Diseño y desarrollo de una lámpara LED modular

GRADO EN INGENIERÍA EN DISEÑO INDUSTRIAL Y DESARROLLO DE PRODUCTO

JULIO 2018

Autora: Casandra Morales Pérez Tutora: Julia Galán Serrano

Índice general

VOLUMEN I: MEMORIA	
1. Objeto	10
2. Alcance	11
3. Antecedentes	12
3.1. Historia de la luz	12
3.2. Historia de las luminarias	14
3.3. Estudio de mercado	16
4. Normas y referencias	24
5. Bibliografía	27
6. Programas utilizados	27
7. Definiciones y abreviaturas	28
8. Requisitos de diseño	29
8.1. Definición del problema	29
8.2. Establecimiento de objetivos	30
9. Análisis de soluciones	31
10. Diseño final	36
10.1. Descripción general	36
10.2. Materiales y fabricación	38
10.3. Ambientaciones	39
10.4. Imagen del producto	43
10.5. Embalaje	44
VOLUMEN II: ANEXOS	
1. Historia de la luz	52
2. Historia de las luminarias	54
3. Estudio de mercado	56
3.1. Empresas competidoras	57
3.2. Lámparas modulares	65
3.3. Encuestas	76
3.4. Conclusiones	88

4. Estudio de la normativa vigente y aplicable	89
5. Establecimiento de objetivos	92
5.1. Marco general	92
5.2. Estudio de las expectativas y razones del promotor	92
5.3. Estudio de las circunstancias que rodean al diseño	93
5.4. Establecimiento de objetivos	93
5.5. Análisis de objetivos	94
6. Establecimiento de especificaciones y restricciones	100
6.1. Asignación de variable, escala de medición y criterio	100
7. Evaluación y análisis de las alternativas de diseño	101
7.1. Diseños propuestos	101
VOLUMEN III: PLANOS	
1. Hoja 1. Plano 1.1. Conjunto luminaria pequeña	135
2. Hoja 1. Plano 1.2. Conjunto luminaria mediana	136
3. Hoja 1. Plano 1.3. Conjunto luminaria grande	137
4. Hoja 2. Plano 2.1. Luminaria; Listado de piezas	138
5. Hoja 2. Plano 2.2. Luminaria; Cubierta	139
6. Hoja 2. Plano 2.3. Luminaria; Pantalla pequeña	140
7. Hoja 2. Plano 2.4. Luminaria; Pantalla mediana	141
8. Hoja 2. Plano 2.5. Luminaria; Pantalla grande	142
9. Hoja 2. Plano 2.6. Luminaria; Esqueleto pequeño	143
10. Hoja 2. Plano 2.7. Luminaria; Esqueleto mediano	144
11. Hoja 2. Plano 2.8. Luminaria; Esqueleto grande	145
12. Hoja 2. Plano 2.9. Luminaria; Protector	146
13. Hoja 2. Plano 2.10. Luminaria; Armazón superior	147
14. Hoja 2. Plano 2.11. Luminaria; Armazón inferior	148
15. Hoja 3. Plano 3.1. Conjunto soporte de pie	149
16. Hoja 3. Plano 3.2. Soporte pie; Listado de piezas	150
17. Hoja 3. Plano 3.3. Soporte pie; Contenedor	151
18. Hoja 3. Plano 3.4. Soporte pie; Tapa	152
19. Hoja 3. Plano 3.5. Soporte pie; Fuste grande	153
20. Hoja 3. Plano 3.6. Soporte pie; Base grande	154
21. Hoja 4. Plano 4.1. Conjunto soporte de mesa	155

22. Hoja 4. Plano 4.2. Soporte mesa; Listado de piezas	156
23. Hoja 4. Plano 4.3. Soporte mesa; Contenedor	157
24. Hoja 4. Plano 4.4. Soporte mesa; Tapa	158
25. Hoja 4. Plano 4.5. Soporte mesa; Fuste pequeño	159
26. Hoja 4. Plano 4.6. Soporte mesa; Base pequeña	160
VOLUMEN IV: PLIEGO DE CONDICIONES	
1. Condiciones generales	164
1.1. Objeto	164
1.2. Referencias y compatibilidad entre documentos	164
2. Descripción de materiales	165
2.1. Elementos fabricados	165
2.2. Elementos comerciales	175
3. Condiciones de fabricación del producto	179
3.1. Termoformado	179
3.2. Moldeo por inyección	181
3.3. Laminado y soldadura	183
3.4. Extrusión y doblado	186
4. Ensamblaje	188
VOLUMEN V: ESTADO DE MEDICIONES Y COSTES	
1. Estado de mediciones	196
1.1. Listado de componentes diseñados	196
1.2. Listado de elementos comerciales	198
1.3. Operaciones y tiempos de fabricación	198
1.4. Operaciones y tiempos de ensamblaje	199
2. Costes	200
2.1. Costes de las piezas	200
2.2. Costes de fabricación	200
3. Precio de venta al público	201
3.1. Análisis del precio de venta	201
4. Viabilidad	203

Diseño y desarrollo de una lámpara LED modular

Índice:

1. Objeto	10
2. Alcance	11
3. Antecedentes	12
3.1. Historia de la luz	12
3.2. Historia de las luminarias	14
3.3. Estudio de mercado	16
3.3.1. Empresas competidoras	17
3.3.2. Productos existentes	19
3.3.3. Conclusiones	22
3.4. Público objetivo	23
4. Normas y referencias	24
5. Bibliografía	27
6. Programas utilizados	27
7. Definiciones y abreviaturas	28
8. Requisitos de diseño	29
8.1. Definición del problema	29
8.2. Establecimiento de objetivos	30
9. Análisis de soluciones	31
10. Diseño final	36
10.1. Descripción general	36
10.2. Materiales y fabricación	38
10.3. Ambientaciones	39
10.4. Imagen del producto	43
10.5. Embalaje	44

1. Objeto

El objetivo del presente proyecto consiste en el diseño y desarrollo de una luminaria compuesta por varios módulos, variables en tamaño y forma, los cuales pueden combinarse entre sí dando lugar a lámparas completamente personalizables.

Se pretende encontrar la mejor solución para la realización de una luminaria modular accesible al mayor número de usuarios posible, que además pueda cubrir las necesidades formales y funcionales del propio producto. Además, el diseño debe ser respetuoso con el medio ambiente y tener una estética que lo diferencie del resto de productos de la competencia.

El estudio en concreto se centra en el desarrollo de 3 mamparas lumínicas y 3 soportes para dichas mamparas: un soporte de pie, otro de mesa y otro colgante de techo.

Aunque el desarrollo de este trabajo se centre en 6 elementos, este estudio es viable para la posterior realización de diferentes mamparas y soportes, variando tamaños, texturas o colores para el caso de las mamparas y en el caso de los soportes, pueden realizarse diferentes tipos de pié de diferentes alturas o diferente número de patas o formas. Todo ello siempre y cuando se siga con la metodología y el mecanismo propuesto en el proyecto que se va a desarrollar a continuación.

El proyecto será desarrollado para que cumpla las normas UNE correspondientes, respetando las normas respecto al peso, estructura, forma y ergonomía. También se estudiarán los diferentes estilos del producto.

En este proyecto se desarrollan los documentos necesarios para la fabricación, promoción y venta del producto, además de recoger el conjunto de necesidades que dan pie al planteamiento del proyecto:

- Propuestas del cliente.
- Exigencias del mercado.
- Mejoras tecnológicas o de calidad.

2. Alcance

El proyecto abarca todas las fases para su correcta realización. Primero se crea una planificación y búsqueda de información y análisis.

Se estudia el mercado y usuario al que va dirigido y se realizan metodologías para ayudar a definir el proyecto y evitar posibles problemas en fases posteriores.

Además se estudian los materiales, fabricación y viabilidad del producto para su correcta puesta en el mercado, comprobando que cumple con los requisitos de sostenibilidad.

La última fase del proyecto es la creación de marca y publicidad del producto.

3. Antecedentes

3.1. Historia de la luz

Los griegos fueron los primeros interesados en el proceso de visión. Para ellos, el ojo emitía una especie de fuego que permitía ver los objetos.

Euclides fue quien más avanzó en el principio de estudio de la óptica.

Consideraba que, entre los ojos y los objetos luminosos, se producía una especie de interacción de rayos, la cual permitía la visión. Euclides realizó varios estudios, afirmando que la luz viajaba en línea recta. Pero sin duda el mayor hallazgo del científico fue el concepto de la reflexión.

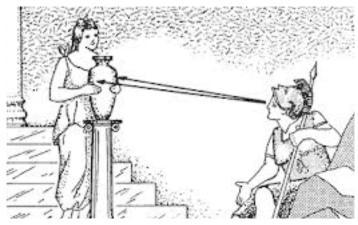
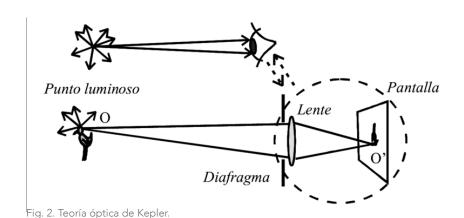



Fig. 1. Estudio óptica de Euclides.

Además de Euclides, también hubo otros científicos que hicieron descubrimientos clave sobre la óptica. Uno de ellos fue Herón de Alejandría, que formuló que la luz recorre el camino más corto entre dos cuerpos.

Pero no fue hasta el siglo X cuando el árabe Alhazen afirmó que la visión se produce cuando el ojo recibe el flujo de unas pequeñas partículas reflejadas sobre los objetos, que viajaban el línea recta hasta el ojo. Descartando así la idea de que el ojo era el que emitía rayos para ver.

En el siglo XVII, los trabajos matemáticos de Kepler le condujeron a la hipótesis de que la intensidad de luz que recibimos de un objeto está directamente relacionada con la distancia a la que este se encuentra.

Y sobre la hipótesis de Kepler se basó Galileo para construir el telescopio.

Al final del mismo siglo, Isaac Newton presenta la teoría del color y con ella, la teoría corpuscular de la luz, demostrando las leyes de la reflexión y difracción con dicha teoría. Mientras, Cristian Huygens desarrolla la teoría contrapuesta en la que suponía que la luz era un efecto ondulatorio.

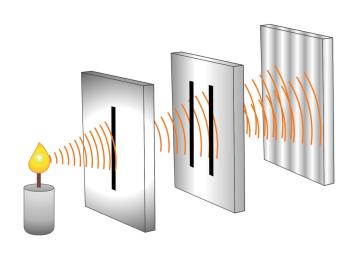


Fig. 4. Teoría corpuscular de Thomas Young.

Fig. 3. Telescopio de Galileo.

El gran prestigio de Newton en aquella época, eclipsa la teoría de Huygens e impide su desarrollo, hasta que Leonhard Euler publica un trabajo sobre óptica en el que defiende la teoría ondulatoria de la luz, la cual recibe un gran soporte con los experimentos de Thomas Young en 1797. Fue Augustin Fresnel quien confirma esta teoría ondulatoria en el siglo XIX.

El siguiente personaje clave en la historia de la luz es Michael Faraday, un físico y químico británico que estudió el electromagnetismo y propone que los efectos magnéticos y eléctricos asociados a la materia influyen en la propagación de la luz.

Finalmente, el matemático Maxwell pone fin a la teoría corpuscular demostrando que la luz es una onda.

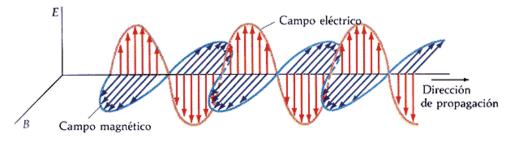


Fig. 5. Teoría ondulatoria de Maxwell.

3.2. Historia de las luminarias

Desde la prehistoria, con el descubrimiento del fuego, el hombre empezó a utilizar este elemento no solo para dar calor o cocinar, sino que con las llamas, iluminaban sus cavernas. Esta fue la primera iluminación artificial que utilizó el hombre.

Hace unos 50.000 años es cuando se estima que surgió el primer candil. Se usaba aceite o grasa de origen animal como combustible. En un principio se introducían en cráneos de animales, que hacían de soporte, pero no tardaron en fabricarse recipientes de piedra.

Fig. 6. Candiles de piedra.

Años después, se empezaron a utilizar valvas de moluscos marinos como soportes para la iluminación.

Siglos más tarde empezaron a utilizarse los tizones, que eran palos de madera que se quemaban en la parte superior. Estos fueron utilizados por los egipcios, que fueron mejorándolos con el paso de los años. Colocaban paja en un extremo del palo que embadurnaban con resina y cera de abejas.

Fue en Egipto, alrededor del siglo XIV AC, cuando se inventó la vela.

Durante el siglo X AC, en Roma, aparecieron las primeras lámparas de aceite fabricadas en cerámica, que no tardaron en dispersarse por el mediterráneo.

En la Edad Media fue cuando se inventaron las primeras linternas con pabilos. Se realizaban grandes candelabros de hierro forjado, muy ornamentados, en los que se alojaban las velas, ya mejoradas con el paso de los años.

En 1859 en EEUU, surge el queroseno y a raíz de este descubrimiento, la iluminación por gas.

Fig. 7. Primera instalación de alumbrado con gas.

Fig. 8. Nikola Tesla y la lámpara de luz fluorescente.

Freidrich Winzer, inventor alemán, fue la primera persona en patentar la iluminación a gas en 1804, aunque fue William Murdoch quien instaló el primer sistema de iluminación con gas en 1975 en una fábrica de Inglaterra.

A principios del siglo XIX, casi toda Europa y Norteamérica ya disponía de este tipo de iluminación a gas en sus calles. En la década de 1930 surge la iluminación con sodio a baja presión y mercurio a alta presión y se desarrolla la iluminación eléctrica.

La primera lámpara eléctrica la inventó Sir Humphry Davy. Se trataba de una lámpara eléctrica de arco. Su funcionamiento consistía en la incandescencia de un fino hilo de platino al aplicar tensión en sus extremos.

Basándose en este descubrimiento, Focault desarrolló el mismo método de lámpara de arco pero en ese caso, por descarga eléctrica entre electrodos de carbón. Este método se utilizó en el alumbrado de las calles.

En 1857 surgen las primeras teorizaciones de la lámpara fluorescente de la mano de A. E. Becquerel.

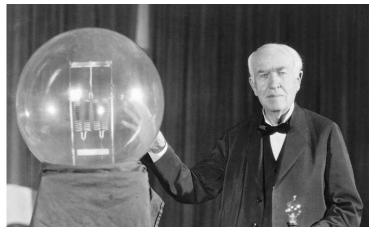


Fig. 9. Thomas Edison y la primera lámpara incandescente.

Y ya en 1870, Sir Joseph wan y Thomas Edison inventan la primera lámpara eléctrica incandescente.

Thomas Edison encendió la primera lámpara con filamento de carbono en Nueva York, el 27 de octubre de 1879, y se mantuvo por dos días en funcionamiento continuo. En 1901 se inventó la lámpara de vapor de mercurio que es la precursora de la lámpara fluorescente. Y en 1906, Just y Haran fabricaron una lámpara con el filamento de tungsteno, que reemplazaba al carbono. Al año siguiente, estos filamentos se sustituyen por filamentos de wolframio. Ya en 1913 se fabrican las primeras bombillas incandescentes de gas.

El neón fue descubierto por Wiliam Ramsay y Morris Travers en 1898. La Societe de l'Air Liquide producía grandes cantidades de neón y su propietario decidió emplearlo para meter este gas en tubos y pasar corriente por él. De este modo se descubrieron las luces de neón. Y no solo se quedó en esto, sino que probó con otros gases nobles para producir diferentes colores, como el amarillo o el azul, producidos por el helio y el argón.

En 1910 presentó las luces de neón en una exposición de automóviles en París, tal y como las conocemos hoy en día. En 1915 consiguió la patente y el 1917 se inventó la lámpara de neón.

Fig. 10. Lámpara neón de 1930.

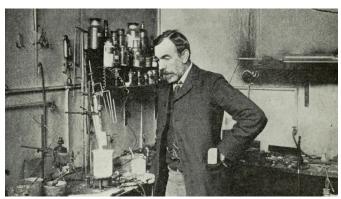


Fig. 11. William Ramsay.

Fig. 12. Lámpara de vapor de mercurio.

3.3. Estudio de mercado

Tras realizar una breve evolución histórica del producto, se procede a realizar un estudio de mercado. Primero se mencionarán las empresas competidoras en el mercado actual, y luego se hará un recorrido de los productos presentes en el mercado que pueden ser interesantes para la elaboración de este proyecto.

^{*} Para más información, consultar el apartado 3 del Volumen II, Anexos.

3.3.1. Empresas competidoras:

Esta empresa de El Prat de Llobregat se encarga de la fabricación, exportación y comercialización de lámparas y complementos luminarios. Su principal sector es la luminaria decorativa.

Artemide

Esta empresa italiana es líder mundial en el sector de la iluminación desde hace varios años.

Fundada en 1960, se caracteriza por su filosofía "The Human Light" y significa que sus productos son fruto de la investigación y la capacidad de producción de las personas que lo forman.

Sus productos son cuidados, con un diseño elegante y con perfectas características técnicas que las hacen altamente funcionales.

ALMALIGHT

Alma Light es una empresa de iluminación decorativa con sede en Barcelona. Posee un espíritu cálido y artesano, muy cercano al cliente y con una estupenda relación calidad-precio.

Tienen un diseño contemporáneo y son especialistas en la creación de lámparas decorativas y en la producción de luminarias especiales para instalaciones.

FOSCARINI

Una empresa italiana entre las líderes mundiales de la iluminación.

Foscarini se centra en la creación de exclusivas lámparas de diseño que decoran cualquier lugar donde se coloquen sus productos.

lzf

Luzifer Lamps es una empresa Valenciana que fabrica lámparas de diseño de manera artesanal a partir de láminas de madera.

Fundada por Marivi Calvo y Sandro Tothill a finales de 1994. Es una empresa relativamente jóven, pero que ha conseguido hacerse un hueco en el sector de la iluminación, llegando a ser una de las empresas más competitivas de iluminación hoy en día a nivel internacional. Tanto es así, que ha ganado desde sus inicios, más de 30 premios internacionales.

De las pioneras mundiales, Flos Lighting se caracteriza por su increíble diseño italiano.

A esta empresa le gusta explorar las diferentes formas de luz combinando materiales y tecnologías diferentes en cada uno de sus diseños.

etiluz[®]

Esta empresa fue fundada por Leonardo Marelli (Gerard Masdeu), quién convirtió el taller mecánico de su padre en la empresa de iluminación que hoy en día goza de un prestigio internacional.

ESTILUZ se caracteriza por la gran cantidad de luz que emiten sus luminarias.

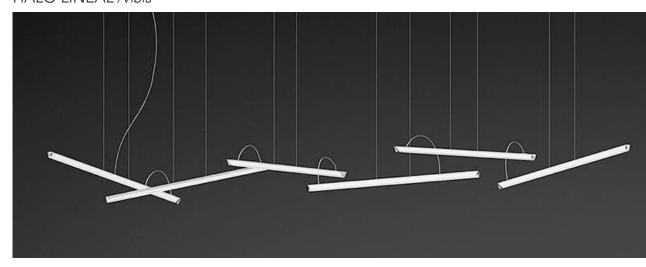
Protagonista en el mundo de la iluminación desde el año 1938, esta empresa ha ganado muchos reconocimientos a lo largo de su historia.

Se caracteriza por la originalidad de sus diseños y la innovación. Realizan productos tanto de interiores como exteriores.

3.3.2. Productos existentes:

ORBITAL /Carpintería Expandida

TWELVE LAMP /Plato Design


PL-Y /Unleaded

LINK /Vibia

HALO LINEAL /Vibia

CHESHIRE

MAY DAY /Flos

MAIJA /Santa&Cole

3.3.3. Conclusiones:

Después de analizar las diferentes empresas y productos de luminarias modulares, se llega a la siguiente conclusión.

La principal característica que desarrollan estos productos es la capacidad de amoldarse a las necesidades del usuario. De este modo el abanico de posibilidades de que el producto tenga buena acogida en el mercado se amplia, ya que sin ser un producto exclusivo, si que está dotado con un carácter de personificación que hacen que el producto sea más deseado.

Los aspectos a tener en cuenta son los siguientes:

Muchos de estos productos centran su atención en el carácter funcional que este tipo de luminarias requiere. Pero la gran mayoría añade un carácter estético muy potente, y crea módulos que hacen posible que, cuando el usuario crea las combinaciones para satisfacer sus necesidades luminarias, esté creando a la vez elementos decorativos. Todo esto sin recargar el producto con decoraciones excesivas y usando siempre tonos muy neutros y cálidos.

En cuanto a los materiales utilizados podemos observar que priman los polímeros, ya que son ligeros, resistentes y tienen una óptica luminosa muy buena la gran mayoría, además de no ser caros y presentar unos procesos de mecanizado relativamente económicos y sencillos. Además se mezcla mucho con aluminio, aceros inoxidables u otro tipo de materiales metálicos.

El precio de la competencia oscila entre los 85€ y los 1300€, siendo el precio medio los 500€. Los PVP dependen también si la luminaria tiene alguna característica extra, como puede ser regulador de luz, etc.

La iluminación más usada en este tipo de lámparas es la de diodos LED, pues se trata de un tipo de iluminación mucho más moderna y sobretodo económica. La tecnología LED posee una mayor eficacia lumínica y esto hace que se optimice el uso de la luz emitida, reduciendo así el consumo y la contaminación.

3.4. Público objetivo

El público al que se quiere dirigir este proyecto son usuarios que hagan uso frecuente de las luminarias en su día a día de una manera general, ya sea para iluminar cualquier zona de su hogar o de su espacio de trabajo.

Es un usuario de un rango de edad muy amplio, que atendiendo a los cambios que se producen a lo largo del tiempo, ya sea por necesidad o por el simple hecho de cambios de gustos o tendencias, quiere poseer una luminaria que pueda personalizar a su antojo.

4. Normas y referencias

Normativa consultada para la realización del proyecto.

DOCUMENTOS:

UNE 157001

Criterios generales para la elaboración formal de los documentos que constituyen un proyecto técnico.

UNE 66916

Sistemas de gestión de la calidad. Directrices para la gestión de la calidad en los proyectos.

UNE 82100

Magnitudes y unidades.

UNE 21302-845

Vocabulario electrotécnico. Iluminación.

UNE-EN ISO 9001

Modelos de la Calidad para el aseguramiento de la calidad, el desarrollo, la producción, la instalación y el servicio postventa.

UNE-EN ISO 9004-1

Gestión de la Calidad y elementos del sistema de la calidad. Parte 1: directrices.

ILUMINACIÓN, COMPONENTES Y SEGURIDAD:

UNE-EN 12665

Iluminación. Términos básicos y criterios para la especificación de los requisitos de alumbrado.

UNE 20314

Material eléctrico para baja tensión. Protección contra choques eléctricos.

UNE 20315-1-2

Bases de toma de corriente y clavijas para usos domésticos y análogos. Parte 1-2: Requisitos dimensionales del Sistema Español.

UNE 20451

Requisitos generales para envolventes de accesorios para instalaciones eléctricas fijas de usos domésticos y análogos.

UNE-EN 50086-2-2/A11

Sistemas de tubos para la conducción de cables. Parte 2-2: Requisitos particulares para sistemas de tubos curvables.

UNE-EN 50086-2-3/A11

Sistemas de tubos para la conducción de cables. Parte 2-3: Requisitos particulares para sistemas de tubos flexibles.

UNE-EN 60598-1

Luminarias. Parte 1: Requisitos generales y ensayos.

UNE-EN 61347-2-13

Dispositivos de control de lámpara. Parte 2-13: Requisitos particulares para dispositivos de control electrónicos alimentados con corriente continua o corriente alterna para módulos LED.

UNE-EN 61547

Equipos para iluminación para uso general. Requisitos relativos a la inmunidad CEM.

UNE-EN 62031

Módulos LED para alumbrado general. Requisitos de seguridad.

UNE-EN 62442-3

Eficiencia energética de los dispositivos de control de lámpara. Parte 3: Dispositivos de control para lámparas halógenas y módulos LED. Método de medida para determinar la e ciencia del dispositivo de control.

UNE-EN 62504

Iluminación general. Productos de diodos electroluminiscentes (LED) y equipos relacionados. Términos y definiciones.

UNE 157701

Criterios generales para la elaboración de proyectos de instalaciones eléctricas de baja tensión.

MEDIOAMBIENTALES:

UNE 157921

Criterios generales para la elaboración de estudios de impacto ambiental.

FLABORACIÓN DE PLANOS:

UNE 1027

Dibujos técnicos. Plegado de planos.

UNE 1032

Dibujos técnicos. Principios generales de representación.

UNE 1035

Dibujos técnicos. Cuadro de rotulación.

UNE 1037

Indicaciones de los estados superficiales en los dibujos.

UNE 1120

Dibujos técnicos. Tolerancias de cotas lineales y angulares.

UNE 1121-2

Dibujos técnicos. Tolerancias geométricas. Principio de máximo material.

UNE 1039

Dibujos técnicos. Acotación. Principios generales, definiciones, métodos de ejecución e indicaciones especiales.

UNE 1135

Dibujos técnicos. Lista de elementos.

UNE 1149

Dibujos técnicos. Principio de tolerancias fundamentales.

UNE 1166-1

Documentación técnica de productos. Vocabulario. Parte 1: Términos relativos a los dibujos técnicos: Generalidades y tipos de dibujo.

UNE-EN ISO 3098-0

Documentación técnica de productos. Escritura. Requisitos generales.

UNE-EN ISO 3098-5

Documentación técnica de productos. Escritura. Parte 5: Escritura en diseño asistido por ordenador (DAO), del alfabeto latino, las cifras y los signos.

5. Bibliografía

Además de todas las empresas mencionadas en el estudio de mercado, se han consultado otras webs de interés, de las que se ha extraído información relevante para la realización del proyecto.

WEBS:

AENOR. Normas UNE, www.aenor.es

BOE. Certificados y Normativa española, www.boe.es

OEPM. Oficina española de patentes y marcas, www.oepm.es

Archive, www.archive.org

Magnetic ilumination, https://arxiv.org/pdf/cond-mat/0305661.pdf

Gizmodo, www.gizmodo.com

Imanes de neodimio, www.supermagnete.es

Cairplas. Plásticos reciclables, https://cairplas.org.ar/plasticos-reciclables/

Barcelona LED, www.barcelonaled.com

Materials World, www.mwmaterialsworld.com Prometec, www.prometec.net

Koala components, www.koalacomponents.com

Temario consultado de las asignaturas del Grado en Ingeniería en Diseño Industrial y Desarrollo de Producto:

- Tecnología eléctrica aplicada al producto
- Mecánica
- Procesos de fabricación L
- Procesos de fabricación II
- Diseño conceptual
- Metodologías del diseño
- Ergonomía

6. Programas utilizados

Los programas informáticos utilizados para la realización del presente proyecto han sido los siguientes:

Adobe Photoshop

Adobe Illustrator

Adobe inDesign

SolidWorks

3ds Max

7. Definiciones y abreviaturas

ISO	Organización Internacional de Normalización
AENOR	Asociación Española de Normalización y Certificación
DIN	Instituto Alemán de Normalización
UNE	Una Norma Española
EN	Norma Europea

°C	Grado centígrado	N	Newton
V	Voltio	Мра	Megapascal
W	Watio	€	Euro
mA	Miliamperio	D	Diámetro
Ω	Ohmio	Н	Altura
IP	Grado de protección	n°	Número
lm	Lúmen	CNC	Control numérico computerizado
lx	Luxes	±	Más menos
LED	Diodo emisor de luz	%	Porcentaje
mm	Milímetro	СС	Corriente continua
cm	Centímetros	CA	Corriente alterna
m	Metro	IP	Grado de protección
S	Segundo	CO2	Dióxido de carbono
h	Hora	PO4	Fosfatos
km	Kilómetro	SO2	Azufre
g	Gramo	ACV	Análisis de ciclo de vida
kg	Kilogramo	CFC	Clorofluorocarburos

Tabla 1. Definiciones y abreviaturas.

8. Requisitos de diseño

Para encontrar la mejor solución al problema que se presenta, se hace uso de la metodología de definición del problema y se estudia los factores que giran en torno al producto que se pretende desarrollar. Entre dichos factores se encuentran las expectativas del promotor, las circunstancias que rodean al diseño y los recursos disponibles.

En este caso se plantean unos requisitos de diseño y se establecen unos objetivos y deseos a cumplir por la luminaria.

Después se estudian dichos objetivos y deseos para convertirlos en restricciones y especificaciones de diseño que nos ayuden a desarrollar unas propuestas más acertadas.

8.1. Definición del problema

La luminaria a desarrollar trata de encontrar la mejor solución para una lámpara LED modular, accesible al mayor número de usuarios, que sea capaz de cumplir sus exigencias funcionales y que además satisfaga también las formales.

No solo las necesidades del usuario cambian a lo largo del día, sino que lo hacen también los gustos y preferencias estéticas. Muchos usuarios demandan objetos que puedan ser personalizables y adaptables a sus preferencias cambiantes en el tiempo. Es por ello que surge la necesidad de crear una luminaria compuesta por módulos que pueda modificarse con facilidad, dando lugar a diferentes composiciones. Todo esto se incrementa si conseguimos que la luminaria pueda modificarse y convertirse fácilmente en luminaria de pie, de techo o de mesa.

