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Abstract—In this work we propose a recursive algorithm to
estimate the process variance in multistage manufacturingor

assembly processes. We use a replicated model that include
the process variance to be estimated as a time-varying state

that changes slowly. For this model, we develop an estimatio
strategy including tuning parameters that play a direct role in
the trade-off between the estimation accuracy and the adaption

resources throughout the product development cycle. At the
manufacturing stage, process engineers are focused on the

Snalysis and reduction of process variation to reduce cost,

improve product quality and minimize production ramp-up
times when new products are launched. However, process
variation reduction throughout the manufacturing prodess

to changes. We also develop a statistical confidence intetva g challenging task, especially in complex processes such as

for the estimations which enhances the decision of whethehé
process variances have changed. Unlike other batch methods
the literature, our proposal is computed recursively, and t allows
us to tune the trade-off between the convergence speed andeth
accuracy without modifying the sample size, which only corgins
the data of the last manufactured piece.

Note to Practitioners—Variation reduction appears as the key
to succeed in improving product quality, which is a major asst
in manufacturing. To achieve variation reduction, it is ne@ssary
to quickly identify the root causes which are responsible fothese
variations. The state of the art in root cause analysis is basl
on a stationary point of view, where the estimations regardig
the mean and variance of the variation sources are based on ¢h
sample provided by a batch of multiple manufactured piecesThis
paper focuses on the development of an online estimation stiegy
which recursively updates the estimation of the variance othe
variation sources with the data provided by the last manufatured
piece in order to enhance a rapid decision of whether any fatl

multistage manufacturing processes (MMPs). These presess
are those that produce products under multiple setups where
the operations conducted at the first stages have an influence
on the manufacturing operations down-streams [1]. For in-
stance, the process assembly of automobile bodies is a MMP
composed of a series of single stages where, at each stage, th
body from previous stages is held in a work-holding struetur
to assemble new components and, after the welding operation
the body moves forward to the next stages in order to complete
additional assembly operations. In MMPs, statistical pssc
control (SPC) techniques are commonly applied to contml th
manufacturing process over time by monitoring the quality
characteristics of the product. The statistical controarth
applied in SPC are effective tools to detect process changes
and ensure product quality. However, the identification of

has occurred in the process at the same time of reducing the root causes that may be inferred from charting results would
computational cost and the data storage needs. We present abe significantly limited if the interrelationships betwetre

design strategy of the estimation algorithm which sets therade-
off between the accuracy of the estimations and their capaliiy of
tracking changes through two well-known physically-mearmgful
engineering parameters: the cumulative squared error unde
abrupt changes and the variance of the estimations. Two deilad
cases of study illustrate the effectiveness of this methodlhe
strategy presented in this paper represents a novel approacfor
dealing with quality-control online algorithms and it can be used
for quality improvement of multistage manufacturing processes.

Index Terms—Process variance estimation, model-based ob-

server, multistage manufacturing process, variation proggation.

I. INTRODUCTION

process variables and the key product characteristics $KPC
are not explicitly modelled. To overcome this limitation, et
al. [2] proposed a causation-basgd decomposition method
where the causal relationships among variables are madelle
by a Bayesian network. The interpretation and decompasitio
of Hotelling’s T2 together with the causal information of the
process and the KPCs variables let the proposed SPC method
to trace backward from certain quality problems to the vari-
ables that are the root causes. An improvement of this method
is provided in Verron et al. [3] where the decompositions are
computed within the Bayesian network itself.

The state-space model from control theory has also been
successfully applied to model the relationships betweeiava
tion sources and product dimensional quality measurements

Nowadays, the highly competitive markets demand cug; MMPs [4]-[11]. The use of the state-space model with

tomized and high quality products with minimum lead ime§pc techniques for root cause identification was proposed
exerting a great pressure on companies to optimize thgirzoy and Tsung [12]. In their work, a multivariate expo-
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nential weighted moving average scheme with the genedhlize
likelihood test that fully incorporates directional infoation
based on the state-space model was proved to be an effective
solution for process monitoring and fault diagnosis. Besid
these SPC techniques, different variation source ideigita
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techniques such as those based on MLE estimators, REML “;vnf[“%”j”’“"“?[”ka”r -
estimators and MINQUE estimators have been proposed in%! % U=l ), T UL Ui
MMPs using the state-space model as a linear mixed modeI.J J \

In [13], the application of MLE and MINQUE estimators

in MMPs was discussed for estimating both the mean ang St89€ 1 —>+s— Stage k — ... — Stage M
the variance of the process variation sources. A hypothesis B o, EB'_I B
testing procedure was also developed to provide confidence Vk=lo 1], ., v lny 1T

level of each of the estimation results which let the plant yk=[vk[1],m.z/k’[nyk]]T v, .

engineers determine if process faults regarding the medn an
the variance of the process variation sources exist in termgure 1. Diagram of a MMP

of statistical significance. However, these methods haen be

mainly applied in biological and agricultural fields [14]dan

they are primarily applicable to offline experiments whertult diagnosis. Section VI briefly compares the proposed
the sample size is small and the computation time is notégtimates with offline existing estimators and Section VII
concern. In MMP, large quantity of data may be available afifesents a case of study to validate the approach. Finally,
the detection and identification of any process malfunatign Section VIII summarizes the main conclusions of the paper.
need to be carried out faster and efficiently. Notation: Let M € R"*" be a square matrix ane € R"

For this reason, online estimators with low computatiort coge some vectorM[i, j| denotes the element in theth row
and fast response have been investigated in previous cassarand j-th column of M/ and m/[i] denotes the-th element in
proving their applicability. A good comparison of onlinem. In € R™*" is the identity matrix of size: and1,, € R"
estimators of the variance of the process variation sourdésthe unitary column vector of size. vec(M) € R™ de-
(i.e., process variance estimators) and their performeacde notes the vectorization of/ and vec™' (vec(M)) = M.
found in [15], where the process variance estimators froen tHiag(M) € R™ is the operator that returns a column vector
research works in [16]-[19] were analyzed. These estirsata¥ith the diagonal entries af/. diag™(diag(M)) is a diago-
entail closed-form expressions and are more cost-efetiian nal matrix with the element&/[i, 7] in its diagonal. Product is
the MLE method, particularly for large sample sizes, andenoted ag [, summation is denoted 3s and the direct sum
are thus more suitable for online quality control. Howevels denoted agp, so thatp,m[i] € R"*" is a diagonal matrix
the estimators analyzed are only adequate when the MMPc@ntaining the elements of. in its diagonal M ®”, and M°2
stationary since the estimations are based on the samplgaffresent the Kronecker and Hadamard produdfoand M
data of the lastV pieces and only when most of thé pieces (i.e., M® =M ® M and M°2 = M o M). Expected value
are affected by the process faults the estimators can tiyrre@nd probability are denoted &-} andPr{-}.
detect and quantify the process variance changes. Therefor
these estimators present a delay in identifying the variati Il. PROBLEM STATEMENT

sources which negatively impacts on the efficiency of online In a MMP the deviations caused by the variation sources

quality control actions. For instance, a certain numberasfg Lo ;
o o ...of each stage propagate along the production line. At certai
may be manufactured before the variation source is idedhtifie 7 ; o . .
; ; L . Stage the dimensional variability of a piece consists of two
which compromises the quality in terms of variance of the . : .
. . ; omponents: one derived from the previous stages and anothe

final product and produces an increase of non-quality cosfs. . 2
o o 4 Créated at the current stage. Since these deviations arle muc

