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Abstract 

Osseointegration, including the foreign body reaction to biomaterials, is an 

immune-modulated, multifactorial, and complex healing process in which various 

cells and mediators are involved. The buildup of the osseointegration process is 

immunological and inflammation-driven, often triggered by the adsorption of 

proteins on the surfaces of the biomaterials and complement activation. 

New strategies for improving osseointegration use coatings as vehicles for 

osteogenic biomolecules delivery from implants. Natural polymers, such as 

gelatin, can mimic collagen I and enhance the biocompatibility of a material. In 

this experimental study, two different base sol-gel formulations and their 

combination with gelatin, were applied as coatings on sandblasted, acid-etched 

titanium (SAE-Ti) substrates and their biological potential as osteogenic 

biomaterials was tested. We examined the proteins adsorbed onto each surface 

and their in vitro and in vivo effects. In vitro results showed an improvement in 

cell proliferation and mineralization in gelatin-containing samples. In vivo testing 

showed the presence of a looser connective tissue layer in those coatings with 

substantially more complement activation proteins adsorbed, especially those 

containing gelatin. Vitronectin and FETUA, proteins associated with 

mineralization process, were significantly more adsorbed in gelatin coatings.   

Keywords: 

Dental implants; biocompatibility; biomaterial, immunology; complement 

pathway; bone regeneration  
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1. Introduction 

The regenerative processes in the bone entail responses to continuous biological 

challenges. The sequence of bone induction and conduction events, involving 

various types of cells and signaling pathways in a determined order, is necessary 

to achieve an ideal regeneration (Dimitriou et al. 2011). The implants used in the 

field of bone regeneration have been continuously studied and optimized since 

the last century. The results of implantation depend largely on the deposition of 

signaling proteins onto the surface of a biomaterial and will define the magnitude 

and type of the reaction (specially inflammatory, immune, and coagulation) of the 

host to the foreign body implantation (Wilson et al. 2005).   

The complement cascade is involved in a variety of physiological and 

pathophysiological processes, apart from its role as an immune effector. This 

cascade also regulates the cellular turnover, healing, proliferation, and 

regeneration (Rutkowski et al. 2010). The disproportionate long-term effects are 

generally interpreted as implant rejection events. These responses involve mostly 

uncontrolled blood coagulation processes, the development of infection, and the 

formation of immune structures (e.g. fibrous capsule) surrounding the foreign 

body and infected or damaged tissue.  

Biomaterials are manufactured and tested to improve the life quality of the patient 

by minimizing the impact of the implanted foreign body and achieving the 

recovery in the shortest time possible (Duffield et al. 2008; Boehler et al. 2011). 

Assessing the viability of biomaterials involves a battery of extensive tests before 

the final product can be released to the market; these tests normally entail both 

in vitro and in vivo procedures. In vivo testing is the ideal standard in new 

biomaterial trials as it examines their effects on a living organism. However, in 
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vitro testing is the first and necessary step to exclude the immediate damage to 

the organism; it can also help to avoid the ethical problems and minimize the 

costs. However, the in vivo results often do not reflect the in vitro outcomes. This 

problem is invariably emphasized by the experts in the field of regenerative bone 

engineering. Thus, new approaches and tools are needed to avoid detrimental 

side effect and predict the efficacy of biomaterials (Hulsart-Billström et al. 2016).  

Silica sol-gel hybrid materials are often used in biomedical applications due to the 

relative ease of controlling their degradation kinetics and the network pore size. 

These materials degrade by releasing silicon compounds in the Si(OH)4 form to 

the surrounding microenvironment, providing a good osteogenic setting for the 

new bone tissue formation (Juan-Díaz et al. 2014; Romero-Gavilán et al. 2016; 

Juan-Díaz et al. 2016). Moreover, the process itself results in a good grade of 

purity at low temperatures. Gelatin is occasionally embedded in the surface of the 

biomaterial to favor biocompatibility, cell adhesion, proliferation and 

differentiation (Chen et al. 2009; Shue et al. 2012) because it can mimic the 

chemical and biological functions of collagen I in a living organism (Chan et al. 

2015).  

In the silicon networks, gelatin can be effectively crosslinked with an inorganic 

sol-gel alkoxysilane matrix without losing its osteogenic properties (Yoon et al. 

2008). This is useful for controlling the degradation rate, and gelatin can be used 

as a therapeutic agent in the matrix under mild conditions (Kuijpers et al. 1998; 

Di Silvio & Bonfield 1999). Different gelatin-silica composites have been 

developed and studied, and good biocompatibility of these systems has been 

demonstrated (Smitha, Shajesh, et al. 2007; Lei et al. 2013; Lei et al. 2014; 

Mahony et al. 2014). Lei et al. have set silica-gelatin hybrid implants using 



5 
 

3-glycidoxypropyl-trimethoxysilane (GPTMS) and tetraethoxysilane (TEOS) 

alkoxysilanes as precursors. Biological assays have shown that these materials 

have good biocompatibility and they enhance cell proliferation (Lei et al. 2013; 

Lei et al. 2014). 

In a previous work sol-gel compositions with gelatine physically or chemically 

entrapped were sinthetized, achieving different physico-chemical properties 

(Martinez-Ibañez et al. 2018). The protein adsorption onto these gelatin-silica 

networks was studied with quartz crystal microbalance using monoprotein 

solutions and distinct affinities were detected when the gelatin was present 

(Martínez-Ibáñez et al. 2017).  