Estas características no solo aportan un carácter personal al producto, ya que además supone un punto importante en la economía.

Se desea crear una luminaria que sea capaz de ser modificada por el usuario fácilmente para las necesidades diarias y además que cambie y avance estéticamente con el entorno. Constaría de muchos módulos de diferentes colores, texturas y dimensiones que permiten que cuando el usuario desee renovar su espacio de trabajo o su vivienda, no prescinda de la luminaria, sino que opte por adquirir nuevos módulos y crear él mismo el rediseño de la luminaria.

8.2. Establecimiento de objetivos

OBJETIVO	ESPECIFICACIÓN	VARIABLE	ESCALA
Atractivo	Que tenga una estética adecuada y atractiva	Usuario	Nominal
Modular	Que sea un producto modular y personalizable	Cumplimiento	Nominal
Social	Que no tenga ningún elemento religioso o político	Cumplimiento	Nominal
Tecnología LED	Que esté dotado con tecnología LED	Cumplimiento	Nominal
Fácil limpieza	Que sea fácil de limpiar	Tiempo y dificultad	Proporcional (min)
Durabilidad	Que dure el máximo tiempo posible	Vida útil	Proporcional (tiempo)
Fácil ensamblaje	l ensamblaje Que tenga el menor número de componentes		Proporcional (min)
Ligero	Que su peso sea el menor posible	Peso	Proporcional (kg)
Reciclabilidad	Los materiales usados deben ser reciclables o reciclados	Cumplimiento	Nominal
Seguridad	Que sea seguro para el usuario	Nivel de aislamiento	Nominal (IP)
Precio	Que esté al acceso de un sector económico medio	Precio	Proporcional (€)
Toxicidad	Evitar materiales tóxicos o nocivos	Huella ecológica	Proporcional- multidimensional (HAG- Hectárea global)

Tabla 2. Especificaciones.

^{*} Para más información, consultar el apartado 5 del Volumen II, Anexos.

9. Análisis y soluciones

Tras establecer los requisitos y especificaciones de diseño que debe cumplir el producto, se realizan varias propuestas, las cuales se analizarán a continuación para seleccionar la propuesta que mejor se adapte a nuestras especificaciones.

* Para más información, consultar el apartado 7 del Volumen II, Anexos.

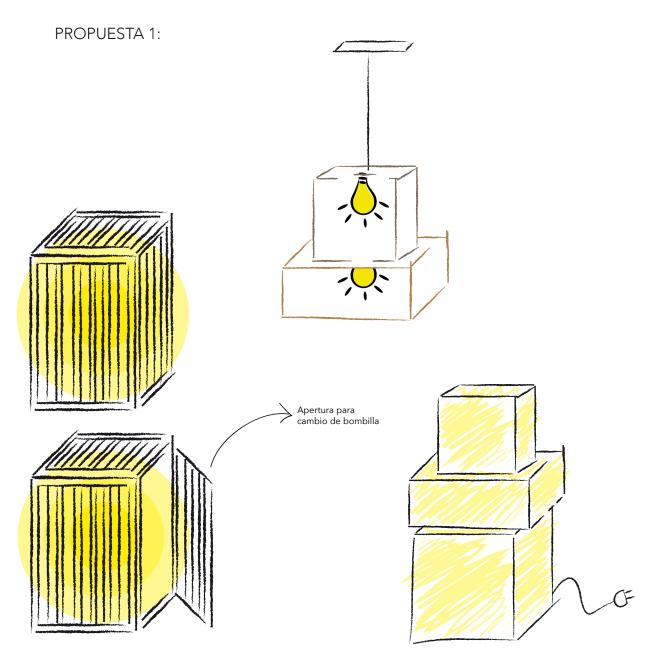


Fig. 13. Bocetos de estudio.

La primera idea que se sugiere se basa en cajas de diferentes tamaños y proporciones apilables entre sí, generando diferentes estructuras en función a su colocación.

Se trata de cajas traslúcidas que albergan luces LED en su interior y se enganchan unas con otras mediante imanes. Además disponen de un soporte de pie o de techo para poder combinarlo como se desee.

Esta propuesta tiene un gran nivel de personalización, ya que al tratarse de cajas cuadradas, el ángulo de giro una respecto de la otra, se generan múltiples efectos. Esto también influirá en el grado y forma de la luz emitida.

Para el acceso al cambio de bombilla cuando esta se estropee, se realizará una apertura en una de las caras del módulo con unas pequeñas bisagras que faciliten el acceso a la zona.

PROPUESTA 2:

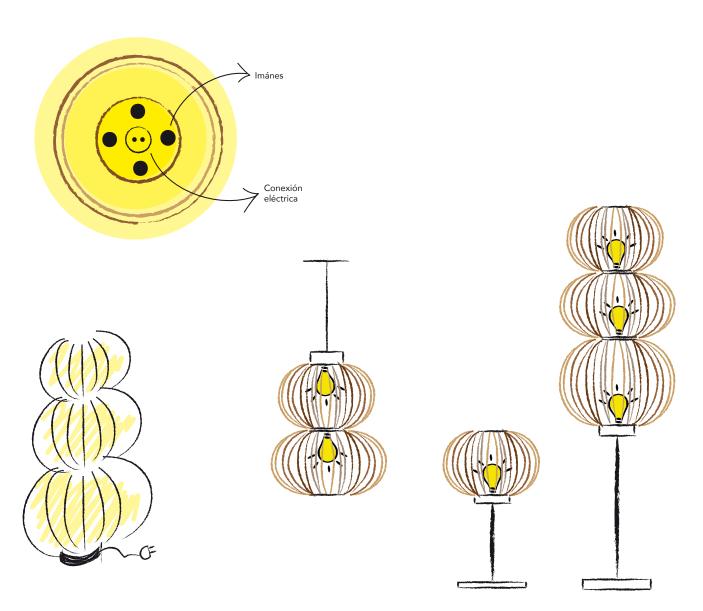


Fig. 14. Bocetos de estudio.

La segunda propuesta es muy parecida a la primera pero con algunas características bastante diferenciadas.

Se trata de diferentes formas esféricas que pueden conectarse unas a otras para dar lugar a diferentes soluciones. Con la posibilidad de colocarlas con un accesorio colgado del techo, en un pie pequeño para usar la luminaria de sobremesa o un pie largo para usarla como lámpara de pie.

La iluminación utilizada es tecnología LED pero en este caso se utilizarían bombillas de rosca E27, las cuales ellas mismas, internamente, se encargan de reducir los 230V que le llegan a los 12V que necesita un diodo para su correcto funcionamiento. Esto también hace que sea mucho más sencillo para el usuario el cambio de bombilla si esta se estropea. Asimismo, las láminas de la estructura se abrirían con un sistema guiado circular que permitiría el acceso del usuario a la rosca.

PROPUESTA 3:

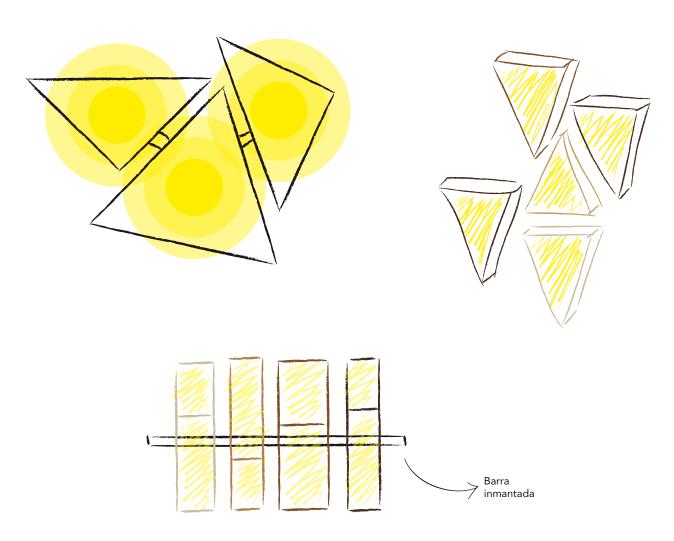


Fig. 15. Bocetos de estudio.

La siguiente propuesta consiste en la realización de módulos triangulares, realizados de materiales traslúcidos, como puede ser PMMA, dentro de las cuales se alojan pequeñas bombillas LED, permitiendo que la luz salga en casi todas las direcciones.

Este diseño está especialmente pensado para la colocación en la pared. Como se muestra en los bocetos, existirían muchas combinaciones posibles que permitirían la total personalización del producto.

Además, a parte de estar pensados para la colocación en la pared, podrían utilizarse como luminaria de techo, cuyo soporte sería el propio cable del producto. Dichas combinaciones podrían realizarse a diferentes alturas, dando lugar a luminarias, que ademas de ser funcionales, añadan un gran valor estético al producto.

El tipo de luz que se utiliza en esta propuesta consiste en una luz con tecnología LED muy cálida y acogedora, ya que la función de este diseño es más bien proporcionar una iluminación de ambiente y relax o señalización de espacios.

PROPUESTA 4:

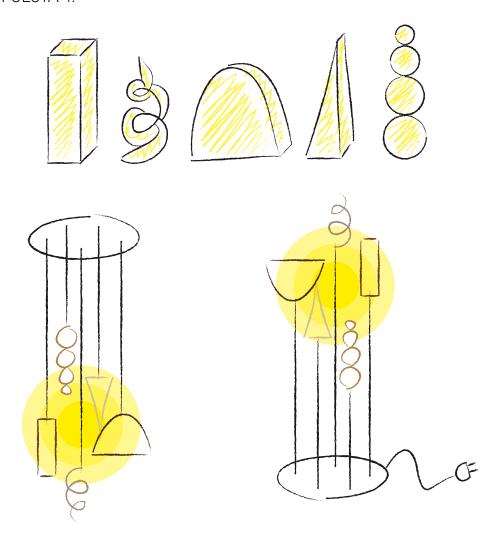


Fig. 16. Bocetos de estudio.

La cuarta y última propuesta consiste en diferentes módulos con varias formas, que el usuario puede colgar de un soporte de techo o colocar en uno de pie de la manera que desee.

Ambos soportes tienen conexiones que permiten anclar de 1 a 5 módulos como máximo, de tal manera que el usuario tiene total libertad para configurar la luminaria como desee en cada momento.

Es una luminaria que está pensada para utilizar una luz cálida. Ya que crea un clima más cómodo.

Además, al no tener formas muy complicadas y ser de PMMA, la limpieza del producto es sencilla. Bastaría con pasar un trapo con agua y jabón neutro.

10. Diseño final

10.1. Descripción general

Después del análisis de las especificaciones y la evaluación de las propuestas del diseño, junto a la metodología cuantitativa y cualitativa y las encuestas realizadas (desarrollado a lo largo del Volumen II, Anexos), la propuesta mejor valorada es la número 2.

El diseño final consiste en la realización de una luminaria modular que consta de 3 módulos esféricos de diferentes proporciones, los cuales se unen entre sí mediante conexiones para dar paso a la corriente, y se hace más efectiva la unión mediante imanes.

El cuerpo lo forman listones ondulados de polipropileno opaco de color blanco satinado, entre los cuales pasa la luz creando un ambiente dinámico pero cálido y acogedor.

En el interior de las pantallas se encuentra el portalámparas, fabricado con nylon 6 en acabado blanco satinado también. Esto hace que el módulo se perciba como un único elemento armónico. Además, la utilización del color blanco hace que la luz se proyecte aún más en el espacio creando un ambiente más luminoso.

Unas de las grandes ventajas de la utilización de polímeros para la realización de las pantallas es que se trata de un material verdaderamente ligero, por lo que se hace muy cómodo el transporte y movimiento de la luminaria.

Las dimensiones totales de dichos módulos son las siguientes:

- Pantalla grande: 280 x 300 mm
- Pantalla mediana: 300 x 300 mm
- Pantalla pequeña: 240 x 200 mm

Fig. 17. Diseño final de pantallas.

Además de las lámparas, se desarrollan 3 soportes que pueden ser utilizados con las lámparas de la manera que se desee.

Estos elementos tienen una estética minimalista y funcional. El material del que está fabricado, el acero inoxidable, le aporta un valor de distinción y calidad a la luminaria, a parte de una gran resistencia.

Las dimensiones totales de dichos soportes son las siguientes:

Soporte de techo: 570 mmSoporte de mesa: 670 mmSoporte de pie: 1070 mm

Fig. 18. Diseño final de soportes.

Además de los acabados definidos en el presente proyecto; blanco satinado para las pantallas y acero inoxidable plata para los soportes, el producto puede tener diferentes acabados.

Para cambiar el color de las pantallas de polipropileno o nylon, basta con cambiar el color del material en grana antes de conformarlo. Para el acero, en cambio, son necesarios ciertos tratamiento superficiales que pueden cambiar las características del producto, pero no necesariamente empeorarlas. De este modo se podría dar lugar a soportes con acabado dorado o efectos mate.

La gran ventaja de este diseño es que se trata de un producto completamente personalizable en función de los gustos del usuario o de las necesidades que le surgen en el día a día. Además su estética contemporánea hace que no sea solo un producto funcional, sino que aporta un gran carácter estético a los espacios.

10.2. Materiales y fabricación

Los materiales seleccionados para la fabricación de la luminaria, son el Acero inoxidable AISI 304 para el los soportes y el esqueleto de la pantalla. Esta elección viene dada por dos motivos que se resume en uno, tiene unas propiedades mecánicas excelentes y al mismo tiempo para evitar interferencias ambientales con los componentes electrónicos por problemas de oxidación.

Para las pantallas que forman los módulos se usa el polipropileno (PP). Es un material cuya obtención y procesos de mecanizado tienen costes bajos, además de ser sostenibles. Además admite una amplia variedad de acabados en cuando al color.

Por último, los armazones interiores de las lámparas, donde van alojados los componentes eléctricos, están fabricados en poliamida reforzada con fibra de vidrio (Nylon 6 o PAG). La elección de este material se basa en que es muy resistente, lo que hace muy difícil su rotura ante los accidentes, protegiendo así al usuario de posibles incidentes eléctricos.

En cuanto a los procesos de fabricación, las pantallas de PP se obtienen mediante técnicas de corte y termoformado. Procesos sencillos y con un gasto energético y de utillaje muy bajo.

Los soportes y esqueleto de las luminarias de acero AISI 304 se fabrican por laminado y soldadura.

Las piezas interiores de Nylon 6 que alojan los componentes eléctricos, se conforman por moldeo por inyección de plásticos. Este proceso tiene un coste más alto, debido a que hay que fabricar moldes personalizados para cada pieza y el coste del utillaje es elevado. La ventaja es que pueden realizarse los roscados y taladros en la misma operación de moldeo, lo que suprime los mecanizados posteriores a este.

* Para más información, consultar el apartado 8.3. Materiales y fabricación del Volumen II, Anexos.

10.3. Ambientaciones

En el presente apartado se muestran varias integraciones del producto en diferentes ambientes apropiados para el mismo.



Fig. 20. Ambientación de producto.

Fig. 21. Ambientación de producto.

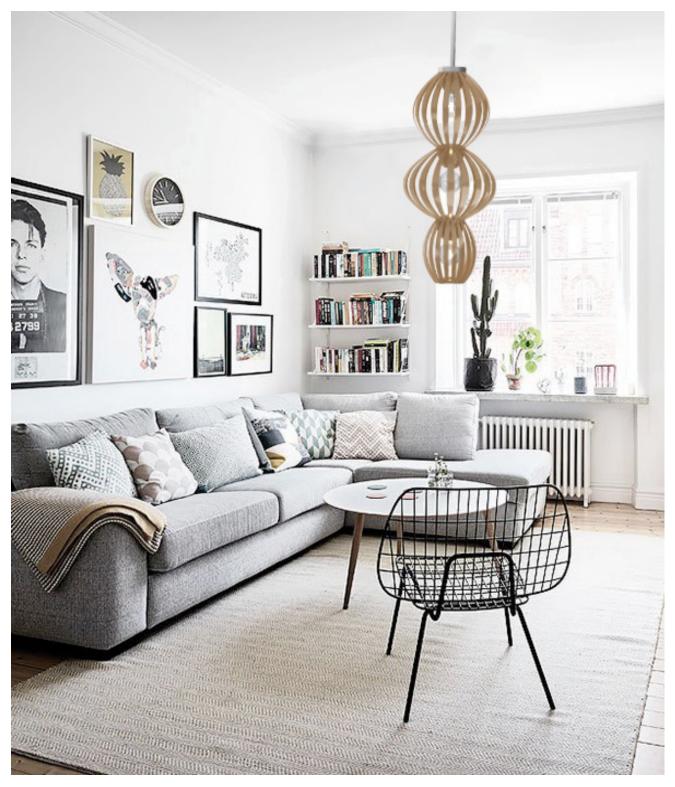


Fig. 24. Ambientación de producto.

10.4. Imagen del producto

Para finalizar, se define el nombre y la imagen para identificar la luminaria.

Para la creación del nombre, se realiza un pequeño brainstorming en el cual aparecen palabras relacionadas con luminarias y con la característica de modularidad que define este proyecto.

Se debe generar un nombre fácil de recordar y que evoque las características principales del producto. Tras la realización de dicho brainstorming se obtiene, bajo el criterio del diseñador, que "ModLight" es la mejor propuesta de nombre, dado que es la que mejor define al producto. Las palabras que definen el producto son "modular" y "luz", las cuales, traducidas al inglés y combinadas, generan la palabra que da nombre al producto: ModLight.

Además se selecciona cuidadosamente una tipografía actual, a la cual se le incluye un contorno esférico con el fin de que guarde más relación si cabe con el producto.

Fig. 25. Marca de producto.

10.5. Embalaje

Para el embalaje del producto se utilizará el cartón corruga u ondulado. Los beneficios de este material se basan en que es un cartón ecológico, muy económico y tiene una función de protección muy buena, debido a su resistencia y la propiedad que tiene para no perder la forma.

Habrá 4 tipos de ensamblaje diferentes. En una caja irán las 3 lámparas/módulos, protegidas con espuma para evitar que se rayen en contacto con la caja y sus propios conectores. Por otro lado, los otros 3 embalajes contendrán los 3 soportes diferentes, por separado. Estos irán protegidos con espuma y burbuja para crear un bulto sólido que amortigüe los impactos directos e indirectos del transporte.

En el exterior de la caja se imprimirá el logotipo de la luminaria, así como los logos reglamentarios de que se transporta un objeto frágil que debe ser manejado con cuidado. También que debe mantenerse en un ambiente seco. Además el embalaje irá marcado con la indicación de que el material con el que está fabricado dicho embalaje puede ser reciclado.

El diseño del embalaje da un valor añadido al producto directamente ligado con la calidad de este.

Fig. 26. Embalaje de producto.

Diseño y desarrollo de una lámpara LED modular

Índice:

1. Historia de la luz	52
2. Historia de las luminarias	54
3. Estudio de mercado	56
3.1. Empresas competidoras	57
3.2. Lámparas modulares	65
3.3. Encuestas	76
3.3.1. Resultados	80
3.4. Conclusiones	88
4. Estudio de la normativa vigente y aplicable	89
5. Establecimiento de objetivos	92
5.1. Marco general	92
5.2. Estudio de las expectativas y razones del promotor	92
5.3. Estudio de las circunstancias que rodean al diseño	93
5.4. Establecimiento de objetivos	93
5.4.1. Objetivos del promotor/diseñador	93
5.4.2. Objetivos del producto	93
5.4.3. Objetivos del usuario	94
5.4.4. Objetivos de transporte y manipulación	94
5.4.5. Objetivos medioambientales	94
5.5. Análisis de objetivos	94
5.5.1. Transformación de los objetivos de forma en función	99
6. Establecimiento de especificaciones y restricciones	100
6.1. Asignación de variable, escala de medición y criterio	100
7. Evaluación y análisis de las alternativas de diseño	101
7.1. Diseños propuestos	101
7.1.1. Propuesta 1	101
7.1.2. Propuesta 2	103
7.1.3. Propuesta 3	105
7.1.4. Propuesta 4	107

7.2. Análisis	109
7.2.1. Método cualitativo: DATUM	109
7.2.2. Método cuantitativo	111
8. Diseño de detalle	113
8.1. Conexiones	113
8.2. Tecnología LED	113
8.3. Sistemas de unión	114
8.4. Materiales y fabricación	115
8.5. Estudio ergonómico	118
8.6. Estudio mecánico	121
8.5.1. Cálculo sujeción imantada	121
8.5.2. Dimensionamiento del cable tensor	123
8.5.3. Análisis estático	124

1. Historia de la luz

Los griegos fueron los primeros interesados en el proceso de visión. Para ellos, el ojo emitía una especie de fuego que permitía ver los objetos.

Euclides fue quien más avanzó en el principio de estudio de la óptica.

Consideraba que, entre los ojos y los objetos luminosos, se producía una especie de interacción de rayos, la cual permitía la visión. Euclides realizó varios estudios, afirmando que la luz viajaba en línea recta. Pero sin duda el mayor hallazgo del científico fue el concepto de la reflexión.

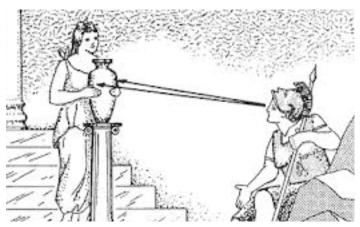


Fig. 1. Estudio óptica de Euclides.

Además de Euclides, también hubo otros científicos que hicieron descubrimientos clave sobre la óptica. Uno de ellos fue Herón de Alejandría, que formuló que la luz recorre el camino más corto entre dos cuerpos.

Pero no fue hasta el siglo X cuando el árabe Alhazen afirmó que la visión se produce cuando el ojo recibe el flujo de unas pequeñas partículas reflejadas sobre los objetos, que viajaban el línea recta hasta el ojo. Descartando así la idea de que el ojo era el que emitía rayos para ver.

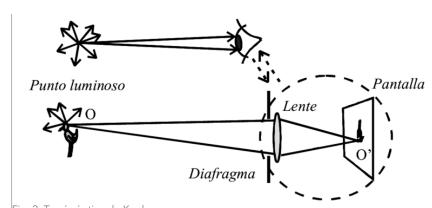


Fig. 2. Teoría óptica de Kepler.

En el siglo XVII, los trabajos matemáticos de Kepler le condujeron a la hipótesis de que la intensidad de luz que recibimos de un objeto está directamente relacionada con la distancia a la que este se encuentra.

Y sobre la hipótesis de Kepler se basó Galileo para construir el telescopio.

Al final del mismo siglo, Isaac Newton presenta la teoría del color y con ella, la teoría corpuscular de la luz, demostrando las leyes de la reflexión y difracción con dicha teoría. Mientras, Cristian Huygens desarrolla la teoría contrapuesta en la que suponía que la luz era un efecto ondulatorio.

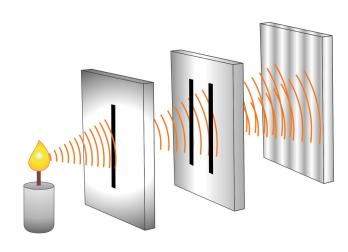


Fig. 4. Teoría corpuscular de Thomas Young.

Fig. 3. Telescopio de Galileo.

El gran prestigio de Newton en aquella época, eclipsa la teoría de Huygens e impide su desarrollo, hasta que Leonhard Euler publica un trabajo sobre óptica en el que defiende la teoría ondulatoria de la luz, la cual recibe un gran soporte con los experimentos de Thomas Young en 1797. Fue Augustin Fresnel quien confirma esta teoría ondulatoria en el siglo XIX.

El siguiente personaje clave en la historia de la luz es Michael Faraday, un físico y químico británico que estudió el electromagnetismo y propone que los efectos magnéticos y eléctricos asociados a la materia influyen en la propagación de la luz.

Finalmente, el matemático Maxwell pone fin a la teoría corpuscular demostrando que la luz es una onda.

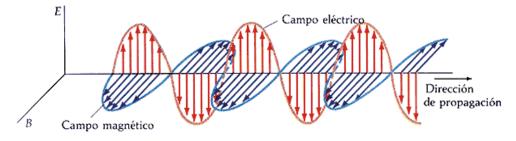


Fig. 5. Teoría ondulatoria de Maxwell.

2. Historia de las luminarias

Desde la prehistoria, con el descubrimiento del fuego, el hombre empezó a utilizar este elemento no solo para dar calor o cocinar, sino que con las llamas, iluminaban sus cavernas. Esta fue la primera iluminación artificial que utilizó el hombre.

Hace unos 50.000 años es cuando se estima que surgió el primer candil. Se usaba aceite o grasa de origen animal como combustible. En un principio se introducían en cráneos de animales, que hacían de soporte, pero no tardaron en fabricarse recipientes de piedra.

Fig. 6. Candiles de piedra.

Años después, se empezaron a utilizar valvas de moluscos marinos como soportes para la iluminación.

Siglos más tarde empezaron a utilizarse los tizones, que eran palos de madera que se quemaban en la parte superior. Estos fueron utilizados por los egipcios, que fueron mejorándolos con el paso de los años. Colocaban paja en un extremo del palo que embadurnaban con resina y cera de abejas.

Fue en Egipto, alrededor del siglo XIV AC, cuando se inventó la vela. Durante el siglo X AC, en Roma, aparecieron las primeras lámparas de aceite fabricadas en cerámica, que no tardaron en dispersarse por el mediterráneo.

En la Edad Media fue cuando se inventaron las primeras linternas con pabilos. Se realizaban grandes candelabros de hierro forjado, muy ornamentados, en los que se alojaban las velas, ya mejoradas con el paso de los años.

En 1859 en EEUU, surge el queroseno y a raíz de este descubrimiento, la iluminación por gas.

Fig. 7. Primera instalación de alumbrado con gas.

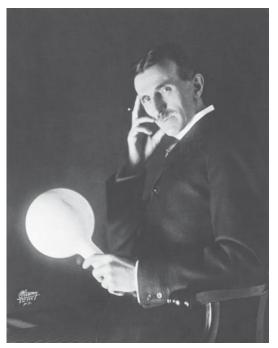


Fig. 8. Nikola Tesla y la lámpara de luz fluorescente.

Freidrich Winzer, inventor alemán, fue la primera persona en patentar la iluminación a gas en 1804, aunque fue William Murdoch quien instaló el primer sistema de iluminación con gas en 1975 en una fábrica de Inglaterra.

A principios del siglo XIX, casi toda Europa y Norteamérica ya disponía de este tipo de iluminación a gas en sus calles. En la década de 1930 surge la iluminación con sodio a baja presión y mercurio a alta presión y se desarrolla la iluminación eléctrica.

La primera lámpara eléctrica la inventó Sir Humphry Davy. Se trataba de una lámpara eléctrica de arco. Su funcionamiento consistía en la incandescencia de un fino hilo de platino al aplicar tensión en sus extremos.

Basándose en este descubrimiento, Focault desarrolló el mismo método de lámpara de arco pero en ese caso, por descarga eléctrica entre electrodos de carbón. Este método se utilizó en el alumbrado de las calles.

En 1857 surgen las primeras teorizaciones de la lámpara fluorescente de la mano de A. E. Becquerel.

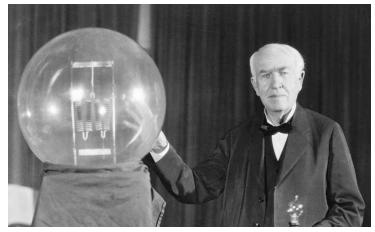


Fig. 9. Thomas Edison y la primera lámpara incandescente.

Y ya en 1870, Sir Joseph wan y Thomas Edison inventan la primera lámpara eléctrica incandescente.

Thomas Edison encendió la primera lámpara con filamento de carbono en Nueva York, el 27 de octubre de 1879, y se mantuvo por dos días en funcionamiento continuo.

En 1901 se inventó la lámpara de vapor de mercurio que es la precursora de la lámpara fluorescente. Y en 1906, Just y Haran fabricaron una lámpara con el filamento de tungsteno, que reemplazaba al carbono. Al año siguiente, estos filamentos se sustituyen por filamentos de wolframio. Ya en 1913 se fabrican las primeras bombillas incandescentes de gas.

El neón fue descubierto por Wiliam Ramsay y Morris Travers en 1898. La Societe de l'Air Liquide producía grandes cantidades de neón y su propietario decidió emplearlo para meter este gas en tubos y pasar corriente por él. De este modo se descubrieron las luces de neón. Y no solo se quedó en esto, sino que probó con otros gases nobles para producir diferentes colores, como el amarillo o el azul, producidos por el helio y el argón.

En 1910 presentó las luces de neón en una exposición de automóviles en París, tal y como las conocemos hoy en día. En 1915 consiguió la patente y el 1917 se inventó la lámpara de neón.

Fig. 10. Lámpara neón de 1930.

Fig. 11. Lámpara de vapor de mercurio.

3. Estudio de mercado

Para realizar el estudio de mercado analizaré dos bloques diferentes. En el primero, haré una búsqueda de las empresas competidoras, tanto nacionales como internacionales, donde analizaré las principales empresas de luminarias que más beneficios generan y que están mejor reconocidas.