To overcome this limitation the application of non-station

) . . . : sdﬂaller than their corresponding nominal value, they can be

process variance estimators in MMPs has to be mvestlgater resented by a linear state-space model as
This paper discusses the use of a model-based observer tRAY y P
recursively updates the estimated process variance wih th 2(1) = Ap_1 w51 (1) + Brul (i) + ul (i), (1a)
measurements from ea_ch new processeq piece. The obseryer yi (i) = Cr 21(3) + vg (4), (1b)
demands few computational burden and it has an asymptotic
behavior. We also discuss how to tune the observer for fixingherexy (i) € R™=* represents the dimensional variability of
the trade-off between the convergence speed under proggisse: = {1,...,00} at stagek = {1,..., M }. Vector
variance changes and the steady-state error for stationary _—
process variances. ug (i) = [u’; (?)} € Rk 2
This paper is organized as follows. The problem statement ui (i)

is presented in Section Il. Section Ill presents the proposwith n, ; = nl', +n¥, andnl, =n, ; is the input vector
approach for modeling the non-stationary behavior of thecluding both the modeled and unmodeled variation sources
process variances in MMPs that enables the application affthe k-th stage affecting théth piece. Vectoyy (i) € R"v.x
observer-based strategies for variation source idertdita is the output vector denoting the measurements ofithe
Section IV explains the estimation procedure of the procegice at thek-th stage andy. (i) € R"++ takes account of
variance and it details a design strategy of the observer tbe corresponding measurement noises. This kind of stafje an
ensuring a specific performance of the estimator. In Sectiprece indexed state-space models, depicted in Fig.1, has be
V we include the design of confidence intervals for thextensively used in MMP applications as shown in [4]-[10],
estimates so as to enhance statistical hypothesis tegiing hich are referred for further modeling details.
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As proposed by Apley and Shi [16], model (1) can be al-  wherecs?(i)[p] represents the dimensional variance of the

gebraically transformed into a linear replicated modettiSg p-th variation source of the MMP, i.ep = {1,...,n,},
the initial conditions taD, it yields at the moment where thieth piece is manufactured.
, ) , « The noise vectorp is zero-mean, independent ofand it
y(@) = T u(i) + v(@), 3) has a diagonal non-stationary covariance matrix,
where y(¢), u(i) and v(¢) stand, respectively, for all the o2 (i)[1] 0
measurements, inputs and noises that affect each piece (i) i (10)
throughout the MMP, i.e., v - ’
0 o3 (1) [ny]
Y1 (1) (1) v1 (1) , _ . .
(i) = : u(i) = : v(i) = : @) where _ag(z)[r] represents the dimensional variance of
Y : ’ : ’ : the noise of ther-th sensor of the process, i.e:, =
ynu (i) (i) v () {1,...,ny}, at the moment where theth piece is manu-
with y (i), v(i) € R™, n, = Y, ny, andu(i) € R™, n, = factured. . i
" Mk Matrix T' can be obtained froml,, B, and Cy, as « As many works in the fl_eld (e.g., [15]), we assume that
explained in the references. all the measurement noises have the same variance. Then,

Many works as [15] consider that (3) describes a stationary W€ rewriteX, (i) as

process. For process variance estimation purposes, iers th 2, (i) = 02(i) I, (11)
possible to establish the following relation: !
with o2(i) an scalar denoting this shared process vari-
2, =T, IT+3, (6) ance. It is straightforward to extend the results of this
work to the case where the sensor noises are characterized

h
where by different variancé's
=, =E{yy"}, (6a) For the sake of readability, we denote the componenEf)
., =E{uu}, (6b) andX,(i) aso?(i)[j] with j = {1...n;} andn; = n, + 1,
=, = E{vd"}. (6c) " o
02(1)[] _ 0121(1)[]]7 J <ny, (12)
However, the process variances in (5) may change its value J o2 (i), j=n,.

at the moment when certain piecés manufactured. This is . . _
due to different effects such as the wear and tear to which thelhe stationary process variance estimator as the ones stud-
MMP is prone. Then, we can no longer consider the MMP #&d in [15] (i.e., the Least-Squares fit estimator (LSE), the

a stationary process and we rewrite (5) as estimator in Apley and Shi (ASE) [16], the estimator in Ding,
Shi and Ceglarek (DSCE) [18] and the estimator presented in
2y (1) =T 2, (i) T + 2, (4), (7)  Stoica and Nehorai (SNE) [17]) use the sampling variance of

whereX, (i), ¥,(¢) and %, (:) denote the covariance of the? batch of N pieces, i.e.,

measurements, the variation sources and the measurements Z?\i (1) (i)T
. . .. . S _ 7,71y y 13
noises at the moment when certain piéds processed, i.e., Y= N J (13)
%, (i) =E{y(@) y()"}, (8a) as an estimate dt, in (5). For the study of a non-stationary
, N NT process, we could propose to infer a time-varying popufatio
(i) =E{u() u(i)" }, (8b) : ; Ny
, L variance every time that a new pietés manufactured. If we
2, (1) =E{v(i) v(i)" }. (8¢) used the sample provided by the batch of the Isispieces,
Remark 1. The variablesX, (i), ¥,(i) and 3,(¢) defined an estimation o, (i) in (7) would be given by
in (8) are time-varying stochastic variances [20], [21] and Zi_-_Ny(L)y(L)T
they represent the variance gf « and v for a population of Sy(i) = == N (14)
pieces manufactured at the manufacturing conditions of th

T?"le use of (14) is computationally costly since a large sampl
size (i.e., the data provided by a batch Mfpieces) is used
Taking [15] as reference, in this work we assume that: for guaranteeing accurate estimates of the process vasanc
« The underlying distributions of, andv are Gaussian.  ¢*(i)[j] and no individual control over the accuracy of each
« The input vectoru is zero-mean since it representrocess variance estimate is available. For its part, tieeobis
the deviation from the designed nominal position. Tha sample of large size in (13) for ensuring accurate estsnate
variation sources are independent, so thhas a diagonal delays the estimation of variance changes and thus the@®ecis

i-th piece.

non-stationary covariance matrix, i.e., of whether the process has experienced faults or not. In this
Ui (2)[1] 0 L1t is well known that the maximum number of different proceasiances
) ) - . (9) which can be estimated depends on the structural propesfigke MMP
“(2 - ’ ’ under consideration. See [22], [23] for studying the diagility issues of

0 . 03 (1) 1] each case.
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work, we propose an alternative strategy for identifying thand fulfills
components o, (i) and X, (i) and their possible changes D(i) D(i)T = 3, (i). (22)
taking into account

« the accuracy of the estimations,

« the time needed to track their changes,
« the computational cost,

The same applies to matrik(i) w.r.t. v(i) (i.e., R(i) =
o,(i) In,). Note that signalsp(i) and v (i) represent the
Gaussian variations in(¢) andv(¢) while D(i) and R(¢) de-
scribe the size of these variations. Applying the decontjousi

the data storage, in (18), the linear replicated model (3) results in

the design flexibility.