In this experimental study, two sol-gel coating bases and their silicon-gelatin 

correspondents were applied as coatings on sandblasted, acid-etched titanium 

disc substrates/implants (SAE-Ti), and their biological potential as biomaterials 

was tested. The compositions with gelatin and their respective base materials 

were incubated with human serum, simulating a more real setup. Their effects on 

the adsorbed protein layer using mass spectrometry (LC-MS/MS) were 

examined, and the in vitro and in vivo outcomes were studied. 

2. Materials and methods 

2.1. Titanium discs 

Ti discs (12 mm in diameter, 1-mm thick) were made from a bar of commercially 

available, pure, grade-4 Ti (Ilerimplant S.L., Lleida, Spain). To obtain the 

sandblasted, acid-etched (SAE) Ti, the discs were abraded with 4-μm aluminum 

oxide particles and acid-etched by submersion in sulfuric acid for 1 h to simulate 

a moderately rough implant surface. Discs were then washed in acetone, ethanol, 
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and 18.2-Ω purified water (for 20 min in each liquid) in an ultrasonic bath and 

dried under vacuum. Finally, all Ti discs were sterilized using UV radiation. 

2.2. Sol-gel synthesis and sample preparation 

The silica-gelatin hybrid coatings were obtained through the sol-gel route. The 

precursor alkoxysilanes used were methyltrimethoxysilane (MTMOS), 3-

(glycidoxypropyl)-trimethoxysilane (GPTMS) and tetraethyl orthosilicate (TEOS) 

(Sigma-Aldrich, St. Louis, MO, USA). Four different compositions were 

synthesized. We obtained two silica materials with molar percentages of 70% 

MTMOS and 30% TEOS (70M30T) and 35% MTMOS, 35% GPTMS, and 30% 

TEOS (35M35G30T). Their respective composites (70M30T-GEL and 

35M35G30T-GEL) were made with 0.9% (weight relative to the amount of 

alkoxysilane) of gelatin from porcine skin (Sigma-Aldrich, St. Louis, MO, USA). 

The two gelatin-free compositions were synthesized using 2-Propanol (Sigma-

Aldrich, St. Louis, MO, USA) as solvent at a volume ratio (alcohol:siloxane) of 

1:1. Hydrolysis of alkoxysilanes was carried out by adding (at a rate of 1 drop s-

1) the corresponding stoichiometric amount of 0.1M HNO3 acid aqueous solution 

(Panreac, Barcelona, Spain). The solution was kept for 1 h under stirring and then 

1 h at rest. The materials with gelatin were prepared using a mixture of 50% 2-

Propanol and 50% distilled water as a solvent at a volume ratio (solvent:siloxane) 

of 1:1. After adding the alkoxysilane precursors, the hydrolysis was carried out 

by adding (at 1 drop s-1) the stoichiometric amount of 0.1M HCl acidified aqueous 

solution (Panreac, Barcelona, Spain) with the dissolved gelatin. The solution was 

kept 1 h under stirring and then 1 h at rest, at 37 ºC. The samples were prepared 

immediately afterward. SAE-titanium was used as a substrate. The coating was 

performed employing a dip coater (KSV instrument-KSV DC). Discs and implants 
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were immersed in the corresponding sol-gel solution at a speed of 60 cm min-1, 

left immersed for one minute, and removed at a 100 cm min-1. Finally, the 

samples were cured for 2 h at 80 ºC. 

2.3. Physicochemical characterization of coated titanium discs 

A mechanical profilometer Dektak 6M (Veeco, NY, USA) was used to determine 

the roughness. Two coated discs of each composition were tested. Three 

measurements were performed for each disc to obtain the average values of the 

Ra parameter. The contact angle was measured using an automatic contact 

angle meter OCA 20 (Dataphysics Instruments, Filderstadt, Germany). Ten µL of 

ultrapure water W04 were deposited on the sol-gel coated surface at a dosing 

rate of 27.5 μL s-1 at room temperature. Contact angles were determined using 

SCA 20 software. Five discs of each material were studied, after depositing two 

drops on each disc. The surface topography of the coatings was characterized 

using scanning electron microscopy (SEM) employing the Leica-Zeiss LEO 

equipment under vacuum (Leica, Wetzlar, Germany). Platinum sputtering was 

applied to make the samples more conductive for the SEM observations. 

2.4. In vitro assays 

MC3T3-E1 (mouse calvaria osteosarcoma cell line) cells were cultured on the 

sol-gel coated titanium discs at a concentration of 1 × 104 cells/well, in Dulbecco’s 

modified Eagle’s medium (DMEM) with phenol red (Gibco-Life Technologies, 

Grand Island, NY, USA), 1 % 100× penicillin/streptomycin (Biowest Inc., 

Riverside, KS, USA), and 10 % fetal bovine serum (FBS) (Gibco-Life 

Technologies, Grand Island, NY, USA). After incubation for 24 hours at 37 ºC in 

a humidified (95 %) atmosphere of 5 % CO2, the medium was replaced with an 
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osteogenic medium composed of DMEM with phenol red 1×, 1 % 

penicillin/streptomycin, 10 % FBS, 1 % ascorbic acid (5 mg mL-1), and 0.21 % 

β-glycerol phosphate, and incubated again under the same conditions. The 

culture medium was changed every 48 hours. In each plate, a well with cells at 

the same concentration (1 × 104 cells) was used as a control of culture conditions. 