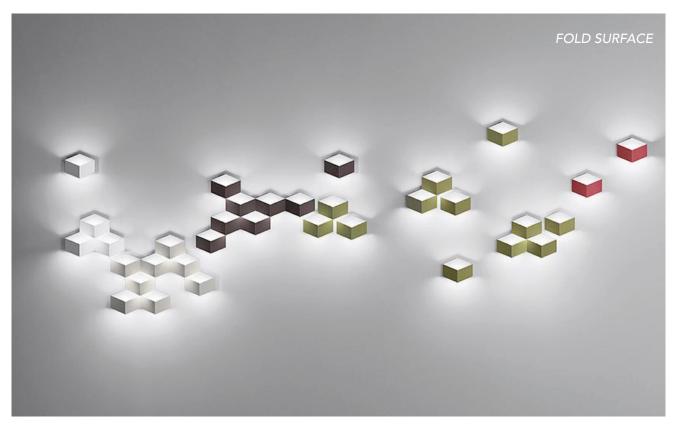
En el segundo bloque estudiaré los diferentes diseños competidores, centrándome en las luminarias que presentan características similares a las del producto que se desarrolla en el presente proyecto. Además revisaré blogs y revistas online de diseño para descubrir diseños auténticos que no tienen tanta difusión como las grandes empresas.

3.1. Empresas competidoras

lzf

Luzifer Lamps es una empresa Valenciana que fabrica lámparas de diseño de manera artesanal a partir de láminas de madera.

Fundada por Marivi Calvo y Sandro Tothill a finales de 1994. Es una empresa relativamente jóven, pero que ha conseguido hacerse un hueco en el sector de la iluminación, llegando a ser una de las empresas más competitivas de iluminación hoy en día a nivel internacional. Tanto es así, que ha ganado desde sus inicios, más de 30 premios internacionales.



Esta empresa de El Prat de Llobregat se encarga de la fabricación, exportación y comercialización de lámparas y complementos luminarios. Su principal sector es la luminaria decorativa.

ALMALIGHT

Alma Light es una empresa de iluminación decorativa con sede en Barcelona. Posee un espíritu cálido y artesano, muy cercano al cliente y con una estupenda relación calidad-precio.

Tienen un diseño contemporáneo y son especialistas en la creación de lámparas decorativas y en la producción de luminarias especiales para instalaciones.

FOSCARINI

Una empresa italiana entre las líderes mundiales de la iluminación.

Foscarini se centra en la creación de exclusivas lámparas de diseño que decoran cualquier lugar donde se coloquen sus productos.

FLOS

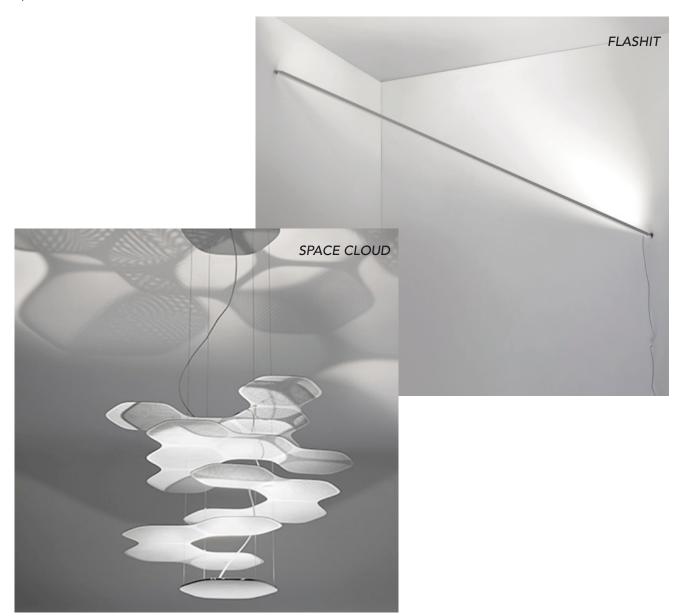
De las pioneras mundiales, Flos Lighting se caracteriza por su increíble diseño italiano.

A esta empresa le gusta explorar las diferentes formas de luz combinando materiales y tecnologías diferentes en cada uno de sus diseños.

etiluz[®]

Esta empresa fue fundada por Leonardo Marelli (Gerard Masdeu), quién convirtió el taller mecánico de su padre en la empresa de iluminación que hoy en día goza de un prestigio internacional.

ESTILUZ se caracteriza por la gran cantidad de luz que emiten sus luminarias.

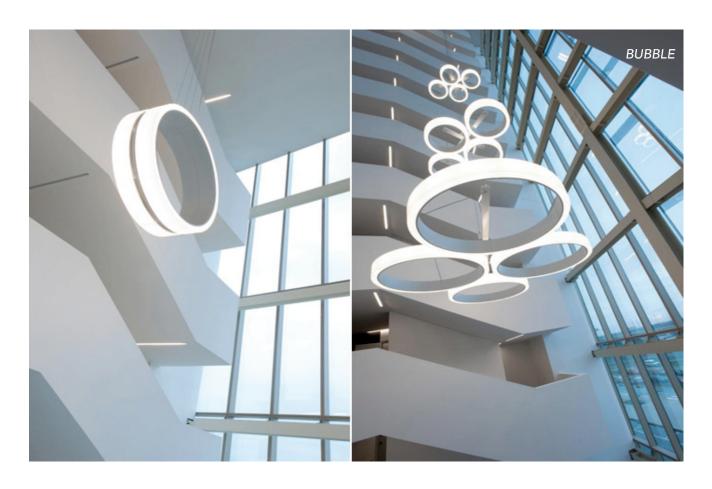


Artemide®

Esta empresa italiana es líder mundial en el sector de la iluminación desde hace varios años.

Fundada en 1960, se caracteriza por su filosofía "The Human Light" y significa que sus productos son fruto de la investigación y la capacidad de producción de las personas que lo forman.

Sus productos son cuidados, con un diseño elegante y con perfectas características técnicas que las hacen altamente funcionales.



Protagonista en el mundo de la iluminación desde el año 1938, esta empresa ha ganado muchos reconocimientos a lo largo de su historia.

Se caracteriza por la originalidad de sus diseños y la innovación. Realizan productos tanto de interiores como exteriores.

3.2. Lámparas modulares y familias de lámparas:

BASIC TWELVE LAMP:

Diseñada por Plato Design, se trata de un sistema de iluminación muy especial, ya que consta de diferentes módulos que se configuran entre sí cambiando la orientación de la luz para satisfacer así las necesidades cambiantes del usuario.

Además, estas combinaciones hacen que el producto adquiera un carácter ornamental.

Cada lámpara tiene tres lados magnetizados. Gracias a los imanes, los módulos se pueden conectar entre sí, dos o varias a la vez. Además se pueden acoplar en diferentes direcciones o girándolas entre sí, dando lugar a diferentes combinaciones originales y con la posibilidad de dirigir la luz a donde el usuario desee.

Pero esta gran característica no es la única en la Twelve Lamp. Gracias a sus imanes, no solo es posible la unión entre ellas, sino que se puede fijar a cualquier superficie metálica, ya sean estanterías, neveras o mesas.

Además, el producto está disponible en tres gráficas diferentes.

Características técnicas:

Material	Hormigón, madera de haya, latón e imanes
Tamaño (del módulo)	15x15x15cm
Peso (del módulo)	Hormigón - 0,8kg Madera de haya - 0,3kg
Bombilla	E14 max 25W
Extras	Diferentes tipos de enchufes disponibles
PVP (€)	120€

Tabla 1. Características de producto de la compentencia.

PL-Y:

Esta lámpara, creada por Unleaded, también consiste en la iluminación a partir de un módulo, siendo posible la iluminación individualmente o en conjunto, uniendo varios módulos iguales entre sí.

Se trata de un moderno sistema de iluminación modular, con la doble función de aportar estilo a la decoración de los interiores.

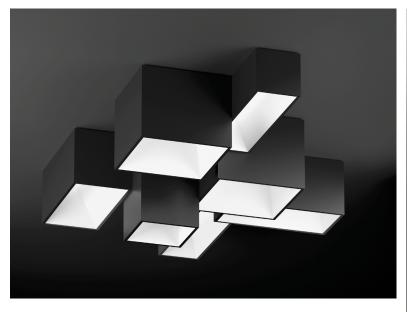
Existen dos módulos de diferentes tamaños, para techo y para pared. Además permite que el usuario pueda crear luminarias únicas y particulares.

Este principio de iluminación es versátil y puede llevarse a cualquier tamaño, pudiendo dar lugar a iluminaciones de gran escala para sitios públicos de gran tamaño.

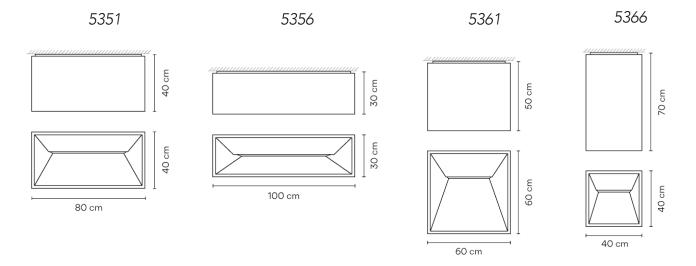
Características técnicas:

Material	Aluminio pintado en seco
Tamaño (del módulo)	40x40x40cm
Peso (del módulo)	-
Bombilla	Pared: Halógena de 12v10 Techo: Espiral de 230 V/9W
Extras	-
PVP (€)	50€ el módulo

Tabla 2. Características de producto de la compentencia.


LINK:

Esta lámpara fue diseñada por Ramón Esteve para Vibia. Existen muchas variantes en tamaño y número de piezas para que el usuario pueda elegir la que mejor se adapte a su gusto o necesidades.


Se trata exclusivamente de una lámpara de techo y el usuario no puede crear la composición, pero el hecho de tener muchas variantes, dota al producto de ese carácter de personalización.

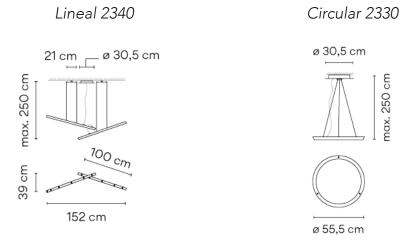
Tiene un diseño minimalista y neutro que se adapta a todo tipo de decoraciones.

Características técnicas:

Material	Cuerpo: Espuma de poliuretano Difusor: Policarbonato
Tamaño	*Indicado en imágenes
Peso	18kg - 15kg - 22kg - 15,8kg
Bombilla	2 x LED strip 11,6W 350mA
Acabados	Lacado grafito mate - RAL 7016 Lacado blanco mate - RAL 9010
PVP (€)	Se venden en diferentes conjuntos. Precio orientativo: 2 x 5356 - 1300€

Tabla 3. Características de producto de la compentencia.

HALO:


El concepto de Halo está compuesta por 2 diseños: Halo circular y Halo lineal. Pertenece también a Vibia y fue diseñado por Martín Azúa.

Proporciona una intensidad de luz que puede ser regulada por el usuario según sus necesidades, estados de ánimo o la luz ambiente que ilumina el espacio.

La combinación de los dos diseños hace que sea posible una modularidad y por lo tanto la infinidad de figuras de luz personalizables.

Ambos diseños, tanto el circular como el lineal, están disponibles en muchas dimensiones, así que para las características técnicas, únicamente se analizará el tamaño más pequeño.

Características técnicas:

Material	Florón: Acero Difusor: PMMA	Florón: Acero Difusor: PMMA
Tamaño	*Indicado en imágenes	*Indicado en imágenes
Peso	6,2kg	6,5kg
Bombilla	2 × LED STRIP 24V 15,3W	1 × LED STRIP 24V 23W
Acabados	Lacado blanco mate - RAL 9016	Lacado blanco mate - RAL 9016
PVP (€)	Precio orientativo: tamaño pequeño - 1007€	Precio orientativo: tamaño pequeño - 1007€

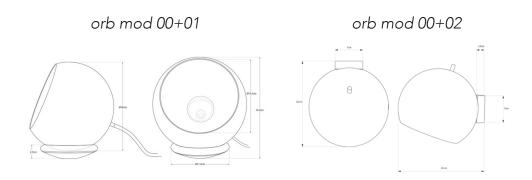
Tabla 4. Características de producto de la compentencia.

ORBITAL:

Orbital es una lámpara magnética modular que deja al usuario la posibilidad interactuar con el propio producto.

Es un diseño de Juan Caño y Alfredo Morte para Carpintería Expandida.

Consiste en uno o varios elementos independientes unidos por conexión magnética. Por un lado está la esfera que contiene la lámpara y por el otro los diferentes soportes.



Además esta sistema consigue que la esfera metálica pueda girar sobre sí misma y conseguir que la luz se oriente a donde el usuario desee, creando así ambientes personalizados.

Se analizaran solo los elementos que albergan la fuente de luz, dejando a un lado los soportes.

Material	Poliuretano e imanes	Poliuretano e imanes	
Tamaño	*Indicado en imágenes	*Indicado en imágenes	
Peso	0,14kg	0,174kg	
Bombilla	2 × LED STRIP 24V 15,3W	1 × LED STRIP 24V 23W	
Acabados	Lacado blanco mate Cable: Rojo/Negro	Lacado blanco mate Cable: Rojo/Negro	
PVP (€)	200€	200€	

Tabla 5. Características de producto de la compentencia.

MAY DAY:

Esta lámpara ha sido diseñada por Konstantin Grcic para Flos en el año 2000. Se trata de una lámpara multiuso que consta de un difusor de luz cónico de polipropileno. Este difusor tiene una especie de gancho que sirve para colgar el producto o engancharlo a donde queramos, pudiendo colocarlo colgado del techo o enganchado a una estantería.

Además, su forma cónica permite que el producto también pueda sostenerse sobre su propia base. Se consigue así que un solo producto, pueda posicionarse de diferentes formas atendiendo a las necesidades puntuales de cada usuario.

Material	Polipropileno
Tamaño	*indicado en imágenes
Peso	-
Bombilla	opción A: 1 x HSGSA E27 46W 2700K 700lm - RF23158 opción B: 1 x LED E27 8,5W 2700K 806lm - RF25783
Acabados	Negro, Naranja
PVP (€)	85€

Tabla 6. Características de producto de la compentencia.

CHESHIRE:

Cheshire es una familia de lámparas de sobremesa, de pie y de techo diseñada por el dúo danés e italiano GamFratesi.

Sin duda, Cheshire expresa el carácter nórdico del estudio, caracterizado por su sencillez y funcionalidad pero también por una fuerte carga irónica, que deriva precisamente de la imagen del gato.

El difusor es de policarbonato. En la versión de sobremesa y de pie es mate y difunde la luz hacia abajo; en la versión de techo es transparente, para generar una emisión luminosa totalmente difusa.

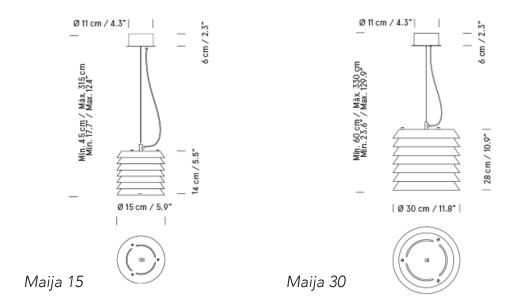
Material	Policarbonato	Policarbonato	Policarbonato
Tamaño	H:1450cm, D:350cm	H:340cm, D:350cm	H:530cm, D:350cm
Peso	-	-	-
Bombilla	3 × 23W (FL) E27	3 × 23W (FL) E27	3 × 23W (FL) E27
Acabados	Blanco, Negro y Verde	Blanco, Negro y Verde	Blanco, Negro y Verde
PVP (€)	493€	358€	407€

Tabla 7. Características de producto de la compentencia.

^{*}Las lámparas están analizadas en el siguiente orden: lámpara de pie, de techo y de mesa.

MAIJA:

Es una familia de lámparas diseñada por Ilmari Tapiovaara para Santa&Cole en 1955. Inspirada por la abeja Maya,.


Tapiovaara concibió una torre de platos metálicos colocados unos sobre otros, entre los que se cuela la luz dando aspecto de panal y emitiendo un luz cálida y reconfortable, evocando a las ciudades del Báltico: de dentro a fuera. Se crean así tres versiones: de pié, de techo y de mesa.

33 cm / 2.9" | 0 15 cm / 2.9" | 0 18 cm / 2.7"

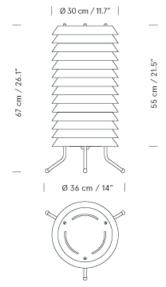

Material	Florón: metálico Pies: latón mate Difusor: metacrilato	
Tamaño	*Indicado en las imágenes	
Peso	-	
Bombilla	LED integrado. Output 12W. 24VDC / Input: 90 ~ 264 Vac. (50 Hz / 60 Hz). Según destino.	
Acabados	Blanco, Rosa palo	
Extras	Luz regulable	
PVP (€)	617€	

Tabla 8. Características de producto de la compentencia.

Material	Florón: metálico Estructura: latón mate Difusor: vidrio	Florón: metálico Estructura: latón mate Difusor: vidrio
Tamaño	*Indicado en las imágenes	*Indicado en las imágenes
Peso	1,4kg	2,9kg
Bombilla	LED integrado. Output 6W. 500 mA / Input: 90 ~ 305 Vac. (50 Hz / 60 Hz). Según destino.	LED integrado. Output 8,4W. 700 mA / Input: 90 ~ 305 Vac. (50 Hz / 60 Hz). Según destino.
Acabados	Blanco, Rosa palo	Blanco, Rosa palo
Extras	Luz regulable	Luz regulable
PVP (€)	544€	678€

Tabla 9. Características de producto de la compentencia.

Material	Florón: metálico Pies: latón mate Difusor: metacrilato
Tamaño	*Indicado en las imágenes
Peso	-
Bombilla	LED integrado. Output 24W. 24VDC / Input: 90 ~ 264 Vac. (50 Hz / 60 Hz). Según destino.
Acabados	Blanco, Rosa palo
Extras	Luz regulable
PVP (€)	834€

Tabla 10. Características de producto de la compentencia.

3.3. Encuestas

Para obtener información sobre los aspectos más importantes para el usuario en relación a las luminarias, se han realizado encuestas con información clave para el diseño del producto del presente proyecto.

Los principales aspectos que se tratarán serán preferencias de uso de los usuarios, preferencias de materiales, importancia funcional y estética del producto, importancia de aspectos extra; regulación de luz, tono de luz, intensidad de luz, así como la preferencia del tipo de bombilla, directamente ligado al consumo del producto.

Una vez realizadas las encuestas y con toda la información recopilada de las preferencias de los usuarios, se analizarán los datos obtenidos y en función de los resultados, se procederá a analizar los objetivos del diseño.

El objetivo principal es estudiar las necesidades y preferencias del usuario en cuanto a las luminarias y desarrollar una lámpara adaptada a sus necesidades, teniendo en cuenta el resto de expectativas y circunstancias que rodean al diseño.

Bienvenido

Antes de nada, muchas gracias por acceder a la participación de esta encuesta para la realización del proyecto: Diseño y Desarrollo de una luminaria LED modular.

En el siguiente cuestionario encontrarás preguntas relacionadas con la iluminación que tienes en casa y la que desearías tener.

Por favor, contesta con sinceridad.

Los datos de esta encuesta serán tratados de forma general y en ningún caso se tomarán ni se harán públicos datos personales.

Encuesta. Página de bienvenida.

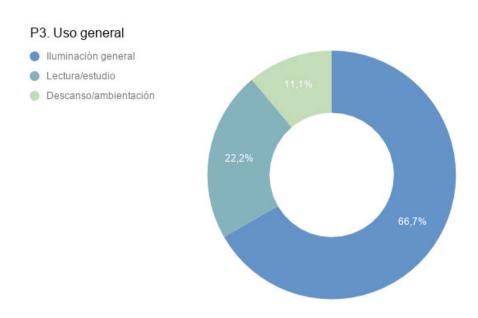
Características generales	
Edad: *	
Ocupación: *	
Estudiante Trabajador	
Autónomo	
Amo/a de casa	
Otro (indique cuál)	
¿Cuál es el uso principal que le das a las lámparas/luminarias? *	
Iluminación general	
Lectura/Estudio	
Descanso/Ambientación	
¿Qué cantidad de lámparas posees en tu vivienda? ⁵	
Menos de 5	
Entre 5 y 10	
Entre 10 y 15	
Más de 15	
Si contestas a las opciones a o b, indique el motivo:	
Las lámparas son muy caras	
No necesito más lámparas en casa	
Otro (indique cuál)	
¿Conoces el sistema de iluminación modular? *	
Ono	
¿Te gustaría poder utilizar la misma lámpara/luminaria en diferentes situaciones? *	
of si	
no	
¿Cuán de importante es para ti poder personalizar una lámpara/luminaria? *	
Nada importante	
Poco importante	
Importante	
Muy importante	

Out At	
Codine (1	po de iluminación prefieres para dar luz a las zonas generales de su vivienda? *
	Fría
	Cálida
¿Qué ti	po de iluminación prefieres para la lectura o el estudio? *
	Fría
	Cálida
وQué ti	po de iluminación prefieres para el descanso o la ambientación de espacios? *
	Fría
	Cálida
¿Cual e	s el coste mensual promedio de tu energía eléctrica? *
	Menor a 50€
	Entre 50 y 100€
	Entre 100 y 150€
	Mayor a 150€
¿Cuánt	o te interesa reducir el coste de tu energía eléctrica? *
	Nada
	Poco
	Indiferente
	Mucho
\bigcirc	munic
¿Estarí:	as dispuesto a cambiar tu sistema de iluminación por uno que te permita ahorra más energía? *
¿Estaría	
¿Estaría	as dispuesto a cambiar tu sistema de iluminación por uno que te permita ahorra más energía? *
	as dispuesto a cambiar tu sistema de iluminación por uno que te permita ahorra más energía? *
	as dispuesto a cambiar tu sistema de iluminación por uno que te permita ahorra más energía? * sí
	as dispuesto a cambiar tu sistema de iluminación por uno que te permita ahorra más energía? * sí no o estarías dispuesto a pagar por una bombilla de bajo consumo? *
	as dispuesto a cambiar tu sistema de iluminación por uno que te permita ahorra más energía? * sí no o estarías dispuesto a pagar por una bombilla de bajo consumo? *

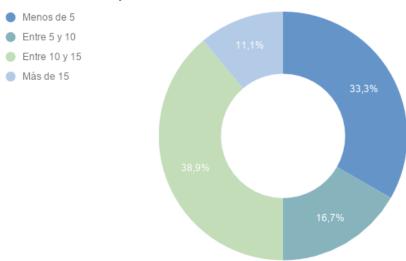
Encuesta. Página 2.

¿Cuán	de importante es para ti que la lámpara/luminaria sea ligera? *
	Nada importante
	Poco importante
	Importante
	Muy importante
¿Cuán	de importante es para ti que la lámpara/luminaria sea fácil de limpiar? *
	Nada importante
	Poco importante
	Importante
	Muy importante
¿Cuán	de importante es para ti que los materiales sean de buena calidad? *
	Nada importante
	Poco importante
	Importante
	Muy importante
¿Estarí	as dispuesto a llevar al producto a un punto de recogida al finalizar su vida útil? *
	Nada dispuesto
	Poco dispuesto
	Dispuesto
	Muy dispuesto
¿Cuál e	es el precio que estarías dispuesto a pagar por una lámpara/luminaria? *
	Menos de 50€
	Entre 50 y 150€
	Entre 150 y 300€
	Más de 300€

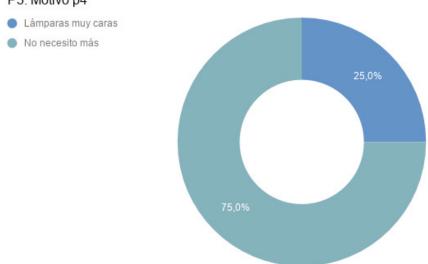
Encuesta. Página 3.

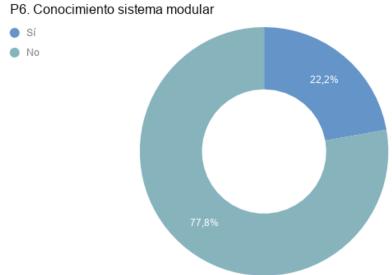

tros asp	ectos importantes					
anni han lla	ando al final de la encuent					
	gado al final de la encuesta eceríamos que contestaras		ıta.			
lay algún	elemento o característic	a importante a co	nsiderar por ust	ed en la elecció	n de una nueva la	ámpara/luminaria?
luchas grac	as por tu tiempo!					

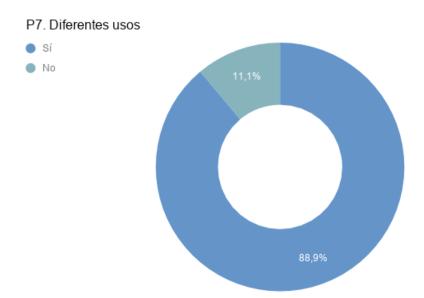
Encuesta. Página 4.

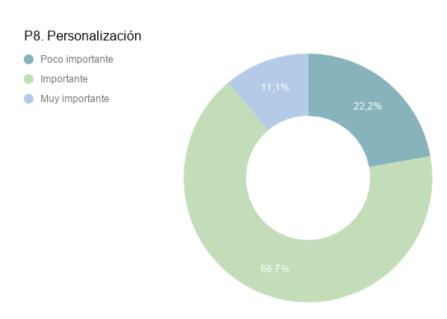

3.3.1. Resultados:

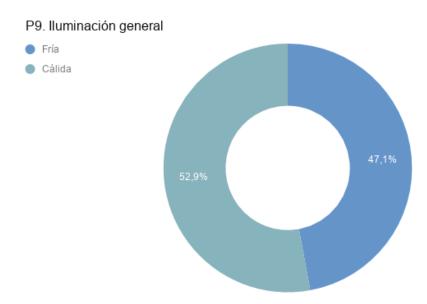
Una vez la encuesta es realizada por 50 personas de diferentes edades y ocupaciones, pasamos a exponer los resultados de cada una de las cuestiones y a realizar un análisis.

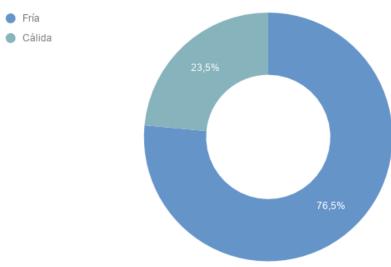

En dicho análisis obviaremos las preguntas de edad y ocupación, ya que uno de los objetivos de este proyecto es la realización de una luminaria destinada al mayor número de usurarios posible. Estas preguntas solo se han incluido a la encuesta para verificar que los resultados y las personas encuestadas eran de diversas edades y ocupaciones.

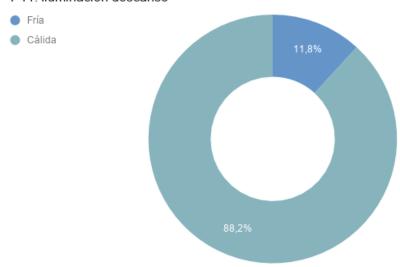


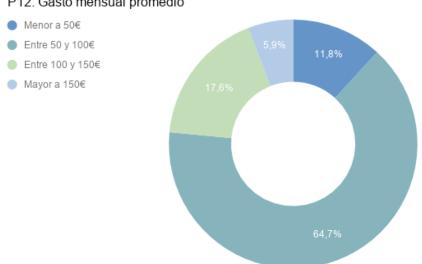

P4. Número de lámparas

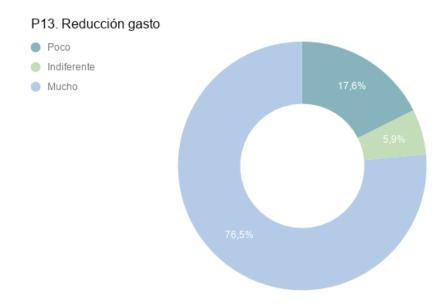


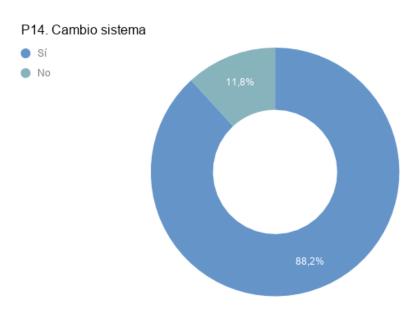

P5. Motivo p4

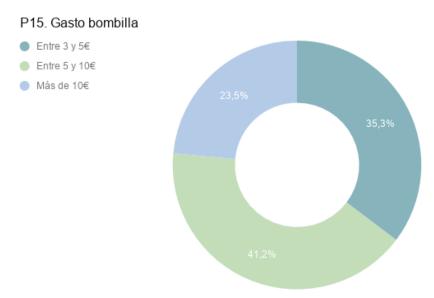




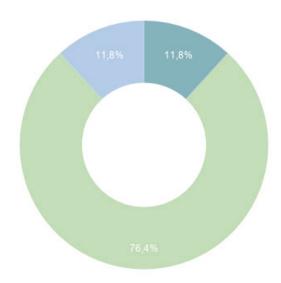

P10. Iluminación lectura/estudio

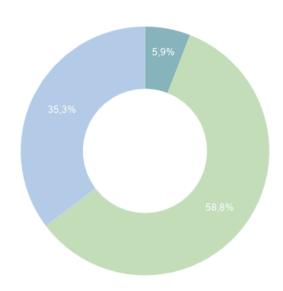



P11. Iluminación descanso

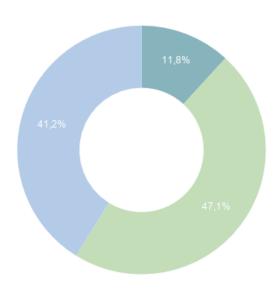


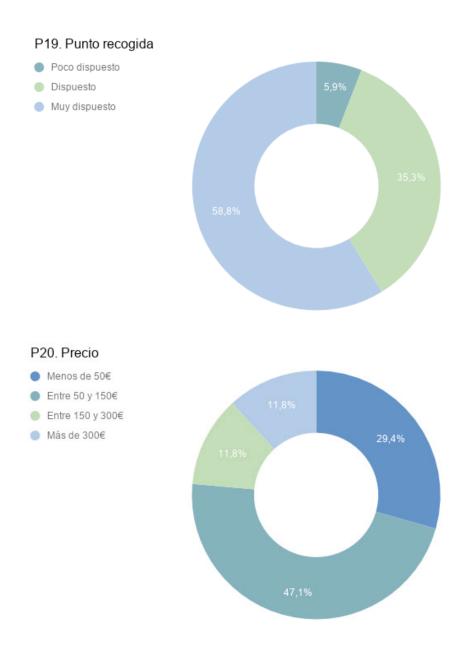
P12. Gasto mensual promedio





P17. Fácil limpieza




P18. Buenos materiales

Otras observaciones de los usuarios:

- i) "Me encantaría una lámpara 100% a tu gusto. Ya sea elegir el tipo de luz y sobretodo la cantidad de luz que quieres que salga"
- ii) "El diseño"
- iii) "Bajo consumo"
- iv) "El gasto"
- v) "Importante la clase energética, los lumens y el precio"
- vi) "La ergonomía"
- vii) "Que tenga un diseño moderno, que ilumine mucho y consuma poco"
- iix) "Que cumpla la regla de las tres B, buena,bonita y barata"

Tras la observación de las gráficas de resultados, se analizan los porcentajes.

