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Abstract—Hybrid cloud bursting (i.e., leasing temporary off-premise
cloud resources to boost the overall capacity during peak utilization)
can be a cost-effective way to deal with the increasing complexity of
big data analytics, especially for iterative applications. However, the low
throughput, high latency network link between the on-premise and off-
premise resources (“weak link”) makes it difficult to maintain scalability.
While there are several data locality techniques dedicated for big data
bursting on hybrid clouds, their effectiveness is difficult to estimate in
advance. On the other hand, such estimations are critical for users,
because they aid in the decision of whether the extra pay-as-you-go
cost incurred by using the off-premise resources justifies the runtime
speed-up. To this end, the current paper contributes with a performance
model and methodology to estimate the runtime of iterative MapReduce
applications in a hybrid cloud bursting scenario. A key idea of the
proposal is to focus on the overhead incurred by the weak link at fine
granularity, both for the map and reduce phase. This enables high
estimation accuracy, as demonstrated by extensive experiments at scale
using a mix of real-life iterative MapReduce applications from standard
big data benchmarking suites that cover a broad spectrum of data
patterns. Not only are the produced estimations accurate in absolute
terms compared with the actual experimental results, but they are also
up to an order of magnitude more accurate than applying state-of-art
estimation approaches originally designed for single-site MapReduce
deployments.

Index Terms—Hybrid Cloud; Big Data Analytics; Iterative Applications;
MapReduce; Performance Prediction; Runtime Estimation

1 INTRODUCTION

An important class of problems running on private clouds
is big data analytics. However, with data sizes exploding
(Zettabytes predicted by 2020 [1]) and applications becom-
ing increasingly complex, private clouds struggle to accom-
modate the required scale and scope: there is often simply
not enough capacity to run the desired analytics or it is diffi-
cult to obtain the desired results within a given deadline. In
addition, the rich, shared big data ecosystem facilitated by
public cloud computing (large amounts of data exploitable
from multiple data sources and users) opens many new op-
portunities for combined analytics that potentially enables

new insight beyond what is possible within the scope of
a private cloud alone. In this context, cloud bursting [2] has
seen a rapid increase in popularity among big data analytics
users. It is a form of hybrid cloud computing that enables
temporary boosting of on-premise resources managed by
a private cloud with additional off-premise resources from
a public cloud provider, for the purpose of overcoming the
limitations of private data centers only when necessary (e.g.
during peak utilization) in a flexible, cost-efficient pay-as-
you-go fashion.

However, enabling cloud bursting for big data analyt-
ics at large scale poses a major challenge: unlike conven-
tional datacenters where big data analytics applications
and middleware run on top of physically co-located IT
resources with high-speed interconnections, the use of both
on-premise and off-premise resources creates a “weak link”
between them that is at least an order of magnitude slower.
This weak link becomes a major bottleneck in the context
of big data analytics, because massive data sizes need to
be shipped back and forth between the on-premise and
the off-premise part as a result of complex concurrent data
access patterns that are not easy to predict. This effect has
multiple implications at the level of the runtime and storage
layer, prompting the need for new “hybrid cloud big data
analytics” approaches.

One particular class of big data analytics applications
are particularly well suited for cloud bursting: iterative
applications that reuse invariant input data. In this case, a
large part of the data needs to be shipped over the weak
link only once and can be reused for subsequent iterations,
which potentially reduces the I/O pressure on the weak
link and thus diminishes its negative effect on the overall
performance. Furthermore, iterative applications refine the
result progressively with each iteration, which means inter-
mediate results are accessible while the computation is still
on-going. This has important consequences in the context
of cloud bursting, because it facilitates early decisions, e.g.
stop when the result is good enough and does not justify
extra cost for refinement or guide other computations in a
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complex workflow that depends on the results.
Accelerating iterative applications using hybrid cloud

bursting is non-trivial, because it raises several issues: how
to ship the initial data, how to overlap the computations
with the data transfers and how to exploit data locality
efficiently.

In our previous work [3], [4], we introduced two com-
plementary techniques to address these issues: (1) extended
off-premise HDFS storage layer using asynchronous rack-
aware replica rebalancing, (2) locality-enforced scheduling
that avoids redundant data transfers over the weak link.
Thanks to these techniques, we have shown that iterative
MapReduce applications running in a cloud bursting sce-
nario can experience significant speed-up compared with
the default Hadoop implementation designed for a single
data-center. In addition, we have also shown that such
techniques can perform close to the lower bound, i.e. the
performance is close to the case when more on-premise
resources are added to match the capacity of the hybrid
setup.

However, despite potential to achieve significant speed-
up, an equally important challenge is to estimate the runtime
in advance: the extra off-premise resources provisioned
through hybrid cloud bursting incur pay-as-you-go costs,
thus advance knowledge about potential speed-up aid the
user to decide before committing any money whether it is
worthwhile to use hybrid cloud bursting at all, and, if so,
how many off-premise resources are optimally needed to
achieve a desired performance-cost trade-off.

In this paper we extend our previous work with a
generic performance model that applies to the complemen-
tary techniques introduced above in order to estimate the
runtime of iterative MapReduce applications for hybrid
cloud bursting. We summarize our contributions as follows:

• We elaborate on the fundamental issues in operating
iterative MapReduce over hybrid cloud setups com-
prising both on- and off-premise virtual machines
(VMs). In particular, we further develop the main
issue discussed in our previous work (lacking data
locality on the off-premise part and associated conse-
quences) from multiple angles: I/O interactions with
the underlying storage layer, task scheduling and
data shuffling (Section 3 and Section 4).

• We propose a methodology that combines analytical
modeling with synthetic benchmarking to estimate
the time-to-solution in a hybrid setup, including all
fine-grain overhead associated with the map phase
and the reduce phase (shuffle, sort, reduce). This
model extends our preliminary efforts in this direc-
tion [4] that address the map phase only (Section 5).

• We evaluate our approach in a series of experiments
that involve four representative real-life iterative
MapReduce applications from standardized big data
benchmarks that cover a broad range of use cases.
Our experiments demonstrate small errors between
the runtime estimations and the actual measured
values, which are up to an order of magnitude
smaller than using state-of-art MapReduce runtime
estimation approaches designed for single site setups
(Section 6).

2 RELATED WORK

MapReduce applications have been studied extensively on
single cloud computing platforms [5], [6]. Storage elastic-
ity [7], [8] is a particularly interesting aspect for iterative
applications, as it is an important component of the overall
pay-as-you-go cost. Data shuffling is another difficult prob-
lem even in a single data center [9].

The topic of performance and cost prediction in a sin-
gle data center was studied from multiple angles. A stor-
age performance and cost model for iterative applications
was introduced in [10]. Given the data-intensive nature
of MapReduce applications and the need to persist data
between jobs, such a direction is an important complement
to our own work. MapReduce performance modeling in
particular has focused on various aspects: scheduling, re-
source provisioning, performance and cost estimation.

Tian et al. [11] proposed a cost model that estimates the
performance of a job from a set of test runs on a small
input datasets and small number of nodes. The authors
provision the resources for the job using a simple regression
technique. Chen et al. [12] further improved the cost model
and proposed CRESP which employs the brute-force search
technique for provisioning the optimal cluster resources
in term of map slots and reduce slots for Hadoop jobs.
However, in the two models, the number of reduce tasks
have to be equal to the number of reduce slots which means
that these two models only consider a single wave of the
reduce phase.