The biomaterial cytotoxicity was assessed following the ISO 10993-5 norm, 

measured by spectrophotometry, by contact of the material extract with the cell 

line. The 96-Cell Titter Proliferation Assay (Promega®, Madison, WI, USA) was 

employed to measure the cell viability after 24-h incubation of the cells with the 

extract. We used one negative control (empty cell well) and a positive control with 

latex, known to be toxic to the cells. Seventy-percent cell viability was the limit 

below which a biomaterial was considered cytotoxic. 

For measuring cell proliferation, the commercial cell viability assay alamar Blue® 

(Invitrogen-Thermo Fisher Scientific, Waltham, MA, USA) was used. This kit 

measures the cell viability on the basis of a redox reaction with resazurin. The 

cells were cultured in wells with the discs (3 replicates per treatment) and 

examined following the manufacturer’s protocol after 4 days, 8 days, and 14 days. 

The percentage of reduced resazurin was used to evaluate cell proliferation. 

To obtain the samples for total protein measurement (BCA) and ALP activity, the 

culture medium was removed from the wells, the wells were washed three times 

with 1 × DPBS, and 100 μL of lysis buffer (0. 2 % Triton X-100, 10 mM Tris-HCl, 

pH 7.2) were added to each well, obtaining the cell lysate. After being kept on ice 

for 10 min, the lysate was sonicated and centrifuged for 7 min at 13,300 rpm and 

the supernatant was used to measure the total protein content and the ALP 

activity. Each sample was pipetted in triplicate (5 µL per well).  
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The total protein content was calculated from a standard curve for bovine albumin 

and expressed as μg μL−1, following the manufacturer’s instructions, using the 

colorimetric measurement of BCA at 570 nm on a microplate reader Multiskan 

FC® (Thermo Scientific®). 

The conversion of p-nitrophenylphosphate (p-NPP) to p-nitrophenol was used to 

assess the alkaline phosphatase (ALP) activity. Sample Aliquots of 0.1 mL were 

used to carry out the assay. One hundred µL of p-NPP (1 mg mL-1) in substrate 

buffer (50 mM glycine, 1mM MgCl2, pH 10.5) was added to the 100 µL of the 

supernatant obtained from the lysate. After two hours of incubation in the dark 

(37 ºC, 5 % CO2), absorbance was measured using a microplate reader at a 

wavelength of 405 nm. ALP activity was obtained from a standard curve obtained 

using different solutions of p-nitrophenol and 0.02 mM sodium hydroxide. Results 

were presented as mmol of p-nitrophenol/hour (mmol PNP h-1), and data were 

expressed as ALP activity normalized by the total protein content (µg µL-1) 

obtained using Pierce BCA assay kit (Thermo Fisher Scientific, Waltham, MA, 

USA) after 7 and 14 days. 

 

2.5. Statistical analysis 

Data were submitted to one-way analysis of variance (ANOVA) and to a 

Newman-Keuls multiple comparison post-test, when appropriate. Differences 

with p ≤ 0.05 were considered statistically significant. 

2.6. In vivo experimentation 

To assess the in vivo behaviour to the selected coatings, coated dental implants 

were surgically placed in the tibia of New Zealand rabbits (Oryctolagus 
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cuniculus). This implantation model is widely used to study the osseointegration 

of dental implants (Mori et al. 1997). All the experiments were conducted in 

accordance with the protocols of Ethical Committee of the Valencia 

Polytechnique University (Spain), the European guidelines and legal conditions 

laid in R. D. 223/1988 of March 14th, and the Order of October 13rd, 1988 of the 

Spanish Government on the protection of animals used for experimentation and 

other scientific purposes. The rabbits were kept under 12-h span darkness-light 

cycle; room temperature was set at 20.5 ± 0.5 °C, and the relative humidity 

ranged between 45 and 65 %. The animals were individually caged and fed a 

standard diet and filtered water ad libitum. Dental implants were supplied by 

Ilerimplant S.L. (Lleida, Spain). They were the internal-connection dental 

implants, made with titanium grade 4, (trademark GMI), of 3.75-mm diameter and 

8-mm length. We used the Frontier model, with SAE surface treatment. Overall, 

40 implants were used, 20 uncoated (control) and 5 coated (test samples) with 

each material. The control and test samples were implanted under the same 

conditions. 

We used 20 rabbits, 5 for each material, with weights between 2000 and 3000 g, 

of the age near the physical closure (indicative of an adequate bone volume). The 

implantation period for the experimental model was 2 weeks. Implants were 

inserted in both left and right proximal tibiae, each animal receiving two implants 

(one control sample and one test sample). Animals were sedated 

(chlorpromazine hydrochloride) and prepared for surgery, and then anesthetized 

(ketamine hydrochloride). A coetaneous incision was made in the implantation 

site in the proximal tibia. The periosteum was removed, and the osteotomy was 

performed using a low revolution micromotor and drills of successive diameters 
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of 2, 2.8, and 3.2 mm, with continuous irrigation. Implants were placed by press-

fit, and surgical wound was sutured by tissue planes, washed with saline and 

covered with plastic spray dressing (Nobecutan, Inibsa Laboratories, Barcelona, 

Spain). After each implantation period, the animal was euthanized by carbon 

monoxide inhalation, and the implant screws were retrieved to study the 

surrounding tissues. 