El uso que los encuestados hacen de las luminarias es, en el 66,67% de los casos, un uso general, es decir, la iluminación de techo presente en la mayoría de las habitaciones de la vivienda, o la iluminación de pared, que suele estar dispuesta a lo largo de los pasillos.

En cuanto al número de luminarias que hay presentes en las viviendas de los usuarios, las encuestas señalan que un 38,89% de los usuario posee entre 10 y 15 lámparas , frente al 33,33% de usuarios que dice tener menos de 5. De ese 33,33% que hace dicha afirmación, un 75% indica que el motivo de no tener más luminarias en casa es porque no las necesita.

En la pregunta sobre el conocimiento de los usuarios de lo que es una sistema de iluminación modular, un 77,78% responde que no lo conoce, pero un 66,67% indica que sí que le gustaría poder personalizar las luminarias y un 88,89% manifiesta que le gustaría poder usar una única luminaria en diferentes situaciones. Esto indica que para el usuario es importante y le llama la atención estos aspectos, que quizá no son tan conocidos.

Cuando se pregunta a los usuarios por la preferencia en cuanto al tipo de iluminación en las zonas generales del hogar, se produce un resultado bastante equitativo entre los que prefieren luz cálida (52,94%) y los que prefieren la luz fría (47,04%). En cambio, cuando se habla de iluminación para estudio/lectura o para zonas de descanso, los resultados son claramente mayoritarios como luz fría con el 76,47% y luz cálida con el 88,24% respectivamente.

También podemos leer en los resultados de la encuesta que el 64,71% de los usuarios tienen un gasto de entre 50 y 100€ mensuales en su consumo de energía. Un 76,47% del total de encuestados está interesado en reducir su gasto energético y para ello también a cambiar su sistema e iluminación (88,24%).

En cuanto al precio que están dispuestos a pagar por una bombilla de bajo consumo, se dan tres resultados bastante parecidos. Un grupo del 41,18% está dispuesto a gastarse entre 5 y 10€. Un 35,29% quiere gastarse como máximo 5€ y un 23,53% acepta gastarse más de 10€.

Un 76,47% de los usuarios consideran importante el factor del peso, y prefieren que la luminaria sea ligera, y muy importante también que sea fácil de limpiar, con el 58,82% para importante y 35,29% muy importante.

En cuanto a los materiales, la mayoría de los encuestados (47,06% + 41,18%) prefieren un producto con materiales de buena calidad. Y un 58,82% está muy dispuesto a depositar el producto en un punto de recogida para su reciclabilidad al finalizar su vida útil.

Llegando al final de esta encuesta se analiza el precio que el usuario promedio valora gastarse en una luminaria y nos encontramos con un nivel muy amplio de respuestas.

En orden de preferencias tenemos que un 47,06% está dispuesto a pagar entre 50 y 100€ por una nueva luminaria. Un 29,41% no quieres gastarse más de 50€. Solo un 11,76% está dispuesto a gastarse más de 300€ y otro 11,76% entre 150 y 300€.

Por último, se deja un espacio abierto para que el encuestado valore y aporte información sobre otros aspectos importantes que tiene en cuenta a la hora de elegir una luminaria y a parte de los aspectos ya mencionados en las conclusiones anteriores, se hace notable la mención a la estética que hacen varios usuarios.

3.4. Conclusiones

Tras analizar los resultados se llega a diferentes conclusiones.

Los usuarios utilizan las luminarias mayormente para iluminación general de las estancias. Les interesa que una misma luminaria se pueda adaptar a diferentes usos y necesidades y además que pueda ser personalizable. Con estos datos se refuerza el objetivo principal del proyecto, realizar una lámpara modular con diferentes funciones y adaptable a diferentes situaciones cotidianas, pudiendo hacer uso de la misma luminaria tanto como lámpara de pié, como de techo o de mesa.

También se tendrá en cuenta, a la hora de realizar el diseño y desarrollo de la lámpara, que esta use un sistema de iluminación lo más económico posible, con iluminación de bajo consumo, y que sea capaz de producir una mejoría en cuanto a los resultados de consumo energético del hogar y, por lo tanto, el coste del mismo.

En cuanto al tipo de luz, cálida o fría, se dejará como un dato abierto, en función de otros factores que importan más al usuario, ya que existe una fuerte disonancia de preferencias en este aspecto para la iluminación general de la vivienda.

Se considerará importante también que el producto sea ligero y fácil de trasportar. Aspecto muy importante, ya que se trata de una luminaria cuyo objetivo principal es poder moverla con facilidad. Además se tendrá en cuenta que no tenga formas complicadas para facilitar la limpieza del mismo.

Otro de los aspectos importantes es que el producto sea respetuoso con el medio ambiente, y los usuarios también coinciden en este punto y manifiestan que para ellos también es importante que el producto sea reciclable, por lo que se realizará un estudio para verificar que el producto se desarrolla de una forma sostenible.

Para finalizar las conclusiones, y observando que hay disparidad de opiniones en cuanto al precio que el cliente está dispuesto a pagar, se tendrá en cuenta una relación de calidad-precio asequible al mayor número de usuarios posible y una estética actual.

4. Estudio de la normativa vigente y aplicable

Normativa consultada para la realización del proyecto.

DOCUMENTOS:

UNE 157001

Criterios generales para la elaboración formal de los documentos que constituyen un proyecto técnico.

UNE 66916

Sistemas de gestión de la calidad. Directrices para la gestión de la calidad en los proyectos.

UNE 82100

Magnitudes y unidades.

UNE 21302-845

Vocabulario electrotécnico. Iluminación.

UNE-EN ISO 9001

Modelos de la Calidad para el aseguramiento de la calidad, el desarrollo, la producción, la instalación y el servicio postventa.

UNE-EN ISO 9004-1

Gestión de la Calidad y elementos del sistema de la calidad. Parte 1: directrices.

ILUMINACIÓN, COMPONENTES Y SEGURIDAD:

UNE-EN 12665

Iluminación. Términos básicos y criterios para la especificación de los requisitos de alumbrado.

UNE 20314

Material eléctrico para baja tensión. Protección contra cho- ques eléctricos.

UNE 20315-1-2

Bases de toma de corriente y clavijas para usos domésticos y análogos. Parte 1-2: Requisitos dimensionales del Sistema Español.

UNE 20451

Requisitos generales para envolventes de accesorios para instalaciones eléctricas fijas de usos domésticos y análogos.

UNE-EN 50086-2-2/A11

Sistemas de tubos para la conducción de cables. Parte 2-2: Requisitos particulares para sistemas de tubos curvables.

UNE-EN 50086-2-3/A11

Sistemas de tubos para la conducción de cables. Parte 2-3: Requisitos particulares para sistemas de tubos flexibles.

UNE-EN 60598-1

Luminarias. Parte 1: Requisitos generales y ensayos.

UNE-EN 61347-2-13

Dispositivos de control de lámpara. Parte 2-13: Requisitos particulares para dispositivos de control electrónicos alimentados con corriente continua o corriente alterna para módulos LED.

UNE-EN 61547

Equipos para iluminación para uso general. Requisitos relativos a la inmunidad CEM.

UNE-EN 62031

Módulos LED para alumbrado general. Requisitos de seguridad.

UNE-EN 62442-3

Eficiencia energética de los dispositivos de control de lámpara. Parte 3: Dispositivos de control para lámparas halógenas y módulos LED. Método de medida para determinar la e ciencia del dispositivo de control.

UNE-EN 62504

Iluminación general. Productos de diodos electroluminiscentes (LED) y equipos relacionados. Términos y definiciones.

UNE 157701

Criterios generales para la elaboración de proyectos de instalaciones eléctricas de baja tensión.

MEDIOAMBIENTALES:

UNE 157921

Criterios generales para la elaboración de estudios de impacto ambiental.

ELABORACIÓN DE PLANOS:

UNE 1027

Dibujos técnicos. Plegado de planos.

UNE 1032

Dibujos técnicos. Principios generales de representación.

UNE 1035

Dibujos técnicos. Cuadro de rotulación.

UNE 1037

Indicaciones de los estados superficiales en los dibujos.

UNE 1120

Dibujos técnicos. Tolerancias de cotas lineales y angulares.

UNE 1121-2

Dibujos técnicos. Tolerancias geométricas. Principio de máximo material.

UNE 1039

Dibujos técnicos. Acotación. Principios generales, definiciones, métodos de ejecución e indicaciones especiales.

UNE 1135

Dibujos técnicos. Lista de elementos.

UNE 1149

Dibujos técnicos. Principio de tolerancias fundamentales.

UNE 1166-1

Documentación técnica de productos. Vocabulario. Parte 1: Términos relativos a los dibujos técnicos: Generalidades y tipos de dibujo.

UNE-EN ISO 3098-0

Documentación técnica de productos. Escritura. Requisitos generales.

UNE-EN ISO 3098-5

Documentación técnica de productos. Escritura. Parte 5: Escritura en diseño asistido por ordenador (DAO), del alfabeto latino, las cifras y los signos.

5. Establecimiento de los objetivos

5.1. Marco general

El presente proyecto trata de encontrar la mejor solución para el desarrollo de una lámpara modular accesible al mayor número de usuarios, que además pueda cubrir las necesidades formales y funcionales que puedan distinguir el producto del resto.

Con el fin de conseguir un resultado satisfactorio y coherente, se establecerá una serie de objetivos atendiendo a los distintos frentes que actúan en el desarrollo del producto final.

5.2. Estudio de las expectativas y razones del promotor

En el caso de este proyecto, el promotor es el propio diseñador, encargado de la realización del proyecto.

Uno de los requisitos indispensables y la base del proyecto es que la luminaria a diseñar sea modular. De este modo podemos hacer uso de ella tanto como lámpara de pie, de techo o de mesa utilizando el mismo tipo de módulo, sólo o combinando varios módulos entre sí. Además, con esta característica de modularidad se consigue que el producto adquiera una capacidad de combinación y personalización para el usuario que aporta un valor añadido al producto.

Se pretende que el producto sea una solución formal a las complicaciones que el usuario medio presenta a día de hoy. Es por eso que se requiere que el producto, a parte de ser lo más barato posible para que sea asequible al mayor número de usuarios, esté dotado con tecnología LED. Esto hará que el producto sea más eficiente y económico durante su vida útil. Además se tiene que tener presente que esta tecnología use la potencia necesaria para su correcto funcionamiento garantizando además la seguridad del usuario.

Además de cumplir con su funcionalidad, se considera que debe ser estéticamente atractivo. De este modo dotamos al diseño de un valor añadido que lo hará distinguirse del resto de productos de la competencia y crearán sobre el usuario potencial un deseo de adquisición.

Para finalizar el estudio de las razones del diseñador/promotor, se considera un valor indispensable que el producto sea sostenible, ya sea en la obtención de materiales, como en la fabricación de este, hasta el transporte y la reciclabilidad de sus materiales tras la retirada del producto.

5.3. Estudio de las circunstancias que rodean al diseño

El producto desarrollado en el presente proyecto, va dirigido al mayor número de usuarios posible, evitando su clasificación cultural o social. Es por ello que el diseño del producto no deberá contener ningún motivo gráfico en forma de cruz o que se relacione con algún elemento religioso, político o cultural que lo clasifique. Además deberá tener un precio asequible, ya que el público objetivo al que va destinado el producto es de un nivel económico medio.

Se pretende que los materiales de la luminaria perduren cuando se exponen a diferentes condiciones climatológicas. Es un producto de interior y no tiene que resistir condiciones climatológicas extremas, como la lluvia o nieve, pero sí se requiere que el producto sea resistente y que su funcionamiento no se vea afectado por subidas o bajadas bruscas de temperatura. Además, al tratarse de una luminaria de interior, se tendrá que tener en cuenta el rango de temperatura y humedad mínima y máxima del espacio al que va dirigido la lámpara.

Se deberá también tener en cuenta las dimensiones del producto para que este pueda ser instalado en el espacio requerido.

5.4. Establecimiento de los objetivos

Para que el establecimiento de los objetivos sea lo más acertado posible, se realizará la metodología de grupos afectados que intervienen en el desarrollo del producto.

En este caso, los grupos elegidos son: promotor/diseñador, producto, usuario, transporte y manipulación y medio ambiente.

5.4.1. Objetivos del promotor/diseñador:

- 1. Hacer uso del concepto de modularidad en el producto (R)
- 2. Se quiere que los módulos del producto varíen en forma, tamaño y color y que se puedan combinar entre sí (R)
- 3. Atractivo (O)
- 4. El usuario ha de diferenciarlo de otros productos similares de la competencia (R)
- 5. Precio asequible y competitivo (O)
- 6. Dotado con tecnología LED (R)
- 7. Menor impacto ambiental posible (O)
- 8. Que sea seguro ante posibles accidentes (R)

5.4.2. Objetivos del producto:

- 9. Que sea un producto modular (R)
- 10. El usuario ha de diferenciarlo de otros productos similares de la competencia (R)

- 11. Dotado con tecnología LED (R)
- 12. Que no tenga ningún elemento religioso o político en el diseño (R)
- 13. Que tenga una potencia adecuada para que funcione pero que sea seguro para el usuario (O)

5.4.3. Objetivos del usuario:

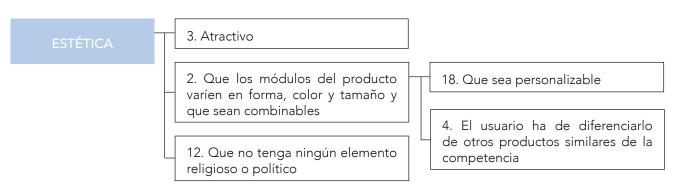
- 14. De fácil limpieza (R)
- 15. Que sea un producto eficiente y económico durante su vida útil (R)
- 16. Que tenga un precio asequible (O)
- 17. Que tenga una durabilidad elevada (O)
- 18. Que sea personalizable (D)
- 19. Atractivo (O)
- 20. Que sea seguro (R)

5.4.4. Objetivos de transporte y manipulación:

- 21. Fácil de ensamblar (O)
- 22. Peso del paquete lo más reducido posible (R)
- 23. Que el paquete ocupe el mínimo espacio posible (R)

5.4.5. Objetivos medioambientales:

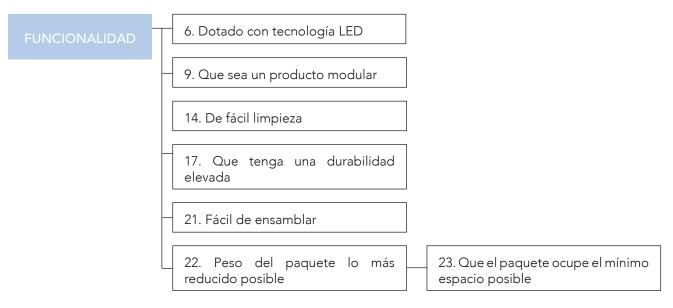
- 24. Los materiales utilizados deben ser reciclables (R)
- 25. El volumen/peso del paquete debe ser reducido para un transporte más sostenible (O)
- 26. Menor impacto ambiental posible (O)
- (O) Objetivos optimizables
- (R) Restricciones


5.5. Análisis de objetivos

Una vez definida la lista de objetivos, realizamos un análisis con el fin de eliminar las posibles anomalías, obtener un número mínimo de objetivos que defina el problema y establecer relaciones existentes entre ellos.

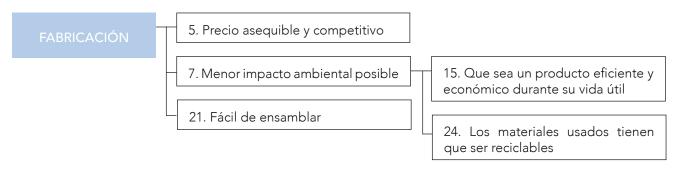
Para ello realizaremos un diagrama de árbol en función a los grupos que lo definen.

ESTÉTICA:


- 3. Atractivo (O)
- 2. Que los módulos del producto varíen en forma, color y tamaño y que sean combinables (R)
- 4. El usuario ha de diferenciarlo de otros productos similares de la competencia (R)
- 10. El usuario ha de diferenciarlo de otros productos similares de la competencia (R)
- 12. Que no tenga ningún elemento religioso o político (R)
- 18. Que sea personalizable (D)
- 19. Atractivo (O)
 - Los objetivos 3 y 19 son iguales, por lo que se descarta el 19.
 - Los objetivos 4 y 10 son iguales, por lo que se descarta el 10.

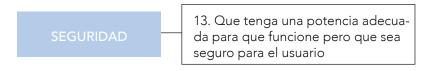
Esquema 1. Estética.

FUNCIONALIDAD:

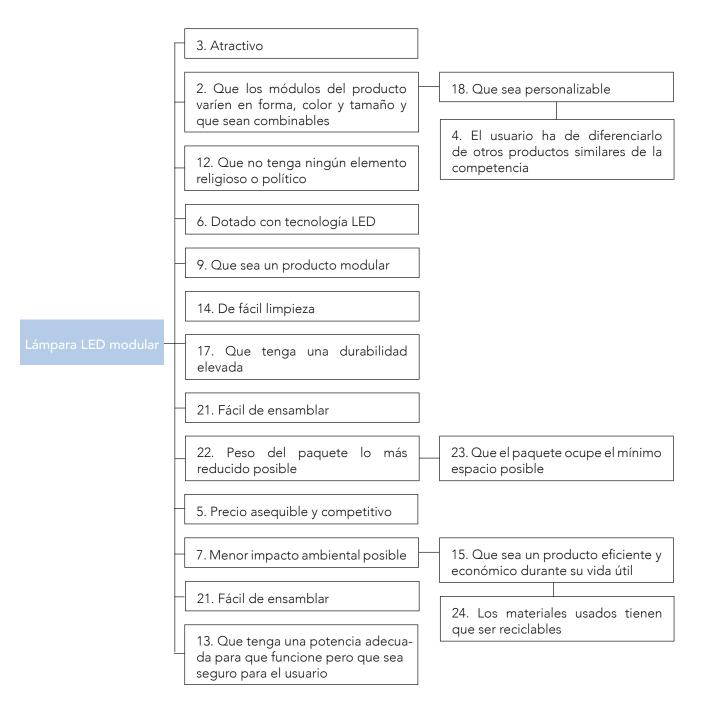

- 1. Hacer uso del concepto de modularidad en el producto (R)
- 6. Dotado con tecnología LED (R)
- 9. Que sea un producto modular (R)
- 11. Dotado con tecnología LED (R)
- 14. De fácil limpieza (O)
- 17. Que tenga una durabilidad elevada (O)
- 21. Fácil de ensamblar (O)
- 22. Peso del paquete lo más reducido posible (R)
- 23. Que el paquete ocupe el mínimo espacio posible (R)
- 25. El volumen/peso del paquete debe ser reducido para un transporte más sostenible (O)
 - Los objetivos 6 y 11 son iguales, por lo que se descarta el 11.
 - Los objetivos 1 y 9 son similares, por lo que se descarta el 1.
- Los objetivos 22, 23 y 24 son similares, se elimina el 25 y se dejan el 22 y 23 que son más determinantes.

Esquema 2. Funcionalidad.

FABRICACIÓN:


- 5. Precio asequible y competitivo (O)
- 7. Menor impacto ambiental posible (O)
- 15. Que sea un producto eficiente y económico durante su vida útil (R)
- 16. Que tenga un precio asequible (O)
- 21. Fácil de ensamblar (O)
- 24. Los materiales usados deben ser reciclables (R)
- 26. Menor impacto ambiental posible (O)
 - Los objetivos 5 y 16 son iguales, se descarta el 16.
 - Los objetivos 7 y 26 son iguales, se descarta el 26.

Esquema 3. Fabricación.


SEGURIDAD:

- 8. Que sea seguro ante posibles accidentes (R)
- 13. Que tenga una potencia adecuada para que funcione pero que sea seguro para el usuario (R)
- 20. Que sea seguro (R)
- Los objetivos 8, 13 y 20 son similares, por lo que se descarta el 8 y el 20, quedando el 13, que es más determinante.

Esquema 4. Seguridad.

A continuación se muestra el árbol final con todos los grupos que definen el diseño:

Esquema 5. Conjunto.

5.5.1. Transformación de objetivos no cuantificables en cuantificables:

Después de realizar el análisis de los objetivos, se procede a modificar los objetivos no cuantificables y transformarlos en cuantificables. Nos quedará una lista de especificaciones escalables (E) y especificaciones no escalables (R):

- 3. Atractivo (O) -> 3'. Que tenga una estética adecuada y atractiva (E)
- 5. Precio asequible y competitivo (O) -> 5'. Precio que esté al alcance de un sector económico medio (R)
- 7. Menor impacto ambiental posible (O) -> 7'. Evitar materiales tóxicos o nocivos (R)
- 17. Que tenga una durabilidad elevada (O) -> 17′. Que dure el máximo tiempo posible (E)
- 21. Fácil de ensamblar (O) -> 21'. Que tenga el menor número de componentes (E)

6. Establecimiento de especificaciones y restricciones

6.1. Asignación de variable, escala de medición y criterio:

OBJETIVO	ESPECIFICACIÓN	VARIABLE	ESCALA	
Atractivo	Atractivo Que tenga una estética adecuada y atractiva		Nominal	
Modular	Que sea un producto modular y personalizable	Cumplimiento	Nominal	
Social	Que no tenga ningún elemento religioso o político	Cumplimiento	Nominal	
Tecnología LED	Que esté dotado con tecnología LED	Cumplimiento	Nominal	
Fácil limpieza	Fácil limpieza Que sea fácil de limpiar		Proporcional (min)	
Durabilidad	Que dure el máximo tiempo posible	Vida útil	Proporcional (tiempo)	
Fácil ensamblaje	Que tenga el menor número de componentes	Tiempo y dificultad	Proporcional (min)	
Ligero	Que su peso sea el menor posible	Peso	Proporcional (kg)	
Reciclabilidad	Los materiales usados deben ser reciclables o reciclados	Cumplimiento	Nominal	
Seguridad	Que sea seguro para el usuario	Nivel de aislamiento	Nominal (IP)	
Precio	Que esté al acceso de un sector económico medio	Precio	Proporcional (€)	
Toxicidad	Toxicidad Evitar materiales tóxicos o nocivos		Proporcional- multidimensional (HAG- Hectárea global)	

Tabla 11. Especificaciones.

7. Evaluación y análisis de las alternativas de diseño

7.1. Diseños propuestos

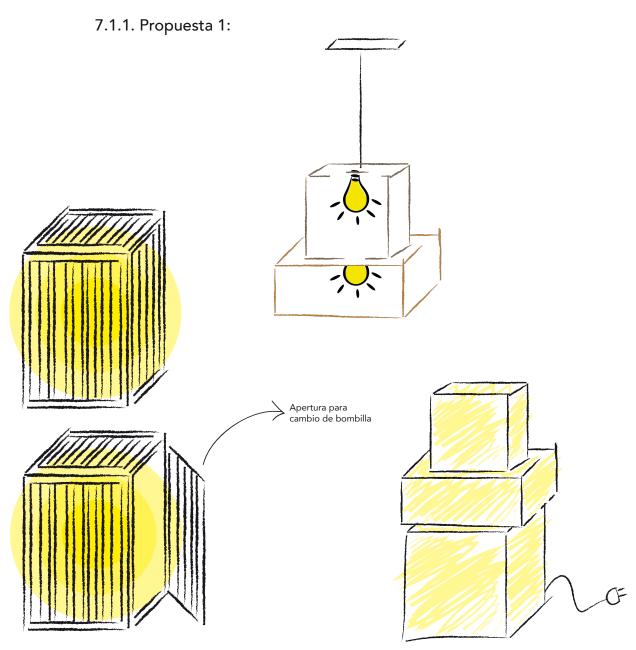


Fig. 12. Bocetos de estudio.

La primera idea que se sugiere se basa en cajas de diferentes tamaños y proporciones apilables entre sí, generando diferentes estructuras en función a su colocación. Además habrá diferentes accesorios disponibles para poder hacer uso de esta como luminaria de pie, de mesa o de techo.

Se trata de cajas traslúcidas que albergan luces LED en su interior y se enganchan unas con otras mediante imanes.

Esta propuesta tiene un gran nivel de personalización, ya que al tratarse de cajas cuadradas, el ángulo de giro una respecto de la otra, se generan múltiples efectos. Esto también influirá en el grado y forma de la luz emitida.

Para el paso de la corriente entre módulos es necesario disponer de dos zonas metálicas en dos puntos opuestos (uno en la zona superior y otro en la zona inferior), en las cuales, internamente, irá soldado un cable que conduzca la electricidad a la bombilla y de la bombilla nuevamente al siguiente módulo.

Para conseguir este sistema es necesario que la luminaria trabaje a baja tensión, ya que estas zonas metálicas quedarían accesibles al usuario. Para ello, cada uno de los soportes que van conectados a la corriente habitual de 230V dispondrían de drivers, los cuales hacen rebajar dicha tensión.

Uno de los inconvenientes de esta tecnología es que al trabajar a 12V, la cantidad de luz que emiten dichos leds es bastante reducida.

Para el acceso al cambio de bombilla cuando esta se estropee, se realizará una apertura en una de las caras del módulo con unas pequeñas bisagras que faciliten el acceso a la zona.

En cuanto a los materiales utilizados, para las pantallas se utilizará algún polímero traslúcido que un buen índice óptico, como es el PMMA o el PC. Los soportes, en cambio, requieren un mayor peso para darle estabilidad a la estructura. Para ello se utilizará el acero inoxidable

7.1.2. Propuesta 2:

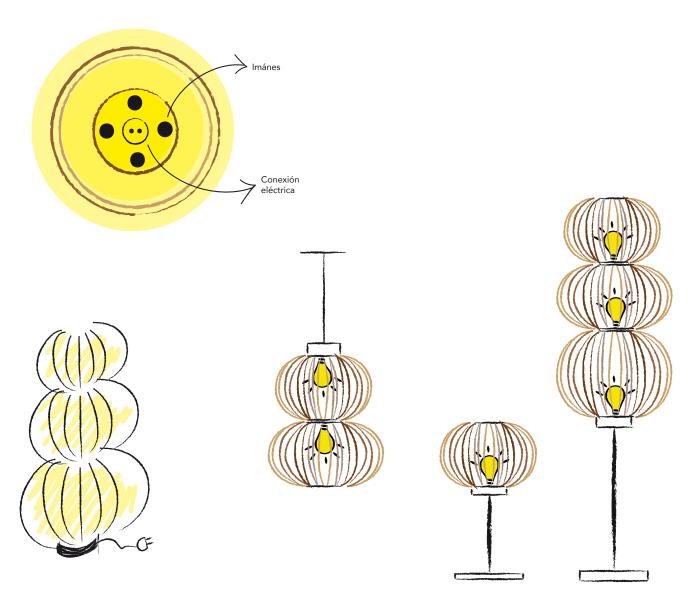


Fig. 13. Bocetos de estudio.

La segunda propuesta es muy parecida a la primera pero con algunas características bastante diferenciadas.

Se trata de diferentes formas esféricas que pueden conectarse unas a otras para dar lugar a diferentes soluciones. Con la posibilidad de colocarlas con un accesorio colgado del techo, en un pie pequeño para usar la luminaria de sobremesa o un pie largo para usarla como lámpara de pie.

Al tratarse de formas curvas y redondeadas, el diseño es mucho más armonioso. Además las esferas se forman mediante láminas de un material opaco con el fin de que se produzca un efecto de iluminación más caracteristico y ambiental.

Una de las grandes ventajas de esta propuesta es que está diseñada para que los módulos vayan conectados entre sí de tal manera que la lumianria trabaje a 230V. Esto supone un mayor rendimiento y un incremento considerable de la calidad visual que puede transmitir la luminaria.