Lama et al. [13] proposed AROMA, a system that auto-
matically obtains the optimal resources and optimizes the
configuration parameters of Hadoop for a job to achieve the
objectives. However, AROMA does not provide a compre-
hensive mathematical model to estimate the job execution
time as well as optimal configuration parameter values of
Hadoop. There are a few other models those they use the
previous executed job profiles for performance prediction.
Starfish [14] applies dynamic Java instrumentation to collect
the past executed jobs profile information at a fine granular-
ity for job estimation and automatic optimization. However,
collecting a large set of metrics generate an extra overhead,
especially for CPU-intensive applications.

Verma et al. [15] presented the ARIA, a MapReduce
analytic performance model that computes the lower and
upper bounds on the job execution time. The HP model [16]
extends the ARIA mode by adding scaling factors to esti-
mate the job execution time on larger datasets using a simple
linear regression. The work presented in [17] divides the
map phase and reduce phase into six generic sub-phases
(i.e. read, collect, spill, merge, shuffle and write), and uses a
regression technique to estimate the duration of these sub-
phases. The estimated values are then used in the analytical
model presented in [15] to estimate the overall job execution
time. The same bound-based approach [15] is applied by
Zhang et al. [18] to heterogeneous Hadoop cluster envi-
ronments. Several other works show interest [19]–[22] in
heterogeneous MapReduce environments.

To our best knowledge, we are the first to introduce
a performance model that specializes both on hybrid cloud
bursting and iterative MapReduce applications.
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3 DATA LOCALITY CHALLENGES UNDER HYBRID
CLOUD BURSTING

The MapReduce paradigm is specifically designed to fa-
cilitate a high degree of data parallelism: in the first stage
(map phase), massive amounts of input data are read from
a storage layer (typically a distributed file system like
HDFS [23]) and transformed in an embarrassingly parallel
fashion by mapper processes such that an intermediate
output (consisting of key-value pairs) is obtained that is
sorted by key. Then, in a second stage (shuffle phase), a
separate set of reducer processes are responsible to fetch
(in parallel) the data corresponding to individual keys from
all mappers and to merge it. Finally, in a third stage (reduce
phase), the reducers apply an aggregation over the values
merged under the same key to obtain the final result (one
value per key), which is typically persisted in the storage
layer.

Both the mappers and reducers are distributed processes
that exhibit highly concurrent I/O intensive data access pat-
terns, which can overwhelm the networking infrastructure
with inter-node data transfers. To address this issue, data
locality awareness is a key feature of MapReduce: the storage
layer is co-located with the runtime on the same nodes
and is designed to expose the location of the data blocks,
effectively enabling the scheduler to bring the computation
close to the data and to avoid a majority of the storage-
related network traffic.

In Figure 1a we illustrate a hybrid cloud bursting sce-
nario. In this case, the premises for leveraging data locality
are different: the input data is present only on the on-
premise VMs initially, so it has to be shipped to the off-
premise VMs before they can contribute to the computation.
Furthermore, the link between the on-premise infrastructure
and the external cloud provider is typically of limited ca-
pacity (i.e., a weak link). Thus, off-premise VMs that need
to communicate with on-premise VMs create a network
bottleneck much faster than in the case where all VMs
are located within the same datacenter. Specifically, the
weak link affects MapReduce applications in the following
fashion:

Map phase: since the input data is present initially
only on the on-premise VMs, any map task that is scheduled
off-premise needs to access the on-premise data, which
involves a data transfer over the weak link. Furthermore,
all off-premise mappers are running in parallel and thus
compete for the weak link, which introduces high I/O
pressure on it.

Shuffle phase: each reduce task needs to collect the
intermediate data generated by the map tasks: if r reduce
tasks collect the intermediate data from m map tasks, an
m-to-r concurrent communication is required during this
phase. Therefore, the weak link will be stressed by all
communication required between the on-premise maps and
the off-premises reduces, and between the off-premise maps
and the on-premise reduces, as can be seen in Figure 1b.

Reduce phase: once the reduce tasks have finished
pulling the intermediate data and have performed the ag-
gregation, they typically need to persist the results on-
premise. Again, this involves data transfers from the off-
premise VMs to the on-premise VMs over the weak link,

which puts I/O pressure on it.
In the context of iterative MapReduce applications, the

impact of the weak link accumulates as each iteration needs
to go through all three phases. However, the iterations are
not independent MapReduce jobs: they share a large part
of the initial input data. Thus, it is important to leverage
this particular aspect in order to reduce the pressure on the
weak link.

4 TECHNIQUES TO LEVERAGE DATA LOCALITY
FOR ITERATIVE MAPREDUCE

In this section we present two complementary techniques
to improve data locality for hybrid cloud bursting. These
techniques were introduced by our previous work [3], [4].

4.1 Off-Premise Replication using Rack-Aware Rebal-
ancing

An obvious choice is to simply leave the input data on-
premise and pull it on-demand from the off-premise map
tasks. This approach has two advantages: (1) it works out
of the box with no modification necessary to the default
runtime; (2) it overlaps the I/O with the computation, as
map tasks can start off-premise right away without any
need to wait for data transfers. On the other hand, there
is also a major disadvantage: if the iterative application re-
uses the input data blocks, they will be transferred over
the weak link multiple times unnecessarily, which leads to
performance degradation.

Another choice is to replicate the input data off-premise
before running the MapReduce application. Using this ap-
proach, the MapReduce runtime can fully exploit locality
as if it were running on a single cluster, which also avoids
the problem of sending the same input block over the weak
link repeatedly. However, creating the replicas off-premise
before running the application (i.e. synchronous replication)
is a time-consuming process that adds to the overall comple-
tion time. Furthermore, it also leads to an extra off-premise
storage space utilization.

To avoid waiting for the replication process to finish,
a third option is possible: to use asynchronous replication.
Using this approach, the input data is shipped off-premise
at the same time as the map tasks are running, under the
assumption that a majority map tasks will benefit from the
data locality. However, the background data transfers create
additional overhead that interferes with the computation
and may create enough slowdown to offset the benefit of
starting the computation right away.

We have shown that asynchronous replication can be
efficiently achieved using rack awareness, a core feature of
HDFS [23], the default storage layer of Hadoop. Specifically,
data blocks are replicated in HDFS (three times by default)
for resilience purposes, with at least one replica in a different
rack than the one where the write originated. Furthermore,
HDFS also can rebalance the replicas across the storage
elements to distribute the load evenly while preserving rack
awareness. Thus, by deploying new HDFS storage elements
on the off-premise VMs as a separate rack, a rebalancing
operation will migrate one replica for each data block to the
off-premise VMs asynchronously.
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(b) MapReduce shuffle phase: Concurrent data transfers put I/O
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Fig. 1: Schematic representation of a hybrid cloud bursting architecture and its implications on MapReduce applications

The main advantage of this approach is that it minimizes
the amount of data transferred off-premise (a single replica)
to achieve full potential of exploiting the data locality, while
maintaining the resilience constraints. Moreover, it is a non-
invasive solution that works out-of-the box without deviat-
ing from the standard HDFS, which is a major concern for
many users.