Samples for histological examination were processed following the method 

described by Peris et al. (Peris et al. 1993). Briefly, the samples were embedded 

in methyl methacrylate, and 25–30 µm thick sections were obtained using 

EXAKTtechnique (EXAKT Technologies, Inc., Oklahoma, USA). For optical 

microscopy examination, all the sections were stained using Gomori Trichrome 

solution. 
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2.7. Adsorbed protein layer 

Sol-gel coated titanium discs were incubated in a 24-well plate for 180 min in a 

humidified atmosphere (37 ºC, 5 % CO2), after the addition of 2 mL of human 

blood serum from male AB plasma (Sigma-Aldrich, St. Louis, MO, USA). 

The serum was removed, and, to eliminate the non-adsorbed proteins, the discs 

were rinsed five times with ddH2O and once with 100 mM NaCl, 50 mM Tris-HCl, 

pH 7.0. The adsorbed protein layer was collected by washing the discs in 0.5 M 

Triethylammonium bicarbonate buffer (TEAB) with 4 % of sodium dodecyl sulfate 

(SDS) and 100 mM of Dithiothreitol (DTT). The experimental method was 

adopted from a study by Kaneko et al. (Kaneko et al. 2011). Four replicates for 

each biomaterial were obtained. The total protein content of the serum employed 

to this study was quantified before the experiment (Pierce BCA assay kit; Thermo 

Fisher Scientific, Waltham, MA, USA), obtaining a value of 51 mg mL-1. 

2.8. Proteomic analysis 

Proteomic analysis was performed as described by Romero-Gavilán et al. 

(Romero-Gavilán et al. 2017), with minor variations. Briefly, the same amount of 

sample (2/10 of the eluted material) was loaded in each lane for the same 

experimental conditions. The eluted protein was resolved in polyacrylamide gels; 

the gels were cut into slices. Each of these slices was digested with trypsin and 

loaded onto a nanoACQUITY UPLC system connected online to a SYNAPT G2-

Si MS System (Waters, Milford, MA, USA). Differential protein analysis was 

carried out using Progenesis software (Nonlinear Dynamics, Newcastle, UK) as 

described before (Romero-Gavilán et al. 2017), and the functional annotation of 

the proteins was performed using PANTHER (www.pantherdb.org/) and DAVID 
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Go annotation programs (https://david.ncifcrf.gov/). Uniprot 

(http://www.uniprot.org/) nomenclature was adopted to name the proteins without 

the ending “_HUMAN”. 

3. Results 

3.1.  Synthesis and physicochemical characterization 

Our chosen synthesis parameters allowed us to obtain different materials, all with 

homogenous surfaces, as can be seen in the SEM micrographs (Fig. 1). The 

70M30T coating had different morphology in comparison with 35M35G30T. 

However, no differences in morphology were detected when gelatin was 

incorporated in the networks. This agrees with the data obtained using the 

mechanical profilometer. 70M30T and 70M30T-GEL materials had an average 

surface roughness (Ra) of 0.77 ± 0.13 and 0.79 ± 0.07 µm, respectively. The 

compositions 35M35G30T and 35M35G30T-GEL exhibited lower roughness (Ra 

of 0.51 ± 0.14 µm and 0.58 ± 0.15 µm, respectively). The contact angle 

measurements (Fig. 2) gave similar values for 70M30T and 35M35G30T 

coatings. However, the addition of gelatin caused a decrease in wettability on 

both materials. 

3.2.  In vitro assays 

None of the biomaterials tested was cytotoxic. After 7 days of incubation, we 

found no differences between the ALP activities for the examined materials or 

even between these materials and SAE-Ti. Interestingly, after 14 days, we 

observed a significant increase in the ALP activity on the material 35M35G30T-

GEL in comparison with the other formulations even though this material had the 

lowest activity after 7 days (Fig. 3). After 14 days, cell proliferation increased 
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slightly on the formulations with gelatin in comparison with their base materials; 

the cultures grown on the formulation 70M30T-GEL showed higher levels of 

proliferation than the control cells. We noted that the proliferative potential of 

70M30T base material was better than the proliferative properties of 

35M35G30T. 

3.3. In vivo assays 

Titanium implant coatings generated a distinctive tissue response at the 

experimental time tested. In the screw grooves corresponding to the cortical 

region no new bone tissue was observed in 70M30T and 35M35G30T coated 

implants. When implants were coated with a mixture of gelatin combined with 

either of the two sol-gel solutions new bone tissue growing was observed filling 

the grooves. From the cortical bone new bone trabeculae grew towards the 

implant surface region located in the medullary cavity. The relative length of the 

trabeculae as well as their density was slightly higher for the 70M30T implants 

when compared to the other 3 experimental groups (Fig. 4). Furthermore, in the 

medullary cavity a fibrous connective tissue was developed also around the 

implant surface of the 70M30T samples, containing arterial vessels. The 

connective tissue was looser and the arterial vessels density lower around 

35M35G30T coated implants and those implants coated with a formulation 

containing gelatin. The inflammatory response was lower for the 70M30T coating 

considering the relative density and size of giant multinucleated cells laying the 

implant coating. Thus, few osteoclast-like and multinucleated giant cells, most of 

them of a small size were observed in the grooves of the implant (Fig. 5a). The 

relative density of giant cells was slightly higher for the 35M35G30T-coated 

implants. The addition of gelatin to the sol-gel coating was related to an evident 
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increase of the giant cells size and cell density, that was about 3- and 4-times 

higher for the 70M30T- and 35M35G30T-GEL (Fig. 5b) coatings, respectively. 

