies that B is a metrizable compact space. Thus, there exists a sequence
{fn :n € N} C B C Asuch that lim, e fr = f. Therefore Cp(X, E') is Fréchet-Urysohn.

To see the converse, notice that if Cj,(X,E') is Fréchet-Urysohn, then C,(X) C
Cp(X,E) is also Fréchet-Urysohn. Therefore X is scattered. O

A space X is called w-monolithic if, for every Y C X with |Y] < Ry, we have

nm(Y) < Rg. In the spirit of the previous result, we can prove the following

Proposition 4.5. If K and X are compact spaces with X C C,(K,E"), then X is
Fréchet-Urysohn and w-monolithic.

Proof. Take a countable set A C X C C,(K,E') and consider the evaluation func-
tion e4 : K — C,(A,E'). Notice that C,(A,E') is a subspace of a countable
product of metrizable spaces so that it is metrizable as well.
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Then compactness of K implies that the space Y = e4(K) C C,(A,E") is compact
and metrizable. Observe that (e?)* : C,(Y,E) — (e4)*(C,o(Y,E!)) C Cp(K,E?)
is a homeomorphism. Thus, (e4)*(C,(Y,E!)) is a closed subspace of C,(K,E!)
with A C (e4)*(C,(Y,E")). Therefore A is homeomorphic to a compact subspace
of C,(Y,E'). Now let Z be a dense countable subset of Y. Since the function
mlz : Cp(Y,EY) — Cp(Z,E') is injective and the space C,(Z,E') is metrizable, we
have that A condenses onto the metrizable compact space 7|z(A). Therefore A
is metrizable and compact. Thus, nw(A4) = w(A) = R which implies that X is
w-monolithic.

To see that X is Fréchet-Urysohn, choose x € X and let B C X such that z € B.
Proposition 3.23 tells us that the tightness of C, (K, E!) is countable. Hence the
tightness of X is countable. Take now a sequence S = {z, : n € N} C B such
that z € S. Since S is w-monolithic, it is metrizable and compact. Therefore there
exists a sequence {y, : n € N} C S C B which converges to . This completes the
proof. O

5. Conclusion

We establish the basic properties of the space C,(X,E!) of all continuous fuzzy-
valued functions on a space X endowed with the pointwise topology. The restric-
tion, dual and evaluation function (useful tools in the theory) are also studied. We
introduce several relationships between the notion of compactness and Cp(X, EL).
In our research we state some properties of the space of fuzzy numbers equipped
with the topology induced by the metric dy.

This paper was conceived as an introduction to Cp-theory in fuzzy analysis. As
far as the authors know it is the first attempt to set the foundations of this theory.
As in the case of the pointwise topology in the realm of real analysis, it can be used
for further development of the theory of function spaces in fuzzy analysis and its
applications.
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