To fulfill these requirements we develop a model for MMPs y(i) = [F D(i) R(i)] [”(Z’)} ) (23)
which includes the non-stationary behavior of the process V(i)
variancesc?(i)[j] and enables the application of observemefining matrices
based strategies. These strategies allow us to increrental .
improve the accuracy of the estimat$(i)[;j] with the data (i) = [LD@) R()], ¢(i) = [n(z)} (24)
provided by each new piece without the need of storing or v
using the data of the previous pieces in the computation. we rewrite (23) as

IIl. VARIATION PROPAGATION MODEL y(i) = (@) ). (25)

In order to develop a model for MMPs with non-stationary FOr process variance estimation, the information of irstiere
process variances of the variation sources and noises i&ides in the diagonal terms of the quadratic expression
exploit the Gaussian nature af(i) and v(i) in (3). Let us Of (23). Let us then define the output vectar(i) € R
first introduce the following lemma. as

N N o N = di . T 7 26

Lemma 1. ([24]) Let g(i) € R"s be a vector of zero-mean m{i) =y(i) ey (i) iag{y(®)y(©)"} (26)
independent Gaussian noises, i.e., verifying

(i) ~ N(0,2,(3)), (15) m(i) = diag{W (i) C(4) (1) w(i)"}. (27)

with 3, (i) certain diagonal and varying covariance. ¢f,(i) Note thatm(q) depends on the process variances that we want
denotes the vector including, zero-mean independent Gaust0 estimate. If we defing(i) as the column vector stacking

sian noises of unitary covariance, i.e., these variances, i.e.,
2 .
guli) ~ N(0,T,, ), (16) Ol
N q(i) = : e R™, (28)
vector ¢’(i) defined as o
- L o*(i)[n4]
9'(0) = Bg(i)* gu(i) (17) being o(i)[j] the elements ofD(i) and R(i) and, thus,
is distributed aq(15). included in¥(7), the expected value ofi(i) satisfies
Applying Lemma 1, the random signal$i) andv(z) in (3) E{m(i)} = H q(4), (29)
can be rewritten as .
with
u(i) = D()n(i),  v(i) = R(i)v(i). (18) H=[?1,,]eR™*", (30)
where , . where we have taken into account thE{¢(i)¢(i)T} =
n(@)[1] v(i)[1] I, +n, (see Appendix A).
n(i) = : , v(i) = : (19) For modeling the non-stationary behavior of the process
1(3) 1] V(i) [ny) variances, we propose the following dynamics of the state
‘ vectorg(z):
are column vectors containing independent zero-mean gaus- 4@
sian sequences with unitary time-invariant covariances, i q(i) = q(i — 1) + Aq(i — 1), (31)
N — Nn(i) T = where
E{n(0)} = On,, E{n(i)n(i)"} = In,, (20a) Ac?(i)[1]
E{v(i)} = On,, E{v(i) v(i)"} = In,, (20b) Aq(i) = : c R (32)
E{n(i) v(i)"} = On,xn, - (20c) Ao?(i)[n;]
Matrix D(i) contains the standard deviation of the componeri@kes account of the process variance differences between
of u(i), i.e., two consecutive pieces and ¢ + 1. Dynamics of the form
) of (31) have been widely used in the literature to analyze the
ou()[1] 0 behavior of estimation algorithms for non-stationary @eses.
D(i) = , (21) Note that equation (31) allows modeling every kind of change

0 ou (i) experienced by the variablegi)[j] provided an appropriate
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form of the signalsAq(¢)[j]. For instance, abrupt changedfwe add and subtradt ¢ (i
in ¢(i)[j] are produced by impulse signalsq(i)[j] (i.e., in (36), the dynamics ofi(
Agq(1)[4] is only nonzero at the time of the fault appearance), , o , o
drift changes ing(i)[;j] are produced by step signals;(i) ][] q(i) = (In, — L(i) H) (q(i—1)+Aq(i—1)) = L(i) t(i), (37)
(Aq(i)[j] takes a constant value during the fault existencgly,
aAr;d(ip))[z;Eie\bohc changes iff¢)[j] are produced by ramp signals 1) = m(i) — H q(i) (38)
Thus, the estimations provided by an estimator which takaszero-mean random variable as it derives from the diffexenc
equation (31) into account would vary in value when any kindetweenm (i) and its expected value.
of fault form appears in the system. However, such estimator . : . .
only guarantees estimations with zero-mean steady-gtatese Remark 3. .Not!ce. thaE ffjm esumate;(z_) may be r\egatlve
when abrupt changes affect the system [25]-[27]. Thus, dfy some piecei (i.e., §(i) < 0). Provided thatq(i) is a

estimations are unbiased when no changes occur and wigROr stacking variance values and it cannot be negatiee, w

abrupt changes affect the system. If more general chan%%éﬂ“\)’:ee?gggtzoagj ;0 provide a refined estimate qifi),
7).

occurred, the steady-state estimation errors would noebe z
mean. For instance, if drift changes took place the steady- ) { q(i) if G(i) >0
dp(l) = -

) to the differencen(i)—Hg(i—1)
i) can be expressed as

state estimation errors would be constant [28]). In any case (39)

however, the estimations would vary in value and the changes
experienced by the variable$:)[j] would be detected.

0 otherwise

B. Observer Design

Remark 2. If zero-mean estimation errors were required for In this section, we propose a design of the gait) of the
changes beyond abrupt deviations, a more general mOdeIéQtimation algorithm (35). Note that the dynamics in (37) ca

the form of be seen as the estimation error dynamics which is achieved
N A '~ 1)+ Bo Aqli — 1), 335) When applying a state observer to a linear system ith
5(2,) Qg(? )+ Ba , a@=1 (333) the state estimation errof\g(:) the process noisdi) the
q(1) = C (i) + Do Aq(0), (330)  measurement noisd,,, the state matrix and/ the output

should be considered. 83), £(i) € R™ is an auxiliary state matrix. As the considered process noig¢) depends on the

vector of an appropriate dimension so that the dynamicsef tfate, the error dynamics is not linear and simple desigtisavi

forecasted changes can be produced through some matri€@gstant gairL(i) (as pole placement techniques or stationary
(Ao, Bo,Cq, Do) and impulse signald\q(i). See [28]-[30] Kalman filter approaches) cannot be applied. We then propose
for details on the derivation of these models a Kalman filter that takes account of the dependence of

the noiset(i) on the state which is being estimated (see
Appendix B and references [31], [32] for derivation defrils