3.4.     Proteomic analysis 

The proteins eluted from each biomaterial were studied using LC-MS/MS. The 

Progenesis QI software was employed to compare the characteristic proteins 

adhering to the different surfaces. One hundred seventy-one proteins were 

detected and quantified for each surface coating. 

The comparison of identified proteins on the 70M30T and 35M35G30T materials 

displays 6 proteins more absorbed onto the 35M35G30T coating (Table 1). While 

CLUS, FA12 and APOA5 proteins are more abundant on the 70M30T coating. 

The comparison of the data obtained for the 70M30T and 70M30T-GEL materials 

reveals 5 proteins with increased adsorption to the composition with gelatin 

(C1QA, FINC, FETUA, LDHB, and CO8B), while only one (K2C71) is more 

abundant on the 70M30T coating (Table 2).  

The PANTHER diagram showing classification by function is displayed in Fig. 6. 

Although the 70M30T material yielded only one differentially adhering protein 

(keratin), adding gelatin to the matrix induced the adhesion of proteins related 

with the immune system (14%) and the biological adhesion (14%).  

Similarly, Table 3 shows the comparison between the compositions 35M35G30T 

and 35M35G30T-GEL. In this case, 9 proteins were identified as more abundant 

on the composition with gelatin; CFAD, CO6, CRP, CO8B, and APOM were 

among them. However, the levels of adhering IGJ, CATD, HORN, and FCN2 

were significantly higher for the 35M35G30T biomaterial. The GO functional 

classification of the proteins was performed using PANTHER system. Fig. 7a and 
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7b show the biological functions of the proteins differentially adsorbed onto 

35M35G30T and 35M35G30T-GEL, respectively. It is noteworthy that while the 

35M35G30T proteins were only involved in 4 functions, after adding gelatin, we 

found differentially adhering proteins participating in 9 biological processes. 

Moreover, for the formulations with gelatin, the proportion of functions associated 

with immune system processes increased from 14 % to 20 %. The comparison 

between Table 2 and 3, give us the unique common differentially adhering protein 

common to the two materials with gelatin, a complement protein C08B. The 

comparison between the gelatin compositions is presented in Table 4. Sixteen 

proteins were preferentially adsorbed onto the 35M35G30T-GEL coating (e.g. 

S10A9, CFAD, CRP, SAMP, C1QC, and VTNC), while only 4 were more 

abundant on the 70M30T-GEL (APOA, CLUS, APOA5, and IGJ). 

 

4. Discussion 

The implantation of bone biomaterials triggers an immediate host response, 

provided by the immune system. Multi-directional pathways and mechanisms are 

activated, ultimately determining the integration or rejection of the biomaterial. 

These responses involve interactions between three types of components: the 

host immune cells, the host bone cells, and the materials themselves (Chen et 

al. 2015). The initial layer of proteins adsorbed onto the biomaterial surface will 

ultimately define its biocompatibility, triggering, among other processes, 

coagulation, immune and angiogenesis signaling cascades. Hence, each 

biomaterial, depending on its chemical and physical composition, conformation, 

and intrinsic characteristics, can adsorb distinct sets and quantities of proteins to 

its surface. Titanium has been widely used as the base material for implants 
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because of its bioinertia and osteoconductive characteristics (Buser et al. 1991). 

Nowadays, various coatings are deposited onto this material to confer bioactive 

properties that enhance and accelerate the osseointegration in a living organism 

(Jones 2001). Our experimental work focused on the characterization of the 

protein layer adsorbed onto four distinct biomaterials coated on the titanium discs 

(in vitro assays) or implants (in vivo experiments): 70M30T, 70M30T-GEL, 

35M35G30T, and 35M35G30T-GEL, and their correlation with in vitro and in vivo 

experimentation results. These silica sol-gel hybrid materials were selected 

because they confer bioactive properties to the titanium surface (Martínez-Ibáñez 

et al. 2016; Juan-Díaz et al. 2016). 

Gelatin-containing formulations were used to examine potential improvements in 

the biocompatibility as it might enhance the adhesion of the cells by mimicking 

the behavior of collagen I. Some studies have combined gelatin with other 

materials with positive bone regeneration properties, such as calcium phosphates 

or silicon (Kim et al. 2012; Lei et al. 2013; Lei et al. 2014; Mahony et al. 2014) 

improving the in vitro results (Takahashi et al. 2005). 

Gelatin was incorporated in both sol-gel base compositions (70M30T and 

35M35G30T). In 70M30T, the gelatin is kept in the silica network due to hydrogen 

bonds between amino and carboxyl groups from gelatin and silanol groups 

(Smitha, Mukundan, et al. 2007). However, in 35M35G30T, it is anchored to the 

structure through covalent bonds formed by the reaction with the epoxy ring of 

the GPTMS precursor (Mahony et al. 2014).  

