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Estimation of Non-stationary Process Variance in
Multistage Manufacturing Processes Using a

Model-based Observer
Ester Sales-Setién, Ignacio Peñarrocha-Alós, and Jos´e V. Abellán-Nebot

Abstract—In this work we propose a recursive algorithm to
estimate the process variance in multistage manufacturingor
assembly processes. We use a replicated model that includes
the process variance to be estimated as a time-varying state
that changes slowly. For this model, we develop an estimation
strategy including tuning parameters that play a direct role in
the trade-off between the estimation accuracy and the adaptation
to changes. We also develop a statistical confidence interval
for the estimations which enhances the decision of whether the
process variances have changed. Unlike other batch methodsin
the literature, our proposal is computed recursively, and it allows
us to tune the trade-off between the convergence speed and the
accuracy without modifying the sample size, which only contains
the data of the last manufactured piece.

Note to Practitioners—Variation reduction appears as the key
to succeed in improving product quality, which is a major asset
in manufacturing. To achieve variation reduction, it is necessary
to quickly identify the root causes which are responsible for these
variations. The state of the art in root cause analysis is based
on a stationary point of view, where the estimations regarding
the mean and variance of the variation sources are based on the
sample provided by a batch of multiple manufactured pieces.This
paper focuses on the development of an online estimation strategy
which recursively updates the estimation of the variance ofthe
variation sources with the data provided by the last manufactured
piece in order to enhance a rapid decision of whether any fault
has occurred in the process at the same time of reducing the
computational cost and the data storage needs. We present a
design strategy of the estimation algorithm which sets the trade-
off between the accuracy of the estimations and their capability of
tracking changes through two well-known physically-meaningful
engineering parameters: the cumulative squared error under
abrupt changes and the variance of the estimations. Two detailed
cases of study illustrate the effectiveness of this method.The
strategy presented in this paper represents a novel approach for
dealing with quality-control online algorithms and it can be used
for quality improvement of multistage manufacturing processes.

Index Terms—Process variance estimation, model-based ob-
server, multistage manufacturing process, variation propagation.

I. I NTRODUCTION

Nowadays, the highly competitive markets demand cus-
tomized and high quality products with minimum lead times
exerting a great pressure on companies to optimize their
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resources throughout the product development cycle. At the
manufacturing stage, process engineers are focused on the
analysis and reduction of process variation to reduce cost,
improve product quality and minimize production ramp-up
times when new products are launched. However, process
variation reduction throughout the manufacturing processis
a challenging task, especially in complex processes such as
multistage manufacturing processes (MMPs). These processes
are those that produce products under multiple setups where
the operations conducted at the first stages have an influence
on the manufacturing operations down-streams [1]. For in-
stance, the process assembly of automobile bodies is a MMP
composed of a series of single stages where, at each stage, the
body from previous stages is held in a work-holding structure
to assemble new components and, after the welding operation,
the body moves forward to the next stages in order to complete
additional assembly operations. In MMPs, statistical process
control (SPC) techniques are commonly applied to control the
manufacturing process over time by monitoring the quality
characteristics of the product. The statistical control charts
applied in SPC are effective tools to detect process changes
and ensure product quality. However, the identification of
root causes that may be inferred from charting results would
be significantly limited if the interrelationships betweenthe
process variables and the key product characteristics (KPCs)
are not explicitly modelled. To overcome this limitation, Li et
al. [2] proposed a causation-basedT 2 decomposition method
where the causal relationships among variables are modelled
by a Bayesian network. The interpretation and decomposition
of Hotelling’s T 2 together with the causal information of the
process and the KPCs variables let the proposed SPC method
to trace backward from certain quality problems to the vari-
ables that are the root causes. An improvement of this method
is provided in Verron et al. [3] where the decompositions are
computed within the Bayesian network itself.

The state-space model from control theory has also been
successfully applied to model the relationships between varia-
tion sources and product dimensional quality measurements
in MMPs [4]–[11]. The use of the state-space model with
SPC techniques for root cause identification was proposed
in Zou and Tsung [12]. In their work, a multivariate expo-
nential weighted moving average scheme with the generalized
likelihood test that fully incorporates directional information
based on the state-space model was proved to be an effective
solution for process monitoring and fault diagnosis. Besides
these SPC techniques, different variation source identication
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techniques such as those based on MLE estimators, REML
estimators and MINQUE estimators have been proposed in
MMPs using the state-space model as a linear mixed model.
In [13], the application of MLE and MINQUE estimators
in MMPs was discussed for estimating both the mean and
the variance of the process variation sources. A hypothesis-
testing procedure was also developed to provide confidence
level of each of the estimation results which let the plant
engineers determine if process faults regarding the mean and
the variance of the process variation sources exist in terms
of statistical significance. However, these methods have been
mainly applied in biological and agricultural fields [14] and
they are primarily applicable to offline experiments where
the sample size is small and the computation time is not a
concern. In MMP, large quantity of data may be available and
the detection and identification of any process malfunctioning
need to be carried out faster and efficiently.

For this reason, online estimators with low computation cost
and fast response have been investigated in previous researches
proving their applicability. A good comparison of online
estimators of the variance of the process variation sources
(i.e., process variance estimators) and their performancecan be
found in [15], where the process variance estimators from the
research works in [16]–[19] were analyzed. These estimators
entail closed-form expressions and are more cost-effective than
the MLE method, particularly for large sample sizes, and
are thus more suitable for online quality control. However,
the estimators analyzed are only adequate when the MMP is
stationary since the estimations are based on the sample of
data of the lastN pieces and only when most of theN pieces
are affected by the process faults the estimators can correctly
detect and quantify the process variance changes. Therefore,
these estimators present a delay in identifying the variation
sources which negatively impacts on the efficiency of online
quality control actions. For instance, a certain number of parts
may be manufactured before the variation source is identified
which compromises the quality in terms of variance of the
final product and produces an increase of non-quality costs.
To overcome this limitation the application of non-stationary
process variance estimators in MMPs has to be investigated.

This paper discusses the use of a model-based observer that
recursively updates the estimated process variance with the
measurements from each new processed piece. The observer
demands few computational burden and it has an asymptotic
behavior. We also discuss how to tune the observer for fixing
the trade-off between the convergence speed under process
variance changes and the steady-state error for stationary
process variances.

This paper is organized as follows. The problem statement
is presented in Section II. Section III presents the proposed
approach for modeling the non-stationary behavior of the
process variances in MMPs that enables the application of
observer-based strategies for variation source identification.
Section IV explains the estimation procedure of the process
variance and it details a design strategy of the observer for
ensuring a specific performance of the estimator. In Section
V we include the design of confidence intervals for the
estimates so as to enhance statistical hypothesis testing for
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Figure 1. Diagram of a MMP

fault diagnosis. Section VI briefly compares the proposed
estimates with offline existing estimators and Section VII
presents a case of study to validate the approach. Finally,
Section VIII summarizes the main conclusions of the paper.