4.2 Scheduling Based on Enforced Rack-Locality

The default Hadoop scheduler uses data locality only as a
preferential matching mechanism between map tasks and
free slots. However, if asynchronous HDFS rebalancing is
employed, then a map task may be scheduled off-premise
before a replica of its corresponding data block was mi-
grated, which triggers a pull and leads to a double data
transfer of the same block. In this case, it is beneficial to
delay the scheduling of such off-premise map tasks, under
the assumption that avoiding stress on the weak link leads
to a a smaller overall overhead. To this end, we propose
an enforced rack-locality scheduling policy: a map task will
never be scheduled off-rack if no replica of the data block is
present in the other rack. This effectively leads to the desired
behavior in our case: a map task will never be scheduled off-
premise if a replica was not already migrated there.

We implemented this policy in Hadoop by modifying
the Resource Manager to make use of the relaxLocality flag.
Thus, unlike the HDFS replica rebalancing, this is an intru-
sive modification to Hadoop that requires the user to deploy
a custom version.

5 PERFORMANCE MODELING PROPOSAL

In this section we introduce the broad principles and
methodology behind our performance modeling proposal.
This model is specifically targeted at a MapReduce runtime
that makes use of the two techniques introduced in Section 4
to accelerate iterative applications in a hybrid cloud bursting
scenario. Our goal is to estimate the completion time of a
given iterative MapReduce application as a mathematical
expression based on a series of system-level and application-
level parameters that are extracted in advance.

For simplification, we assume the setup consists of a
fixed set of on-premise VMs and off-premise VMs of similar
capability, which gives us a fixed set of system-level param-
eters. Users interested in estimating the runtime for various
setups (e.g., find out the optimal number of off-premise VMs
to achieve the desired runtime) can apply our approach for
each configuration individually.

Our approach consists of three steps. First, we run a
synthetic benchmark to extract the fixed system-level pa-
rameters corresponding to the on-premise and off-premise
VMs. These parameters are independent of the application
and can be reused for a different application or user (e.g.,
they can be cached on-premise). We refer to this step as
calibration.

Second, we extract the application-level parameters.
These parameters are independent of the hybrid setup and can
be either known in advance or obtained by running the
application at smaller scale on-premise only. This way, users
can estimate the benefits of hybrid cloud bursting without
actually ever trying it, as long as the calibration step was
already performed for the desired configuration. We refer to
this step as characterization.

Finally, once both the calibration and the characteriza-
tion is complete, we apply a mathematical expression to
estimate the completion time. Note that there is an inherent
variability in the approximations introduced above due to
the complexity of MapReduce applications in general and
the additional complexity introduced by the weak link.
Therefore, it is important to be able to present both the
optimistic (lower bound) and pessimistic (upper bound) run-
time estimation to the user. To derive the mathematical
expressions for both cases, we make use of the makespan
theory as applied in the context of MapReduce.

To aid the extraction of both system-level and
application-level parameters, we have developed a tool
that can analyze a job in terms of map/shuffle/reduce
times, HDFS data distribution, task distribution between
on-premise and off-premise and even node statistics such
as CPU, I/O network, I/O disk and memory utilization. It
extracts information from a combination of Hadoop coun-
ters, Hadoop logs, Hadoop Rumen tool [24] and Systat [25]
to generate a profiling information.
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For the rest of this section, we detail all aspects summa-
rized above.

5.1 Theoretical Makespan Bounds for MapReduce
For completeness, we briefly introduce in this section the
theoretical makespan bounds as applied in the context of
MapReduce. This is needed as a preliminary background in
order to understand the reasoning behind the parameters
extracted from the calibration and characterization steps.

Each of the map and reduce phases can be abstracted as
a series of n tasks of duration ti that need to be processed by
k slots. The assignment of tasks to slots is done dynamically
by the MapReduce runtime according to a simple greedy
policy: assign each task to the slot with the earliest finishing
time.

The best case is obtained when all slots are evenly
loaded, in which case each slot is busy for at least
(
∑n

i=1 ti)/k = (tavg × n)/k. Therefore, this is the lower
bound of the makespan.

The worst case is obtained when the longest task tmax

is scheduled last. This means the k slots are busy with the
other tasks and take at most (tavg × (n − 1))/k to process
them. Once they finish with these tasks, one of them finally
needs to process tmax. Therefore, the upper bound of the
makespan is (tavg × (n− 1))/k + tmax.

It is important to note that the lower bound can be
expressed more precisely as a function of the average task
duration (rather than the minimum). As a consequence,
several of the parameters we extract from the calibration and
characterization steps are averages and maximum values.

5.2 Calibration Using Synthetic Benchmarking
We develop a synthetic benchmark that focuses on the
extraction of the I/O and communication overheads in a
hybrid setup. Specifically, the goal is to extract these over-
heads for each phase (map, shuffle, reduce) based on the
quantity of data involved: (1) the amount of data read from
HDFS; (2) the amount of data written to HDFS and (3) the
amount of network traffic between map and reduce tasks.
Using this approach, all possible combinations of data sizes
in each phase can be covered.

To achieve this goal, we implement a collection of map,
combiner and reduce functions that generate a synthetic
workload based on a series of configurable input parameters
used to specify the amounts of data. Both the map phase
and the reduce phase of the synthetic workload deliberately
avoid computational overhead (minimal load on the CPU)
in order to isolate the I/O and communication overheads.
The map phase is structured in two parts: it reads the input
chunk in the map function and writes a specified amount of
intermediate data in the combiner function. The output of
the combiner is grouped by key, with each group collected
by the corresponding reducer. The reducers simply writes a
predefined amount of data as output in HDFS.

This synthetic benchmark is then executed for a vari-
able quantity of data in a hybrid setup comprising a fixed
number of on-premise and off-premise VMs. We call this
process calibration. We illustrate how this works using an
experimental example that is based on a typical hybrid
cloud setup (described in more detail in Section 6.1), where

we use two representative configurations for the weak link:
100 Mbps and 1 Gbps.

Then, based on the profiling information, we define a
series of system-level parameters that quantify the hybrid-
specific overheads.

Hybrid map overhead stretch coefficient: Although
the scheduler forces the execution of mappers on the nodes
where the input data from HDFS is present, there are some
extra reads when the logical end of data does not exactly
match the HDFS end of a split (i.e. the input of the mapper is
covered by two different HDFS chunks). Therefore, mappers
will sometimes read remote data over the weak link, which
creates an extra overhead compared with the on-premise
only case. We measure this overhead using the synthetic
benchmark and express it as a stretch coefficient denoted α.

Hybrid approximation of shuffle overhead per re-
ducer: Once a sufficient number of mappers have finished
producing the intermediate data, reduce tasks are launched
and begin collecting it. However, a reduce task cannot start
the aggregation at the same time as the intermediate data is
collected, because it needs to sort it first (which cannot hap-
pen before all mappers have finished and their intermediate
data was collected). Therefore, each reducer experiences a
shuffle overhead that is proportional to the amount shuffle
data it needs to pull. Since the amount of shuffle data per
reducer (denoted dSh) is application dependent, we express
the shuffle overhead as an approximation function (denoted
fSh). To this end, we choose a set of representative shuffle
sizes, measure the shuffle overhead per reducer using the
synthetic benchmark, and then apply linear regression to
obtain two approximation functions: one for the average
(using all reducers) and one for the maximum (using only
the slowest reducer for each shuffle size).

Figure 2 illustrates this for a hybrid scenario with three
on-premise VMs and three off-premise VMs using 24 map-
pers and 12 reducer slots. The actual runtimes of the reducer
tasks are illustrated as clusters of points, while the approx-
imation function (average and maximum) is illustrated as a
line.