IV. ESTIMATION OF PROCESS VARIANCE The Kalman gain for observer (35) can be computed as

A. Model-based observer P(i) = A(i — 1)+ Qi - 1), (40a)

For achieving non-stationary process variance estimation L(i) = P(i) HT (H PG HT —|—T(i))_1 (40b)
we use a model-based observer. Based on the model defined . _ . ’
by equations (27)-(31), we set up the following estimation P(i) = (In, — L(i) H) P(i), (40c)
algorithm. First, we defingj(i) as the vector that contains,,
the estimation ofg(i), i.e., the process variance estimation.
Second, we obtaim: (i) with the acquired measurements for Qi) =E{Aq(i) Aq(i)T}, (41a)
piecei using expression (26). Then, we estimat¢i) using T(i) =E{t(i) t(i))} (41b)

the last estimated process variag¢e— 1) and the expression
of its expected value given by (29), which involves the modeind whereP (i) represents the expected covariance of the state
information H: estimation error, i.e.,

(i) = H i~ 1). (34) Pli) = E{i(i) 1)), (42)
F_inaIIy, we update the process variance_ estimation with trﬂfeemark 4. A necessary condition for the stability of ob-
difference between the measured and estimated outpult;jiherlSJerver (35) is that the pair (,,, H) is observable, which
q(i)

(i — 1) + L) (m(i) — (i) (35) Mmeans that the process variances consideredg(f) are
where L(i) is the updating gain matrix which defines thenatrix H verifies

diagnosable. This condition is verified whenever the output

weight between the output prediction error and the last es- rank{H} > n;. (43)
timated process variance. We define the state estimation err ) _ _ o
asq(i) = q(i) — ¢(i) and its dynamics is given by For computing the covariance@(i) and T'(i) involved

in (40), the following considerations should be taken into
G#)=q(i—1)+Aq(i—1)— L(3) (m(i) — Hg(i — 1)). (36) account.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 6

« Operating algebraically and taking account of the Gau€. Estimator Properties
sign nature and the statistica_tl properties _(2_0) o_f the Boise T performance of the estimator depends on both the
((2), one gets that the covariance matfiti) is given by  gteaqy.state accuracy and on the delay in tracking the esang
T(i) = (W) w(i)T)°2. (44) defined byAq(i).

, 1) Steady-state BehavioProvided the unbiasedness of the
Relation (44) shows the dependencd¢f) on the values egtimator in fault-free scenarios (see Section Ill), theusacy
o(i)[j] and, thus, on the state vectgli), which is t0 be 4t the estimator (35) whenvq(i) = 0 is given by the variance
estimated. Provided the slow-varying characterg@), of the estimation errors, which we denoteds i.e.,
we have that, in generall(i) ~ T(i — 1). Then, we
propose to approximate covarian€é:) of a piece: by ¢; = Var{q(i)[5] | Aq(z) = 0}. (50)

its predicted value from piece— 1, i.e., ) o
The steady-state covariance of the estimation errors due to

T(@) =T —1). (45) noises, which we denote @ is the solution of the following
Matrix 7°(i —1) is computed through (44) with the valuedticeati equation:
in the available postprocessed estimated vegor—1). p— (I —PHT (HPHT + T)_l H) P (51)
« The covariance matrix)(i) is unknown and it can be " ’

seen as a multivariate tuning parameter that fixes tgh p — p+ T P T, and wherel is the noise covariance at
performance of the observer. If matrg(i) is chosen certain steady state. If we choose matfixo have equal terms

to be diagonal, as the value of certain elem@it)[j,j] (i.e., v; = v, Vj), the covariance matrix of the steady-state
decreases, the steady-state accuracy of the correspondingy is given by

estimate improves because the filter is more focused on
rejecting the variationg(i). Respectively, ifQ(i)[, j] p=_"Y (H(Z, oX,)) tHT)™L (52)
increases, the tracking ability improves at the cost of vt
a lower measurement noise rejection. For ensuring thHa@e Appendix C for the derivation of this expression.
Q(z) is in an appropriate order of magnitude, we compuférom (52), we deduce that the accuracy of the estimations
its elements as improves as the design variableg decrease.

. 2) Transient Behavior:The transient behaviour of the es-

QM) =TPEHT, (46) timator can be characterized by the number of pieces whose
with data must be fed to the estimator in order to track certain
U1 0 changeAq(i)[j]. We define the settling time of the estimator,
T2 = (47) Wwhich we denote agy ;, as the number of pieces which are
0 o needed so thaf{j] changes the 90% of the change experienced
" by ¢[j] with ¢(i) = 0. We can also describe the tracking
andv; € [0,1] chosen according to the desired perforapility of the estimator in terms of the cumulative squared
mance. This leads to equation (40a) as error (CSE) experience by theth estimation due to process
P(i)=P(i—-1)+TP>i—-1)T. (4g) Vvariance changes and which we define as
Note that equation (48) excites more algorithm (40) when o Ny N
less knowledge of the states is available and, therefore, 73 ;{q (@l ]4(3) = 0}. 3)

P(i) h bi lue. Thi h the initializati
of(i%e legﬁritlr?ra.er value 'S enhances the inifiatiza IO,&]ccording to [33], the response of (35) when a unitary step

changeAq[j](i) occurs is like the response of a first-order
Remark 5. The proposed algorithm implies computing equasystemg(i) defined agy(i) =1 — (1 + Uj)*l whent(i) = 0.
tions (40) and (35) with m(i) = y(i)°* every time that a In this sense, the settling time and the CSE of the estimator
new piece: is manufactured in the MMP. At steady statedue to unitary step changes are approximately given by
however, the gain matrix.(¢) is stationary. For reducing the

computational burden, one can use the expressions 1N90.; = %’ (54a)
: : B N7 - og(1l+wv;
instead of(40) whenevelg(: — 1) — ¢(z — 2)| < A for some viT (14v;)2 -1’ (540)

given differencea. see [34]. From (54), we deduce that the tracking ability

Remark 6. Note that algorithm(40) provides a suboptimal regarding the estimation qf;j] improves when; is increased.

Kalman gain due to the previous approximations and becauagmark 7. Similarly tong, ; we can define,, ; as the number
Aq(i) is non-zero when process variance changes occur. U J I

anv case. the previous desian procedure presents the ad If'pieces which are needed so tl§at] achieves the% of the
y , the previou 'an p ure p Y%Fange experienced hyj] with ¢(i) =0 as
tage of containing some numerical tuning parameters whic
can be used to set the trade-off between different estimatio —log (%) (55)
Npj = ———— .
performance parameters. 0,3 log(1 + v;)
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D. Performance-based Observer Design Note that when we use the refined confidence inteyal(i)

As seen in Section IV-C, matri¥ enhances the accomplishin (62) and 7; is defined througlf59), we guarantee a bound
ment of certain trade-off between the transient and thelgtea®i < &; which is looser than the bound which is guaranteed
state tracking performance. Relations (54a), (54b) ang (5@ €;(i) in (57) (i.e., the difference betweem; and o] is
can be used to choose the values (j = 1,...,n;) S0 Iarger) Similarly, if h; is defined througlf61) and we use the
as to set certain trade-off regarding the performance of tigerval ©;,(i) in (62) we just guarantee a bound; < o
estimator. For instance, in order to set certain settlingtior instead of fixing its value ta; = aj as happens witt; 5 (i )

the estimation of a unitary step change;ii], the variabley; N (57). Thus, if we usé; ,(i) in (62) the real confidence
must be fixed to " level is larger than the one that we have with(:).