Notation: Let M ∈ R
n×n be a square matrix andm ∈ R

n

be some vector.M [i, j] denotes the element in thei-th row
and j-th column ofM andm[i] denotes thei-th element in
m. In ∈ R

n×n is the identity matrix of sizen and1n ∈ R
n

is the unitary column vector of sizen. vec(M) ∈ R
n2

de-
notes the vectorization ofM and vec−1 (vec(M)) = M .
diag(M) ∈ R

n is the operator that returns a column vector
with the diagonal entries ofM . diag−1(diag(M)) is a diago-
nal matrix with the elementsM [i, i] in its diagonal. Product is
denoted as

∏

, summation is denoted as
∑

and the direct sum
is denoted as

⊕

, so that
⊕

im[i] ∈ R
n×n is a diagonal matrix

containing the elements ofm in its diagonal.M⊗
2

, andM◦2

represent the Kronecker and Hadamard product ofM andM
(i.e., M⊗

2

= M ⊗M and M◦2 = M ◦M ). Expected value
and probability are denoted asE{·} andPr{·}.

II. PROBLEM STATEMENT

In a MMP the deviations caused by the variation sources
of each stage propagate along the production line. At certain
stage the dimensional variability of a piece consists of two
components: one derived from the previous stages and another
created at the current stage. Since these deviations are much
smaller than their corresponding nominal value, they can be
represented by a linear state-space model as

xk(i) = Ak−1 xk−1(i) +Bk u
m
k (i) + uu

k(i), (1a)

yk(i) = Ck xk(i) + vk(i), (1b)

wherexk(i) ∈ R
nx,k represents the dimensional variability of

piecei = {1, ...,∞} at stagek = {1, ...,M}. Vector

uk(i) =

[

um
k (i)
uu
k(i)

]

∈ R
nu,k (2)

with nu,k = nm
u,k + nu

u,k andnu
u,k = nx,k is the input vector

including both the modeled and unmodeled variation sources
of thek-th stage affecting thei-th piece. Vectoryk(i) ∈ R

ny,k

is the output vector denoting the measurements of thei-th
piece at thek-th stage andvk(i) ∈ R

ny,k takes account of
the corresponding measurement noises. This kind of stage and
piece indexed state-space models, depicted in Fig.1, has been
extensively used in MMP applications as shown in [4]–[10],
which are referred for further modeling details.
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As proposed by Apley and Shi [16], model (1) can be al-
gebraically transformed into a linear replicated model. Setting
the initial conditions to0, it yields

y(i) = Γu(i) + v(i), (3)

where y(i), u(i) and v(i) stand, respectively, for all the
measurements, inputs and noises that affect each piecei
throughout the MMP, i.e.,

y(i) =







y1(i)
...

yM (i)






, u(i) =







u1(i)
...

uM (i)






, v(i) =







v1(i)
...

vM (i)






(4)

with y(i), v(i) ∈ R
ny , ny =

∑

kny,k andu(i) ∈ R
nu , nu =

∑

knu,k. Matrix Γ can be obtained fromAk, Bk andCk as
explained in the references.

Many works as [15] consider that (3) describes a stationary
process. For process variance estimation purposes, it is then
possible to establish the following relation:

Σy = ΓΣu Γ
T +Σv, (5)

where

Σy = E{y yT }, (6a)

Σu = E{u uT}, (6b)

Σv = E{v vT }. (6c)

However, the process variances in (5) may change its value
at the moment when certain piecei is manufactured. This is
due to different effects such as the wear and tear to which the
MMP is prone. Then, we can no longer consider the MMP as
a stationary process and we rewrite (5) as

Σy(i) = ΓΣu(i) Γ
T +Σv(i), (7)

whereΣy(i), Σu(i) andΣv(i) denote the covariance of the
measurements, the variation sources and the measurements
noises at the moment when certain piecei is processed, i.e.,

Σy(i) =E{y(i) y(i)T}, (8a)

Σu(i) =E{u(i)u(i)T}, (8b)

Σv(i) =E{v(i) v(i)T }. (8c)

Remark 1. The variablesΣy(i), Σu(i) and Σv(i) defined
in (8) are time-varying stochastic variances [20], [21] and
they represent the variance ofy, u and v for a population of
pieces manufactured at the manufacturing conditions of the
i-th piece.

Taking [15] as reference, in this work we assume that:

• The underlying distributions ofu andv are Gaussian.
• The input vectoru is zero-mean since it represents

the deviation from the designed nominal position. The
variation sources are independent, so thatu has a diagonal
non-stationary covariance matrix, i.e.,

Σu(i) =







σ2
u(i)[1] 0

. . .
0 σ2

u(i)[nu]






, (9)

whereσ2
u(i)[p] represents the dimensional variance of the

p-th variation source of the MMP, i.e.,p = {1, ..., nu},
at the moment where thei-th piece is manufactured.

• The noise vectorv is zero-mean, independent ofu and it
has a diagonal non-stationary covariance matrix,

Σv(i)







σ2
v(i)[1] 0

. . .
0 σ2

v(i)[ny]






, (10)

where σ2
v(i)[r] represents the dimensional variance of

the noise of ther-th sensor of the process, i.e.,r =
{1, ..., ny}, at the moment where thei-th piece is manu-
factured.

• As many works in the field (e.g., [15] ), we assume that
all the measurement noises have the same variance. Then,
we rewriteΣv(i) as

Σv(i) = σ2
v(i) Iny

(11)

with σ2
v(i) an scalar denoting this shared process vari-

ance. It is straightforward to extend the results of this
work to the case where the sensor noises are characterized
by different variances1.

For the sake of readability, we denote the components ofΣu(i)
andΣv(i) asσ2(i)[j] with j = {1 . . . nj} andnj = nu + 1,
i.e.,

σ2(i)[j] ≡

{

σ2
u(i)[j], j < nj ,

σ2
v(i), j = nj .

(12)

The stationary process variance estimator as the ones stud-
ied in [15] (i.e., the Least-Squares fit estimator (LSE), the
estimator in Apley and Shi (ASE) [16], the estimator in Ding,
Shi and Ceglarek (DSCE) [18] and the estimator presented in
Stoica and Nehorai (SNE) [17]) use the sampling variance of
a batch ofN pieces, i.e.,

Sy =

∑N
i=1y(i) y(i)

T

N
, (13)

as an estimate ofΣy in (5). For the study of a non-stationary
process, we could propose to infer a time-varying population
variance every time that a new piecei is manufactured. If we
used the sample provided by the batch of the lastN pieces,
an estimation ofΣy(i) in (7) would be given by

Sy(i) =

∑i
ι=i−Ny(ι) y(ι)T

N
. (14)

The use of (14) is computationally costly since a large sample
size (i.e., the data provided by a batch ofN pieces) is used
for guaranteeing accurate estimates of the process variances
σ2(i)[j] and no individual control over the accuracy of each
process variance estimate is available. For its part, the use of
a sample of large size in (13) for ensuring accurate estimates
delays the estimation of variance changes and thus the decision
of whether the process has experienced faults or not. In this

1It is well known that the maximum number of different processvariances
which can be estimated depends on the structural propertiesof the MMP
under consideration. See [22], [23] for studying the diagnosability issues of
each case.
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work, we propose an alternative strategy for identifying the
components ofΣu(i) andΣv(i) and their possible changes
taking into account

• the accuracy of the estimations,
• the time needed to track their changes,
• the computational cost,
• the data storage,
• the design flexibility.