Para conseguir esto es necesario que todos los modulos dispongan de un conector (del tipo xxb) macho en uno de sus extremos y hembra en el otro, de tal manera que el conector macho, cuando esté al descubierto nunca esté sometido a tensión, y el hembra tenga una protección de IP2 de dificil acceso para que, aunque se encuentre bajo tensión, no sea accesible con los dedos.

Además se colocarían imanes en matriz cilíndrica al enchufe, con el fin de que cuando colgamos la luminaria al techo, los módulos estén bien sujetos unos a otros. En el caso de la colocación de pie, los imanes servirían para una mejor fijación y garantizar la conexión del enchufe. Estos imanes ejercerían la fuerza necesaria para que los modulos aguantes unidos de una manera segura, pero a la vez sea cómoda su separación cuando queramos modificar la luminaria.

La iluminación utilizada es tecnología LED pero en este caso se utilizarían bombillas de rosca E27, las cuales ellas mismas, internamente, se encargan de reducir los 230V que le llegan a los 12V que necesita un diodo para su correcto funcionamiento. Esto también hace que sea mucho más sencillo para el usuario el cambio de bombilla si esta se estropea. Asimismo, las láminas de la estructura se abrirían con un sistema guiado circular que permitiría el acceso del usuario a la rosca.

7.1.3. Propuesta 3:

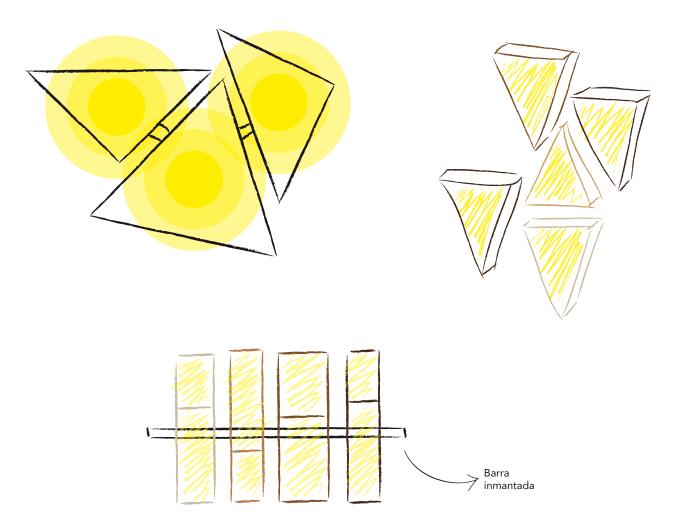
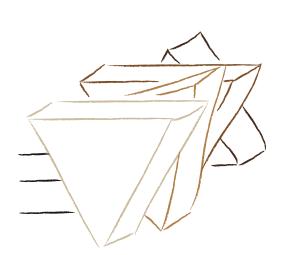


Fig. 14. Bocetos de estudio.


La siguiente propuesta consiste en la realización de módulos triangulares, realizados de materiales traslúcidos, como puede ser PMMA, dentro de las cuales se alojan pequeñas bombillas LED, permitiendo que la luz salga en casi todas las direcciones.

Este diseño está especialmente pensado para la colocación en la pared. Como se muestra en los bocetos, existirían muchas combinaciones posibles que permitirían la total personalización del producto.

Además, a parte de estar pensados para la colocación en la pared, podrían utilizarse como luminaria de techo, cuyo soporte sería el propio cable del producto. Dichas combianciones podrian realizarse a diferentes alturas, dando lugar a lumianrias, que ademas de ser funcionales, añadan un gran valor estético al produto.

Al igual que en los caso anteriores, se dispondrían de triángulos de diferentes proporciones, y existe la posibilidad de realizarlos con diferentes texturas y colores, ya sea en el proceso de moldeo al realizar el producto, o una vez fabricados, mediante vinilos.

El funcionamiento de esta propuesta podría ser de dos maneras. Como en el caso de la primera propuesta: haciendo funcionar la luminaria a 12V para poder dejar una zona metálica accesible por donde circularía la corriente, o insertando conexiones macho-hembra para 230V, como en el caso 2, asegurándonos de que no quede ninguna zona tensionada accesible al usuario. Además, la sujeción de los objetos a la pared también se haría efectiva con el uso de imanes.



Fig. 15. Bocetos de estudio.

El tipo de luz que se utiliza en esta propuesta consiste en una luz con tecnología LED muy cálida y acogedora, ya que la función de este diseño es más bien proporcionar una iluminación de ambiente y relax o señalización de espacios.

7.1.4. Propuesta 4:

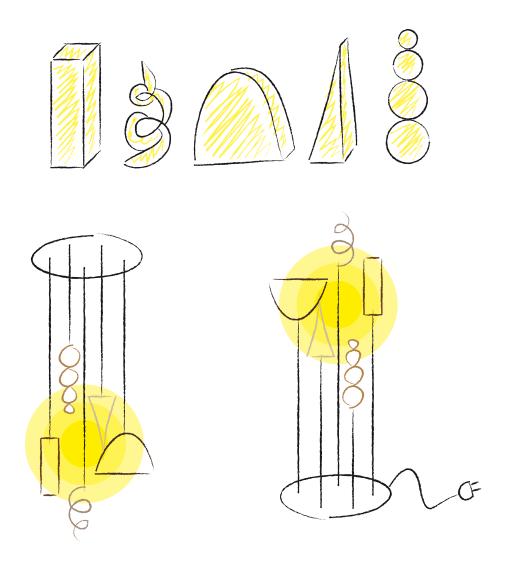


Fig. 16. Bocetos de estudio.

La cuarta y última propuesta consiste en diferentes módulos con varias formas, que el usuario puede colgar de un soporte de techo o colocar en uno de pie de la manera que desee.

Ambos soportes tienen conexiones que permiten anclar de 1 a 5 módulos como máximo, de tal manera que el usuario tiene total libertad para configurar la luminaria como desee en cada momento.

Las pantallas son de PMMA, ya que tienen un índice óptico muy bueno y al tratarse de módulos relativamente pequeños, interesa que emitan la mayor cantidad de luz posible.

En cuanto a los soportes, pueden ser de un aluminio o similar, ya que tampoco tienen que tener una gran robustez. Por una parte para no quitarle protagonismo a las lámparas y por otra, porque no van a verse sometidos a mucho peso.

La luminaria trabajaría a 230V y está diseñada para que se utilicen bombillas LED de rosca E27 o similar. El cambio de estas es muy sencillo, ya que las pantallas no están cerradas en todas sus caras, sino que tienen un acceso para que acceda la mano del usuario y que se pueda cambiar la bombilla fácilmente.

Es una luminaria que está pensada para utilizar una luz cálida. Ya que crea un clima más cómodo.

Además, al no tener formas muy complicadas y ser de PMMA, la limpieza del producto es sencilla. Bastaría con pasar un trapo con agua y jabón neutro.

7.2. Análisis

Después de realizar las propuestas de diseño se procede a evaluarlas, con objeto de seleccionar la mejor opción. Para ello se lleva a cabo dicha evaluación a través de dos métodos:

Método cualitativo. Para clasificar las distintas alternativas de diseño mediante una escala ordinal.

Método cuantitativo. Para cuantificar la evaluación de las alternativas.

Para realizar correctamente dichos análisis, se necesitará conocer la lista definitiva de especificaciones de diseño en función del orden de importancia, el cual se establece a continuación:

- 1. Que tenga una estética adecuada y atractiva
- 2. Que sea un producto modular y personalizable
- 3. Que no tenga ningún elemento religioso o político
- 4. Que esté dotado con tecnología LED
- 5. Que sea fácil de limpiar
- 6. Que dure el máximo tiempo posible
- 7. Que tenga el menor número de componentes
- 8. Que su peso sea el menor posible
- 9. Los materiales usados deben ser reciclables o reciclados
- 10. Que sea seguro para el usuario
- 11. Que esté al acceso de un sector económico medio
- 12. Evitar materiales tóxicos o nocivos

7.2.1. Método cualitativo:

Para la correcta evaluación de las propuestas de diseño mediante el método cualitativo realizaremos el DATUM. Para ello es necesario realizar una matriz que contenga, por un lado, las especificaciones de diseño nombradas anteriormente y por otro, las diferentes propuestas de diseño obtenidas en el apartado 8.1.

Este método consiste en escoger una de las diferentes propuestas y establecerla como referencia para ser comparada con las demás soluciones según el siguiente criterio:

- Si la propuesta evaluada cumple el objetivo mejor que la propuesta de referencia, se califica con un "+".
- Si la propuesta evaluada cumple el objetivo peor que la propuesta de referencia, se califica con un "-".

- Si la propuesta evaluada cumple el objetivo de igual manera que la propuesta de referencia, se califica con un "=".

	ESPECIFICACIÓN	P1	P2	P3	P4
1	Que tenga una estética adecuada y atractiva	+	+	=	
2	Que sea un producto modular y personalizable	=	=	=	
3	Que no tenga ningún elemento religioso o político	=	=	=	D
4	Que esté dotado con tecnología LED	=	=	=	
5	Que sea fácil de limpiar	+	-	+	А
6	Que dure el máximo tiempo posible	=	=	=	
7	Que tenga el menor número de componentes	+	+	+	Т
8	Que su peso sea el menor posible	-	=	=	
9	Los materiales usados deben ser reciclables o reciclados	=	=	=	U
10	Que sea seguro para el usuario	-	+	-	
11	Que esté al acceso de un sector económico medio	=	=	=	М
12	Evitar materiales tóxicos o nocivos	=	+	=	
	Sumatorio +	3	4	2	
	Sumatorio -	2	1	1	
	Sumatorio =	7	7	9	
	TOTAL		3		

Tabla 12. Análisis cualitativo. DATUM.

El resultado que arroja el DATUM es que la propuesta 2 sería la mejor elección final.

Para confirmar que la elección, el método cuantitativo nos ayudara a concretar cuál es la idónea dentro de estas dos propuestas.

7.2.1. Método cuantitativo:

Para realizar este método, descartaremos las propuestas 1 y 3 que anteriormente, en el DATUM, sacaron los valores más bajos. Consta de 3 pasos. Primero dispondremos las especificaciones de manera enfrentada para determinar la importancia que tienen el uno sobre el otro. Tras esta determinación, el segundo paso consiste en determinar una escala de valores para enfrentar de nuevo dichos objetivos pero asignando un valor en función del nivel de satisfacción. El último paso es ponderar los valores y determinar qué propuesta es la mejor.

IMPORTANCIA DE LAS ESPECIFICACIONES:

Para la obtención de esta tabla enfrentamos las especificaciones en fila-columna.

0 = La especifiación de la columna supera en importancia la especificación de la fila.

1 = La especifiación de la columna no supera en importancia la especificación de la fila.

	1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	IMP
1	-	0	1	0	1	0	1	0	1	0	0	0	4	5,5
2	1	-	1	1	1	1	1	1	1	0	1	1	10	13,8
3	0	0	-	1	1	0	1	0	0	0	0	0	3	9,3
4	1	0	0	-	1	1	1	1	1	0	1	1	8	11,1
5	0	0	0	0	-	0	0	0	0	0	0	0	0	0
6	1	0	1	1	1	-	1	1	1	0	0	1	8	11,1
7	0	0	0	1	1	0	-	0	0	0	0	0	2	2,7
8	1	0	0	0	1	1	1	-	1	0	1	1	7	9,7
9	1	0	1	0	1	0	1	0	-	0	0	0	4	5,5
10	1	1	1	1	1	1	1	1	1	-	1	1	11	15,2
11	1	0	1	0	1	1	1	0	1	0	-	0	6	8,3
12	1	0	1	1	1	1	1	1	1	0	1	-	9	12,5
													72	100

Tabla 13. Análisis cuantitativo.

ASIGNACIÓN DE ESCALA Y PONDERACIÓN:

En la siguiente tabla vemos el desglose del segundo y tercer paso para las 2 propuestas que habíamos acotado en el DATUM.

VALOR	%
1	25
2	50
3	75
4	100

Tabla 14. Análisis cuantitativo.

			P2		P4
	IMPORTANCIA	ESCALA		ESCALA	%
1	5,5	3	4,12	2	2,75
2	13,8	4	13,8	3	10,35
3	9,3	4	9,3	3	4,65
4	11,1	4	11,1	4	11,1
5	0	2	0	3	0
6	11,1	2	2,77	2	2,77
7	2,7	1	0,675	2	1,35
8	9,7	2	4,85	3	7,25
9	5,5	4	5,5	3	4,12
10	15,2	4	15,2	4	15,2
11	8,3	2	4,15	2	4,15
12	12,5	4	12,5	4	12,5
	TOTAL		83,89		76,19

Tabla 15. Análisis cuantitativo.

La conclusión después del análisis tanto en el método cuantitativo como cualitativo, es que la propuesta 2 es la mas apta para los valores y especificaciones fijadas para el desarrollo del proyecto.

8. Diseño de detalle

8.1. Conexiones

El producto a desarrollar consiste en módulos que van conectados entre sí, por los que circula una tensión de 230V. Por ello será necesaria una conexión que sea capaz de conducir dicha tensión y a la vez que garantice la seguridad del usuario, es decir, que no tenga zonas accesibles sometidas a tensión.

Para ello se utilizan conexiones macho-hembra de 2 pines con un sellado IP68, el cual garantiza la protección contra el polvo y al agua.

La elección de este conector se basa en que cumple con el índice de protección IP mínimo necesario (IP2) y no es demasiado basto como para entorpecer la estética del producto. Además es un componente relativamente pequeño, lo cual hace que se necesite un menor contenedor para alojarlo.

8.2. Tecnología LED

La elección de las bombillas vendrá determinada por la calidad de la luz y la eficiencia energética. Para este producto se elegirá una iluminación blanca cálida para generar un clima acogedor.

El producto desarrollado admite cualquier tipo de bombillas tipo E27, pero está pensado para que se utilicen bombillas LED E27, ya que son entre un 80% y 90% más eficaces que las tradicionales incandescentes, lo que supone un enorme ahorro de energía.

Además, la duración de las bombilla LED es hasta 10 veces mayor que las incandescente, y como ventaja principal cabe destacar que no emiten ningún tipo de calor, con lo cual permite que el diseño de la luminaria no tenga que ser cerrado, ya que el usuario no corre riesgo de quemarse.

La bombilla que recomendamos para este diseño es la Bombilla LED E27 G93 Philips 9,5W. Su vida útil se extiende a las 15.000h. Su índice de reproducción cromática es superior a 80 y garantiza la representación de los colores de forma natural. Además presenta un encendido instantáneo y sin molestos parpadeos.

8.3. Sistemas de unión

Los módulos esféricos de la luminaria van unidos entre sí por conectores que hacen que sea posible el paso de la corriente eléctrica, pero estas uniones no garantizan que los productos queden sujetos. Por eso es necesario un sistema de unión, sobretodo cuando se pretende hacer uso del soporte de techo.

Para las uniones entre cuerpos se hace uso de imanes de neodimio, que irán dispuestos al rededor del conector formando un círculo, tanto en las esferas como en los soportes.

La forma de los imanes será cilíndrico. El número, su tamaño y fuerza de sujeción, se determinará en el apartado 9.5.1. Cálculo sujeción imantada, después de saber la fuerza que deben sujetar.

Fig. 17. Imanes circulares de neodimio.

El principal motivo por el que se ha elegido la sujeción imantada es porque no necesita un mecanizado extra en la pieza, por lo tanto se reduce su coste. Además este tipo de imanes tienen una gran fuerza de sujeción en relación a su tamaño y peso, con lo que los hace perfectos para este producto, ya que lo que se desea es que no añadan un peso extra y que queden lo más integrado posible en el diseño.

8.4. Materiales y fabricación

A continuación se hará un barrido sobre los materiales que se utilizarán en la realización del producto y los procesos de fabricación necesarios para su conformado.

En primer lugar, para las pantallas o listones se utilizará el polipropileno reforzado (PP). La calidad estándar de este material es barata, ligera y dúctil. Puede fabricarse en una amplia gama de colores y además tiene transparencia. Además es muy resistente a muchos solventes químicos, bases y ácidos.

Fig. 18. Imanes circulares de neodimio.

Las características principales de polipropileno son:

- Bajo coste
- Alta resistencia química a los disolventes
- Fácil de moldeo
- Fácil de colorear
- Alta resistencia a la fractura por flexión o fatiga
- Buena resistencia al impacto superior a temperaturas superiores a los 15 ° C
- Buena estabilidad térmica
- Aumento de la sensibilidad a la luz UV y agentes oxidantes, sufriendo a la degradación más fácilmente.

A nivel constructivo tiene la gran ventaja que se puede trabajar como la madera o el metal y se comercializa en planchas, bloques, tubos y varillas.

El proceso de fabricación para las piezas de este material sería el termoformado. Un proceso sencillo y muy económico, tanto para lotes pequeños de producción como grandes.

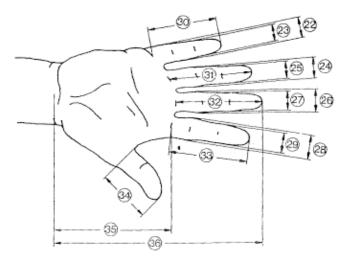
Para la realización de las piezas que envuelven los componentes eléctricos se hará uso de la poliamida reforzada con fibra de vidrio (Nylon 6 o PAG). Es un material cristalino que por su proceso de fabricación muestra gran tenacidad y resistencia, características importantes si se usa bajo carga o impacto o temperaturas moderadas. Posee una elevada resistencia al choque y a la fatiga, buena resistencia al desgaste y es muy apreciable la resistencia a la rotura y a la flexión. Además, este material posee una gran estabilidad dimensional y cuenta con un excelente acabado superficial.

Fig. 19. Imanes circulares de neodimio.

La fabricación de este material se llevaría a cabo mediante el moldeo por inyección. Este proceso requiere temperaturas y presiones más elevadas que cualquier otra técnica de transformación, pero da lugar a piezas de mucha precisión, con superficies limpias y proporciona un magnífico aprovechamiento del material.

Por último, para los diferentes soportes; tanto de pie, mesa y techo, como para es esqueleto de refuerzo de los módulos, se empleará el acero inoxidable (AISI 304). Es una aleación austenítica con unas características mecánicas excelentes.

La conformación de este material, en el caso de los soportes, se haría por laminado y soldadura, aunque una de las grandes ventajas de este acero es que también se comercializa en varias formas estándar, como son: esferas, hilos, hojas, mallas, polvo, tubos o varas. Esto nos permitirá el ahorro en la producción de determinadas piezas, ya que se comprarán directamente a un suministrador.


Fig. 20. Imanes circulares de neodimio.

Por otro lado tenemos los esqueletos de las lámparas, que también son de acero AISI 304, pero se conforman de manera diferentes. Para realizar los tubos macizos que conforman los esqueletos es necesario realizar una extrusión de tubos y un doblado posterior.

8.5. Estudio ergonómico

Para conseguir un dimensionamiento correcto de las luminarias, se tendrán en cuenta algunos datos antropométricos necesarios para realizar el estudio ergonómico. Para ello se tomarán las medidas antropométricas según la norma DIN33402. Parte 2.

Por un lado, se estudiarán los diámetros de agarre cómodos para poder sujetar los módulos esféricos con una mano y manipularlos sin movimientos forzados. Para ellos necesitaremos las medidas antropométricas de la palma de la mano y la distancia recomendada de separación de asas.

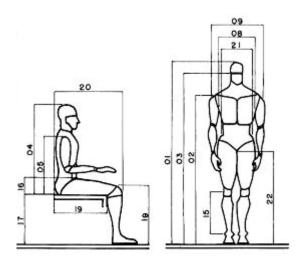

DIMENSIÓN	HOMBRES			MUJERES		
	P5	P50	P95	P5	P50	P95
36. Largo total de la mano (cm)	17,0	18,6	20,1	15,9	17,4	19,0

Tabla 16. Medidas antropométricas.

La distancia recomendada de separación de asas es entre 6,5 y 9 cm. Agarres mayores de 10 cm serán difíciles de manejar para usuarios de manos pequeñas o gruesas.

Teniendo en cuenta todas las medidas de la mano, y que se tiene que prever un espacio suficiente para el alojamiento de los componentes eléctricos, el diámetro de las superficies de agarre de las esferas será de 8 cm.

Por otro lado, se tendrá que realizar el estudio de los soportes tanto de techo, de pie y de mesa de las luminarias. Para ello se tendrán en cuenta las medidas antropométricas de la estatura y la medida desde las caderas hasta los hombros, según la norma DIN33402. Parte 2.

DIMENSIÓN	HOMBRES			MUJERES		
	P5	P50	P95	P5	P50	P95
01. Estatura (cm)	158	169,8	182	149	159,6	170
04. Longitud de caderas a hombros (cm)	54,3	58,9	64,0	51,1	55,6	60,4

Tabla 17. Medidas antropométricas.

Considerando las medidas de estatura:

- Criterio: ajuste bilateral- P5 de mujeres: 149 cm- P95 de hombres: 182 cm

Se puede establecer que la luminaria de pie debe estar comprendida entre ambas medidas. Se dejará en función del intervalo para dar mayor libertad al diseño.

Longitud total luminaria pie	1490 < L < 1820 mm
------------------------------	--------------------

Del mismo modo, para calcular las dimensiones totales de la luminaria de mesa, consideramos las medidas de las caderas a los hombros:

- Criterio: ajuste bilateral- P5 de mujeres: 54,3 cm- P95 de hombres: 64,0 cm

Se puede establecer que la luminaria de mesa debe estar comprendida entre ambas medidas. Se dejará en función del intervalo para dar mayor libertad al diseño.

Para finalizar se establecerá la longitud máxima de la luminaria de techo en función de la altura estándar del techo de las viviendas y la estatura del usuario, para que la luminaria no quede demasiado baja y entorpezca el paso de usuario por el espacio.

- Criterio: ajuste bilateral- P50 de mujeres: 159,6 cm- P50 de hombres: 169,8 cm

- Altura estándar del techo de una vivienda: 250 cm

La media de los percentiles 95 de la altura entre hombres y mujeres es de 164,7 cm, a lo que le restamos la altura estándar del techo, 250 cm, se nos queda en 85,3 cm.

*Longitud total luminaria techo	L < 860 cm
---------------------------------	------------

*Dado que el proyecto consiste en una luminaria modular la cual el usuario puede personalizar y hacerla más o menos larga en función del número de módulos que ponga en cadena, esta medida será solo orientativa y no determinante.

8.6. Estudio mecánico

En este apartado se realizará un estudio sobre el diámetro que debe tener el cable tensor para la luminaria de techo, así como el tipo de imanes y la cantidad de ellos que deberemos colocar en el producto para que la sujeción sea efectiva y a la vez no opongan demasiada resistencia para una separación óptima de los módulos.

Se ha de tener en cuenta que los cálculos realizados en este apartado son aproximados y bajo hipótesis simplificadas para facilitar el estudio, ya que lo que se pretende es obtener unas dimensiones aproximadas en función a los materiales que se pretende utilizar para la posterior evaluación económica.

8.6.1. Cálculo sujeción imantada:

Para calcular el número de imanes necesarios a colocar en cada módulo y la fuerza de sujeción que deben ejercer dicho imanes, será necesario conocer el peso que estos deben sujetar en el peor de los casos.

La situación de máxima sujeción viene dada cuando el soporte contenedor de techo tiene que sostener los 3 módulos lumínicos. El peso de los 3 módulos viene dado por la suma del volumen y la densidad de los materiales de cada uno de los elementos que lo componen, en este caso, poliamida reforzada con fibra de vidrio (Nylon 6), policarbonato (PP) y acero inoxidable AISI 304. El conjunto mediante el software de modelaje y fabricación 3d (solidworks) nos arroja los siguientes datos:

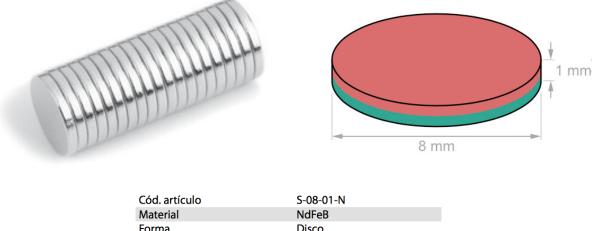

	PESO
	kg
Módulo pequeño	0,445
Módulo mediano	0,69
Módulo grande	0,903
TOTAL	2,038

Tabla 18. Medidas antropométricas.

Habrá que considerar también el peso de todos los imanes y los componentes eléctricos y electrónicos, para lo que se supondrá un peso de 0,5 kg. De tal modo que la suma total de esfuerzos a soportar por la superficie imantada es de 2,538 kg.

Una vez calculado el peso a sujetar por los imanes en el caso más desfavorable, buscamos los imanes necesarios para colocar el en producto, teniendo en cuenta que tienen que tener una fuerza de sujeción mayor que 2,538 pero sin pasarse, para que no oponga demasiada resistencia su separación. Además es conveniente que los imanes sean lo más finos posible para que no entorpezcan la estética del diseño.

Los imanes seleccionados para el colocar en el producto son los siguientes:

Cod. articulo	S-08-01-N
Material	NdFeB
Forma	Disco
Diámetro	8 mm
Alto	1 mm
Tolerancia	+/- 0,1 mm
Sentido de magnetización	axial (paralelo al alto)
Revestimiento	niquelado (Ni-Cu-Ni)
Tipo de fabricación	sinterizado
Magnetización	N45
fza. sujec.	aprox. 540 g (aprox. 5,3 N)
Temperatura de servicio máx.	80°C (quizá más baja) *
Peso	0,3820 g
Temperatura de Curie	310 °C
Remanencia Br	13200-13700 G, 1.32-1.37 T
Coercitividad bHc	10.8-12.5 kOe, 860-995 kA/m
Coercitividad iHc	≥12 kOe, ≥955 kA/m
Producto energético (BxH)max	43-45 MGOe, 342-358 kJ/m ³

Tabla 19. Características imanes de neodimio.

Se colocarán 6 imanes en forma circular en todas las cubiertas de los módulos y en los soportes. De este modo, la fuerza de sujeción que son capaces de aguantar será de 3,24 kg de los 2,538 kg a los que se verá sometido a tracción en el peor de los casos.

8.6.2. Dimensionamiento del cable tensor:

Para calcular las dimensiones del cable, tendemos que tener en cuenta el peso que este debe soportar en el peor de los casos. En este caso, el mayor esfuerzo a soportar por el cable tensor es la suma de las dimensiones y la densidad de los diferentes materiales que componen los 3 módulos más el soporte contenedor de la luminaria de techo.

En este caso, los pesos serán los mismos que en el apartado anterior, sumándole también el peso del soporte de techo, que lo componen un contenedor y una tapa de acero inoxidable AISI 304. El conjunto mediante el software de modelaje y fabricación 3d (solidworks) nos arroja los siguientes datos:

	PESO
	kg
Módulo pequeño	0,445
Módulo mediano	0,69
Módulo grande	0,903
Soporte techo	0,331
TOTAL	2,369

Tabla 20. Medidas antropométricas.

Además se tiene que tener en cuenta el peso de los imanes y los componentes eléctricos, para lo que se supondrá un peso de 0,7 kg. Con lo cual, el peso total a soportar por el cable tensor es de 3,69 kg.

Según la norma ISO 2232, los grados de calidad del alambre de acero son:

- 1570 N/mm² (160 kg/mm²)
- 1770 N/mm² (180 kg/mm²)
- 1960 N/mm² (200 kg/mm²)

Por tanto, para la construcción del cable de suspensión de la luminaria en el caso del soporte de techo, exigiremos el mínimo que rige la norma para el alambre de acero de 1580 N/mm², y realizaremos el cálculo del diámetro necesario para sustentar la luminaria con un coeficiente de seguridad del 1,3.

$$F = m \cdot a = 3,69 \cdot 9,81 = 36,19 N$$

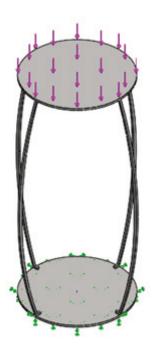
 $\delta eq = \delta adm$

$$\frac{F}{A} = \frac{Sy}{ns} \qquad \frac{F}{\frac{\pi \cdot d^2}{4}} = \frac{Sy}{ns}$$

$$d = \sqrt{\frac{4 \cdot ns \cdot F}{\pi \cdot Sy}} = \sqrt{\frac{4 \cdot 1, 3 \cdot 36, 19}{\pi \cdot 1570}} = 0,19 \text{ mm}$$

Con dichas consideraciones obtenemos un diámetro de 0,19 mm. Como el diámetro mínimo que abastecen los proveedores es de 0,6 mm, calculamos cuál es la carga total que soportará el cable tensor con este diámetro.

$$F = \frac{Fy \frac{\pi \cdot d^2}{4}}{ns} = \frac{1570 \frac{\pi \cdot 0.6^2}{4}}{1.3} = 341,47 \text{ N}$$


$$m = \frac{F}{a} = \frac{341,46}{9,81} = 34,8 \text{ kg}$$

8.6.3. Análisis estático:

Para finalizar, se realiza un análisis estático de los módulos para saber si éstos soportan el peso al colocarlos uno sobre otros. Para ello se simplifica la estructura quedándose el esqueleto de acero y dos tapas rectas arriba y abajo que simulan el apoyo y la superficie donde se ejerce la fuerza.

En el peor de los casos, El módulo pequeño soportará a los dos más grandes, de tal modo que la simplificación se hace con las dimensiones del esqueleto pequeño y el peso de 20N.