Hybrid approximation of write overhead per re-
ducer: In the case of the reduce phase, the computational
overhead of each reducer does not depend on the weak
link and represents a significant part of the runtime of the
reduce phase. However, once the reducer has finished the
computation, it needs to write the output to the storage
layer, which stresses the weak link. Again, the amount of
output per reducer (denoted dR) is application dependent.
Thus, we need to express it as an approximation function
(denoted fRd) in a manner similar to the shuffle overhead.
Using linear regression, we obtain the corresponding ap-
proximation function. Figure 3 illustrates this for the same
hybrid scenario used above (both average and maximum).

Rebalancing bandwidth: In addition to the over-
heads related strictly to the MapReduce runtime, it is also
important to estimate how long the off-premise rebalancing
of the input data will last. This is important because it
runs asynchronously in the background while the iterative
MapReduce application is progressing, therefore creating
interference and potentially visible slowdown. To this end,
we run a HDFS rebalancing using a large HDFS input data
size (e.g. 10 GB) and measure its completion time. Then,
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Fig. 3: Reduce approximation in a 3-ON-3-OFF premise hybrid architecture

we compute an average bandwidth denoted β that is used
in our performance model to account for the effect of the
rebalancing.

We summarize all system-level parameters extracted us-
ing the calibration step in Table 1.

5.3 Application Characterization
In this section we show how to extract the necessary infor-
mation to characterize the iterative MapReduce application.
Note that this step is only necessary when the application-
level parameters introduced below (needed by the mathe-
matical expression) are not known in advance or cannot be
directly computed based on some existing knowledge about
the application.

Specifically, the user needs to run the application on-
premise only at reduced scale (both number of nodes and
number of iterations) and extract the following information:

• The total number of mappers: M
• The total number of reducers: R
• The average and maximum time to run a mapper:

tMp and, respectively, tmax
Mp

TABLE 1: Parameters obtained from the calibration and
characterization. To simplify the notation, we use a su-
perindex only for the maximum.

System-level parameters
Name Description
SM
on On-premise map slots
SM
off Off-premise map slots
SR Reduce slots
α Hybrid map phase stretch factor
β Rebalancing bandwidth
fSh(dSh) fmax

Sh (dSh) Shuffle time per reducer (avg and max)
fRd(dRd) fmax

Rd (dRd) Write time per reducer (avg and max)
Application-level parameters

Name Description
M Total number of mappers
R Total number of reducers
tMp and tmax

Mp Total runtime for mappers (avg and max)
tRc and tmax

Rc Sort and aggr. for reducers (avg and max)
dSh Amount shuffle data per reducer
dRd Amount of output data per reducer
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• The average and maximum time to run a reducer
computation (includes the time to sort and compute
the aggregation, but not the time to write the result
to HDFS): tRc and, respectively, tmax

Rc .
• The amount of input data in the shuffle phase, dSh.
• The amount of output data of the reduce phase, dRd.

Note that the MapReduce framework incurs a schedul-
ing overhead, which is observable as a gaps between the
tasks assigned to the mapper and reducer slots. For sim-
plification, we assume tMp and tRc already include the
average gap duration, while tmax

Mp and tmax
Rc already include

the maximum gap duration.
We summarize these application-level parameters in Ta-

ble 1.

5.4 Performance Model
In this section, we introduce a performance model that
enables users to estimate the runtime of iterative MapRe-
duce applications in hybrid cloud bursting scenarios. The
performance model is a mathematical expression that uses
the application-level and system-level parameters described
in Table 1 as input and produces an estimation of the total
runtime as output.

The lower bound of the completion time Total of an
iterative map-reduce job with n iterations, can be expressed
as:

Total =

n∑
i=1

T (i) (1)

T (i) is the lower bound of the i-th iteration and can be
decomposed as:

T (i) = TMp(i) + TSh(i) + TRd(i) (2)

where TMp is the lower bound for the map phase, TSh for
the shuffle phase and TRd for the reduce phase.

Similarly, for the upper bound we obtain:

Totalmax =

n∑
i=1

Tmax(i) (3)

Tmax(i) = Tmax
Mp (i) + Tmax

Sh (i) + Tmax
Rd (i) (4)

For the rest of this section, we detail how to obtain each
of TMp, TSh and TRd.

5.4.1 Completion time of map phase
In order to obtain a mathematical expression to estimate
the completion time of the map phase, it is important to
understand how this phase evolves during the successive
iterations of the MapReduce job. We force the execution
of any map task on a node where there is a copy of its
input data, so for the first iteration all the map tasks will be
scheduled on-premise only. In parallel with the execution of
the first iteration, the rebalancing of the input data to the
off-premise infrastructure proceeds in the background. This
means that at the beginning of the second iteration, some
replicas of the input chunks have already been migrated
on the off-premise nodes and the scheduler will launch
off-premise mappers to handle them. As the rebalancing
progresses, the number of map tasks that will be executed
off-premise will increase at each iteration until it stabilizes

(which is not necessarily the moment when the rebalancing
has finished, because it can happen that the off-premise map
slots are saturated even before a replica of each chunk was
transferred off-premise).

We express this intuition mathematically as follows: for
the first iteration, all map tasks (M ) will be executed on-
premise. So, considering that there are SM

on map slots on the
on-premise nodes, the lower bound of the map phase for the
first iteration is:

TMp(1) =

⌈
M

SM
on

⌉
× tMp (5)

For the second iteration, there will be a set of input
chunks already transferred off-premise (Moff

1 ). This num-
ber can be approximated using the replication bandwidth
(β), the size of the HDFS chunk s and the runtime of the
first iteration T (1) as follows:

Moff
1 =

β × T (1)
s

(6)

These Moff
1 off-premise chunks enable the scheduler to

assign up to M − Moff
1 map slots off-premise. Thus, the

lower bound of the map phase of the second iteration is:

Tmp(2) =

⌈
M −Moff

1

SM
on

⌉
× tMp (7)

Using the previous reasoning for the third iteration, the
lower bound of the map phase is:

TMp(3) =

⌈
M − ((β × T (2))/s)

SM
on

⌉
× tMp (8)

By generalization, for the i-iteration we obtain the fol-
lowing:

TMp(i) =

⌈
M − ((β × T (i− 1))/s)

SM
on

⌉
× tMp (9)

This formula is true as long as all on-premise map slots
are filled and there are off-premise idle map slots that
cannot be used because the rebalancing did not ship enough
chunk replicas off-premise. The moment when stabilization
happens can be expressed mathematically as follows:

Moff ≥
SM
off

(SM
on + SM

off )
×M (10)

From this moment onward, the time to process on-
premise scheduled maps is almost the same that the time
to process off-premise maps. In this situation, the number
of map tasks scheduled off-premise will be Moff and the
number of map tasks scheduled on-premise M − Moff .
These numbers will remain constant for the rest of the itera-
tions, leading to the following expressions for the remaining
runtime:

TMp(i) =

⌈
M −Moff

SM
on

⌉
× tMp where

Moff =
SM
off

(SM
on + SM

off )
×M

(11)
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It is possible to join the expressions in Equations 9 and
11 into a single expression that estimates the lower bound
of the map phase for any iteration:

TMp(i) =

⌈
M −Moff

i−1

SM
on

⌉
× tMp where

Moff
i−1 = min

(
β × T (i− 1)

s
,

SM
off

SM
on + SM

off

×M

) (12)