To fulfill these requirements we develop a model for MMPs
which includes the non-stationary behavior of the process
variancesσ2(i)[j] and enables the application of observer-
based strategies. These strategies allow us to incrementally
improve the accuracy of the estimatesσ̂2(i)[j] with the data
provided by each new piece without the need of storing or
using the data of the previous pieces in the computation.

III. VARIATION PROPAGATION MODEL

In order to develop a model for MMPs with non-stationary
process variances of the variation sources and noises we
exploit the Gaussian nature ofu(i) and v(i) in (3). Let us
first introduce the following lemma.

Lemma 1. ([24]) Let g(i) ∈ R
ng be a vector of zero-mean

independent Gaussian noises, i.e.,

g(i) ∼ N (0,Σg(i)), (15)

with Σg(i) certain diagonal and varying covariance. Ifgu(i)
denotes the vector includingng zero-mean independent Gaus-
sian noises of unitary covariance, i.e.,

gu(i) ∼ N (0, Ing
), (16)

vectorg′(i) defined as

g′(i) = Σg(i)
1
2 gu(i) (17)

is distributed as(15).

Applying Lemma 1, the random signalsu(i) andv(i) in (3)
can be rewritten as

u(i) = D(i) η(i), v(i) = R(i) ν(i). (18)

where

η(i) =







η(i)[1]
...

η(i)[nu]






, ν(i) =







ν(i)[1]
...

ν(i)[ny]






(19)

are column vectors containing independent zero-mean gaus-
sian sequences with unitary time-invariant covariances, i.e.,

E{η(i)} = 0nu
, E{η(i) η(i)T } = Inu

, (20a)

E{ν(i)} = 0ny
, E{ν(i) ν(i)T } = Iny

, (20b)

E{η(i) ν(i)T } = 0nu×ny
. (20c)

Matrix D(i) contains the standard deviation of the components
of u(i), i.e.,

D(i) =







σu(i)[1] 0
. . .

0 σu(i)[nu]






, (21)

and fulfills
D(i)D(i)T = Σu(i). (22)

The same applies to matrixR(i) w.r.t. v(i) (i.e., R(i) =
σv(i) Iny

). Note that signalsη(i) and ν(i) represent the
Gaussian variations inu(i) andv(i) while D(i) andR(i) de-
scribe the size of these variations. Applying the decomposition
in (18), the linear replicated model (3) results in

y(i) =
[

ΓD(i) R(i)
]

[

η(i)
ν(i)

]

. (23)

Defining matrices

Ψ(i) =
[

ΓD(i) R(i)
]

, ζ(i) =

[

η(i)
ν(i)

]

(24)

we rewrite (23) as

y(i) = Ψ(i) ζ(i). (25)

For process variance estimation, the information of interest
resides in the diagonal terms of the quadratic expression
of (23). Let us then define the output vectorm(i) ∈ R

ny

as
m(i) = y(i) ◦ y(i) ≡ diag{y(i) y(i)T }, (26)

verifying

m(i) = diag{Ψ(i) ζ(i) ζ(i)T Ψ(i)T }. (27)

Note thatm(i) depends on the process variances that we want
to estimate. If we defineq(i) as the column vector stacking
these variances, i.e.,

q(i) =







σ2(i)[1]
...

σ2(i)[nj ]






∈ R

nj , (28)

being σ(i)[j] the elements ofD(i) and R(i) and, thus,
included inΨ(i), the expected value ofm(i) satisfies

E{m(i)} = H q(i), (29)

with
H = [Γ◦2

1ny
] ∈ R

ny×nj , (30)

where we have taken into account thatE{ζ(i) ζ(i)T } =
Inu+ny

(see Appendix A).
For modeling the non-stationary behavior of the process

variances, we propose the following dynamics of the state
vectorq(i):

q(i) = q(i− 1) + ∆q(i − 1), (31)

where

∆q(i) =







∆σ2(i)[1]
...

∆σ2(i)[nj ]






∈ R

nj (32)

takes account of the process variance differences between
two consecutive piecesi and i + 1. Dynamics of the form
of (31) have been widely used in the literature to analyze the
behavior of estimation algorithms for non-stationary processes.
Note that equation (31) allows modeling every kind of change
experienced by the variablesq(i)[j] provided an appropriate
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form of the signals∆q(i)[j]. For instance, abrupt changes
in q(i)[j] are produced by impulse signals∆q(i)[j] (i.e.,
∆q(i)[j] is only nonzero at the time of the fault appearance),
drift changes inq(i)[j] are produced by step signals∆q(i)[j]
(∆q(i)[j] takes a constant value during the fault existence)
and parabolic changes inq(i)[j] are produced by ramp signals
∆q(i)[j].

Thus, the estimations provided by an estimator which takes
equation (31) into account would vary in value when any kind
of fault form appears in the system. However, such estimator
only guarantees estimations with zero-mean steady-state errors
when abrupt changes affect the system [25]–[27]. Thus, the
estimations are unbiased when no changes occur and when
abrupt changes affect the system. If more general changes
occurred, the steady-state estimation errors would not be zero-
mean. For instance, if drift changes took place the steady-
state estimation errors would be constant [28]). In any case,
however, the estimations would vary in value and the changes
experienced by the variablesq(i)[j] would be detected.

Remark 2. If zero-mean estimation errors were required for
changes beyond abrupt deviations, a more general model in
the form of

ξ(i) = AQ ξ(i− 1) +BQ ∆q(i− 1), (33a)

q(i) = CQ ξ(i) +DQ ∆q(i), (33b)

should be considered. In(33), ξ(i) ∈ R
nζ is an auxiliary state

vector of an appropriate dimension so that the dynamics of the
forecasted changes can be produced through some matrices
(AQ, BQ, CQ, DQ) and impulse signals∆q(i). See [28]–[30]
for details on the derivation of these models.

IV. ESTIMATION OF PROCESS VARIANCE

A. Model-based observer

For achieving non-stationary process variance estimation,
we use a model-based observer. Based on the model defined
by equations (27)-(31), we set up the following estimation
algorithm. First, we definêq(i) as the vector that contains
the estimation ofq(i), i.e., the process variance estimation.
Second, we obtainm(i) with the acquired measurements for
piecei using expression (26). Then, we estimatem(i) using
the last estimated process varianceq̂(i−1) and the expression
of its expected value given by (29), which involves the model
informationH :

m̂(i) = H q̂(i− 1). (34)

Finally, we update the process variance estimation with the
difference between the measured and estimated output through

q̂(i) = q̂(i− 1) + L(i) (m(i)− m̂(i)) , (35)

where L(i) is the updating gain matrix which defines the
weight between the output prediction error and the last es-
timated process variance. We define the state estimation error
as q̃(i) = q(i)− q̂(i) and its dynamics is given by

q̃(i) = q̃(i− 1)+∆q(i− 1)−L(i) (m(i)−Hq̂(i− 1)). (36)

If we add and subtractHq(i) to the differencem(i)−Hq̂(i−1)
in (36), the dynamics of̃q(i) can be expressed as

q̃(i) =
(

Inj
− L(i)H

)

(q̃(i−1)+∆q(i−1))−L(i) t(i), (37)

with
t(i) = m(i)−H q(i) (38)

a zero-mean random variable as it derives from the difference
betweenm(i) and its expected value.