Para realizar estos cálculos se hace uso del complemento Simulator del SolidWork, el cual nos ofrece los resultados siguientes:

Propiedades de material

Referencia de modelo	Propie	Componentes	
	Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante:	0.29 8000 kg/m^3	Sólido 1(Saliente- Extruir1)(Pieza1-1), Sólido 1(Saliente- Extruir1)(Pieza1-2), Sólido 1(Saliente- Extruir1)(Pieza2-1), Sólido 1(Saliente- Extruir1)(Pieza2-2), Sólido 1(Saliente- Extruir1)(Pieza2-3), Sólido 1(Saliente- Extruir1)(Pieza2-4)

Tabla 21. Especificaciones.

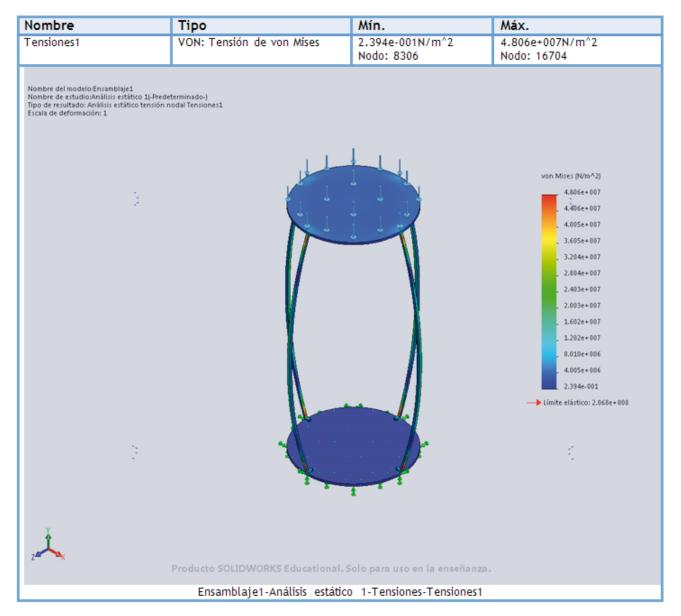
Cargas y sujeciones

Nombre de sujeción	lmag	en de sujeción	Detalles de sujeción				
Fijo-1	1		Entidades: 1 cara(s) Tipo: Geometría fija				
Fuerzas resultan	ites						
Componen		X	Υ	Z	Resultante		
Fuerza de read	ción(N)	-0.00753992	20.0101	-0.0029522	20.0101		
Momento reacción(N		0	0	0	0		

Nombre de carga	Cargar imagen	Detalles de carga		
Fuerza-1	<u>i</u>	Entidades: Tipo: Valor:	Aplicar fuerza normal	

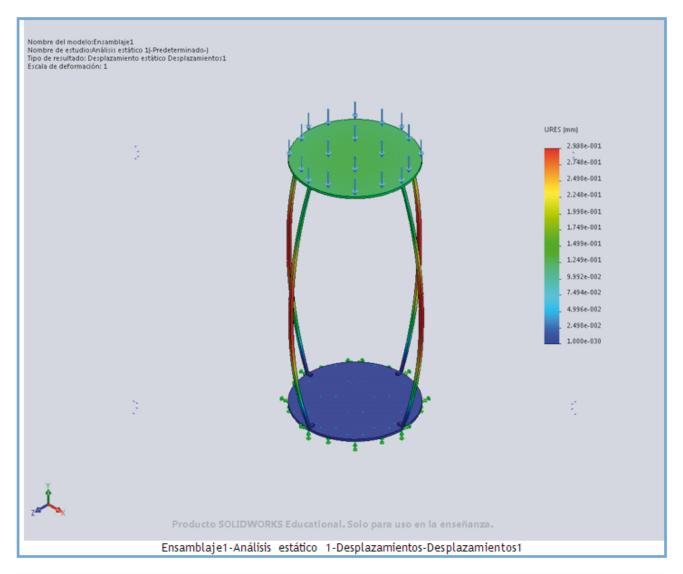
Fuerzas resultantes

Fuerzas de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	-0.00753992	20.0101	-0.0029522	20.0101

Momentos de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0


Tabla 22. Especificaciones.

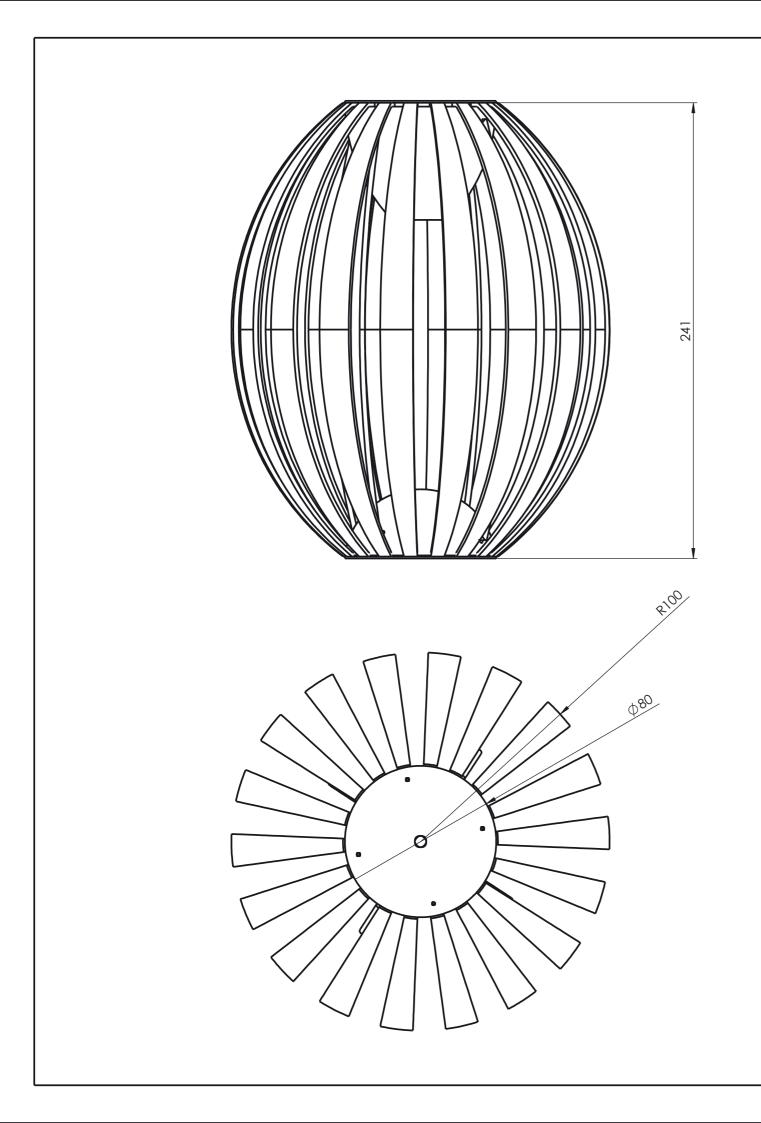
Resultados del estudio

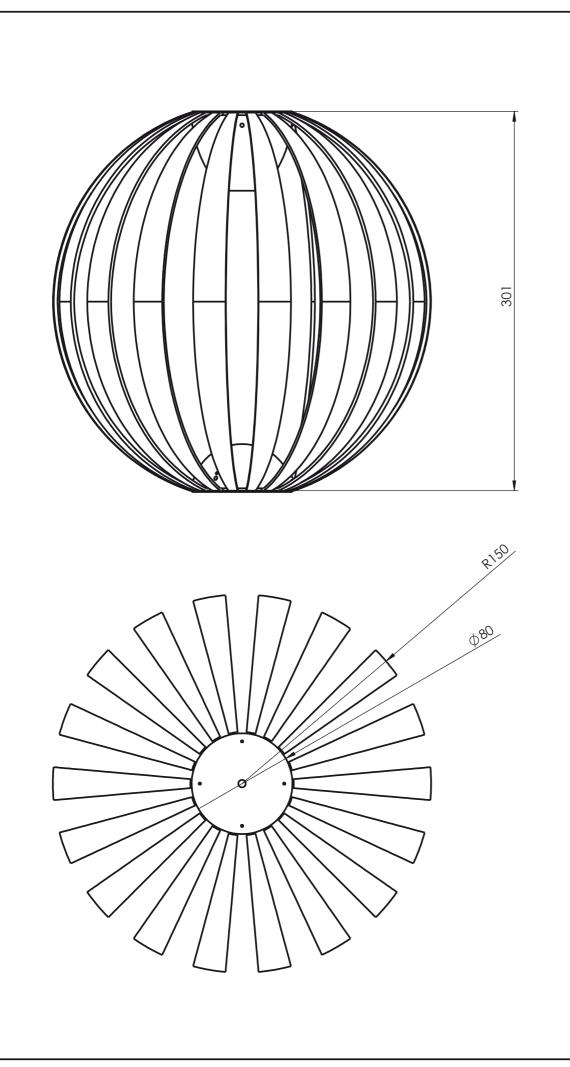
Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos	0.000e+000mm	2.998e-001mm
	resultantes	Nodo: 6997	Nodo: 14220

Tabla 23. Especificaciones.

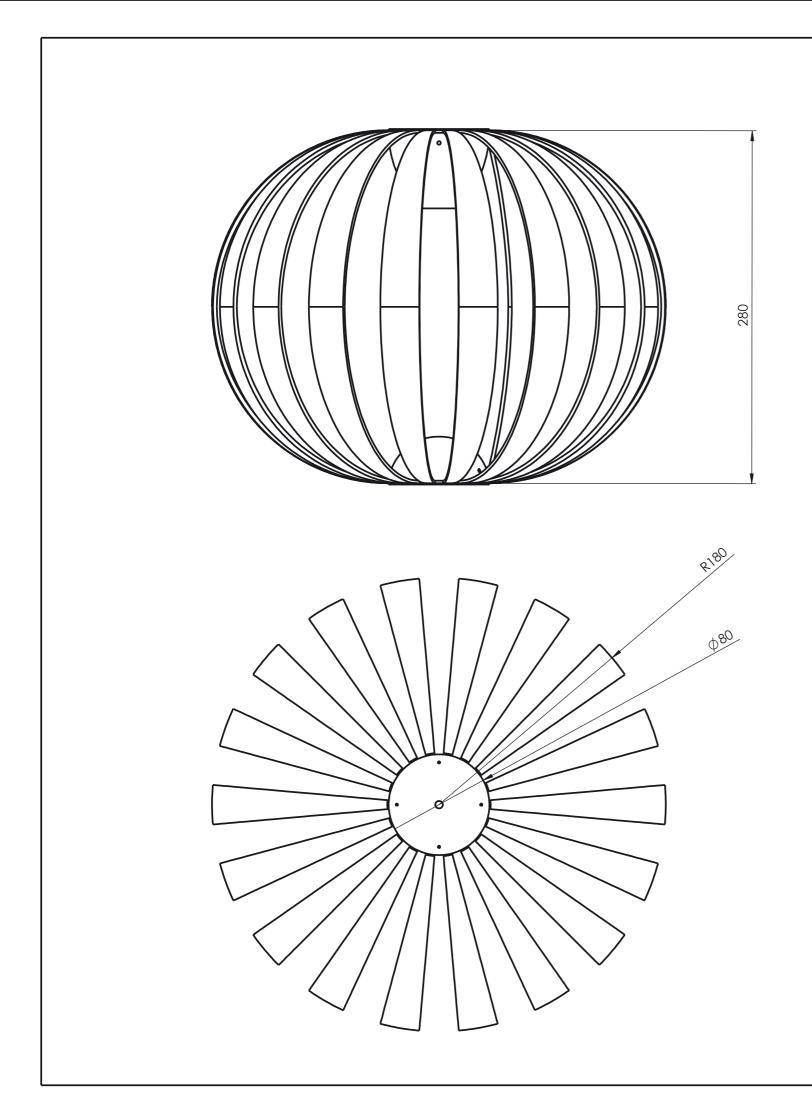
Nombre	Tipo	Mín.	Máx.
Deformaciones unitarias1	ESTRN: Deformación unitaria	1.602e-012	1.328e-004
	equivalente	Elemento: 4859	Elemento: 7794

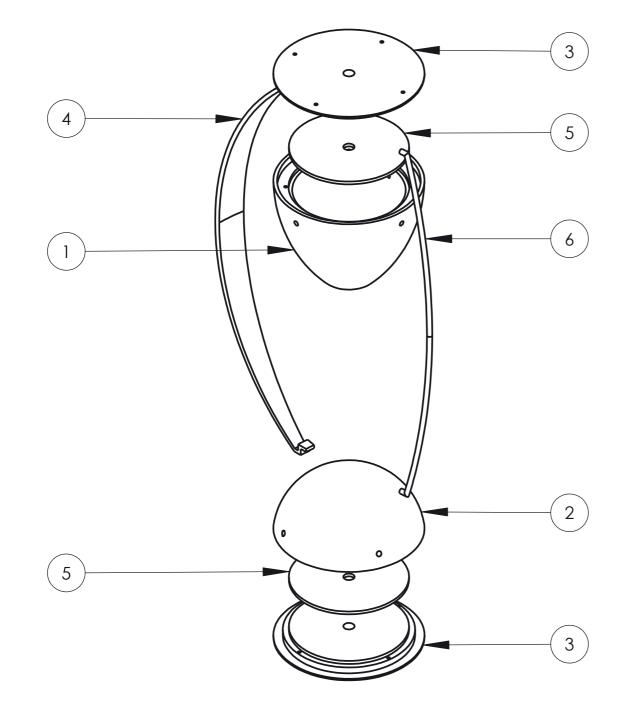
Tabla 24. Especificaciones.

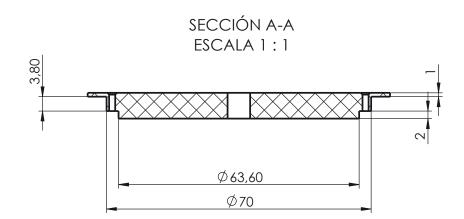

Como se puede observar en los resultados, las tensiones y deformaciones que presenta el producto cuando se somete a las cargas máximas son muy pequeñas, prácticamente nulas, por lo que se puede decir que el producto está perfectamente preparado, en cuanto a resistencia se refiere, para desempeñar su función.

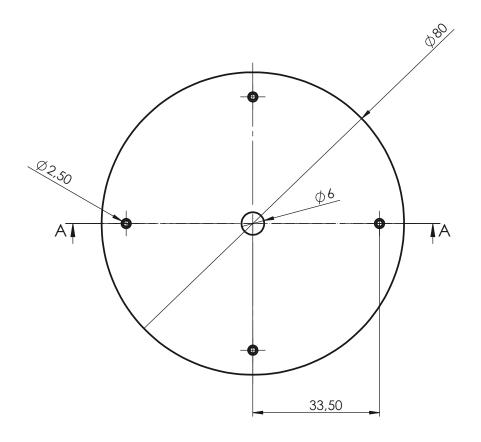

Diseño y desarrollo de una lámpara LED modular

Índice:

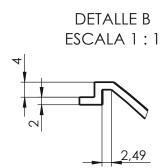

1. Hoja 1. Plano 1.1. Conjunto luminaria pequeña	135
2. Hoja 1. Plano 1.2. Conjunto luminaria mediana	136
3. Hoja 1. Plano 1.3. Conjunto luminaria grande	137
4. Hoja 2. Plano 2.1. Luminaria; Listado de piezas	138
5. Hoja 2. Plano 2.2. Luminaria; Cubierta	139
6. Hoja 2. Plano 2.3. Luminaria; Pantalla pequeña	140
7. Hoja 2. Plano 2.4. Luminaria; Pantalla mediana	141
8. Hoja 2. Plano 2.5. Luminaria; Pantalla grande	142
9. Hoja 2. Plano 2.6. Luminaria; Esqueleto pequeño	143
10. Hoja 2. Plano 2.7. Luminaria; Esqueleto mediano	144
11. Hoja 2. Plano 2.8. Luminaria; Esqueleto grande	145
12. Hoja 2. Plano 2.9. Luminaria; Protector	146
13. Hoja 2. Plano 2.10. Luminaria; Armazón superior	147
14. Hoja 2. Plano 2.11. Luminaria; Armazón inferior	148
15. Hoja 3. Plano 3.1. Conjunto soporte de pie	149
16. Hoja 3. Plano 3.2. Soporte pie; Listado de piezas	150
17. Hoja 3. Plano 3.3. Soporte pie; Contenedor	151
18. Hoja 3. Plano 3.4. Soporte pie; Tapa	152
19. Hoja 3. Plano 3.5. Soporte pie; Fuste grande	153
20. Hoja 3. Plano 3.6. Soporte pie; Base grande	154
21. Hoja 4. Plano 4.1. Conjunto soporte de mesa	155
22. Hoja 4. Plano 4.2. Soporte mesa; Listado de piezas	156
23. Hoja 4. Plano 4.3. Soporte mesa; Contenedor	157
24. Hoja 4. Plano 4.4. Soporte mesa; Tapa	158
25. Hoja 4. Plano 4.5. Soporte mesa; Fuste pequeño	159
26 Hoia 4 Plano 4.6 Soporte mesa: Base pequeña	160

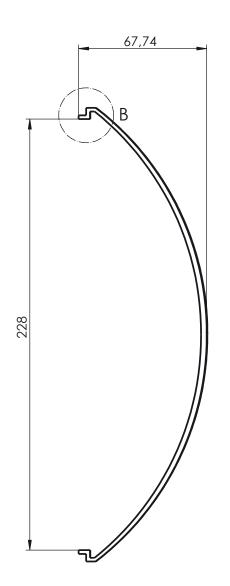

Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	τίτυιο: Conjunto; Luminaria pequeña	un. dim.: mm	PLANO №.: 1.1
SISTEMA:	4	Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
	Comprobado por: Julia Galán Serrano	Junio 2018	1	

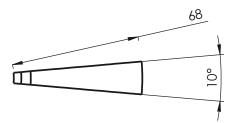

٢	Observaciones: La tolerancia	ESCALA:		un. dim.:	PLANO Nº.:
	superficial general de la pieza es de +-0,2mm	1:3	τίτυιο: Conjunto; Luminaria mediana	mm	1.2
Γ	SISTEMA:	41.14	Dirigido por: Casandra Morales Pérez	FECHA:	HOJA Nº.:
			Comprobado por: Julia Galán Serrano	Junio 2018	1

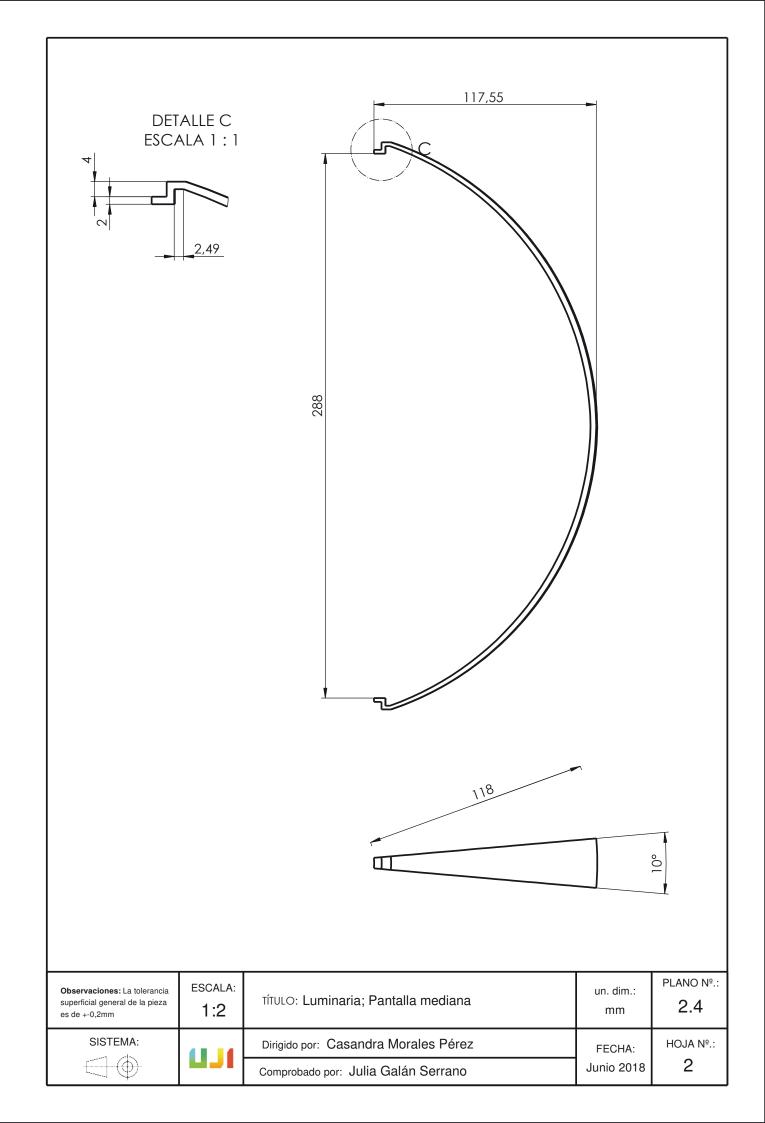


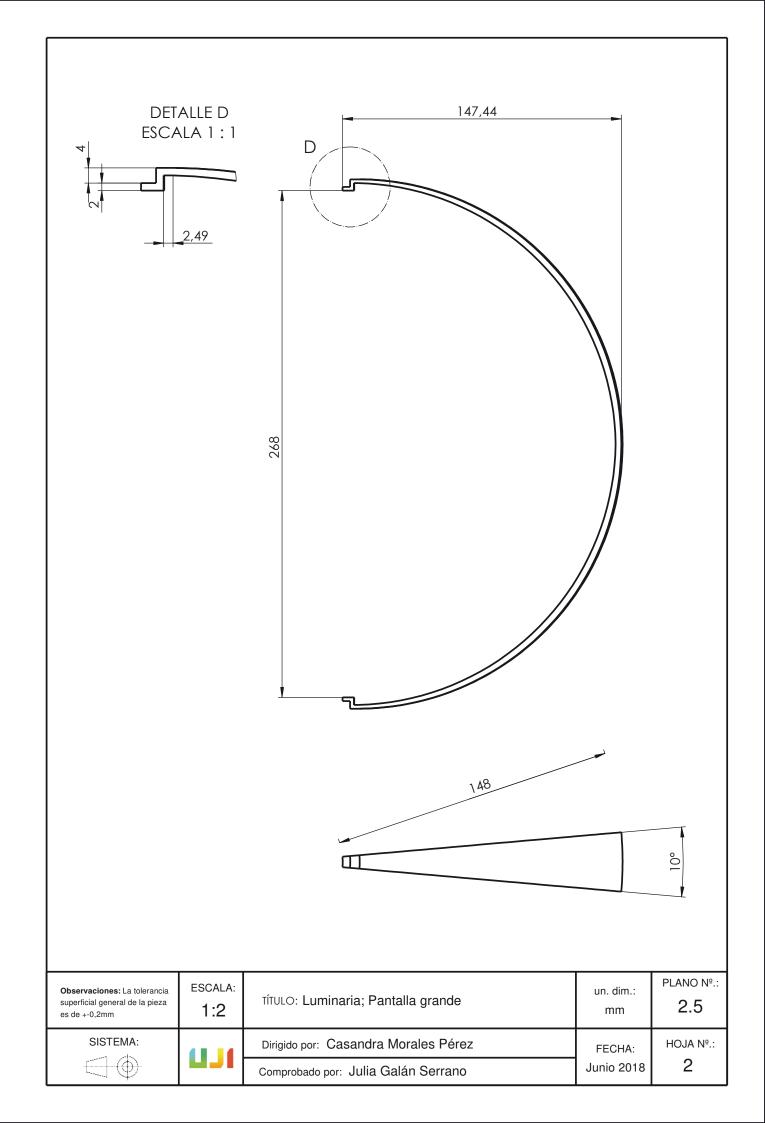
Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	τίτυιο: Conjunto; Luminaria grande	un. dim.: mm	PLANO №.: 1.3
SISTEMA:		Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
		Comprobado por: Julia Galán Serrano	Junio 2018	1

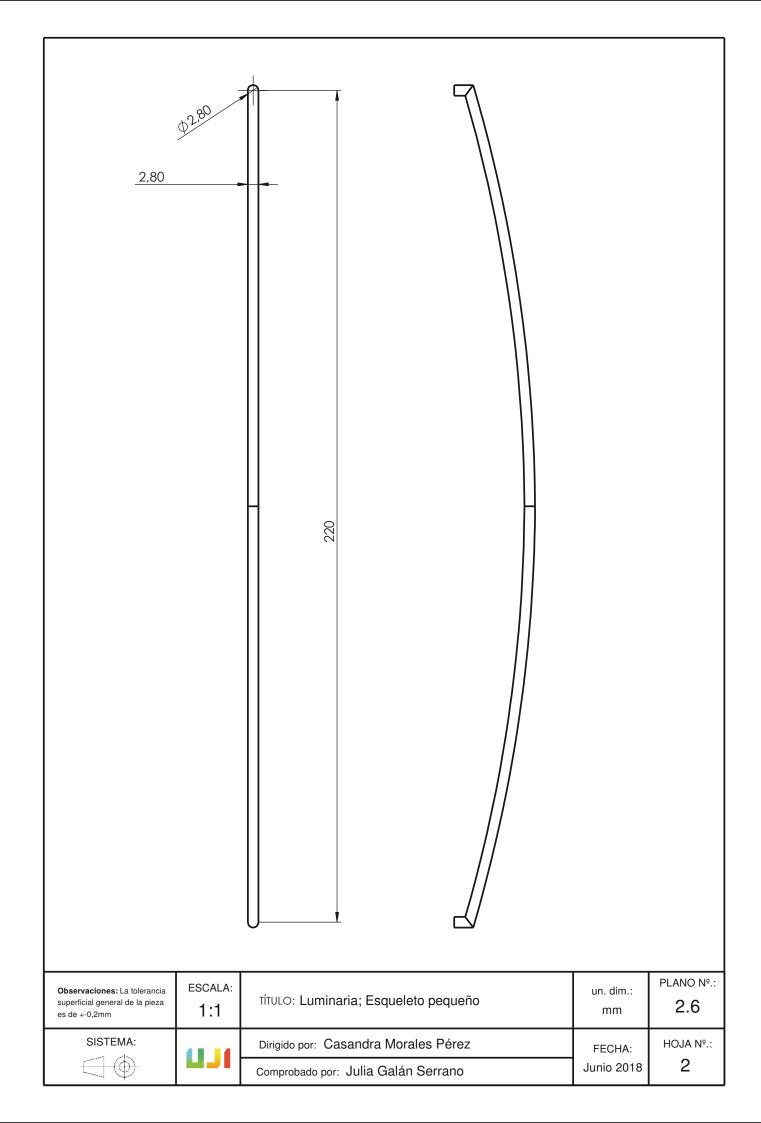


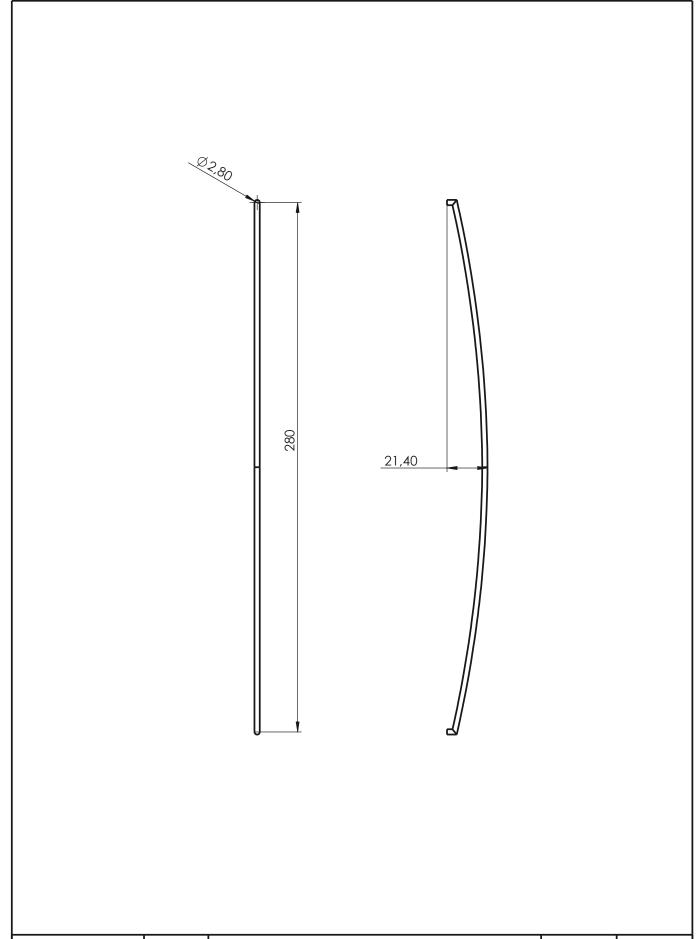

N.º DE ELEMENTO	N.º DE PIEZA		MATERIAL	CANTIDAD	
1	Armaz	zon superior	Nylon	1	
2	Arma	zon inferior	Nylon	1	
3	Cubierta		Nylon	2	
4	Pantallas		Polipropileno	1	
5	Protector		Nylon	2	
6	Esc	queletos	Acero AISI 304	1	
Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA: 1:2	τίτυιο: Luminaria; Listado de piezas		un. dim.: mm	PLANO №.: 2.1
SISTEMA:	41.14	Dirigido por: Casandra Morales Pérez Comprobado por: Julia Galán Serrano		FECHA:	HOJA №.:
				Junio 2018	1