In order to determine whether a process variance of the
MMP q[j] has experienced a chang®q[j] (i.e., a faultj
has appeared), we set the following statistical hypothesis
where we usé = 0 to refer to a piece for which the estimator
V. STATISTICAL HYPOTHESISTESTING FORFAULT has achieved the steady state and that has been manufactured

DiaGNosIs with healthy conditions in the MMP:
In steady state (i.e., when no process variance changes oc- N
Ho: q(i)[j] € 2;(0)

v = 0.17Y/m0a 1, (56)

cur), we denote the confidence interval offered by an estimat

(63)

§(0)j] for ¢(2)[j) as

() = 406~ hy a6 + bl (57)
whereh; depends on the confidence level of the interyal=
1—ay, and on the variance of the estimatig(i)[j]. Note that,
in steady state, the marginal variance of the estimag{ghis

P[j, 4], which can be obtained through equation (51).
Through Chebyshev’s inequality [35], we have that

Priq(i)ls] & ;(i)} < Plj,j]/h3. (58)
Then, if we seth; as
hj =/ Plj. jl/ e, (59)

we guarantee a bound; < o} for the confidence level of the
interval Q; (7).

Relation (58) holds regardless of the probability disttidau
of G(i)[j]. We know, however, that wherhg(i) = 0, the

estimationg(i) can be expressed as the infinite weighted sum

H) L(1)t(v). (60)

_Z H (I"j_L(’f)

=1 k=1+1

where the terms- []’._ o1 (In, — L(k) H) L(v) represent the

{ Hi: q(i)[j] € ©2;(0)
Here, the null hypothesis stands for "No change of jhe
th process variance” (i.e., "No fault’) and the alternative
hypothesis stands for "Change of theh process variance”
(i.e., "Fault ;).

VI. COMPARISON WITH BACTH-BASED ESTIMATORS

As explained in Section Il, the batch-based estimators such
as the LSE or DSE are offline estimators which are conceived
for periodically verify the state of the process. In theduling,
we compare the properties of these offline estimators with th
characteristics of the proposed online approach.

« Accuracy of the estimation$n fault-free scenarios, the
variance of the estimates provided by batch-based esti-
mators is proportional td /N (see [15] for details on
the corresponding expressions). When using the proposed
approach, the variance of the estimates is proportional
to v/(v+1) if every v; is fixed to a common value
(see (52)).

« Time to track change3he delay in tracking changes with
the proposed online approach is approximately given by
the settling time of the estimator which is defined by the

weighting factors and(:) are independent and identically
distributed zero-mean random variables with finite varéanc
One can demonstrate that the sequence of these weighting
factors fulfills the conditions on [36] and then one can claim
that ¢(i) approaches a normal distribution. Provided these
results, we can sét; to fix the confidence leve}; to 1 — «

as
hy =251 (1= aj/2) VP, jl, (61)
with ®,'(-) the inverse cumulative distribution function of a

standard normal variable. This confidence level is tightene
than the one obtained in (58) through Chebyshev’s inequalit

number of piecegys ; in (54a) and it is inversely propor-
tional tov;. For its part, offline batch-based methods just
ensure the detection of a fault if a whole batch of faulty
pieces is used in the computation 6§ through (13).
Then, these methods cannot ensure a tracking delay lower
than 2 N. Moreover, provided the non-zero variance of
the estimates, the manufacturer might not state that a fault
has occurred until certain numberof consecutive faulty
estimations are available. In such a case, the number of
faulty pieces which must be manufactured in order to
state that a fault has occurred 1gs ; + x — 1 if the
proposed approach is used andv if offline estimators

are used.

Remark 8. Provided that(i) > 0, we postprocess the valuéFrom these two considerations, we deduce that the existing
of the limits of(2;(i) so as to provide a refined confidencgrade-off between the accuracy of the estimations and their
interval of ¢(i)[j], Wh'Ch we denote a&; ,(i): ability to track changes can be set througtor the proposed
[G() ] = hy» G6)5) + hy] if G()[5] > J approach (as explained in SectionlV-C) and throughfor

0, G(i)[5] + hj] otherwise (62)  patch-based methods . N is reduced (or ifv; is increased),
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the tracking ability increases at the cost of lower estiorati
accuracies. For accuracies in the same order of magnitede (i
% = 57), the time to track changes i‘s@ for batch-

based methods and-1— lfgg((&oi)) for the proposed approach s~
The tracking ability is thus in the same order of magnitudé 10 1 10
for both methods ifc = 1 and it gets better for the proposed.

o
approach as is increased. =

15

(3]
Remark 9. Note that if big faults affect the system, it is no_é 5 { s A
necessary thaj[j] changes the 90% of the change experienc@
by ¢[j] in order to detect a fault. If we usg, ; with p < 90
instead ofrgo ; for the characterization of the tracking ability
of the model-based observer, the time that we need in order o 0
to detect changes is exponentially reduced. Contrariwise, 0 100 200 300 O 200 400 600
no case this time is lower thafx — 1) N for batch-based Piece Piece
methods.

Figure 2. Stationary process variance estimations@f(vs = 0.05) in

As stated in Section II, when it comes to estimators, othgguzggfjgﬂEuﬁzf]egg{kpffss' Real (- -), Estimatay(—), Fitted
matters of fact are the computational burden, the volume of
stored data and the design flexibility, which are now comgare

for both methods. A. Single-Stage Assembly Process
« Computational BurdefThe algorithms of batch-based es- First, we study a single-stage automotive body assembly

timators (i.e., the LSE z_;md the A.SE) reqm VEC"  described and modeled by Apley and Shi [16] and studied
tor product and summation operations, which are t|m%-

consuming. As the accuracy of such methods improve¥ Ding et al. [15]. In this single-stage casa/(= 1), an

whenN is increased, it happens that there exists a tradoe'[-)tlcal coordmateimeasurlng machme_(OCMM) pro_wdes 9
Mmeasurements:, = 9). The pieces at this stage are fixed by

off between the accuracy of the estimations and trfl;le4-wa locatorP;, which produces positioning variability in
computational time of such methods. The computationﬁl y b P P g Y

burden of the proposed observer does not depend on P{jg directions (i.e.g Py’ ando’r) and by a 2-way locator?,

. ! ich only produces positioning variability in one direxti
performance of the estimator because the variance of g%f% 5PZY; thus,uy — [5PT, 5P%, 6P7,]T andn, — 3. The
estimation can be simply modified by changing the values ", 27 R 0L O Lk 0T 2k v

S o
in T. Thus, the computational time is independent of thréapllcated matrix is

performance of the estimator. T 0.093 0577 —0.120]
« Data StorageThe sample size of the proposed approach 0 0 0
only contains the data of the last manufactured piece. —0.093 0 0.843
Thus, when certain pieadas manufactured the stored data 0.093 0577 —0.120
is G(¢—1) andy(i). For its part, the sample size of offline T = 0 0 0
approaches contain the data of the |Astmanufactured 0.647 0 ~0.120
piece. Thus, when certain piedeis manufactured the 0370 0577  0.482
stored data isy(i — N + 1),y(i — N + 1),...,y(i — 0 0 0
1),y(i — 2). Again, there exists a trade-off between the 0.647 0 —0.120
accuracy of the estimations and the amount of stored data - -
which is not present in obser-based methods. The Sensor accuracy {0)ensor = 0.1 mm and the tolerance