Remark 3. Notice that an estimatêq(i) may be negative
for some piecei (i.e., q̂(i) < 0). Provided thatq(i) is a
vector stacking variance values and it cannot be negative, we
postprocesŝq(i) so as to provide a refined estimate ofq(i),
which we denote aŝqp(i):

q̂p(i) =

{

q̂(i) if q̂(i) ≥ 0
0 otherwise

. (39)

B. Observer Design

In this section, we propose a design of the gainL(i) of the
estimation algorithm (35). Note that the dynamics in (37) can
be seen as the estimation error dynamics which is achieved
when applying a state observer to a linear system withq̃(i)
the state estimation error,∆q(i) the process noise,t(i) the
measurement noise,Inj

the state matrix andH the output
matrix. As the considered process noiset(i) depends on the
state, the error dynamics is not linear and simple designs with a
constant gainL(i) (as pole placement techniques or stationary
Kalman filter approaches) cannot be applied. We then propose
a Kalman filter that takes account of the dependence of
the noiset(i) on the state which is being estimated (see
Appendix B and references [31], [32] for derivation details).
The Kalman gain for observer (35) can be computed as

P̄ (i) = P̂ (i − 1) +Q(i− 1), (40a)

L(i) = P̄ (i)HT
(

H P̄ (i)HT + T (i)
)−1

, (40b)

P̂ (i) =
(

Inj
− L(i)H

)

P̄ (i), (40c)

with

Q(i) =E{∆q(i)∆q(i)T }, (41a)

T (i) =E{t(i) t(i)T }, (41b)

and whereP̂ (i) represents the expected covariance of the state
estimation error, i.e.,

P̂ (i) = E{q̃(i) q̃(i)T }. (42)

Remark 4. A necessary condition for the stability of ob-
server (35) is that the pair (Inj

, H) is observable, which
means that the process variances considered inq(i) are
diagnosable. This condition is verified whenever the output
matrix H verifies

rank{H} ≥ nj. (43)

For computing the covariancesQ(i) and T (i) involved
in (40), the following considerations should be taken into
account.
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• Operating algebraically and taking account of the Gaus-
sian nature and the statistical properties (20) of the noises
ζ(i), one gets that the covariance matrixT (i) is given by

T (i) = (Ψ(i)Ψ(i)T )◦2. (44)

Relation (44) shows the dependence ofT (i) on the values
σ(i)[j] and, thus, on the state vectorq(i), which is to be
estimated. Provided the slow-varying character ofq(i),
we have that, in general,T (i) ≃ T (i − 1). Then, we
propose to approximate covarianceT (i) of a piecei by
its predicted value from piecei− 1, i.e.,

T (i) ≈ T̂ (i− 1). (45)

Matrix T̂ (i−1) is computed through (44) with the values
in the available postprocessed estimated vectorq̂p(i− 1).

• The covariance matrixQ(i) is unknown and it can be
seen as a multivariate tuning parameter that fixes the
performance of the observer. If matrixQ(i) is chosen
to be diagonal, as the value of certain elementQ(i)[j, j]
decreases, the steady-state accuracy of the corresponding
estimate improves because the filter is more focused on
rejecting the variationst(i). Respectively, ifQ(i)[j, j]
increases, the tracking ability improves at the cost of
a lower measurement noise rejection. For ensuring that
Q(i) is in an appropriate order of magnitude, we compute
its elements as

Q(i) = Υ P̂ (i)Υ, (46)

with

Υ2 =







υ1 0
. . .

0 υnj






(47)

and υj ∈ [0, 1] chosen according to the desired perfor-
mance. This leads to equation (40a) as

P̄ (i) = P̂ (i− 1) + Υ P̂ (i− 1)Υ. (48)

Note that equation (48) excites more algorithm (40) when
less knowledge of the states is available and, therefore,
P̂ (i) has a bigger value. This enhances the initialization
of the algorithm.

Remark 5. The proposed algorithm implies computing equa-
tions (40) and (35) with m(i) = y(i)

◦2 every time that a
new piecei is manufactured in the MMP. At steady state,
however, the gain matrixL(i) is stationary. For reducing the
computational burden, one can use the expressions

L(i) = L(i− 1), P̂ (i) = P̂ (i− 1), (49)

instead of(40) whenever|q̂(i− 1)− q̂(i− 2)| ≤ ∆ for some
given difference∆.

Remark 6. Note that algorithm(40) provides a suboptimal
Kalman gain due to the previous approximations and because
∆q(i) is non-zero when process variance changes occur. In
any case, the previous design procedure presents the advan-
tage of containing some numerical tuning parameters which
can be used to set the trade-off between different estimation
performance parameters.

C. Estimator Properties

The performance of the estimator depends on both the
steady-state accuracy and on the delay in tracking the changes
defined by∆q(i).

1) Steady-state Behavior:Provided the unbiasedness of the
estimator in fault-free scenarios (see Section III), the accuracy
of the estimator (35) when∆q(i) = 0 is given by the variance
of the estimation errors, which we denote asφj , i.e.,

φj = Var{q̃(i)[j] | ∆q(i) = 0}. (50)

The steady-state covariance of the estimation errors due to
noises, which we denote asP , is the solution of the following
Riccati equation:

P =
(

Inj
− P̄ HT

(

H P̄ HT + T
)−1

H
)

P̄ , (51)

with P̄ = P +ΥP Υ, and whereT is the noise covariance at
certain steady state. If we choose matrixΥ to have equal terms
(i.e., υj = υ, ∀j), the covariance matrix of the steady-state
error is given by

P =
υ

υ + 1
(H(Σy ◦ Σy)

−1HT )−1. (52)

See Appendix C for the derivation of this expression.
From (52), we deduce that the accuracy of the estimations
improves as the design variablesυj decrease.