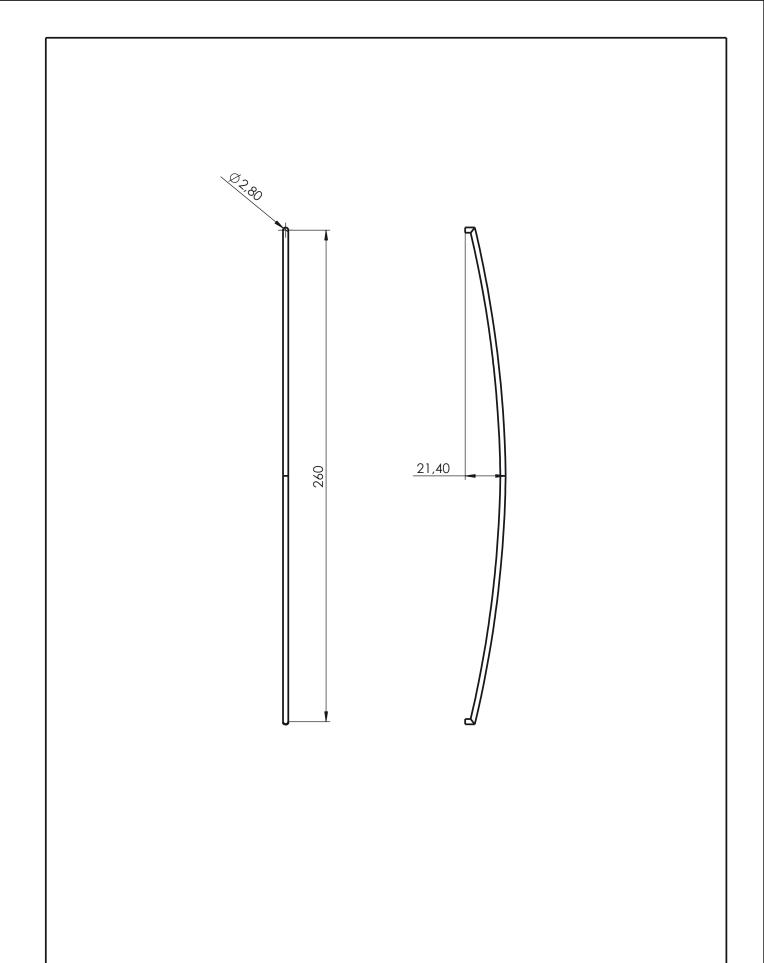

Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	TÍTULO: Casandra Morales Pérez	un. dim.: mm	PLANO Nº.: 2.2
SISTEMA:		Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
		Comprobado por: Julia Galán Serrano	Junio 2018	2

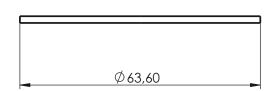


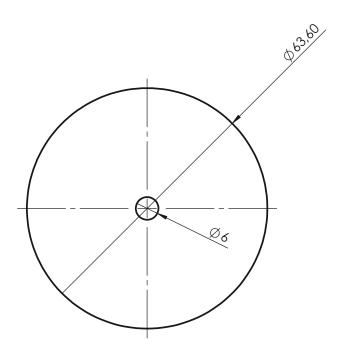




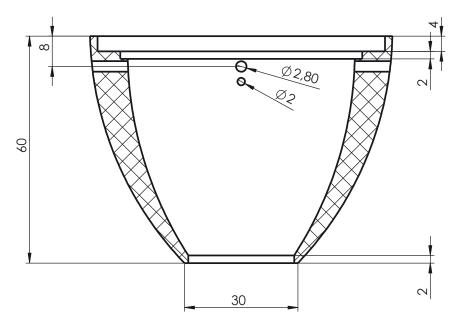
Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	τίτυιο: Luminaria; Pantalla pequeña	un. dim.: mm	PLANO Nº.: 2.3
SISTEMA:		Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
		Comprobado por: Julia Galán Serrano	Junio 2018	2

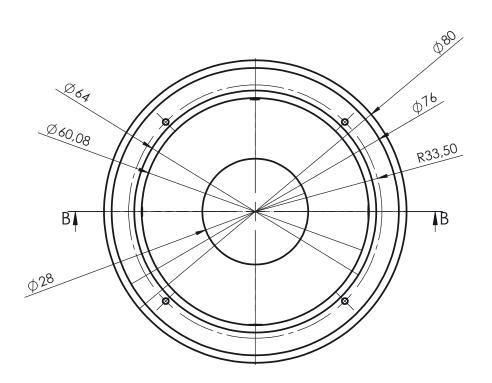




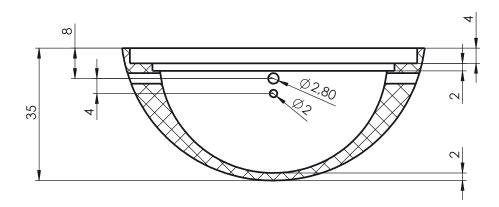


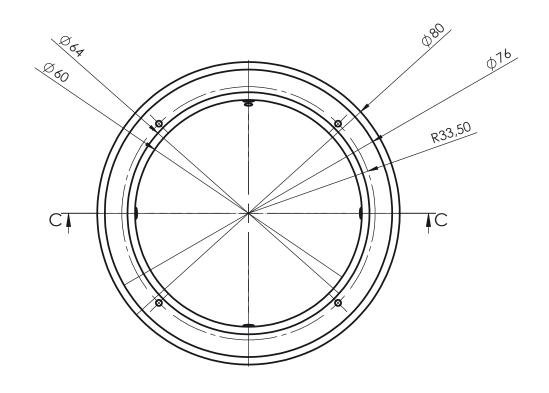
Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	тíт∪LO: Luminaria; Esqueleto mediano	un. dim.: mm	PLANO №.: 2.7
SISTEMA:	4	Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
	Comprobado por: Julia Galán Serrano	Junio 2018	2	

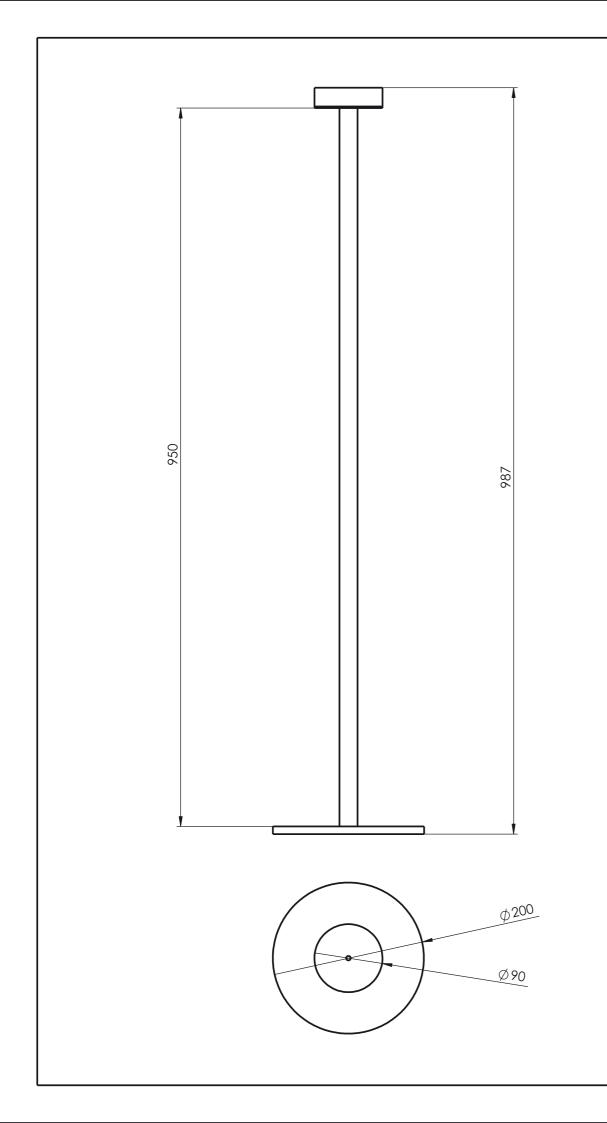

Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	τίτυιο: Luminaria; Esqueleto grande	un. dim.: mm	PLANO №.: 2.8
SISTEMA:	4	Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
	Comprobado por: Julia Galán Serrano	Junio 2018	2	



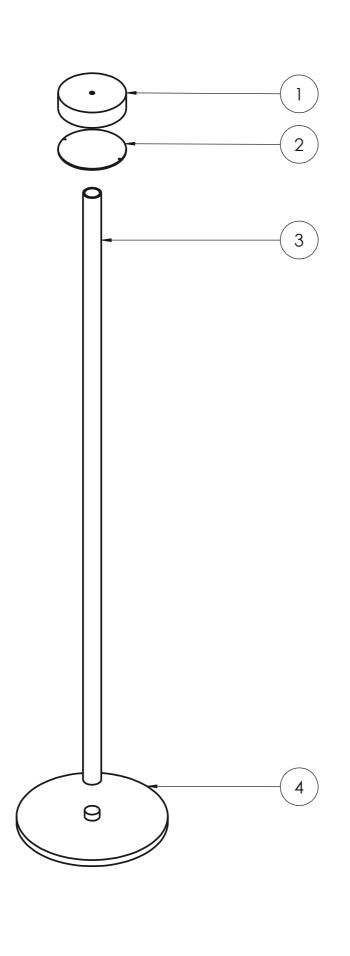
Observaciones: La toleran superficial general de la pie: es de +-0,2mm		тíт∪LO: Luminaria; Protector	un. dim.: mm	PLANO Nº.: 2.9
SISTEMA:	4 1 14	Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
		Comprobado por: Julia Galán Serrano	Junio 2018	2

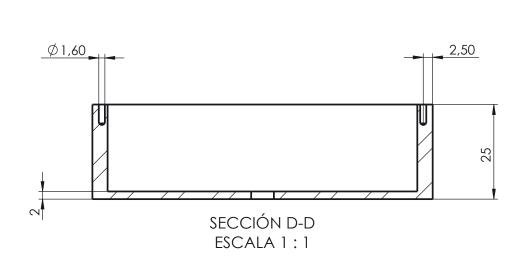

SECCIÓN B-B ESCALA 1 : 1

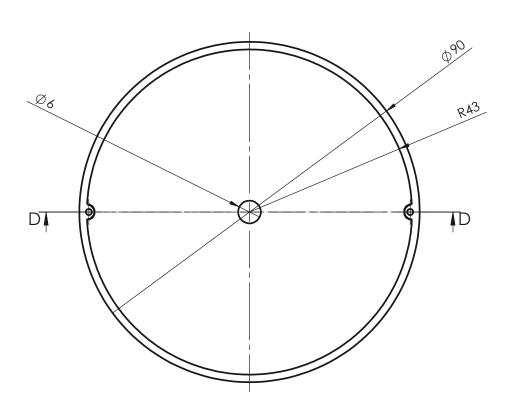



Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	TÍTULO: Luminaria; Armazón superior	un. dim.: mm	PLANO №.: 2.10
SISTEMA:	4 1 4	Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
		Comprobado por: Julia Galán Serrano	Junio 2018	2

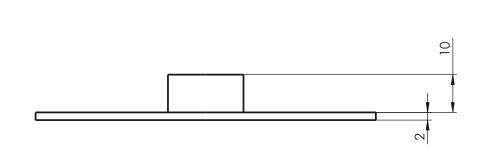
SECCIÓN C-C ESCALA 1 : 1

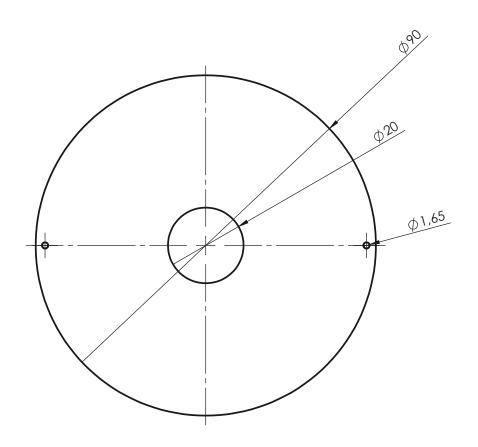


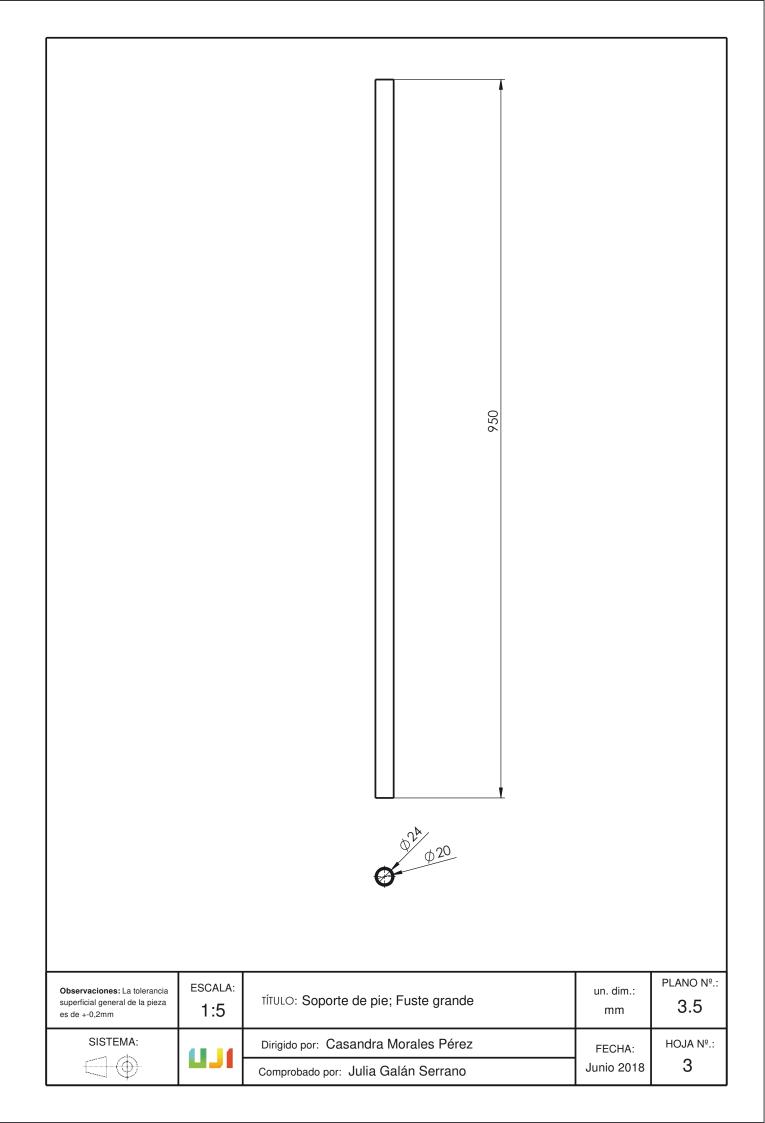

Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	τίτυιο: Luminaria; Armazón inferior	un. dim.: mm	PLANO Nº.: 2.11
SISTEMA:	41114	Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
		Comprobado por: Julia Galán Serrano	Junio 2018	2

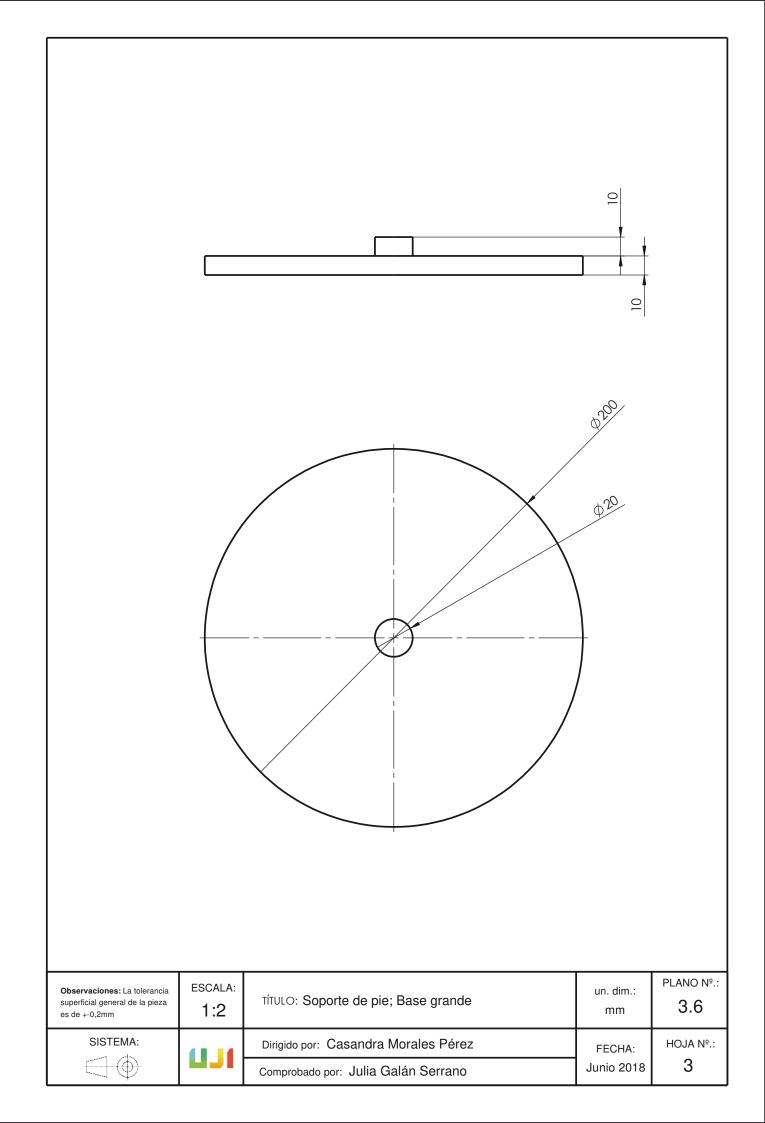


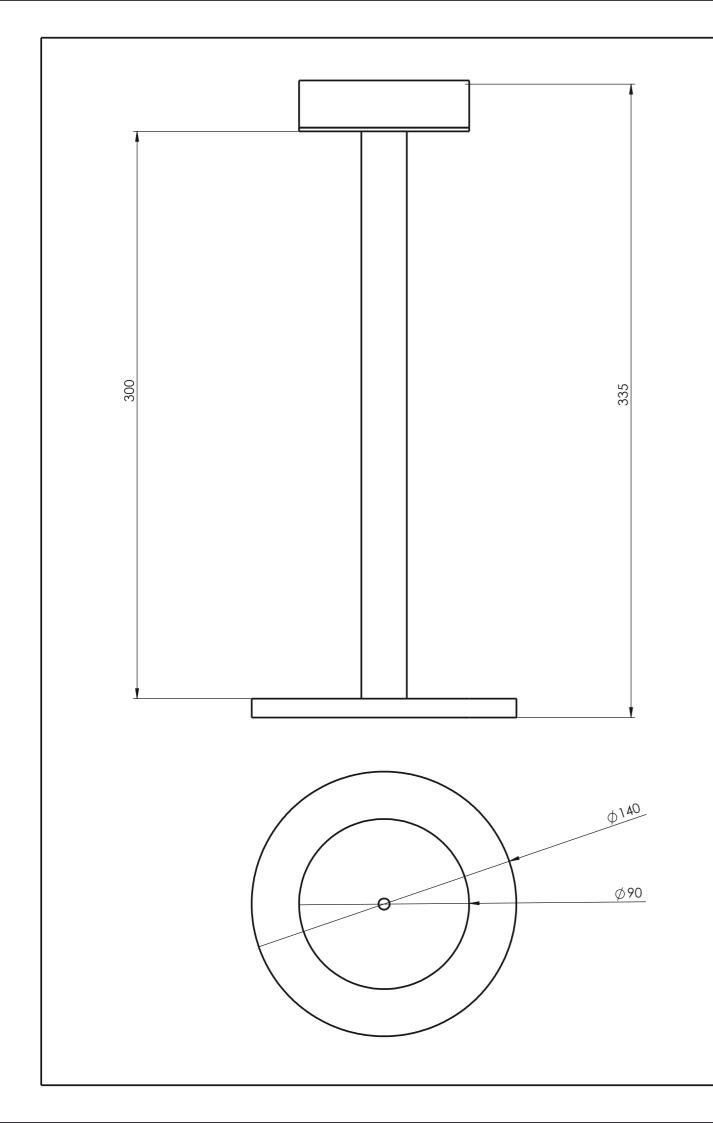
Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA: 1:5	тíтulo: Conjunto; Soporte de pie	un. dim.: mm	PLANO №.: 3.1
SISTEMA:		Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
		Comprobado por: Julia Galán Serrano	Junio 2018	3

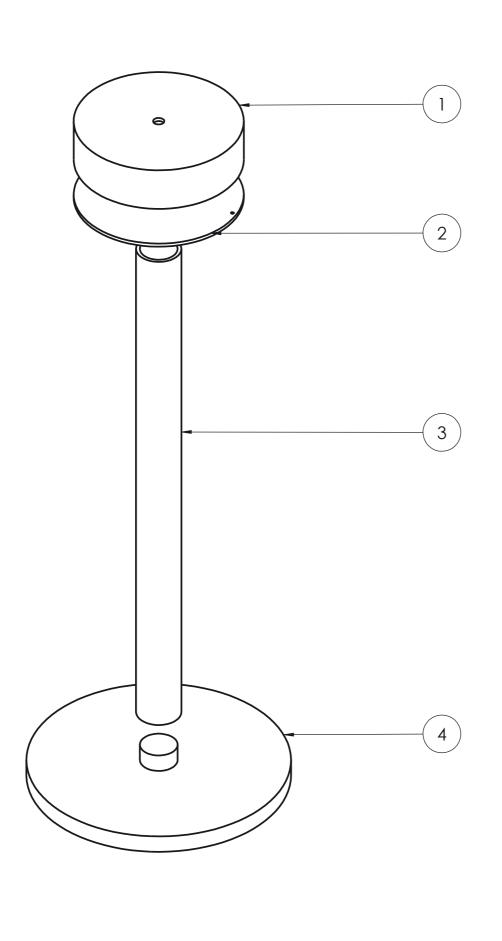


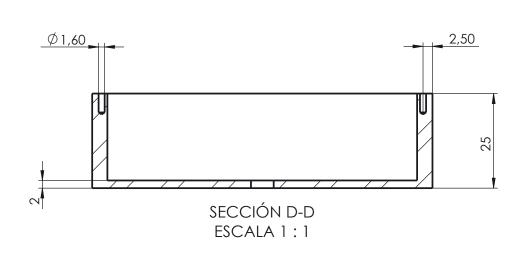

N.º DE ELEMENTO	N.º	DE PIEZA	MATERIAL	CANTIDAD	
1	Conten	edor	Acero AISI 304	1	
2	Тара		Acero AISI 304	1	
3	Fuste grande		Acero AISI 304	1	
4	Base gr	ande	Acero AISI 304	1	
Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	τίτυιο: Soporte	TÍTULO: Soporte de pie; Listado de piezas		PLANO Nº.: 3.2
SISTEMA:	4 1 1 4	Dirigido por: Cas	andra Morales Pérez	FECHA:	HOJA №.:
		Comprobado por:	Julia Galán Serrano	Junio 2018	3

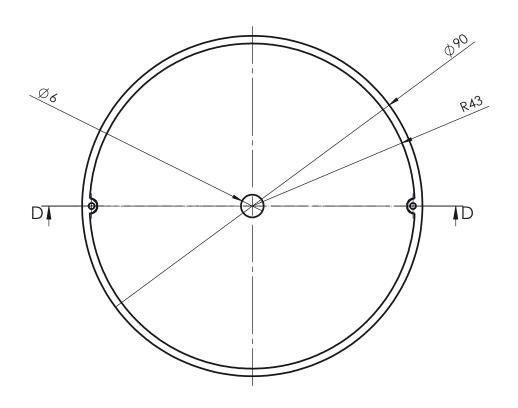



Observaciones: La tolei superficial general de la es de +-0,2mm		TÍTULO: Soporte de pie; Contenedor	un. dim.: mm	PLANO Nº.: 3.3
SISTEMA:	41114	Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
		Comprobado por: Julia Galán Serrano	Junio 2018	3

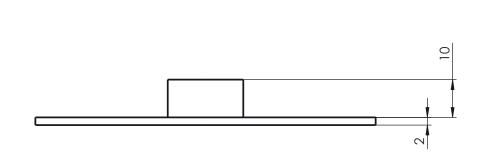


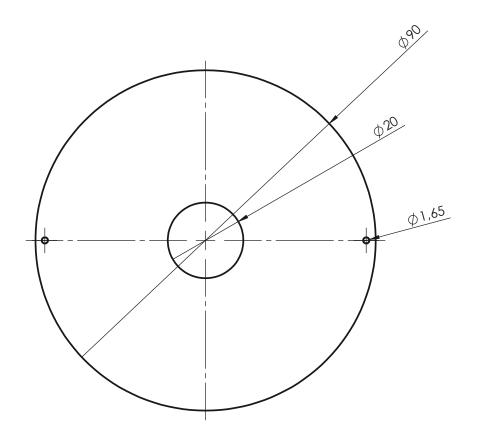

Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	ті́тиьо: Soporte de pie; Тара	un. dim.: mm	PLANO Nº.: 3.4
SISTEMA:	4 1 14	Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
		Comprobado por: Julia Galán Serrano	Junio 2018	3

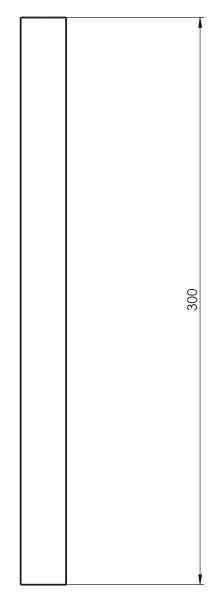


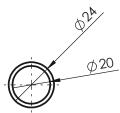


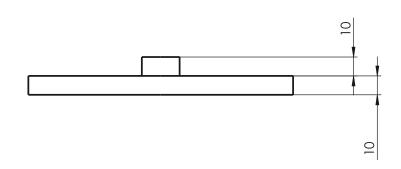
Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA: 1:2	τίτυιο: Conjunto; Soporte de mesa	un. dim.: mm	PLANO №.: 4.1
SISTEMA:	4	Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
	1	Comprobado por: Julia Galán Serrano	Junio 2018	4

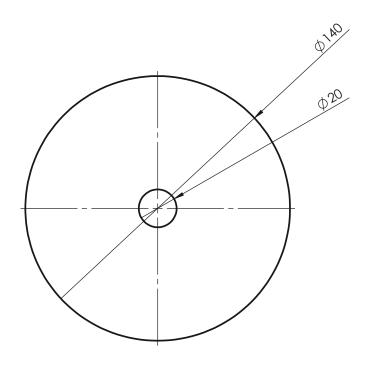



N.º DE ELEMENTO	N.º DE PIEZA		MATERIAL	CANTIDAD	
1	Conten	edor	Acero AISI 304	1	
2	Тара		Acero AISI 304	1	
3	Fuste pequeño		Acero AISI 304	1	
4	Base pe	equeña	Acero AISI 304	1	
Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	τίτυιο: Soporte	тíтulo: Soporte de mesa; Listado de piezas		PLANO Nº.: 4.1
SISTEMA:	4 1 14	Dirigido por: Cas	andra Morales Pérez	FECHA:	HOJA №.:
	I L	Comprobado por:	Julia Galán Serrano	Junio 2018	4




Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	TÍTULO: Soporte de mesa; Contenedor	un. dim.: mm	PLANO Nº.: 4.3
SISTEMA:	4 11 14	Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
		Comprobado por: Julia Galán Serrano	Junio 2018	4




Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	тíтulo: Soporte de mesa; Тара	un. dim.: mm	PLANO Nº.: 4.4
SISTEMA:	4 1 14	Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
		Comprobado por: Julia Galán Serrano	Junio 2018	4

Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	τίτυιο: Soporte de mesa; Fuste pequeño	un. dim.: mm	PLANO №.: 4.5
SISTEMA:	4 1 14	Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
		Comprobado por: Julia Galán Serrano	Junio 2018	4

Observaciones: La tolerancia superficial general de la pieza es de +-0,2mm	ESCALA:	τίτυιο: Soporte de mesa; Base pequeña	un. dim.: mm	PLANO Nº.: 4.6
SISTEMA:	41114	Dirigido por: Casandra Morales Pérez	FECHA:	HOJA №.:
		Comprobado por: Julia Galán Serrano	Junio 2018	4

Diseño y desarrollo de una lámpara LED modular

Índice:

1. Condiciones generales	164
1.1. Objeto	164
1.2. Referencias y compatibilidad entre documentos	164
2. Descripción de materiales	165
2.1. Elementos fabricados	165
2.1.1. Polipropileno	166
2.1.2. Poliamida reforzada con fibra de vidrio	170
2.1.3. Acero AISI 304	171
2.2. Elementos comerciales	175
3. Condiciones de fabricación del producto	179
3.1. Termoformado	179
3.2. Moldeo por inyección	181
3.2.1. Diseño del molde	182
3.3. Laminado y soldadura	183
3.4. Extrusión y doblado	186
4. Ensamblaie	188

1. Condiciones generales

1.1. Objeto

El presente pliego de condiciones tiene como objeto definir las especificaciones técnicas referentes a los materiales y sistemas de ejecución, con el fin de obtener una calidad óptima en el producto. En este documento se establecen las condiciones generales del proyecto, con sus características y aspectos legales y administrativos en relación a la norma UNE 157001. Criterios de elaboración de proyectos.