The main chemical difference between the tested base materials (70M30T and 

35M35G30T) is the presence of the GPTMS organic groups in the 35M35G30T. 

In general, physico-chemical results display a decrease on roughness when 
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GPTMS is added, whereas the incorporation of gelatin in both base materials 

shows an increase on hydrophobicity, possibly due to the special distribution of 

hydrophobic groups at the surface. Regardless of these differences, the in vitro 

results show non-significant or non-existent divergences between both base 

materials. The only exceptions were the increased cell proliferation on the 

70M30T-GEL samples (result that it is described in the bibliography (Lei et al. 

2013; Lei et al. 2014), and the significant increase in the ALP activity on 

35M35G30T-GEL (Fig. 3). However, it is worth mentioning the in vitro strategy 

adopted (using a single immortalized cell line), is not the ideal to simulate the 

whole in vivo setup of an implantation procedure, in which various biological 

systems and cues are involved, but it is the generally accepted standard for 

testing biomaterials nowadays. This in vitro setup gives the experimentation 

some clues about the material influence directly on the osteoblastic cell behavior 

but does not consider parameters like the immune response and coagulative 

systems, which is something to take into account as a future perspective (Kohli 

et al. 2018).  

Regarding proteomic analysis, it is interesting to observe the correlation between 

the base material 35M35G30T and 70M30T (Table 1) in vivo outcomes and the 

adsorbed layer of proteins formed onto each surface.  In particular, 35M35G30T-

coating shows the formation of a thin fibrous connective tissue surrounding the 

material. In the mentioned comparative table 1, it is clear the greater adsorption 

of mainly two proteins directly related with the complement pathway: involved in 

the classical pathway (C1QA) and the lectin pathway (FCN-2), respectively (Ma 

et al. 2009). 
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Interestingly, between 70M30T and 70M30T-GEL (Table 2), is notable a slightly 

greater adsorption of C1QA when the base material is supplemented with gelatin, 

which can explain the existence of a very thin sheet of fibrous connective tissue 

(Fig. 4c). At the same time, it is clear the greater adsorption of FINC on the 

material with gelatin, which is a protein widely described to be involved on cellular 

adhesion and proliferative processes (Ruoslahti 1984; Sottile et al. 1998). 

Notably, the proteins FETUA, CO8B, and C1QC were more abundant on the 

70M30T-GEL than on its base material. C1QC and CO8B are pro-inflammatory 

proteins. However, it is interesting to note that FETUA has been described as a 

modulator of macrophage opsonization, displaying anti-inflammatory activity, 

among its other functions. Moreover, this protein has a role in the fibril 

mineralization and may promote bone tissue formation (Manolakis et al. 2017). 

The comparison and characterization of the layers of proteins formed on 

35M35G30T and 35M35G30T-GEL coated surfaces (Table 3) showed more 

proteins related to the immune system adsorbed onto the 35M35G30T-GEL 

material (Fig. 7), in particular, the proteins CO6, CFAD, CO8B, and CRP, a 

complement system activator (Murphy et al. 2008). Hence, in this aspect and at 

this point it is important to confirm the correlation between the greater adsorption 

of complement proteins and what is observed in regard to the increased presence 

of multinucleated giant cells around the gelatin-doped materials (Fig. 5), that 

means that the incorporation of gelatin molecule supposes an increase in the 

immune response associated to the biomaterial.  

It was also observed the increased levels of adsorption (approximately 2-fold) of 

pro-inflammatory proteins onto the 35M35G30T-GEL in comparison with 

70M30T-GEL, namely S10A9 (Narumi et al. 2015), CFAD (Takahashi et al. 
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2010), CRP, SAMP, C1S, and C1QC (Ricklin et al. 2010). Worthy of note is the 

enhanced adsorption of VTNC (1.60-fold increase) on the 35M35G30T-GEL. This 

protein induces the osteogenesis by promoting the osteoblast differentiation, in 

the same way as collagen I (Salasznyk et al. 2004). This different protein 

adsorption could be related to both the differences in base material 

characteristics and the distinct gelatin linking strategies, which could condition 

the gelatin conformational organization in the network and then the exposure of 

its functional groups to the serum proteins.   

In the in vivo experiments connective tissue developed and remained around 

regions of the implant surfaces not situated in the proximity of bone tissue. Thus, 

around the medullary cavity portion of 70M30T-coated implants a more fibrous 

layer was observed. All materials with differentially adsorbed proteins related to 

the complement system or with complement system activator proteins 

(35M35G30T and gelatin formulations) developed a looser connective tissue 

around the implant. Despite of the connective tissue formation, the histology of 

these materials showed proper bone tissue developing and direct bone-implant 

contact in some areas. The incorporation of gelatin indeed had some effect on 

the induction of a better implant integration, as new bone tissue was observed 

filling the screw grooves on the cortical zone, which is concordant with the 

hypothesis established above, as far as it enhances the osteoblast proliferation 

and differentiation. The increased abundance of complement proteins on some 

of the materials might be sufficiently high to promote the formation of a loose 

connective tissue layer (e.g. in comparison with more fibrous capsules) but not 

too high to prevent partially good osseointegration. A non- chronic immune 

response is not always undesirable as it favors the tissue growth and 
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regeneration around the implant (Rutkowski et al. 2010). In fact, the role of 

cytokines is not uniquely limited to the inflammatory response, as they are 

described to play a role on osteoblastic activation and/or on osteoclast inhibition, 

thus enhancing bone formation processes (Kitaura et al. 2016). 