« Design Flexibility. The trade-off between the ability toof the pinholes is 0.2 mm. If the tolerance is approximated by
track changes and the accuracy of the estimationstff six-sigma value; ther0) jocator = 0.2 mm.

collectively set by for all the estimationgj[j]. Oppo-  First, we simulate an stationary process of 300 pieces
sitely, this trade-off is individually set by; for each the i g=[11 25 044 O.G}T -10~3 mm? (values taken
estimationsg[j]. Thus, the proposed approach enhancgg,m [15]). The left-hand side of Fig.2 shows the estimation
the use of different estimations performance requirementssits forq[4] (i.e., 4,[4]) when applying an observer with
for eachq[j]. Y2 = 0.051, in (46). On the right-hand side of Fig.2, we
look at the shape of the probability distribution @f[4]
when running 50 simulation trials and we compare it with
a fitted normal density proving a high goodness of fit of

In this section, we set up different assembly processtt&e Gaussian distribution. Similar results apply to theeoth
in order to apply the strategies presented at the previoweriance estimationgj,[j] with j = {1,2,3}, which we
sections. Even if these processes are simple, the modedthg do not include due to space constraints. The variance of
estimation framework is fairly general and it can be appliettie estimations provided by different observers are shown i
to more complex processes. Table I.

VIlI. CASE OFSTUDY



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 9

Table | 1.00 .
VARIANCE OF THE STEADY-STATE ESTIMATIONS[-10~%mm*] FOR '
> —a— LSE
DIFFERENT OBSERVERS WITHY'“ = v I4 N=100
—e— ASE
v Var{gp[1]} Var{gp[2]} Var{§p[3]} Var{¢,[4]} o) N=100% o— KF
0.0010  0.0217 0.0103 0.0166 0.0001 £ 0.75 9 —— steady-state KF
0.0152 0.1362 0.1784 0.3443 0.0029 = :
0.0294 0.2322 0.3551 0.6693 0.0051 S
0.0436 0.3182 0.5384 1.0273 0.0071 =
0.0579 0.4010 0.7288 1.4120 0.0090 £
0.0721 0.4880 0.9272 1.8032 0.0109 & 050
0.0863 0.5773 1.1415 2.2138 0.0128 15
0.1005 0.6698 1.3773 2.6695 0.0147 o
0.1147 0.7640 1.6326 3.1927 0.0167 <
0.1289 0.8599 1.9116 3.8059 0.0186 E
0.1431 0.9600 2.2181 4.5634 0.0205 E 0.25!
0.1574 1.0698 2.5425 5.5490 0.0224
0.1716 1.1817 2.9035 6.7644 0.0243
0.1858 1.2843 3.3121 8.1135 0.0261
02000  1.3797 3.7668 9.6098 0.0280 v *\‘0'01 vz 0.1 N=10
0 T T "
0 6 12 18 24

Variance of the estimation af2[1] [-10~5mm?]

In order to compare the proposed online estimators with the
P prop Figure 3. Comparison of the computational time which is eeefdr different

process variance gstlmators based on the sqmphng Var_'a&aﬁation accuracies regarding [1] at steady state with different estimation
of a batch of N pieces, we apply these estimators onlingrategies.

by inferring a time-varying population variance every time o2
that a new piece is manufactured fromS, (i) computed 15
through (14) (i.e., every time that a new piecés entirely =
measured, the estimation is made with the data provided byé
this piece and by the previou§ — 1 completed pieces). In 7
Fig. 3, we compare the relative computational time which is =,
needed to perform the estimation of the previous process forg

different estimators and different values of the corresliog & o Zgi _ 10
tuning parameters that lead to different variances of the§ — oy = 15
estimations. As explained in Section VI, Fig. 3 shows that ‘ ‘

the computational burden of the proposed observer (KF) does 0 100 200 300
not depend on the performance of the estimator because Piece

the variance of the estimation can be simply modified Bsigure 4. Comparison of the performance of different obsenused in the
changing the values iff. Oppositely, the algorithms of batch-single-stage assembly process for the estimation2ofwhich is affected by
based estimators (i.e., the LSE and the ASE) require mdfgaPrupt fault Real (- -), Es"mat'onsz(_)'
operations as the estimation accuracy is improved and, thus
the computational time increases with the accuracy. From 3.3
this figure, we also deduce that the estimator (35)-(40) iss
more computationally costly than the LSE and the ASE for
estimations of lower accuracies. However, our estimator is
more efficient and becomes more computationally appeating a =
the desired accuracy of the estimations is increased. Mergo s
if we use relaxation (49) (steady-state KF), the computatio
burden is dramatically reduced for all accuracies.

Fig.4 shows the results provided by three observers with 0
different performance w.r.t. the estimation @] when the
process of 300 pieces is affected by an abrupt fault which
modifies the sensors accuracy frénG - 10—3 mm? to 0.95 - _Figure 5_. Comparison of statistical_test_ing me2th0ds Wiﬁetﬁr_lt confi_dence

a . . _interval limits ¢y; = 99%) for the estimation ob; (v4 = 0.05) in the single-
10~* mm? at the piece 150. The observers have been des'g@.@ée assembly process. Real (- -), Estimation (Gray —)s&anrbased limit
with requirements over the CSE due to unitary step chang8gck —), Chebyshev-based limit-{.
Ag(4): ¢4 = 5 (giving vy = 0.1), o4 = 10 (giving vy =
0.05) and ¢, = 15 (giving v4 = 0.01). We prove that, as
explained in Section IV, a smaller CSE (and higher tuning In Fig.5, we include the estimation results ¢] provided
parameter i) results in a better tracking ability at the cost oby the model-based observer designed with = 0.05 1,
a lower performance w.r.t. the variance of the process negia together with the limits of2, ,(0) for both the computation
estimations. The designer should tune this parameterdiogpr of h4 through (59) and through (61} = 99%). When no
to the criticality of the delays in tracking changes. taking account of the Gaussian behaviour of the estimations

mm

> 2.21

3

Variance [10~
[EEY
[E=Y
T
1
I |
I
1
21'7

100 200 300
Piece
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Figure 6. Process variance estimation with a model-basedror ((2 = 0.05 I,) in the single-stage assembly process affected by an afauptin o2.
Real (- -), Estimation (Gray —) Gaussian-based limit with= 99% (Black —).

ol oa2] ou[3] o

= 3 | 15 9

g 0.9

ms:}

L 2 10 - 6 W o6k W,

" L _ I B -

3! 1 5 3 0.3

.8 e = s

= 0 0 0 0

0 100 200 300 0 100 300 0 100 200 300 0 100 200 300

Piece Piece Piece Piece

Figure 7. Process variance estimation with a model-basedregr (2 = 0.05 I,) in the single-stage assembly process affected by an afauiptin o2 [2].
Real (- -), Estimation (Gray —) Gaussian-based limit with= 99% (Black —).