Upper bound for the map phase: By applying the
theoretical makespan results detailed in Section 5.1 to the
lower bound described in Equation 12, we obtain the fol-
lowing expression for the upper bound:

Tmax
Mp (i) =

(⌈
M −Moff

i−1

SM
on

⌉
− 1

)
× tMp + tmax

Mp (13)

5.4.2 Completion time of the shuffle phase
The shuffle phase is entirely managed by the MapReduce
runtime and has no application-specific overhead. There-
fore, to estimate the lower bound of the shuffle phase
we simply need to apply the shuffle phase approximation
function fSh (obtained from the calibration step) to the
shuffle size per reducer dSh (obtained from the application
characterization), which results in the following:

TSh(i) =

⌈
R

SR

⌉
× fSh(dSh),∀i = 1..n (14)

Similarly, for the upper bound we apply the makespan
results to obtain:

Tmax
Sh (i) =

(⌈
R

SR

⌉
− 1

)
×fSh(dSh)+f

max
Sh (dSh),∀i = 1..n

(15)

5.4.3 Completion time of the reduce phase
The reduce phase consists of a number of reducers R that
compete for a number of parallel reducer slots SR. In this
case, the average completion time of a reducer tRd depends
on both the application-level parameters and the system-
level parameters. Specifically:

tRd = tRc + fRd(dRd) (16)

The explanation for this is the following: there is an
application-dependent computational (tRc) overhead (ob-
tained through characterization), in addition to the HDFS
write overhead (obtained by applying the application
agnostic approximation function fRd to the application-
specific output size per reducer dRd).

Thus, the lower bound of the reduce phase can be
estimated as follows:

TRd(i) =

⌈
R

SR

⌉
× tRd,∀i = 1..n (17)

Similarly, for the maximum the following applies:

tmax
Rd = tmax

Rd + fmax
Rd (dRd) (18)

By applying the makespan results, we obtain the follow-
ing upper bound:

Tmax
Rd (i) =

(⌈
R

SR

⌉
− 1

)
× tRd + tmax

Rd ,∀i = 1..n (19)

5.5 Complex iterations
So far we made an important assumption about the applica-
tions: each iteration involves a single MapReduce job that is
computationally similar to the previous iterations. However,
in practice it can happen that iterations are complex and
involve a series of steps expressed as separate MapReduce
jobs (e.g. PageRank, as described in Section 6.4).

In this section we briefly show how to generalize our
approach to address such complex iterations. Let m be the
number of MapReduce jobs in a complex iteration i and
Tj(i) the runtime of the j-th MapReduce job in the sequence
of m jobs. Then, the runtime of each complex iteration i is
the sum of the durations of the m MapReduce jobs:

T (i) =

m∑
j=1

Tj(i) (20)

For n iterations, the following holds:

Total =

n∑
i=1

 m∑
j=1

Tj(i)

 =

m∑
j=1

(
n∑

i=1

Tj(i)

)
=

m∑
j=1

Totalj

(21)
In other words, we can see an application with com-

plex iterations as the equivalent serialization of m sub-
applications with simple iterations. In this case, we can sim-
ply characterize each of the the m sub-applications, apply
our mathematical expressions to estimate their individual
completion time and finally sum up the estimations to
obtain the final estimation for the original application with
complex iterations. Since the system-level parameters are
application agnostic, the calibration needs to be performed
only once regardless of m.

6 EVALUATION

In this section we evaluate the effectiveness of our approach
experimentally, using a variety of scenarios and compar-
isons that involve multiple real-life iterative MapReduce
applications.

6.1 Experimental Setup
The experiments for this work were performed on the Kinton
testbed of the HPC&A group based at Universidad Jaume
I. It consists of 8 nodes, all of which are interconnected
with 1 Gbps network links and split into two groups: four
nodes feature an Intel Xeon X3430 CPU (4 Cores), HDD local
storage of 500 GB, and 4 GB of RAM. These less powerful
nodes (henceforth called thin) are used for management
tasks. The other four nodes feature two Intel Xeon E5-2630v3
(2 x 8 Cores), HDD local storage of 1 TB, and 64 GB of RAM.
These more powerful nodes (henceforth called fat) are used
to host the VMs.

We configure two separate IaaS clouds (on-premise and,
respectively, off-premise), each running its separate Open-
Stack Icehouse instance. QEMU/KVM 0.12.1 is used as the
hypervisor. The VM instances of the same cloud are config-
ured to directly communicate with each other via the links
of their compute node hosts. However, all communication
outside of the same cloud is passing through a dedicated
network node (Neutron) that acts as a proxy and is part
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of the default OpenStack distribution. Thus, in a hybrid
OpenStack setup the weak link is defined by the end-to-
end bandwidth between the two proxies. We control the
available bandwidth to cover two representative settings:
1 Gbps and 100 Mbps. These correspond to the case when
the user decides to buy premium access to the cloud (i.e.
dedicated fast link) vs. regular access.

6.2 Approaches
We compare four approaches throughout our evaluation.

On-Premise Actual: corresponds to the case when
all VMs are on-premise and no weak link can cause an I/O
bottleneck. In this case, a standard Hadoop deployment is
used. We use it as a lower bound for comparison, showcas-
ing what would happen in an ideal scenario where the user
has no cost constraints and can afford to invest in additional
on-premise resources to achieve the highest performance
rather than adopt a hybrid solution.

ARIA (Automatic Resource Inference and Alloca-
tion): is a state of art framework that estimates the run-
time of a single-site MapReduce job based on its profile
(application-level parameters) and then optimally schedules
it to meet a given soft deadline [15]. We use ARIA as a
comparison in order to show that single-site techniques
to estimate the runtime of iterative MapReduce are not
accurate enough for use in a hybrid cloud bursting scenario,
therefore the need for a specialized model.

Hybrid Actual Runtime: corresponds to the real
measured runtime of an iterative MapReduce job using a
given on-premise and off-premise configuration of VMs.
The Hadoop deployment used to run the MapReduce job
is optimized for a hybrid cloud bursting scenario using
the rack-local scheduling and asynchronous rebalance tech-
niques described in Section 4. We use this approach for com-
parison in order to showcase the accuracy of the estimations
provided by our approach.

Hybrid Estimated Runtime: corresponds to the es-
timated runtime of an iterative MapReduce job using our
proposal (Section 5), which is optimized for a hybrid cloud
bursting scenario where the Hadoop deployment employs
rack-local scheduling and asynchronous rebalance (Sec-
tion 4).

6.3 Methodology
For our experiments, we created a new VM flavor with
4 vCPUs, HDD local storage of 100 GB and 16 GB of RAM.
Thus, each compute node has the capacity to host 4 VMs
simultaneously. Since some VMs are co-located on the same
node, the virtual network interface of all VMs is limited to
1 Gbps, in order to avoid differences between VMs hosted
on the same node vs. remote nodes. We use one fat node
to provision up to 4 VMs on the on-premise part and
three nodes to provision up to 12 VMs on the off-premise
part. We deploy Hadoop 2.6.0 initially on-premise only: one
VM is used as the Hadoop master (both MapReduce and
HDFS), the rest of the VMs are used as Hadoop slaves (both
MapReduce and HDFS). Each Hadoop slave is configured
with enough capacity to run 4 mappers and 4 reducers
simultaneously. Any initial input data is stored on-premise
only in the initial HDFS deployment.