One way of measuring the grade of the immune reaction to these materials, might 

be the establishment of an inhibitory/activator ratio of the identified anti-

inflammatory proteins, as VTNC, in comparison with the pro-inflammatory protein 

CRP. Applying these criteria, the data obtained from the proteomic analysis 

shows a decrease on these ratios, in particular on the materials incorporating 

gelatin. For example, the ratio VTNC/CRP on the 70M30T material reaches a 

value of 76.05, whilst the same material supplemented with gelatin as a value of 

56.71. The same finding is observed with the 35M35G30T material, although not 

having such high values.  

This might be related with the differences between the base materials. Having 

into account these ratios, an appropriate equilibrium between anti- and pro-

inflammatory proteins can be desirable to avoid a chronic inflammatory response 

and fibrotic tissue formation. The results obtained from the analysis of this ratio 

are consistent with the in vivo results, in the sense that is visible an increase on 

the inflammatory reaction with a greater presence of multinucleated giant cells 

around the gelatin-supplemented coating on both base materials. This might be 

explained due to the smaller ratio due to the greater adsorption of CRP on them. 

This fact comes to reinforce the potential of proteomic analysis when addressing 

material biocompatibility, as documented in a previous study (Araújo-Gomes et 

al. 2017). 
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5. Conclusions  

In summary, it has been shown that the base material 35M35G30T may induce 

overall a higher immune response than the other base material 70M30T in vivo. 

Although in vitro results are not concordant with this behaviour, proteomic 

analysis show effectively more adsorption of proteins related to the 

immune/inflammatory response on the base material 35M35G30T. The in vivo 

behaviour displays that 70M30T base material produces a lower immune 

response at the period tested that increases when adding gelatine while the 

35M35G30T formulation induces a higher response that also increases when 

gelatin is added. Overall, the addition of gelatin on each material’s matrix, provide 

an even greater immune response, supported by the fact of the adsorption of 

having more pro-inflammatory proteins adsorbed on the gelatin-silica hybrid sol-

gel formulations, in particular the CRP, a great activator of the complement 

cascade. On the equilibrium between pro and anti-inflammatory adsorbed 

proteins may reside the key for a prediction of in vivo outcome. 
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TABLES  

Table 1. The comparison of proteins differentially adhered to 70M30T and 

35M35G30T sol-gel coatings (Progenesis analysis). ANOVA (p-value < 0.05). 

Description Accession 70M30T 35M35G30T 
35M35G30T/ 

70M30T 

Myosin-1 MYH1_HUMAN 5,71E+02 9,81E+03 17,19 

L-lactate dehydrogenase 
B chain 

LDHB_HUMAN 1,00E+04 1,22E+05 12,18 

Glutamate 
dehydrogenase 1, 

mitochondrial 
DHE3_HUMAN 8,24E+02 7,13E+03 8,65 

Ficolin-2 FCN2_HUMAN 7,05E+03 5,84E+04 8,28 

Complement C1q 
subcomponent subunit A 

C1QA_HUMAN 3,17E+04 9,68E+04 3,06 

Hemoglobin subunit alpha HBA_HUMAN 3,75E+04 6,50E+04 1,73 

Clusterin CLUS_HUMAN 6,81E+05 4,15E+05 0,61 
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Coagulation factor XII FA12_HUMAN 1,34E+05 7,80E+04 0,58 

Apolipoprotein A-V APOA5_HUMAN 5,41E+03 2,85E+03 0,53 

 

Table 2. The comparison of proteins differentially adhered to 70M30T and 

70M30T-GEL hybrid coatings (Progenesis analysis). ANOVA (p-value < 0.05). 

Description Accession 70M30T 
70M30T-

GEL 
70M30T-

GEL/70M30T 

Complement C1q 
subcomponent subunit A 

C1QA_HUMAN 3.17E+04 6.71E+04 2.12 

Fibronectin FINC_HUMAN 8.26E+03 1.54E+04 1.86 

Alpha-2-HS-glycoprotein FETUA_HUMAN 2.25E+05 3.91E+05 1.74 

L-lactate dehydrogenase B 
chain 

LDHB_HUMAN 1.00E+04 1.74E+04 1.73 

Complement component C8 
beta chain 

CO8B_HUMAN 1.04E+04 1.50E+04 1.45 

Keratin, type II cytoskeletal 
71 

K2C71_HUMAN 8.38E+03 5.90E+03 0.70 

 

Table 3. The comparison of proteins adhered to 35M35G30T and 35M35G30T-

GEL hybrid coatings (Progenesis analysis). ANOVA (p-value < 0.05). 