2) Transient Behavior:The transient behaviour of the es-
timator can be characterized by the number of pieces whose
data must be fed to the estimator in order to track certain
change∆q(i)[j]. We define the settling time of the estimator,
which we denote asη90,j , as the number of pieces which are
needed so that̂q[j] changes the 90% of the change experienced
by q[j] with t(i) = 0. We can also describe the tracking
ability of the estimator in terms of the cumulative squared
error (CSE) experience by thej-th estimation due to process
variance changes and which we define as

ϕj =

∞
∑

i=1

{q̃2(i)[j] | t(i) = 0}. (53)

According to [33], the response of (35) when a unitary step
change∆q[j](i) occurs is like the response of a first-order
systemg(i) defined asg(i) = 1 − (1 + υj)

−i when t(i) = 0.
In this sense, the settling time and the CSE of the estimator
due to unitary step changes are approximately given by

η90,j =
− log(0.1)

log(1 + υj)
, (54a)

ϕj =
(1 + υj)

2

(1 + υj)2 − 1
, (54b)

see [34]. From (54), we deduce that the tracking ability
regarding the estimation ofq[j] improves whenυj is increased.

Remark 7. Similarly toη90,j we can defineηρ,j as the number
of pieces which are needed so thatq̂[j] achieves theρ% of the
change experienced byq[j] with t(i) = 0 as

ηρ,j =
− log

(

100−ρ
100

)

log(1 + υj)
. (55)
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D. Performance-based Observer Design

As seen in Section IV-C, matrixΥ enhances the accomplish-
ment of certain trade-off between the transient and the steady-
state tracking performance. Relations (54a), (54b) and (51)
can be used to choose the valuesυj (j = 1, . . . , nj) so
as to set certain trade-off regarding the performance of the
estimator. For instance, in order to set certain settling time for
the estimation of a unitary step change inq[j], the variableυj
must be fixed to

υj = 0.1−1/η90,j − 1. (56)

V. STATISTICAL HYPOTHESISTESTING FORFAULT

DIAGNOSIS

In steady state (i.e., when no process variance changes oc-
cur), we denote the confidence interval offered by an estimate
q̂(i)[j] for q(i)[j] as

Ωj(i) = [q̂(i)[j]− hj , q̂(i)[j] + hj ], (57)

wherehj depends on the confidence level of the interval,γj =
1−αj , and on the variance of the estimationq̂(i)[j]. Note that,
in steady state, the marginal variance of the estimationq̂[j] is
P [j, j], which can be obtained through equation (51).

Through Chebyshev’s inequality [35], we have that

Pr{q(i)[j] 6∈ Ωj(i)} ≤ P [j, j]/h2
j . (58)

Then, if we sethj as

hj =
√

P [j, j]/α∗
j , (59)

we guarantee a boundαj ≤ α∗
j for the confidence level of the

intervalΩj(i).
Relation (58) holds regardless of the probability distribution

of q̂(i)[j]. We know, however, that when∆q(i) = 0, the
estimationq̂(i) can be expressed as the infinite weighted sum

q̂(i) = −
i

∑

ι=1

i
∏

κ=ι+1

(

Inj
− L(κ)H

)

L(ι)t(ι). (60)

where the terms−
∏i

κ=ι+1

(

Inj
− L(κ)H

)

L(ι) represent the
weighting factors andt(ι) are independent and identically
distributed zero-mean random variables with finite variance.
One can demonstrate that the sequence of these weighting
factors fulfills the conditions on [36] and then one can claim
that q̂(i) approaches a normal distribution. Provided these
results, we can sethj to fix the confidence levelγj to 1−α∗

j

as

hj = Φ−1
Z (1− α∗

j/2)
√

P [j, j], (61)

with Φ−1
Z (·) the inverse cumulative distribution function of a

standard normal variable. This confidence level is tightener
than the one obtained in (58) through Chebyshev’s inequality.

Remark 8. Provided thatq(i) ≥ 0, we postprocess the value
of the limits ofΩj(i) so as to provide a refined confidence
interval of q(i)[j], which we denote asΩj,p(i):

Ωj,p(i)=

{

[q̂(i)[j]− hj , q̂(i)[j] + hj ] if q̂(i)[j] ≥ hj

[0 , q̂(i)[j] + hj ] otherwise
. (62)

Note that when we use the refined confidence intervalΩj,p(i)
in (62) andhj is defined through(59), we guarantee a bound
αj ≤ α∗

j which is looser than the bound which is guaranteed
for Ωj(i) in (57) (i.e., the difference betweenαj and α∗

j is
larger). Similarly, ifhj is defined through(61) and we use the
interval Ωj,p(i) in (62), we just guarantee a boundαj ≤ α∗

j

instead of fixing its value toαj = α∗
j as happens withΩj(i)

in (57). Thus, if we useΩj,p(i) in (62), the real confidence
level is larger than the one that we have withΩj(i).

In order to determine whether a process variance of the
MMP q[j] has experienced a change∆q[j] (i.e., a fault j
has appeared), we set the following statistical hypothesistest,
where we usei = 0 to refer to a piece for which the estimator
has achieved the steady state and that has been manufactured
with healthy conditions in the MMP:

{

H0 : q(i)[j] ∈ Ωj(0)
H1 : q(i)[j] 6∈ Ωj(0)

. (63)

Here, the null hypothesis stands for ”No change of thej-
th process variance” (i.e., ”No faultj”) and the alternative
hypothesis stands for ”Change of thej-th process variance”
(i.e., ”Fault j”).

VI. COMPARISON WITH BACTH-BASED ESTIMATORS

As explained in Section II, the batch-based estimators such
as the LSE or DSE are offline estimators which are conceived
for periodically verify the state of the process. In the following,
we compare the properties of these offline estimators with the
characteristics of the proposed online approach.

• Accuracy of the estimations.In fault-free scenarios, the
variance of the estimates provided by batch-based esti-
mators is proportional to1/N (see [15] for details on
the corresponding expressions). When using the proposed
approach, the variance of the estimates is proportional
to υ/(υ + 1) if every υj is fixed to a common valueυ
(see (52)).

• Time to track changes.The delay in tracking changes with
the proposed online approach is approximately given by
the settling time of the estimator which is defined by the
number of piecesη98,j in (54a) and it is inversely propor-
tional toυj . For its part, offline batch-based methods just
ensure the detection of a fault if a whole batch of faulty
pieces is used in the computation ofSy through (13).
Then, these methods cannot ensure a tracking delay lower
than 2N . Moreover, provided the non-zero variance of
the estimates, the manufacturer might not state that a fault
has occurred until certain numberκ of consecutive faulty
estimations are available. In such a case, the number of
faulty pieces which must be manufactured in order to
state that a fault has occurred isη98,j + κ − 1 if the
proposed approach is used andκN if offline estimators
are used.

From these two considerations, we deduce that the existing
trade-off between the accuracy of the estimations and their
ability to track changes can be set throughνj for the proposed
approach (as explained in SectionIV-C) and throughN for
batch-based methods . IfN is reduced (or ifνj is increased),



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 8

the tracking ability increases at the cost of lower estimation
accuracies. For accuracies in the same order of magnitude (i.e.,
1
N = υ

υ+1 ), the time to track changes isκ (υ+1)
υ for batch-

based methods andκ−1− log(0.02)
log(1+υj)

for the proposed approach.
The tracking ability is thus in the same order of magnitude
for both methods ifκ = 1 and it gets better for the proposed
approach asκ is increased.