First, we run the application on-premise only and record
the runtime, for the smallest case (3 VMs). We call this
the baseline case. An important premise for any other setup
(regardless whether on-premise or hybrid) is to show speed-
up with respect to the baseline (otherwise it does not make
sense to commit more VMs).

Then, using the profiling information, we extract the
application-level parameters described in the characteriza-
tion step (Section 5.3). For completeness, we also run strong
scalability experiment (constant problem size) by increasing
number of VMs from 6 up to 15 in steps of 3. This exper-
iment is not involved in the extraction of the application-
level parameters but facilitates the study of the results and
corresponds to the on-premise actual case.

Second, we use the application-level parameters in order
to estimate the runtime with ARIA. Again, we apply ARIA
for an increasing number of VMs to show how the runtime
scales in comparison with the baseline.

Third, we run another strong scalability experiment
where we keep the number of on-premise VMs fixed at
three, while adding an increasing number of off-premise
VMs: from 3 up to 12 in steps of 3. For each resulting hybrid
bursting scenario, we run: (1) the calibration (using the
generic benchmark introduced in Section 5.2) to extract the
system-level parameters, and (2) each application to obtain
the hybrid actual runtime.

Finally, we use both the application-level and system-
level parameters to estimate the runtime using our pro-
posal for each hybrid cloud bursting scenario, which yields
the hybrid estimated runtime. Note that many applications
we study exhibit complex iterations composed of multiple
MapReduce jobs. In this case, we apply the observations
from Section 5.5 to compute the hybrid estimated runtime.

6.4 Applications

For the purpose of this work, we use four representative
real-life iterative MapReduce applications that cover a broad
spectrum: map-intensive, reduce-intensive or both.

Iterative Grep (I-GREP): is a popular analytics tool
for large unstructured text. This application consists of a set
of independent grep jobs that find all string matches of a
given regular expression and sorts them according to the
number of matches. The iterative nature is exhibited in the
fact that the input data remains the same, but the regular
expression changes as a refinement of the previous iteration.
For example, one may want to count how many times a
certain concept is present in the Wikipedia articles, and,
depending on the result, prepare the next regular expression
in order to find correlations with another concept. Since the
regular expression is typically an exact pattern, the output of
the mappers is very simple and consists of a small number
of key-value pairs that are reduced to a single key-value
pair. Thus, it can be classified as a typical map-intensive job.

KMeans: is a widely used application for vector
quantization in signal processing, cluster analysis in data
mining, pattern classification and feature extraction for ma-
chine learning, etc [26]. It is based on iterative refinement:
each iteration aims to improve the partitioning of a multi-
dimensional vector into k clusters such that sum of squares
of distances between all vectors of the same cluster and
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their mean is minimized. This process repeats until the
improvement obtained during an iteration is smaller than
a predefined epsilon. K-Means was shown to be efficiently
parallelizable and scales well using MapReduce [27], which
makes it a popular tool to analyze large quantities of data
at large scale. Each iteration reads a large amount of input
data (which stays immutable during the iterations) while
outputting a small quantity of intermediate and output data.
From a data-management perspective, it is a good example
of a map-intensive application that re-uses the initial input
data at each iteration.

PageRank: is a link analysis algorithm [28] that as-
signs a numerical weight to each element of a hyperlinked
set of documents, (e.g. WWW) with the purpose of quanti-
fying its relative importance within the set. It is widely used
in web search engines to calculate the ranks of web pages in
function of the number of reference links. Its iterative nature
is more complex and involves two successive MapReduce
jobs: (1) an output-intensive phase where the reduce phase
generates twice as much data as the input data read by
the map phase; (2) a shuffle-intensive phase where the
output of the mappers is equal in size to the input. Thus,
PageRank is a good example of a balanced application with
complex iterations that is both map-intensive and reduce-
intensive, while generating a lot of intermediate data that is
not reused.

Connected Components: is a well-known graph
problem arising in a large number of applications including
data mining, analysis of social networks, image analysis and
related problems. It aims at identifying groups of connected
vertices in a graph, which is an inherently iterative algo-
rithm [29]: the input is an immutable graph (V,E) with a
set of vertices V and a set of edges E ⊆ V × V . The goal
of this algorithm is to transform the input graph into a set
of star-like subgraphs by iteratively assigning each vertex to
its smallest neighbor, using a total ordering of the vertices
such as the lexicographic order of the vertex labels. The
MapReduce-based implementation results in the repeated
execution of a job where the output of one iteration is the
input of the next one. Connected components is a good
example of a reduce-intensive application.

6.5 Results

Using the methodology presented in Section 6.3, we perform
an experimental study for each of the real-life applications
described in Section 6.4. For all runtime estimations, we
compute both the lower and upper bound, and derive the
average from the lower and upper bound. In addition,
we also study the accuracy of all average estimations (vs.
the actual runtime) at fine grain for both the map phase
and the reduce phase separately, which provides additional
insight with respect to the overall accuracy. For the rest
of this section, we discuss the results for each application
individually.

The first application we study is I-GREP. The implemen-
tation is based on grep, which is included with the Hadoop
distribution. We use as input data 20 GB worth of Wikipedia
articles, which are queried successively in 50 iterations using
50 different keywords. Each iteration is complex and is
composed of two jobs per iteration (search and sort stages).
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Fig. 4: I-GREP average runtime estimation

The shuffle data for each iteration is less than one MB,
which means the map phase dominates the runtime. The
baseline case (3 VMs on-premise) has a runtime of 6483 s.
Doubling the amount of on-premise VMs leads to 60% less
actual runtime, which shows I-GREP has a good scalability
potential.

Table 2a shows the actual runtimes and the estimations
for the upper and lower bounds. Due to high variability
between the map tasks, ARIA shows large differences: for
15 VMs it overestimates the upper bound by 30% and
underestimates the lower bound by 50% with respect to on-
premise actual. Despite this variability, our approach has
better accuracy: for 15 VMs and 100 Mbps weak link, it
overestimates the upper bound by 20% and underestimates
the lower bound by 10%. In case of 1 Gbps, it overestimates
the upper bound by 30% and underestimates the lower
bound by 13%.

We depict the average estimations in Figure 4. As can be
observed, despite large difference between the ARIA upper
and lower bound, the average estimation is much closer to
the on-premise actual values. However, the average ARIA
estimation produces large errors against the hybrid scenar-
ios: up to 18.5% for 1 Gbps and up to 46.7% for 100 Mbps.
This contrasts with the errors produced by our approach:
up to 10.1% for 1 Gbps and 5.6% for 100 Mbps. Interesting
to observe is the increasing accuracy of our approach when
the weak link is of low capacity, while the opposite holds
for ARIA.

Table 2b shows finer grain accuracy details about the
map and reduce phase. As can be observed, in the 100 Mbps
weak link case, the ARIA average estimation has a large
error both for the map and reduce phase, which explains
the overall error. For the 1 Gbps weak link case, the map
phase has a small error but the reduce phase exhibits a large
error.