Description Accession 
35M35G30

T 
35M35G30

T-GEL 

35M35G30T-
GEL 

/35M35G30T 

Ig kappa chain V-I region 
Roy 

KV116_HUMA
N 

2.73E+04 7.34E+04 2.69 

Complement factor D CFAD_HUMAN 2.14E+04 4.98E+04 2.33 

Complement 
component C6 

CO6_HUMAN 2.15E+04 4.91E+04 2.28 

C-reactive protein CRP_HUMAN 6.62E+03 1.35E+04 2.04 

Complement 
component C8 beta 

chain 
CO8B_HUMAN 1.05E+04 2.13E+04 2.02 

Ig gamma-3 chain C 
region 

IGHG3_HUMA
N 

8.18E+04 1.47E+05 1.80 

Ig kappa chain V-II 
region Cum 

KV201_HUMA
N 

5.71E+05 9.69E+05 1.70 

Apolipoprotein M 
APOM_HUMA

N 
2.84E+04 4.74E+04 1.67 
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Ig kappa chain V-IV 
region Len 

KV402_HUMA
N 

3.46E+05 5.28E+05 1.53 

Immunoglobulin J chain IGJ_HUMAN 9.79E+04 6.99E+04 0.71 

Cathepsin D CATD_HUMAN 3.65E+04 1.66E+04 0.46 

Hornerin HORN_HUMAN 8.79E+03 2.25E+03 0.26 

Ficolin-2 FCN2_HUMAN 5.84E+04 8.79E+03 0.15 
 

Table 4. The comparison of proteins differentially adhered to 35M35G30T-GEL 

and 70M30T-GEL (Progenesis analysis). ANOVA (p-value < 0.05). 

Description Accession 
70M30T-

GEL 
35M35G30T

-GEL 

35M35G30T-
GEL/70M30T

-GEL 

Glutamate 
dehydrogenase 1, 

mitochondrial 
DHE3_HUMAN 1.35E+03 1.67E+04 12.39 

L-lactate dehydrogenase 
B chain 

LDHB_HUMAN 1.74E+04 1.57E+05 9.01 

Myosin-1 MYH1_HUMAN 2.18E+03 6.79E+03 3.11 

Protein S100-A9 S10A9_HUMAN 3.74E+04 9.33E+04 2.49 

Complement factor D CFAD_HUMAN 2.13E+04 4.98E+04 2.34 

C-reactive protein CRP_HUMAN 6.08E+03 1.35E+04 2.22 

Serum amyloid P-
component 

SAMP_HUMAN 2.54E+05 5.29E+05 2.09 

Ig kappa chain V-I region 
Roy 

KV116_HUMAN 3.79E+04 7.34E+04 1.93 

Ig kappa chain V-III region 
SIE 

KV302_HUMAN 2.44E+06 4.71E+06 1.93 

Complement C1q 
subcomponent subunit C 

C1QC_HUMAN 1.09E+06 1.90E+06 1.75 

Ig kappa chain V-II region 
Cum 

KV201_HUMAN 5.93E+05 9.69E+05 1.63 

Vitronectin VTNC_HUMAN 3.45E+05 5.50E+05 1.60 

Gelsolin GELS_HUMAN 1.58E+06 2.39E+06 1.51 

Complement C1s 
subcomponent 

C1S_HUMAN 2.43E+05 3.51E+05 1.45 

Ig gamma-3 chain C 
region 

IGHG3_HUMAN 1.03E+05 1.47E+05 1.43 

Actin, cytoplasmic 1 ACTB_HUMAN 4.88E+04 6.78E+04 1.39 

Immunoglobulin J chain IGJ_HUMAN 9.78E+04 6.99E+04 0.71 

Apolipoprotein(a) APOA_HUMAN 3.07E+04 1.78E+04 0.58 

Clusterin CLUS_HUMAN 9.81E+05 5.11E+05 0.52 

Apolipoprotein A-V APOA5_HUMAN 7.21E+03 3.71E+03 0.51 
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FIGURE CAPTIONS 

 

Figure 1. SEM images of hybrid sol-gel coatings onto titanium discs: 70M30T (a), 

70M30T-GEL (b), 35M35G30T (c) and 35M35G30T -GEL (d). Calibration bar 10 

µm. 

 

Figure 2. Contact angle measurements of 70M30T, 70M30T-GEL, 35M35G30T 

and 35M35G30T -GEL sol-gel coatings.  
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Figure 3. MC3T3-E1 in vitro results. (a) ALP activity (mM PNP/h) normalized to 

the amount of total protein (µg µL-1) levels and (b) proliferation results of the cells 

cultivated on titanium discs treated with 70M30T, 70M30T-GEL, 35M35G30T, 

35M35G30T-GEL formulations. Cells on an empty well without disc were used as 

a positive control (black column), whereas uncoated titanium discs (white column) 

were used as a negative control (ANOVA, p ≤ 0,05).  
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Figure 4. Microphotographs of titanium implants. Panoramic images of (a) 

70M30T, (b) 70M30T-GEL, (c) 35M35G30T and (d) 35M35G30T-GEL implants. 

The delineated regions (blue rectangles) in the medullary cavity of (a) and (d) 

images are shown magnified in Figure 5. 

 

Figure 5. Microscopic detail of areas corresponding to the medullary cavity. 

Multinucleated cells layering the groove surface of (a) 70M30T and (b) 

35M35G30T-GEL implants. The areas shown correspond to those delineated in 

Figure 4. Scale bar, 0.05 mm. 
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Figure 6. PANTHER diagram with the biological process of the proteins 

differentially adhered to 70M30T-GEL, respect 70M30T. 

 

Figure 7. PANTHER diagram with the biological process of the proteins 

differentially adhered to 35M35G30T (a) and 35M35G30T-GEL (b). 

 