Remark 9. Note that if big faults affect the system, it is not
necessary that̂q[j] changes the 90% of the change experienced
by q[j] in order to detect a fault. If we useηρ,j with ρ < 90
instead ofη90,j for the characterization of the tracking ability
of the model-based observer, the time that we need in order
to detect changes is exponentially reduced. Contrariwise,in
no case this time is lower than(κ − 1)N for batch-based
methods.

As stated in Section II, when it comes to estimators, other
matters of fact are the computational burden, the volume of
stored data and the design flexibility, which are now compared
for both methods.

• Computational Burden.The algorithms of batch-based es-
timators (i.e., the LSE and the ASE) requireN vec-
tor product and summation operations, which are time-
consuming. As the accuracy of such methods improves
whenN is increased, it happens that there exists a trade-
off between the accuracy of the estimations and the
computational time of such methods. The computational
burden of the proposed observer does not depend on the
performance of the estimator because the variance of the
estimation can be simply modified by changing the values
in Υ. Thus, the computational time is independent of the
performance of the estimator.

• Data Storage.The sample size of the proposed approach
only contains the data of the last manufactured piece.
Thus, when certain piecei is manufactured the stored data
is q̂(i−1) andy(i). For its part, the sample size of offline
approaches contain the data of the lastN manufactured
piece. Thus, when certain piecei is manufactured the
stored data isy(i − N + 1), y(i − N + 1), . . . , y(i −
1), y(i − 2). Again, there exists a trade-off between the
accuracy of the estimations and the amount of stored data
which is not present in obser-based methods.

• Design Flexibility. The trade-off between the ability to
track changes and the accuracy of the estimations is
collectively set byN for all the estimationŝq[j]. Oppo-
sitely, this trade-off is individually set byνj for each the
estimationsq̂[j]. Thus, the proposed approach enhances
the use of different estimations performance requirements
for eachq[j].

VII. C ASE OFSTUDY

In this section, we set up different assembly processes
in order to apply the strategies presented at the previous
sections. Even if these processes are simple, the modeling and
estimation framework is fairly general and it can be applied
to more complex processes.
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A. Single-Stage Assembly Process

First, we study a single-stage automotive body assembly
described and modeled by Apley and Shi [16] and studied
by Ding et al. [15]. In this single-stage case (M = 1), an
optical coordinate measuring machine (OCMM) provides 9
measurements (ny = 9). The pieces at this stage are fixed by
a 4-way locator,P1, which produces positioning variability in
two directions (i.e.,δP x

1 andδP z
1 ) and by a 2-way locator,P2,

which only produces positioning variability in one direction
(i.e., δP z

2 ); thus,uk = [δP x
1,k δP z

1,k δP z
2,k]

T andnu = 3. The
replicated matrixΓ is

Γ =





























0.093 0.577 −0.120
0 0 0

−0.093 0 0.843
0.093 0.577 −0.120
0 0 0

0.647 0 −0.120
−0.370 0.577 0.482

0 0 0
0.647 0 −0.120





























.

The sensor accuracy is(6σ)sensor = 0.1 mm and the tolerance
of the pinholes is 0.2 mm. If the tolerance is approximated by
the six-sigma value; then,(6σ)locator = 0.2 mm.

First, we simulate an stationary process of 300 pieces
with q =

[

1.1 2.5 04.4 0.6
]T

· 10−3 mm2 (values taken
from [15]). The left-hand side of Fig.2 shows the estimation
results forq[4] (i.e., q̂p[4]) when applying an observer with
Υ2 = 0.05 I4 in (46). On the right-hand side of Fig.2, we
look at the shape of the probability distribution of̂qp[4]
when running 50 simulation trials and we compare it with
a fitted normal density proving a high goodness of fit of
the Gaussian distribution. Similar results apply to the other
variance estimationŝqp[j] with j = {1, 2, 3}, which we
do not include due to space constraints. The variance of
the estimations provided by different observers are shown in
Table I.
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Table I
VARIANCE OF THE STEADY-STATE ESTIMATIONS[·10−6mm4 ] FOR

DIFFERENT OBSERVERS WITHΥ2 = υ I4

υ Var{q̂p[1]} Var{q̂p[2]} Var{q̂p[3]} Var{q̂p[4]}
0.0010 0.0217 0.0103 0.0166 0.0001
0.0152 0.1362 0.1784 0.3443 0.0029
0.0294 0.2322 0.3551 0.6693 0.0051
0.0436 0.3182 0.5384 1.0273 0.0071
0.0579 0.4010 0.7288 1.4120 0.0090
0.0721 0.4880 0.9272 1.8032 0.0109
0.0863 0.5773 1.1415 2.2138 0.0128
0.1005 0.6698 1.3773 2.6695 0.0147
0.1147 0.7640 1.6326 3.1927 0.0167
0.1289 0.8599 1.9116 3.8059 0.0186
0.1431 0.9600 2.2181 4.5634 0.0205
0.1574 1.0698 2.5425 5.5490 0.0224
0.1716 1.1817 2.9035 6.7644 0.0243
0.1858 1.2843 3.3121 8.1135 0.0261
0.2000 1.3797 3.7668 9.6098 0.0280

In order to compare the proposed online estimators with the
process variance estimators based on the sampling variance
of a batch ofN pieces, we apply these estimators online
by inferring a time-varying population variance every time
that a new piecei is manufactured fromSy(i) computed
through (14) (i.e., every time that a new piecei is entirely
measured, the estimation is made with the data provided by
this piece and by the previousN − 1 completed pieces). In
Fig. 3, we compare the relative computational time which is
needed to perform the estimation of the previous process for
different estimators and different values of the corresponding
tuning parameters that lead to different variances of the
estimations. As explained in Section VI, Fig. 3 shows that
the computational burden of the proposed observer (KF) does
not depend on the performance of the estimator because
the variance of the estimation can be simply modified by
changing the values inΥ. Oppositely, the algorithms of batch-
based estimators (i.e., the LSE and the ASE) require more
operations as the estimation accuracy is improved and, thus,
the computational time increases with the accuracy. From
this figure, we also deduce that the estimator (35)-(40) is
more computationally costly than the LSE and the ASE for
estimations of lower accuracies. However, our estimator is
more efficient and becomes more computationally appealing as
the desired accuracy of the estimations is increased. Moreover,
if we use relaxation (49) (steady-state KF), the computational
burden is dramatically reduced for all accuracies.

Fig.4 shows the results provided by three observers with
different performance w.r.t. the estimation ofq[4] when the
process of 300 pieces is affected by an abrupt fault which
modifies the sensors accuracy from0.6 · 10−3 mm2 to 0.95 ·
10−3 mm2 at the piece 150. The observers have been designed
with requirements over the CSE due to unitary step changes
∆q(4): ϕ4 = 5 (giving υ4 = 0.1), ϕ4 = 10 (giving υ4 =
0.05) and ϕ4 = 15 (giving υ4 = 0.01). We prove that, as
explained in Section IV, a smaller CSE (and higher tuning
parameter inΥ) results in a better tracking ability at the cost of
a lower performance w.r.t. the variance of the process variance
estimations. The designer should tune this parameter according
to the criticality of the delays in tracking changes.
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In Fig.5, we include the estimation results ofq[4] provided
by the model-based observer designed withΥ2 = 0.05 I4
together with the limits ofΩ4,p(0) for both the computation
of h4 through (59) and through (61) (γ4 = 99%). When no
taking account of the Gaussian behaviour of the estimations
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Figure 7. Process variance estimation with a model-based observer (Υ2 = 0.05 I4) in the single-stage assembly process affected by an abruptfault in σ2
u[2].