and the limits are computed by means of the Chebyshegisnulation results in these figures may look as a fault aguear
inequality, the confidence intervél, ,(0) is too big and only when it does not (e.g., the variation experienced dy2]
big variance changes can be diagnosed. On the contrary, ithé-ig.6). The reader should notice that these variatioms ar
limits of €4 ,(0) when computed through (61) are tight andavithin the confidence intervals designed for a 99% confidence
smaller faults (as the one being simulated) can be diagnoskedel. If just thinner variations are allowed, the desigsieould
Thus, in Fig.6 we include all the estimations provided bglecrease the value of the variables so that the accuracy
the estimator T2 = 0.05 1) for this process with the corre-of the estimates improves; contrariwise, if these vantio
sponding the Gaussian-based threshold2,9f(0) (v, = 99% should fade faster, the designer should increase the vdlue o
with j = {1,2,3,4}). We prove that, although the order ofthe variables/; so that the tracking ability of the estimator
magnitude of the variables involved if(i) is different, the improves. In Fig.8 we show the estimation of[1] for a
model-based observer provides appropriate results. Nwatie tfault-free scenario. If we use an observer with = 0.1 I, the
the observer depends dHh(:), which is a function ofg(i) latest simulation results may look as if an abrupt fault @peé
(see (40)-(44)). Thus, when certain componentq@f) in- but, in any case, the estimation is within the confidence
creases its value, so does the variance of the estimatiogs. Finterval fory; = 99% (Q;,(i) = [0,3.236] - 1073) and no
shows, for its part, the simulation results (wii¥ = 0.051, fault is thus detected. If this temporary bias is prohilgtiv
and v, = 99%) for the process in which we suppose thaih terms of accuracy, one can use other observers as the
dP7, is affected by an abrupt fault, which doubles its standaanes in the second part of Fig.8, which are designed with
deviation from 0.05 mm to 0.1 mm at the piece 150. The;? = 0.01 I, (Q;,(i) = [0.315,1.885] - 1073 for v, = 99%)
we have that(i) in mm? is now given by and Y2 = 0.0011; (Q;,(i) = [0.493,1.707] - 10~3 for

’)/1:99%).
4(i) = [11 25 44 06
(11 10 4.4 0.6

71073 if i€ [0,150)
T e :
|7 -1072 if 4 € [150,300] B. Multistage Assembly Process
As shown in the corresponding figure, this fault is detected i Second, we study the two-stage process (M = 2) provided
52 pieces. If for the simulated fault\g([3] = 7.5-1073 mm?) in [15] which was derived from a segment of the simplied
this number of corrupted pieces is critical, the designey mautomotive body assembly process [18]. This simplified as-
decide to build an estimator with higher tuning parameters sembly process has been widely used in the literature for
T2 at the cost of poorer estimations in terms of accuracy. analysing diagnosability issues [18], [37], estimationvafi-

For the simulations in Fig.6 and Fig.7 we have assumeaice components of variation sources [15] and optimal senso
that no a priori knowledge of the varianceg[j] and o2 distribution [38], [39]. In this example, depicted in FigtAree
is available. Then, the estimator should be initialized aorkpieces are welded together at Stage 1. In this stageg the
4(0)[j] = 0 and the estimations increase progressively @re 9 fixturing variation sources:f = 9). Once welding
value as new measurements are processed. Moreover, soperations are completed, the entire assembly is traesferr
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[0 0 0 0.1215 —0.3846 0 0 0 0.2632]
0 0 O 0.0221 —0.0699 0 0 0 0.0478
0 0 O 0.1215 —0.3846 0 0 0 0.2632
0 0 0 —-0.1817 0.5944 0 0 0 —0.4067
0 0 0 —-0.0773 0.2448 0 0 0 —0.1675
0 0 0 -0.3379 1.0699 0 0 0 —0.7321
0 0 0 0.1656 —0.5245 0 0 0 0.3589
0 0 0 —-0.3379 1.0699 0 0 0 —0.7321
0 0 0 0 0 0 0 0 0
= 0 0 0 —-0.2054 0.6503 0 0 0 —0.445 (64)
-1 1 0 -0.3110 0 04 —-04 0 0.311
0 0 0 0.0574 0 —-0.24 1.24 0 —1.0574
-1 1 0 -0.2153 0 0 0 0 0.2153
0 0 0 —-0.2392 0 1 0 0 —0.7608
-1 0 1 —-0.0957 0 0 0 0.4 —0.3043
0 0 0 0.0574 0 0 0 -0.24 0.1826
-1 0 1 0 0 0 0 0 0
10 0 0 -0.2392 0 0 0 1 —0.7608 |
a2[1] (v1 = 0.1) a2[1] (v; = 0.01) a2[1] (v1 = 0.001)
4 4 4
=
E 3 3 3
S
= 2 2 2
3]
E 1IN, IR RS & T == 1
= 0 0 0
1600 1700 1800 1900 2000 1600 1700 1800 1900 2000 1600 1700 1800 1900 2000
Piece Piece Piece

Figure 8. Comparison of the performance of different obserused in the single-stage assembly process for the &stinud o2 [1] in fault-free scenarios.
Real (- -), Estimation (Gray —) Gaussian-based limit with= 99% (Black —).

Stage 1 - : and we modify matrixd accordingly. This means that in the
<§>2 * ® Usod case of the three first fixturing variation sources we do not
‘. 5 . 9 ® pinsheo|e identify the process variations individually, but a condtion
‘é’ © | O é ‘é’?’ + of them.
Non-used i i i '
Stage 2 % p?rqh%?g First, we simulate a process of 2250 pieces with the values
® o & Measuremertt 15 10:2 ?f ‘7 =1
N s point 0.3-10 if je{2,3}
z | @ O = ® 2] = 0.5-1073 if je{4,5,8,9}
[ TWIITY 151008 if j=6 '
_ 2.5-107° if j=7
Figure 9. Scheme of the two-stage assembly process, adapiedl5], [18]. 0.0111-1073 if j =10

) _ ) (values inmm? taken from [15]). We assume that an abrupt
to a dedicated in-process OCMM stage (Stage II) for inspeghange occurs modifying the variane@[6] from 1.5 - 103
tion. High-precision laser-optic coordinate sensors aedu 1,2 to 3.4 - 10-3 mm? (i.e., doubled standard deviation of

to measure two directional coordinates at each measuremggt 6-th variation source) at piece 1000. Fig.10 shows the

point andn,, = 18. Matrix I' is given in (64). _ estimation results regardingt[j] when applying an observer
The output matrix/7 which results froml” does not verify \ith Y2 = 0.002 I, in (46) andvy,; = 99%. Again, we prove

condition (43); then, we redefine vectqfi) so thatn; = that, although the order of magnitude of the variables ved!

rank{H } as in ¢(7) is highly different, the model-based observer provides

o2l +o2[2] if j=1 appropriate results.
(1] +02[3] if j=2 Now, we simulate a process of 1200 pieces in which
[j+1] if je{3,4,5,6,7,8} " standard deviation of the sensors is modified f@A033 mm

if 7=9 to 0.0100 mm at piece 250. The first simulation depicted in

g

q()[j] =

g

Q
S NS NS NS N
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o[l +02[2] oall] +02[3] oo 4] oal5]
— 6 6 45 1.8
E
j=]
i 3 1.2
S
S 4 . 15 0.6 e
- W
= -
> 36 3.6 0 0 l
0 750 1500 2250 0 750 1500 2250 0 750 1500 2250 0 750 1500 2250
o2 6] o [7] o 18] aal9]
_. 45 2.4 6
R 16 4
2 | |
“i I L
S 15f=m-- 0.8 2 /jw
8 ik P 1 3
0 750 1500 2250 0 750 150  225C 0 750 1500 225( 0 750 1500 2250

Piece Piece Piece Piece

Figure 10. Process variance estimation with a model-babsdreer 2 = 0.002 Iy) in the multistage assembly process affected by an abrutitifac? [6].
Real (- -), Estimation (Gray —) Gaussian-based limit with= 99% (Black —).