Second, we study the K-Means application, as imple-
mented in the Intel HiBench [30] big data suite. We generate
20 GB worth of input using the included data generator,
which is processed by K-Means in 30 simple iterations. The
baseline in this case (3 VMs on-premise) has a runtime of
6471 s. Doubling the number of on-premise VMs leads to
70% less actual runtime, which shows excellent scalability
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Approach 6 VMs 9 VMs 12 VMs 15 VMs
On-premise Actual 3310 2569 2256 2035
ARIA Upper Bound 4226 3324 2892 2639
ARIA Lower Bound 2615 1692 1251 992

100 Mbps weak link (3 VMs on-premise)
Hybrid Actual 4528 3876 3705 3407

Hybrid Upper Bound 4795 4282 4345 4141
Hybrid Lower Bound 3877 3208 3093 3057

1 Gbps weak link (3 VMs on-premise)
Hybrid Actual 3474 2734 2422 2227

Hybrid Upper Bound 3953 3299 3087 2947
Hybrid Lower Bound 3144 2307 2038 1959

(a) Total actual runtime (s) vs. predicted runtime (s) ex-
pressed as upper bound and lower bound

Prediction Accuracy vs. Actual 6 VMs 9 VMs 12 VMs 15 VMs
100 Mpbs weak link (3 VMs on-premise)
(%) Map Error -18.2 -30.0 -40.0 -43.1

ARIA Avg. (%) Red. Error -56.3 -57.4 -59.4 -59.0
(%) Total Error -24.5 -35.3 -44.1 -46.7
(%) Map Error -2.6 1.9 5.1 13.4

Hybrid Avg. (%) Red. Error -12.4 -25.3 -17.2 -20.8
(%) Total Error -4.2 -3.4 0.4 5.6

1 Gbps weak link (3 VMs on-premise)
(%) Map Error 4.1 -1.8 -8.4 -12.8

ARIA Avg. (%) Red. Error -34.9 -36.5 -37.2 -37.5
(%) Total Error -1.5 -8.3 -14.5 -18.5
(%) Map Error 3.9 2.3 5.6 8.7

Hybrid Avg. (%) Red. Error -8.3 3.6 6.7 -15.3
(%) Total Error 2.1 2.5 5.8 10.1

(b) Accuracy of the average prediction (between lower and upper
bound) vs. the hybrid actual runtime broken down by phase

TABLE 2: I-GREP: Map-intensive example of an iterative MapReduce application

Approach 6 VMs 9 VMs 12 VMs 15 VMs
On-premise Actual 3024 2159 1786 1511
ARIA Upper Bound 3501 2499 2020 1739
ARIA Lower Bound 2870 1857 1372 1089

100 Mbps weak link (3 VMs on-premise)
Hybrid Actual 3872 3207 2893 2743

Hybrid Upper Bound 3900 3374 3266 3091
Hybrid Lower Bound 3649 2997 2799 2713

1 Gbps weak link (3 VMs on-premise)
Hybrid Actual 3175 2391 1992 1685

Hybrid Upper Bound 3282 2495 2168 1858
Hybrid Lower Bound 3098 2137 1741 1543

(a) Total actual runtime (s) vs. predicted runtime (s) ex-
pressed as upper bound and lower bound

Prediction Accuracy vs. Actual 6 VMs 9 VMs 12 VMs 15 VMs
100 Mpbs weak link (3 VMs on-premise)
(%) Map Error -14.7 -29.3 -38.9 -46.9

ARIA Avg. (%) Red. Error -61.6 -63.9 -65.1 -63.9
(%) Total Error -17.7 -32.1 -41.4 -48.5
(%) Map Error -1.6 1.8 7.5 8.6

Hybrid Avg. (%) Red. Error -15.7 -29.1 -20.8 -21.4
(%) Total Error -2.5 -0.7 4.8 5.8

1 Gbps weak link (3 VMs on-premise)
(%) Map Error 2.6 -6.3 -12.0 -12.9

ARIA Avg. (%) Red. Error -41.5 -43.5 -45.1 -45.2
(%) Total Error 0.3 -8.9 -14.9 -16.1
(%) Map Error 1.0 -3.5 -2.3 -0.2

Hybrid Avg. (%) Red. Error -8.8 1.4 2.6 11.0
(%) Total Error 0.5 -3.1 -1.9 0.9

(b) Accuracy of the average prediction (between lower and upper
bound) vs. the hybrid actual runtime broken down by phase

TABLE 3: KMeans: Map-intensive example of an iterative MapReduce application
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Fig. 5: K-Means average runtime estimation

potential.
Table 3a shows the runtime estimations for the upper

and lower bound. Unlike the I-GREP case, K-Means exhibits
less variability between the map tasks, which improves the
accuracy of the ARIA upper and lower bound estimations
with respect to actual on-premise. By comparison, our ap-
proach has much closer upper and lower bound estimations
with respect to hybrid actual.

Figure 5 depicts the average estimations. The ARIA

estimation produces a large error for the hybrid 100 Mbps
weak link scenario, reaching almost 50%. For the 1 Gbps
case, the error is smaller but still significant at 16%. Our
approach reduces the error by an order of magnitude: 5%
for the 100 Mbps case and less than 1% for the 1 Gbps case.

Table 3b shows finer grain details about the accuracy of
the map and reduce phase. As can be observed, ARIA has
low accuracy in the 100 Mbps case for both phases. In the
1 Gbps case, ARIA has low accuracy for the reduce phase.
By contrast, our approach has good accuracy for both phases
regardless of the weak link capacity.

Third, we study the PageRank application. We generate
2.8 GB of web data hyperlinks that is processed in 5 complex
iterations (2 jobs per iteration). Again, we can see a good
scalability potential: the baseline runtime of 3145 s (3 VMs
on-premise) is reduced by 51% when doubling the number
of on-premise VMs.

The runtime results are listed in Table 4a. In this case, the
accuracy of the ARIA estimations for the largest scenario
(15 VMs) are follows: the upper bound is overestimated
by 16% and the lower bound is underestimated by 34%.
Our approach on the other has the following accuracy with
respect to hybrid actual: for 15 VMs and 100 Mbps weak
link, the upper bound is overestimated by 22% and the
lower bound is underestimated by 7%. In case of 1 Gbps,
the upper bound is overestimated by 12% and the lower
bound is underestimated by 16%.

The average estimations are depicted in Figure 6. As can
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Approach 6 VMs 9 VMs 12 VMs 15 VMs
On-premise Actual 1511 1053 981 796
ARIA Upper Bound 1765 1287 1059 924
ARIA Lower Bound 1379 892 660 523

100 Mbps weak link (3 VMs on-premise)
Hybrid Actual 4886 3764 3794 3330

Hybrid Upper Bound 5490 4006 4764 4064
Hybrid Lower Bound 4675 3607 3140 3102

1 Gbps weak link (3 VMs on-premise)
Hybrid Actual 1585 1130 1059 892

Hybrid Upper Bound 1831 1256 1351 1006
Hybrid Lower Bound 1509 1037 850 767

(a) Total actual runtime (s) vs. predicted runtime (s) ex-
pressed as upper bound and lower bound

Prediction Accuracy vs. Actual 6 VMs 9 VMs 12 VMs 15 VMs
100 Mpbs weak link (3 VMs on-premise)
(%) Map Error -1.2 -6.6 -16.1 -13.1

ARIA Avg. (%) Red. Error -77.3 -79.8 -84.5 -85.3
(%) Total Error -67.8 -71.0 -77.4 -78.3
(%) Map Error -0.1 -6.7 -7.4 -14.2