Real (- -), Estimation (Gray —) Gaussian-based limit withγj = 99% (Black —).

and the limits are computed by means of the Chebyshev’s
inequality, the confidence intervalΩ4,p(0) is too big and only
big variance changes can be diagnosed. On the contrary, the
limits of Ω4,p(0) when computed through (61) are tight and
smaller faults (as the one being simulated) can be diagnosed.

Thus, in Fig.6 we include all the estimations provided by
the estimator (Υ2 = 0.05 I4) for this process with the corre-
sponding the Gaussian-based thresholds ofΩj,p(0) (γj = 99%
with j = {1, 2, 3, 4}). We prove that, although the order of
magnitude of the variables involved inq(i) is different, the
model-based observer provides appropriate results. Note that
the observer depends onT (i), which is a function ofq(i)
(see (40)-(44)). Thus, when certain component ofq(i) in-
creases its value, so does the variance of the estimations. Fig.7
shows, for its part, the simulation results (withΥ2 = 0.05 I4
and γ4 = 99%) for the process in which we suppose that
δP z

1,k is affected by an abrupt fault, which doubles its standard
deviation from 0.05 mm to 0.1 mm at the piece 150. Then,
we have thatq(i) in mm2 is now given by

q(i) =

{

[

1.1 2.5 4.4 0.6
]T

· 10−3 if i ∈ [0, 150)
[

1.1 10 4.4 0.6
]T

· 10−3 if i ∈ [150, 300]
.

As shown in the corresponding figure, this fault is detected in
52 pieces. If for the simulated fault (∆q[3] = 7.5 ·10−3 mm2)
this number of corrupted pieces is critical, the designer may
decide to build an estimator with higher tuning parameters in
Υ2 at the cost of poorer estimations in terms of accuracy.

For the simulations in Fig.6 and Fig.7 we have assumed
that no a priori knowledge of the variancesσ2

u[j] and σ2
v

is available. Then, the estimator should be initialized at
q̂(0)[j] = 0 and the estimations increase progressively in
value as new measurements are processed. Moreover, some

simulation results in these figures may look as a fault appeared
when it does not (e.g., the variation experienced byσ2

u[2]
in Fig.6). The reader should notice that these variations are
within the confidence intervals designed for a 99% confidence
level. If just thinner variations are allowed, the designershould
decrease the value of the variablesνj so that the accuracy
of the estimates improves; contrariwise, if these variations
should fade faster, the designer should increase the value of
the variablesνj so that the tracking ability of the estimator
improves. In Fig.8 we show the estimation ofσ2

u[1] for a
fault-free scenario. If we use an observer withΥ2 = 0.1 I4, the
latest simulation results may look as if an abrupt fault appeared
but, in any case, the estimation is within the confidence
interval for γ1 = 99% (Ωj,p(i) = [0, 3.236] · 10−3) and no
fault is thus detected. If this temporary bias is prohibitive
in terms of accuracy, one can use other observers as the
ones in the second part of Fig.8, which are designed with
Υ2 = 0.01 I4 (Ωj,p(i) = [0.315, 1.885] · 10−3 for γ1 = 99%)
and Υ2 = 0.001 I4 (Ωj,p(i) = [0.493, 1.707] · 10−3 for
γ1 = 99%).

B. Multistage Assembly Process

Second, we study the two-stage process (M = 2) provided
in [15] which was derived from a segment of the simplied
automotive body assembly process [18]. This simplified as-
sembly process has been widely used in the literature for
analysing diagnosability issues [18], [37], estimation ofvari-
ance components of variation sources [15] and optimal sensor
distribution [38], [39]. In this example, depicted in Fig.9, three
workpieces are welded together at Stage I. In this stage, there
are 9 fixturing variation sources (nu = 9). Once welding
operations are completed, the entire assembly is transferred
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0 0 0 −0.0773 0.2448 0 0 0 −0.1675
0 0 0 −0.3379 1.0699 0 0 0 −0.7321
0 0 0 0.1656 −0.5245 0 0 0 0.3589
0 0 0 −0.3379 1.0699 0 0 0 −0.7321
0 0 0 0 0 0 0 0 0
0 0 0 −0.2054 0.6503 0 0 0 −0.445
−1 1 0 −0.3110 0 0.4 −0.4 0 0.311
0 0 0 0.0574 0 −0.24 1.24 0 −1.0574
−1 1 0 −0.2153 0 0 0 0 0.2153
0 0 0 −0.2392 0 1 0 0 −0.7608
−1 0 1 −0.0957 0 0 0 0.4 −0.3043
0 0 0 0.0574 0 0 0 −0.24 0.1826
−1 0 1 0 0 0 0 0 0
0 0 0 −0.2392 0 0 0 1 −0.7608
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Figure 8. Comparison of the performance of different observers used in the single-stage assembly process for the estimation of σ2
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Figure 9. Scheme of the two-stage assembly process, adaptedfrom [15], [18].

to a dedicated in-process OCMM stage (Stage II) for inspec-
tion. High-precision laser-optic coordinate sensors are used
to measure two directional coordinates at each measurement
point andny = 18. Matrix Γ is given in (64).

The output matrixH which results fromΓ does not verify
condition (43); then, we redefine vectorq(i) so thatnj =
rank{H} as

q(i)[j] =















σ2
u[1] + σ2

u[2] if j = 1
σ2
u[1] + σ2

u[3] if j = 2
σ2
u[j + 1] if j ∈ {3, 4, 5, 6, 7, 8}

σ2
v if j = 9

.

and we modify matrixH accordingly. This means that in the
case of the three first fixturing variation sources we do not
identify the process variations individually, but a combination
of them.

First, we simulate a process of 2250 pieces with the values

σ2(i)[j] =































4.5 · 10−3 if j = 1
0.3 · 10−3 if j ∈ {2, 3}
0.5 · 10−3 if j ∈ {4, 5, 8, 9}
1.5 · 10−3 if j = 6
2.5 · 10−3 if j = 7
0.0111 · 10−3 if j = 10

.

(values inmm2 taken from [15]). We assume that an abrupt
change occurs modifying the varianceσ2

u[6] from 1.5 · 10−3

mm2 to 3.4 · 10−3 mm2 (i.e., doubled standard deviation of
the 6-th variation source) at piece 1000. Fig.10 shows the
estimation results regardingσ2

u[j] when applying an observer
with Υ2 = 0.002 I9 in (46) andγj = 99%. Again, we prove
that, although the order of magnitude of the variables involved
in q(i) is highly different, the model-based observer provides
appropriate results.