Fig.11 shows the estimation results for this process whimgus 02 (vg = 0.002) a2 (vg = 0.002)
an estimator designed with, = 0.002 and a Gaussian-basec_, 15
threshold withyy = 99%. The second part of this figure shows
that the proposed algorithm (withy = 0.002 and~yg = 99%) = 10
does also track drift faults. In this case, = 0.0033 mm 2

before the drift fault andr,, = 0.0073 mm 1000 pieces after § 5
the fault appears. The drift fault modifies the sensor pr®ceS

variance linearly. The other results compare the perfomaarg 0 ——d 0
of estimators with different requirements over the estiomat 0 400 800  120C 0 400 800 1200

of ¢[9]: v; = 0.01, andv; = 0.001. Again, we see the trade- 02 (vg = 0.01)

m:

o2 (vg = 0.001)

offs detailed in Section IV. Note that the order of magnitofle 6 6
the tuning parameter (i.ev;) used in the estimators in Fig.ll@ " \
is smaller than the order of magnitude of the tuning parameg 4 R 4
in the estimators in Fig.4 due to the differences in the \@lug i
involved in the MMP. I 7
g 2 s 2
g m'/‘/
]
VIIl. CONCLUSION 0

0
0 400 800 1200 0 400 800 1200
In this work, we have addressed the non-stationary proce Piece Piece

variance estimation problem with a recursive algorithrrtth;o:\, 11 c _  the pert. ¢ different dinth
. . . . . igure 11. Comparison of the performance of different olessrused in the
1S Updated with the information available from every r"':W\ultistage assembly process for the estimationhfwhich is affected by an

manufactured piece. This strategy relaxes the compumtioaor_upt_faun or a drift fault. Real (- -), Estimation (Gray -Gaussian-based
burden and the data storage required by other algorithnts thait with ~; = 99% (Black —).
use a large sample size for each computation. Furthermore,
our approach has a multivariate parameter that tunes the. N N

. - variance estimations but also estimations of the mean of the
performance in the existing trade-off between the adaptati _ .~ .

. : .__variation sources.
to process variance changes and the accuracy in stationary
periods. We have shown two possible computations of the
confidence interval, one based on the Chevyshev’s inegualit o _
and another which takes account of the Gaussian behavfor Perivation of the expected value wf(i)
which is approached by the estimation errors. We have showrlet us first introduce the following lemma.
in two d_n‘ferent e_xamples how to tune the algorlthm in Ordqfemma 2. ([40]) Let A € Rm*n, X € R™*" and B €
to obtain a desired performance. Future work will mclud&n n .
S »X™ he some matrices. We have that

the application of the proposed approach to factory cadldct
and the extension of the approach to obtain not only process vec (AXBT) = B ® Avec(X). (65)

APPENDIX
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If matrix X is diagonal, we have that C. Derivation of the Statistical Properties of the Estinrato

Let us first remember the Woodbury matrix identity [42]:

diag (A X AT) = A° diag(X). (66)
(D+EFG) ‘=D '-D'E(F"“+GD'E)"'GD~. (76)
Provided (25), we have that Now, assumingy; = v, for all j, we rewrite (51) as
E{y(i) y(i)"} = E{T() C() C(i)" w(@)T}. (67 P=(I-vPHT(HyPHT + T)*HwP  (77)

with v = 1 + v. Premultiplying and postmultiplying (77) by
(vP)~1, and applying (76) to the terf{v PHT + 7)1 (with
D=T,E=H,F=vP andG = H7) it leads to

Applying (65) to (67), we get

E{y(0) y()"} = vee™! () vee (E{C() ¢()T))) . (68)

(v l—vHpl=E-2@ P l4+E) = (78)

where we have taken into account tha{¥ (i)}
Provided (20), this relation is simplified as

E{y(i)y(i)"}

—1 -2 -1 _
Taking into account that matrice3(i) D(i)” and R(i) R(i)” W =P = (WP + (79)
are diagonal, we apply (66) to (69) and we get that the diagongyerting both sides of the equality and substitutig =
components oE{y(i) y(i)" } are given by HTT—'H, we finally have that

U(i).
with = = HTT—'H. Now, applying again (76) to the term
(v iP 142t withD== FE=1F=v1P!and
(i) w(i)T. (69) G = I) we obtain that

:—1)71 )

—

diag(E{y(i)y(i)"}) = I'** diag (2u(i)) + 1n, 03(i), (70) P= ”T_]L(HTT*H)*. (80)

which can be rewritten as For its part, at steady stat&, is given by7T = (¥ ¥7)°2 and

E{m(i)} = [[** 1, ] diag (@ ‘gz(i)[j]) . (7)) VT = [TD R|[I'D R|" =TDD'T + RRT. (81)
J
From the definition of matrice® and R and using relation (5),
we have that, at steady state,
B. Kalman filtering
Wl =TT+ %, =3, (82)
Let us consider a linear system of the form
Then, matrixT" can be expressed as
x(l + 1) = Ax(l) + ’LU(Z), y(l) = C‘T(l) + ’U(l)7 (72) T — (\I} \]JT)OQ — Ey o Ey (83)

with z € R"= the state vectory € R"» the output vector, Finally, using (83) in (80) and substituting = 1 + v, we
A € R"=*"= the state matrix and’ € R"»*"= the output get (52).

matrix. Vectorw(i) € R™ contains the process noise and

v(i) € R™ contains the measurement noise. We assume that
w(i) andwv(¢) are independent, zero-mean Gaussian noises of
time-varying covariance®/ (i) = E{w(i) w(i)*} andV (i) = [l
E{v(i)v(i)*}. A model-based observer for (72) is 2]

#(i)=Az(G—1)+ L) (y@) —CAz(i—1)), (73)

(3]

with &(7) the estimated state, see [41]. Then, the dynamics of
the estimation errof (i) = x(i) — (i) is (4]

(i) = (In,— L(1) C) (AZ(i—1) + w(i—1))=L() v(i). (74)  [5]

The optimal Kalman gairi(z) for (73) is given by [6]

Pli)y=AP(Gi—1)AT +Q(i — 1), (75a)
L(i) = P(i)CT (CP(i)CT + V(i) (75b) 7
P(i) = (In, = L(i) C) P(i), (75¢)

(8]
see [31], [32]. HereP(i) and P(i) represent, respectively, the
predicted and the estimation error covariance matrix.
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