Hybrid Avg. (%) Red. Error 4.6 2.2 5.6 10.0
(%) Total Error 4.0 1.1 4.2 7.6

1 Gbps weak link (3 VMs on-premise)
(%) Map Error 8.6 2.5 -11.6 -8.6

ARIA Avg. (%) Red. Error -5.8 -6.9 -22.8 -24.2
(%) Total Error -0.8 -3.6 -18.9 -18.9
(%) Map Error 5.2 -4.0 -9.0 -14.0

Hybrid Avg. (%) Red. Error 5.4 4.7 11.2 6.7
(%) Total Error 5.4 1.5 3.9 -0.7

(b) Accuracy of the average prediction (between lower and upper
bound) vs. the hybrid actual runtime broken down by phase

TABLE 4: PageRank: Balanced example of an iterative MapReduce application with complex (multi-job) iterations
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Fig. 6: PageRank average runtime estimation

be observed, when the application is balanced and exhibits
both map-intensive and reduce-intensive behavior, the weak
link is under I/O pressure, especially in the 100 Mbps case.
Therefore, the average ARIA estimation has an error of
almost 80% with respect to hybrid actual. In the case of
1 Gbps, the error is smaller at 18%. Nevertheless, our ap-
proach exhibits again an error that is an order of magnitude
smaller: less than 8% for the 100 Mbps case and less than 1%
for the 1 Gbps case.

Table 4b shows finer grain details about the accuracy of
the map and reduce phase. For PageRank, the main source
of the overall error seems to the reduce phase estimation,
which clearly overshadows the map phase error. This hold
both for 100 Mbps and 1 Gbps. Our approach has a good ac-
curacy for both phases regardless of the weak link capacity.

The final application we study is Connected Compo-
nents, which emphasizes the reduce phase. The implemen-
tation we use is part of Intel’s BigBench [31] benchmark,
which also includes a data generator. For the scale of our
experiments, we generated 300 MB worth of input data (rep-
resenting interactions in a social network). The application
runs for 9 complex iteration, each of which is composed
by 3 MapReduce jobs and includes additionally one final
job. Connected Components runs in the baseline case (3
on-premise VMs) for 1621 s. Doubling the number of on-
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Fig. 7: Connected Components runtime estimation

premise VMs leads to an actual runtime that is 42% smaller,
which shows good scalability potential.

Table 5a shows the upper and lower bounds of the
estimations. As can be observed, there is a large error for
ARIA versus on-premise actual, especially for the lower
bound (more than 300%). In this case, our approach has
almost an order of magnitude better approximation (35%)
versus hybrid actual.

The average estimations, depicted in Figure 7 exhibit a
similar trend as before: in the 100 Mbps case, ARIA has
an error of 64% compared with hybrid actual where our
approach reduces this to 11%. In the 1 Gbps case, ARIA has
a 21% error that our approach reduces to less than 2%.

Table 5b shows finer grain details about the accuracy of
the map and reduce phase. Since the reduce phase dom-
inates, large errors in the reduce phase translate to low
overall accuracy. ARIA exhibits these large errors in the
reduce phase where our approach does not, which explains
the better overall accuracy.

7 CONCLUSIONS

This paper addresses the problem of how to estimate the
runtime of iterative MapReduce applications in hybrid
cloud bursting scenarios where on-premise and off-premise
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Approach 6 VMs 9 VMs 12 VMs 15 VMs
On-premise Actual 928 757 686 647
ARIA Upper Bound 1178 972 883 810
ARIA Lower Bound 592 377 284 209

100 Mbps weak link (3 VMs on-premise)
Hybrid Actual 1833 1380 1451 1419

Hybrid Upper Bound 2131 1585 1878 1450
Hybrid Lower Bound 1356 1031 967 1056

1 Gbps weak link (3 VMs on-premise)
Hybrid Actual 947 758 714 650

Hybrid Upper Bound 1157 848 896 787
Hybrid Lower Bound 665 520 494 536

(a) Total actual runtime (s) vs. predicted runtime (s) ex-
pressed as upper bound and lower bound

Prediction Precision vs. Actual 6 VMs 9 VMs 12 VMs 15 VMs
100 Mpbs weak link (3 VMs on-premise)
(%) Map Error -12.9 -15.9 -29.0 -35.1

ARIA Avg. (%) Red. Error -66.8 -66.5 -72.9 -76.8
(%) Total Error -51.7 -51.1 -59.8 -64.1
(%) Map Error -6.0 -14.2 -11.8 -6.8

Hybrid Avg. (%) Red. Error -4.5 -1.3 2.2 -13.8
(%) Total Error -4.9 -5.2 -2.0 -11.7

1 Gbps weak link (3 VMs on-premise)
(%) Map Error -4.5 -8.0 -15.4 -21.6

ARIA Avg. (%) Red. Error -8.3 -13.6 -14.4 -21.9
(%) Total Error -6.5 -11.0 -18.3 -21.6
(%) Map Error -2.8 -13.7 -3.8 5.7

Hybrid Avg. (%) Red. Error -4.5 -5.2 7.0 -3.5
(%) Total Error -3.8 -9.8 -2.7 1.7

(b) Accuracy of the average prediction (between lower and upper
bound) vs. the hybrid actual runtime broken down by phase

TABLE 5: Connected Components: Reduce-intensive example of an iterative MapReduce application

VMs that host a MapReduce environment need to communi-
cate over a weak link. Such runtime estimations are a critical
tool in aiding the decision of whether the pay-as-you-go cost
of cloud bursting justifies the expected speed-up.

To address this problem, we proposed a methodology
that combines analytical modeling with synthetic bench-
marking to estimate the time-to-solution specifically for a
hybrid setup, where the weak link has a decisive impact
both on the map and the reduce phase. We illustrated our
proposal for the MapReduce runtime, however the princi-
ples are generic and can be applied to other runtimes that
support similar computations, such as Spark [32].

We have demonstrated benefits for our proposal from
multiple angles using a mix of map-intensive, reduce-
intensive and balanced real-life iterative applications from
standardized big data benchmarks that cover a broad spec-
trum of use cases. Specifically, we have shown that: (1)
the upper and lower estimation bound of our approach
against the hybrid baseline is significantly more accurate
than the single-site counterparts against the on-premise
baseline; (2) the average estimation of our approach is
always within 1%-10% error regardless of scale and up to
one order of magnitude more accurate than single-site state-
of-art against the hybrid baseline; (3) our approach shows
consistent behavior and accurately estimates both the map
and the reduce phase, which means the overall estimation
was not obtained by accident through the accumulation of
large errors during the map and reduce phase that cancel
each other out.

The trade-off for using our approach is the need for
a one-time calibration phase that can be reused for all
subsequent applications, which is additionally needed com-
pared with single-site estimation techniques that rely solely
on characterizing the application. However, cloud settings
remain relatively stable over time (e.g., cloud providers
rarely change VM flavors), so a user or cloud provider
can easily cache the results of the synthetic benchmarks
and reuse them subsequently as needed. We argue that this
overhead is negligible considering the large improvements
in the accuracy of the runtime estimations.

Encouraged by these results, we plan to explore in future
work also the elasticity dimension. Specifically, we assume
the user uses a fixed number of off-premise VMs while run-
ning the application. However, it may happen that a more

elastic behavior is desirable where the off-premise configu-
ration may change (e.g., add/remove VMs at each iteration)
to adapt to changing goals (e.g., results needed faster than
originally anticipated). In this context, the problem of how
to formulate an elastic performance model capable to both
recommend the best off-premise configuration and estimate
the runtime for it is not well understood and of critical
practical importance.
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