Now, we simulate a process of 1200 pieces in which
standard deviation of the sensors is modified from0.0033 mm
to 0.0100 mm at piece 250. The first simulation depicted in
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Figure 10. Process variance estimation with a model-based observer (Υ2 = 0.002 I9) in the multistage assembly process affected by an abrupt fault in σ2
u[6].

Real (- -), Estimation (Gray —) Gaussian-based limit withγj = 99% (Black —).

Fig.11 shows the estimation results for this process when using
an estimator designed withν9 = 0.002 and a Gaussian-based
threshold withγ9 = 99%. The second part of this figure shows
that the proposed algorithm (withν9 = 0.002 andγ9 = 99%)
does also track drift faults. In this case,σv = 0.0033 mm
before the drift fault andσv = 0.0073 mm 1000 pieces after
the fault appears. The drift fault modifies the sensor process
variance linearly. The other results compare the performance
of estimators with different requirements over the estimation
of q[9]: υ1 = 0.01, andυ1 = 0.001. Again, we see the trade-
offs detailed in Section IV. Note that the order of magnitudeof
the tuning parameter (i.e.,υj) used in the estimators in Fig.11
is smaller than the order of magnitude of the tuning parameter
in the estimators in Fig.4 due to the differences in the values
involved in the MMP.

VIII. C ONCLUSION

In this work, we have addressed the non-stationary process
variance estimation problem with a recursive algorithm that
is updated with the information available from every new
manufactured piece. This strategy relaxes the computational
burden and the data storage required by other algorithms that
use a large sample size for each computation. Furthermore,
our approach has a multivariate parameter that tunes the
performance in the existing trade-off between the adaptation
to process variance changes and the accuracy in stationary
periods. We have shown two possible computations of the
confidence interval, one based on the Chevyshev’s inequality
and another which takes account of the Gaussian behavior
which is approached by the estimation errors. We have shown
in two different examples how to tune the algorithm in order
to obtain a desired performance. Future work will include
the application of the proposed approach to factory collected
and the extension of the approach to obtain not only process
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Figure 11. Comparison of the performance of different observers used in the
multistage assembly process for the estimation ofσ2

v , which is affected by an
abrupt fault or a drift fault. Real (- -), Estimation (Gray —)Gaussian-based
limit with γj = 99% (Black —).

variance estimations but also estimations of the mean of the
variation sources.

APPENDIX

A. Derivation of the expected value ofm(i)

Let us first introduce the following lemma.

Lemma 2. ( [40]) Let A ∈ R
na×n, X ∈ R

n×n and B ∈
R

nb×n be some matrices. We have that

vec
(

AX BT
)

= B ⊗A vec(X). (65)
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If matrix X is diagonal, we have that

diag
(

AX AT
)

= A◦2 diag(X). (66)

Provided (25), we have that

E{y(i) y(i)T} = E{Ψ(i) ζ(i) ζ(i)T Ψ(i)T }. (67)

Applying (65) to (67), we get

E{y(i) y(i)T} = vec−1
(

Ψ(i)⊗
2

vec
(

E{ζ(i) ζ(i)T }
)

)

, (68)

where we have taken into account thatE{Ψ(i)} = Ψ(i).
Provided (20), this relation is simplified as

E{y(i) y(i)T} = Ψ(i)Ψ(i)T . (69)

Taking into account that matricesD(i)D(i)T andR(i)R(i)T

are diagonal, we apply (66) to (69) and we get that the diagonal
components ofE{y(i) y(i)T} are given by

diag(E{y(i) y(i)T }) = Γ◦2 diag (Σu(i)) + 1ny
σ2
v(i), (70)

which can be rewritten as

E{m(i)} = [Γ◦2
1ny

] diag
(

⊕

j
σ2(i)[j]

)

. (71)

B. Kalman filtering

Let us consider a linear system of the form

x(i+ 1) = Ax(i) + w(i), y(i) = C x(i) + v(i), (72)

with x ∈ R
nx the state vector,y ∈ R

ny the output vector,
A ∈ R

nx×nx the state matrix andC ∈ R
ny×nx the output

matrix. Vectorw(i) ∈ R
nw contains the process noise and

v(i) ∈ R
nw contains the measurement noise. We assume that

w(i) andv(i) are independent, zero-mean Gaussian noises of
time-varying covariancesW (i) = E{w(i)w(i)T } andV (i) =
E{v(i) v(i)T }. A model-based observer for (72) is

x̂(i) = A x̂(i− 1) + L(i) (y(i)− C A x̂(i− 1)) , (73)

with x̂(i) the estimated state, see [41]. Then, the dynamics of
the estimation error̃x(i) = x(i)− x̂(i) is

x̃(i) = (Inx
−L(i)C) (A x̃(i−1) + w(i−1))−L(i) v(i). (74)

The optimal Kalman gainL(i) for (73) is given by

P̄ (i) = A P̂ (i− 1)AT +Q(i− 1), (75a)

L(i) = P̄ (i)CT
(

C P̄ (i)CT + V (i)
)−1

, (75b)

P̂ (i) = (Inx
− L(i)C) P̄ (i), (75c)

see [31], [32]. Here,̄P (i) andP̂ (i) represent, respectively, the
predicted and the estimation error covariance matrix.

C. Derivation of the Statistical Properties of the Estimator

Let us first remember the Woodbury matrix identity [42]:

(D+EFG)−1=D−1−D−1E(F−1+GD−1E)−1GD−1. (76)

Now, assumingυj = υ, for all j, we rewrite (51) as

P = (I − νPHT (HνPHT + T )−1H)νP (77)

with ν = 1 + υ. Premultiplying and postmultiplying (77) by
(νP )−1, and applying (76) to the term(HνPHT+T )−1 (with
D = T , E = H , F = νP andG = HT ) it leads to

(ν−1 − ν−2)P−1 = Ξ− Ξ(ν−1P−1 + Ξ)−1Ξ (78)

with Ξ = HTT−1H . Now, applying again (76) to the term
(ν−1P−1 + Ξ)−1 (with D = Ξ, E = I, F = ν−1P−1 and
G = I) we obtain that

(ν−1 − ν−2)P−1 =
(

νP + Ξ−1
)−1

. (79)

Inverting both sides of the equality and substitutingΞ =
HTT−1H , we finally have that

P =
ν − 1

ν
(HTT−1H)−1. (80)

For its part, at steady state,T is given byT = (ΨΨT )◦2 and

ΨΨT = [ΓD R][ΓD R]T = ΓDDTΓ +RRT . (81)

From the definition of matricesD andR and using relation (5),
we have that, at steady state,

ΨΨT = ΓΣT
u Γ + Σv = Σy. (82)

Then, matrixT can be expressed as

T = (ΨΨT )◦2 = Σy ◦ Σy. (83)

Finally, using (83) in (80) and substitutingν = 1 + υ, we
get (52).
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