1.2. Referencia y compatibilidad entre documentos

Para la correcta comprensión del proyecto, se establecen una serie de relaciones de preferencias en caso de contradicciones y/o incompatibilidades entre documentos.

- La preferencia sobre las dimensiones de las piezas viene definida en el Volumen III. Planos.
- La preferencia sobre los materiales y los procesos de fabricación del producto se definirá en el presente documento, *Volumen IV. Pliego de condiciones*.

2. Descripción de materiales

2.1. Elementos fabricados

En la siguiente tabla se describen las características de los componentes que se requiere fabricar para conformar el producto:

	PIEZA	N° PIEZAS	MATERIAL	FUNCIÓN
_	Pantalla pequeña	18	Polipropileno	Todas las piezas juntas forman la pantalla por donde se distribuye la luz
GRUPO 1	Pantalla mediana	18	Polipropileno	Todas las piezas juntas forman la pantalla por donde se distribuye la luz
G	Pantalla grande	18	Polipropileno	Todas las piezas juntas forman la pantalla por donde se distribuye la luz
	Cubierta	6	Poliamida reforzada con fibra de vidrio	Superficie de contacto entre módulos. Refuerza la unión entre pantallas y armazón y sobre ella van colocados los imanes de sujeción
GRUPO 2	Protector	6	Poliamida reforzada con fibra de vidrio	Protege el armazón, sellándolo para evitar accesos y posibles accidentes
GR	Armazón superior	3	Poliamida reforzada con fibra de vidrio	Contiene los elementos eléctricos hembra IP68
	Armazón inferior	3	Poliamida reforzada con fibra de vidrio	Contiene los elementos eléctricos macho y el portalámparas
	Esqueleto	3	Acero AISI 304	Refuerza la estructura de las pantallas para posibles deformaciones de compresión y tracción
	Тара	3	Acero AISI 304	Cubre el contenedor de los soportes
GRUPO 3	Contenedor	3	Acero AISI 304	Contiene los elementos eléctricos hembra IP8 y en su superficie van colocados los imanes de sujeción
ō	Fuste pequeño	1	Acero AISI 304	Estructura del soporte de mesa
	Fuste grande	1	Acero AISI 304	Estructura del soporte de pie
	Base pequeña	1	Acero AISI 304	Equilibra el soporte de mesa
	Base grande	1	Acero AISI 304	Equilibra el soporte de pie

Tabla 11. Elementos fabricados..

2.1.1. Polipropileno:

El polipropileno (PP) es el material elegido para el Grupo 1; las pantallas. Tendrá un acabado blanco brillo. Se trata de un polímero termoplástico con muchas ventajas. Este material proporciona un control preciso de la resistencia al impacto, lo cual supone una buena elección desde el punto de vista de durabilidad del producto a efectos de caídas accidentales. También tiene una alta resistencia a la fractura por flexión o fatiga.

Además es un polímero de bajo coste, lo que supondría un punto a favor para la elección de este material, abaratando así el coste final del producto.

Propiedades generales					
Densidad	(i)	890	-	910	kg/m^3
Precio	(i)	* 1,52	-	1,58	EUR/kg
Fecha de primer uso ("-" significa AC)	(i)	1957			
Propiedades mecánicas					
Modulo de Young	(i)	0,896	-	1,55	GPa
Modulo a cortante	(i)	0,316	-	0,548	GPa
Módulo en volumen	(i)	2,5	-	2,6	GPa
Coeficiente de Poisson	(i)	0,405	-	0,427	
Límite elástico	(i)	20,7	-	37,2	MPa
Resistencia a tracción	(i)	27,6	-	41,4	MPa
Resistencia a compresión	(i)	25,1	-	55,2	MPa
Elongación	(i)	100	-	600	% strain
Dureza-Vickers	(i)	6,2	-	11,2	HV
Resistencia a fatiga para 10 ^ 7 ciclos	(i)	11	-	16,6	MPa
Tenacidad a fractura	(i)	3	-	4,5	MPa.m^0.5
Coeficiente de pérdida mecánica (tan delta)	(i)	0,0258	-	0,0446	

Tabla 2. Características de material. CES Edupack.

Los estabilizadores que posee el material le dan estabilidad extrema, tanto a la radiación UV como a las soluciones de agua dulce, salada y otras con base acuosa.

Es extraordinariamente resistente a muchos solventes químicos, bases y ácidos, lo que facilitaría la limpieza de las pantallas al poder utilizar varios tipos de productos sin provocar una reacción o una degradación del material.

También tiene una excelente durabilidad a los adhesivos, lo cual facilitaría la unión de los imanes por este método.

Durabilidad: Agua y disoluciones acuosas

Agua dulce	i Excelente
Agua salada	 Excelente
Suelos ácidos (turba)	 Excelente
Suelos alcalinos (arcilla)	 Excelente
Vino	 Excelente

Durabilidad: ácidos

Ácido acético (10%)	 Excelente
Ácido acético (glacial)	 Excelente
Ácido cítrico (10%)	 Excelente
Ácido clorhídrico (10%)	(i) Excelente
Ácido clorhídrico (36%)	(i) Excelente
Ácido fluorhídrico (40%)	 Excelente
Ácido nítrico (10%)	i Excelente
Ácido nítrico (70%)	(i) Excelente
Ácido fosfórico (10%)	 Excelente
Ácido fosfórico (85%)	 Excelente
Ácido sulfúrico (10%)	 Excelente
Ácido sulfúrico (70%)	(i) Excelente

Durabilidad: bases

Hidróxido de sodio (10%)	(i)	Excelente
Hidróxido de sodio (60%)	(i)	Excelente

Durabilidad: gasolinas, aceites y solventes

,,,,,		
Acetato de amilo	(i)	Excelente
Benceno	(i)	Uso limitado
Tetracloruro de carbono	(i)	Uso limitado
Cloroformo	(i)	Uso limitado
Crudo	(i)	Aceptable
Diesel	(i)	Excelente
Lubricantes	(i)	Excelente
Parafinas, keroseno	(i)	Excelente
Petróleo (gasolina)	(i)	Excelente
Siliconas liquidas	(i)	Excelente
Toluenos	(i)	Excelente
Terpenos	(i)	Inaceptable
Aceites vegetales (general)	(i)	Aceptable
Bebidas alcohólicas (blancas)	(i)	Excelente

Tabla 3. Características de material. CES Edupack.

Durapilidad : alconol, aldenidos, cetonas

Acetaldehídos	(i) Excelente
Acetona	 Excelente
Etanol	 Excelente
Etilenglicol	 Excelente
Formaldehído	i Excelente
Glicerol	 Excelente
Metanol	 Excelente

Tabla 4. Características de material. CES Edupack.

El polipropileno tiene una estabilidad térmica muy buena. Es un buen aislante tanto térmico como eléctrico y presenta una resistividad eléctrica muy buena.

En cuanto a las propiedades ópticas, observamos que no tiene un valor excelente, pero como las pantallas del producto son opacas, ya que la luz pasa por los espacios lineales que tiene la pantalla, estas propiedades no son relevantes y no es importante que el material tenga unas buenas propiedades ópticas.

Propiedades térmicas

(i)	150		475	
	150	-	175	°C
(i)	-25,2	-	-15,2	°C
i	100	-	115	°C
(i)	-123	-	-73,2	°C
i	Buen ais	lant	е	
(i)	0,113	-	0,167	W/m.°C
i	1,87e3	-	1,96e3	J/kg.°C
i	122	-	180	μstrain/°C
	(i) (i) (i) (i)	(i) 100 (i) -123 (i) Buen ais (i) 0,113 (i) 1,87e3	(i) 100 - (i) -123 - (i) Buen aislant (i) 0,113 - (i) 1,87e3 -	(i) 100 - 115 (i) -12373,2 (i) Buen aislante (i) 0,113 - 0,167 (i) 1,87e3 - 1,96e3

Propiedades eléctricas

¿Conductor eléctrico o aislante?	(i)	Buen ais	slant	te	
Resistividad eléctrica	(i)	3,3e22	-	3e23	μohm.cm
Constante dieléctrica (permisividad relativa)	(i)	2,1	-	2,3	
Factor de disipación (tangente de perdida dieléctrica)	(i)	3e-4	-	7e-4	
Rigidez dieléctrica (colapso dieléctrico)	(i)	22,7	-	24,6	1000000 V/m

Propiedades ópticas

Transparencia	(i)	Translucido
Índice de refracción	i	1,48 - 1,5

Tabla 5. Características de material. CES Edupack.

En cuanto a los aspectos medioambientales, el PP es excepcionalmente inerte y fácil de reciclar, pudiendo ser incinerado para recuperar la energía que contiene. Además, se produce mediante procesos que son relativamente eficiente en energía, haciéndolo menor intensivo en consumo energético.

Su rendimiento por kilo es muy superior al de la gasolina o fuel-oil, de modo que la producción de petróleo no es perjudicial en un futuro próximo.

Producción de materia prima: CO2, energía y agua Contenido en energía, producción primaria MJ/kg * 75,7 83,7 Huella de CO2, producción primaria * 2,96 3,27 kg/kg (i) Agua consumida * 37,2 41.2 l/kg Eco-indicador 95 (i) 331 millipoints/kg Eco-indicador 99 (i) 254 millipoints/kg Procesado de material: energía Energía en extrusión de polímeros (i) * 5,88 6.5 MJ/kg Energía en moldeo de polímeros (i) * 20.4 22.5 MJ/kg Energía de desbaste (p/u peso eliminado) i) * 0,81 0,895 MJ/kg Energía de mecánizado final (p/u peso eliminado) (i) * 3,83 4,23 MJ/kg Energía de lijado (p/u peso eliminado) * 7,18 7,93 MJ/kg Procesado de material: huella de CO2 CO2 en extrusión de polímeros (i) * 0,441 0.488 kg/kg CO2 en moldeado de polímeros (i) * 1.53 1.69 kg/kg CO2 en desbaste (p/u peso eliminado) * 0,0608 0,0671 kg/kg (i) * 0,287 CO2 en mecánizado final (p/u peso eliminado) 0,317 kg/kg CO2 en lijado (p/u peso eliminado) (i) * 0,538 0,595 kg/kg

Reciclado del material: energía, CO2 y fracción reciclable						
Reciclaje	(i)	✓				
Contenido en energía, reciclado	(i)	* 47,1	-	52	MJ/kg	
Huella de CO2, reciclado	(i)	* 3,7	-	4,09	kg/kg	
Fracción reciclable en suministro habitual	(i)	5,1	-	6	%	
Reciclado inferior	(i)	✓				
Combustión para recuperar energía	(i)	✓				
Calor neto de combustión	(i)	* 44	-	46,2	MJ/kg	
Combustión CO2	(i)	* 3,06	-	3,22	kg/kg	
Vertedero	(i)	✓				
Biodegradable	(i)	×				
Ratio de toxicidad	(i)	No toxio	co			
Fuente renovable	(i)	×				

Tabla 6. Características de material. CES Edupack.

2.1.2. Poliamida reforzada con fibra de vidrio:

Para el Grupo 2 de componentes, el material utilizado es la poliamida reforzada de fibra de vidrio (PAG). La elección de este material se basa en su gran rigidez, la alta resistencia mecánica, un alto grado de dureza y tenacidad y una gran resistencia a la fluencia. También tiene una muy alta estabilidad dimensional, buena resistencia a la fatiga, además de muy buena propiedad de amortiguación mecánica.

Propiedades eléctricas:

Constante dieléctrica	3,9-5,7 @1MHz	Resistividad de volumen	10 ¹² -10 ¹⁵ Ohmcm

Propiedades físicas:

Absorción de agua - en 24h	1%-5%	Índice de oxigeno límite	22%	
Densidad	1,4 g x cm ⁻³	Inflamabilidad	НВ	

Propiedades mecánicas:

Alargamiento a	la rotura	5%	Resistencia a la tracción	160GPa-210GPa
Dureza-Roc	kwell	M100	Resistencia al impacto Izood	120 J x m ⁻¹
Módulo de tr	acción	10GPa-11GPa		

Propiedades térmicas:

Coeficiente de expansión térmica	20-30 ×10 ⁻⁶ K ⁻¹	T° de deflexión en caliente - 0,45MPa (C)	257
Conductividad térmica a 23C	0,23 W m ⁻¹ K ⁻¹	T° de deflexión en caliente - 1,8MPa (C)	252
T ^a máxima de utilización	80°C-200°C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Resistencia química:

Ácidos-concentrados	Mala	Grasas y aceites	Buena
Ácidos-diluídos	Mala	Halógenos	Mala
Alcalís	Buena-Aceptable	Hidro-carbonos halógenos	Buena-Mala
Alcoholes	Buena	Hidrocarburos aromáticos	Buena
Cetonas	Buena-Mala		

Tabla 7. Características de material.

Estas propiedades hacen que este material sea idóneo para este producto, pues el portalámparas albergará todos los componentes eléctricos y electrónicos, y es necesario que resista las altas temperaturas y que además sea muy resistente, para evitar la rotura del material y poner en peligro al usuario.

2.1.3. Acero AISI 304:

Coeficiente de expansión térmica

El Grupo 3 se fabricará con acero inoxidable AISI 304. La principal característica es la resistencia a la oxidación atmosférica. Además tiene grandes propiedades estéticas.

Dentro de los muchos beneficios del acero inoxidable se encuentran una resistencia mecánica adecuada, gran facilidad de conformado y unión y su resistencia a altas temperaturas.

Cabe destacar la facilidad de limpieza y la baja rugosidad superficial. Así como el fuerte atractivo visual, ya que se trata de un material que trasmite modernidad, ligereza y prestigio.

Propiedades generales	_					
Densidad	(i)	7,6e3	-	8,1e3	kg/m^3	
Precio	(i)	* 5,02	-	5,46	EUR/kg	
Fecha de primer uso ("-" significa AC)	(i)	1915				
Propiedades mecánicas						
Propiedades mecánicas Modulo de Young	(i)	189	-	210	GPa	
•	① ①	189 74		210 84	GPa GPa	
Modulo de Young						

Modulo a cortante	(i)	74	-	84	GPa
Módulo en volumen	(i)	134	-	151	GPa
Coeficiente de Poisson	(i)	0,265	-	0,275	
Límite elástico	(i)	170	-	1e3	MPa
Resistencia a tracción	(i)	480	-	2,24e3	MPa
Resistencia a compresión	(i)	170	-	1e3	MPa
Elongación	(i)	5	-	70	% strain
Dureza-Vickers	(i)	130	-	570	HV
Resistencia a fatiga para 10 ^ 7 ciclos	(i)	* 175	-	753	MPa
Tenacidad a fractura	(i)	62	-	150	MPa.m^0.5
Coeficiente de pérdida mecánica (tan delta)	(i)	* 2,9e-4	-	0,00148	

Propiedades térmicas	
Punto de fusión	① 1,37e3 - 1,45e3 °C
Máxima temperatura en servicio	① 750 - 820 °C
Mínima temperatura en servicio	① -272271 °C
¿Conductor térmico o aislante?	 Mal conductor
Conductividad térmica	 12 - 24 W/m.°C
Calor específico	 i) 450 - 530 J/kg.°C

Tabla 8. Características de material. CES Edupack.

(i)

13

20

µstrain/°C

Procesabilidad

Colabilidad	(i)	3	- 4	
Conformabilidad	(i)	2	- 3	
Mecanizabilidad	i	2	- 3	
Soldabilidad	(i)	5		
Aptitud a soldeo o brazing	(i)	5		

Durabilidad: Agua y disoluciones acuosas

Agua dulce	(i)	Excelente
Agua salada	(i)	Excelente
Suelos ácidos (turba)	(i)	Excelente
Suelos alcalinos (arcilla)	(i)	Excelente
Vino	(i)	Excelente

Durabilidad: ácidos

Durabilidad, acidos		
Ácido acético (10%)	(i)	Excelente
Ácido acético (glacial)	(i)	Excelente
Ácido cítrico (10%)	(i)	Excelente
Ácido clorhídrico (10%)	(i)	Excelente
Ácido clorhídrico (36%)	(i)	Uso limitado
Ácido fluorhídrico (40%)	(i)	Uso limitado
Ácido nítrico (10%)	(i)	Excelente
Ácido nítrico (70%)	(i)	Uso limitado
Ácido fosfórico (10%)	(i)	Excelente
Ácido fosfórico (85%)	(i)	Excelente
Ácido sulfúrico (10%)	(i)	Aceptable
Ácido sulfúrico (70%)	(i)	Uso limitado
Ácido fosfórico (85%) Ácido sulfúrico (10%)	(i) (i)	Excelente Aceptable

Durabilidad: bases

Hidróxido de sodio (10%)	(i)	Excelente
Hidróxido de sodio (60%)	(i)	Excelente

Durabilidad: gasolinas, aceites y solventes

Acetato de amilo	i Aceptable
Benceno	i Aceptable
Tetracloruro de carbono	i Excelente
Cloroformo	i Excelente
Crudo	i Excelente
Diesel	i Excelente
Lubricantes	i Excelente
Parafinas, keroseno	i Excelente
Petróleo (gasolina)	i Excelente
Siliconas liquidas	(i) Aceptable
Toluenos	i Excelente
Terpenos	i Aceptable
Aceites vegetales (general)	i Excelente
Bebidas alcohólicas (blancas)	i Excelente

Tabla 9. Características de material. CES Edupack.

Durabilidad: alcohol, aldehídos, cetonas

Acetaldehídos	i Excelente
Acetona	i Excelente
Etanol	i Excelente
Etilenglicol	(i) Aceptable
Formaldehído	(i) Aceptable
Glicerol	i Excelente
Metanol	 Excelente

Durabilidad: entornos construidos

Atmósfera industrial	(i)	Excelente
Atmósfera rural	(i)	Excelente
Atmósfera marina	(i)	Excelente
Radiación UV (luz solar)	(i)	Excelente

Durabilidad: Inflamabilidad

Inflamabilidad	i No inflamable
----------------	-----------------

Durabilidad: ambiente térmico

Tolerancia a temperaturas criogénicas	(i)	Excelente
Tolerancia por encima de 150°C (302 F)	(i)	Excelente
Tolerancia por encima de 250°C (482 F)	(i)	Excelente
Tolerancia por encima de 450°C (842 F)	(i)	Excelente
Tolerancia por encima de 850°C (1562 F)	(i)	Excelente
Tolerancia a mas de 850°C (1562 F)	(i)	Inaceptable

Tabla 10. Características de material. CES Edupack.

En cuanto al coste, posee una relación coste/beneficio bastante favorable. Esto, sumado a un coste de mantenimiento muy bajo, una gran durabilidad y que se trata de un material reciclable, hacen que los gastos que se produzcan en la materia prima del material y procesado no sean demasiado relevantes.

Datos geo-económicos para componentes principales

Producción anual mundial, componente principal	(i)	2,3e9	tonne/yr
Reservas, componente principal	(i)	1,6e11	tonne

Producción de materia prima: CO2, energía y agua

Contenido en energía, producción primaria	(i)	* 80,3	- 88,8	MJ/kg
Huella de CO2, producción primaria	(i)	* 4,73	- 5,23	kg/kg
Agua consumida	(i)	* 129	- 142	l/kg
Eco-indicador 95	(i)	910		millipoints/kg
Eco-indicador 99	(i)	308		millipoints/kg

Procesado de material: energía

Energía en fundición	(i)	* 10,8	-	11,9	MJ/kg
Energía de extrusión, laminado en hoja	(i)	* 14,7	-	16,3	MJ/kg
Energía de prelaminado, forja	(i)	* 7,5	-	8,29	MJ/kg
Energía de trefilado	(i)	* 54,4	-	60,1	MJ/kg
Energía en sinterización	(i)	* 36,1	-	41,3	MJ/kg
Energía de vaporización	(i)	* 1,09e4	-	1,2e4	MJ/kg
Energía de desbaste (p/u peso eliminado)	(i)	* 1,56	-	1,72	MJ/kg
Energía de mecánizado final (p/u peso eliminado)	(i)	* 11,3	-	12,5	MJ/kg
Energía de lijado (p/u peso eliminado)	(i)	* 22,1	-	24,4	MJ/kg
Energía en el procesado no convencional (p/u peso eliminado)	(i)	109	-	120	MJ/kg

Procesado de material: huella de CO2

CO2 en colada	(i)	* 0,809	- 0,894	kg/kg	
CO2 en extrusión, laminado en hoja	(i)	* 1,1	- 1,22	kg/kg	
CO2 en prelaminado, forja	(i)	* 0,562	- 0,621	kg/kg	
CO2 en trefilado	(i)	* 4,08	- 4,51	kg/kg	
CO2 en sinterización	(i)	* 2,89	- 3,31	kg/kg	
CO2 en vaporización	(i)	* 815	- 900	kg/kg	
CO2 en desbaste (p/u peso eliminado)	(i)	* 0,117	- 0,129	kg/kg	
CO2 en mecánizado final (p/u peso eliminado)	(i)	* 0,847	- 0,936	kg/kg	
CO2 en lijado (p/u peso eliminado)	(i)	* 1,66	- 1,83	kg/kg	
CO2 en procesado no convencional (p/u peso eliminado)	(i)	8,15	- 9	kg/kg	

Reciclado del material: energía, CO2 y fracción reciclable

Reciclaje	√	
Contenido en energía, reciclado	i * 16,8 - 18,6 MJ/kg	
Huella de CO2, reciclado	① * 1,32 - 1,46 kg/kg	
Fracción reciclable en suministro habitual	35 - 40 %	
Reciclado inferior	 ✓ 	
Combustión para recuperar energía	(i) X	
Vertedero	 ✓ 	
Biodegradable	(i) X	
Ratio de toxicidad	 No toxico 	
Fuente renovable	(i) X	

Tabla 11. Características de material. CES Edupack.

2.2. Elementos comerciales

En la siguiente tabla se describen las características de los componentes del producto que se adquieren de proveedores:

PIEZA	N° PIEZAS	MATERIAL	FUNCIÓN	
Conector	6	Fibra de vidrio con goma termoplástica y pines de aleación de cobre sobre níquel	Conducir la electricidad de un módulo a otro a 230V asegurando al usuario	
lmán		Neodimio	Sujeción entre módulos	
Cable tensor	1	Polipropileno	Todas las piezas juntas forman la pantalla por donde se distribuye la luz	
Cable conductor	1	Cobre	Conducir la electricidad	
Pasacables	3	Goma	Proteger el cable de las superficies internas de los orificios	
Interruptor	2	Termoplástico	Encendido/apagado de luminaria	
Bombilla LED	3	Vidrio	Proporcionar la luz a la luminaria	
Tornillo M 1.6	18	Acero	Agarre entre piezas	

Tabla 12. Elementos comerciales.

2.2.1. Conector:

Los conectores son necesarios para conducir la energía de un módulo a otro, ya que este proyecto trata sobre una luminaria compuesta por 3 lámparas de diferentes proporciones que pueden añadirse o quitarse fácilmente a la luminaria según el usuario desee.

Fig. 1. Conector macho-hembra 2 pines.

Características técnicas:

N° de contactos	2	Tipo de unión	Bayoneta
Método de terminación	Crimpado	Material de carcasa	Termoplástico
Valor nominal de corriente	13 A	Material de contacto	Aleación de cobre
Índice de protección IP	IP68	T° de trabajo	-40°C a +65°C
Tensión nominal	250V ac/dc	Revestimiento del contacto	Oro sobre Níquel

Tabla 13. Características técnicas de componente.

El proyecto desarrolla 3 tipos de lámparas/módulos y 3 tipos de soporte, por lo tanto son necesarios 3 conectores macho, que irán situados en el armazón superior de los módulos y 6 conectores hembra; 3 alojados en los contenedores de cada uno de los soportes y otros 3 en el armazón inferior de las 3 lámparas.

2.2.2. Imanes:

Tanto las lámparas como los soportes disponen de imanes en las superficies de contacto entre módulos para garantizar la fijación de estos, véase el 8.5.1. Cálculo de sujeción imantada. Volumen II. Anexos, por lo que los imanes que se necesitan para la realización del producto son 6 imanes de neodimio S-08-01-N de 8 mm de diámetro con una fuerza de sujeción de 540 gr.

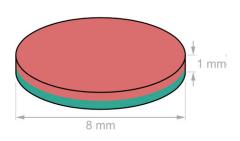


Fig. 2. Dimensiones imán.

Cód. artículo	S-08-01-N
Material	NdFeB
Forma	Disco
Diámetro	8 mm
Alto	1 mm
Tolerancia	+/- 0,1 mm
Sentido de magnetización	axial (paralelo al alto)
Revestimiento	niquelado (Ni-Cu-Ni)
Tipo de fabricación	sinterizado
Magnetización	N45
fza. sujec.	aprox. 540 g (aprox. 5,3 N)
Temperatura de servicio máx.	80°C (quizá más baja) *
Peso	0,3820 g
Temperatura de Curie	310 °C
Remanencia Br	13200-13700 G, 1.32-1.37 T
Coercitividad bHc	10.8-12.5 kOe, 860-995 kA/m
Coercitividad iHc	≥12 kOe, ≥955 kA/m
Producto energético (BxH)max	43-45 MGOe, 342-358 kJ/m ³

Tabla 14. Características técnicas de componente.

2.2.3. Cable tensor:

Aunque en el punto 8.6.2. Dimensionamiento del cable tensor. Volumen II, Anexos, hayamos calculado el diámetro mínimo para el cable, los tensores del proveedor tienen una medida mínima de 1,5 mm, por lo que adquiriremos cable de esta sección siendo 4 veces superior a la necesaria cosa que nos supone una mejora en la seguridad sin incrementarle peso. La resistencia de estos cables deberá ser la mínima exigida de 160 Kg/mm2 (1570 MPa).

2.2.4. Cable conductor:

Para que la electricidad llegue desde las tomas de corriente hasta los conectores, así como de los conectores a las bombillas, es necesario conducir la electricidad a través de un cable de alimentación.

Se escoge un cable bipolar conductor con fase y neutro recubierto con un cordón negro.

Fig. 3. Cable conductor bipolar.

2.2.5. Pasacables:

Son arandelas de goma que cubren los orificios interiores por donde pasan los cables para evitar que se pueda dañar el cableado a causa de las aristas vivas o imperfecciones de la superficie,

Fig. 4. Pasacables.

2.2.6. Interruptor:

Necesarios para abrir o cerrar el paso de la corriente a las luminarias.

Se selecciona un interruptor de paso de color negro para 230V.

Fig. 5. Interruptor.

2.2.7. Bombilla LED:

La bombilla recomendable para este diseño es la Bombilla LED E27 G93 Philips 9,5W. Su vida útil se extiende a las 15.000h. Su índice de reproducción cromática es superior a 80 y garantiza la representación de los colores de forma natural. Además presenta un encendido instantáneo y sin molestos parpadeos.

Fig. 6. Bombilla LED E27 G93 Philips 9.5W.

Características técnicas:

Potencia	9,5 W	Índice de protección	IP21
Luminosidad	806 lm	Índice rep. cromática (CRI)	80
Clase energética	A+	Intensidad de corriente	50 mA
T ^a color	2700 Kelvin	Frecuencia	50-60 Hz
Tensión	220-240V ac	Eficiencia luminaria	84 lm/W

Fig. 15. Bombilla LED E27 G93 Philips 9.5W.

2.2.8. Tornillos:

Necesarios para sujetar las cubiertas a los armazones, tanto superior como inferior. Además también se necesitan para fijar las tapas a los contenedores de los soportes.

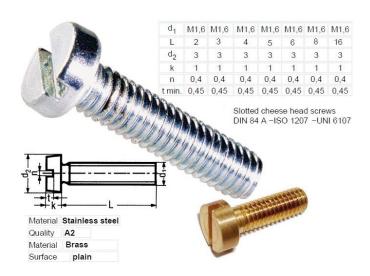


Fig. 7. Tornillería M1,6.

3. Condiciones de fabricación del producto

Para el correcto desarrollo del siguiente apartado, se analizarán los procesos de fabricación de las diferentes piezas según la clasificación que se menciona en el apartado 2.1. Elementos fabricados.

3.1. Termoformado

Como se menciona anteriormente, los productos del Grupo 1 de materiales; las pantallas, serán fabricadas con un polímero termoplástico, el polipropileno. El proceso más indicado para este material y en función a las formas de nuestro diseño, es el termoformado. En este caso se hará uso del termoformado por molde coincidente.

Consiste en sujetar la lámina de polipropileno a una estructura y calentarla hasta el punto de reblandecimiento para conformarla entre troqueles macho y hembra. Posteriormente se enfría y se solidifica contra la superficie del molde. Este proceso permite fabricar piezas muy exactas con tolerancia mínimas, consiguiendo además gran precisión en las dimensiones y detalles. El ciclo suele durar entre 10 y 20 segundos.

El termoformado es económico tanto para los tamaños de lotes pequeños como para los grandes y confiere a los productos excelentes propiedades físicas. La variedad de materiales con que pueden fabricarse los moldes, desde escayola reforzada con fibra de vidrio, acero, con especial preferencia por el aluminio, hacen a estos procedimientos especialmente adecuados para series cortas, partidas piloto e incluso prototipos.

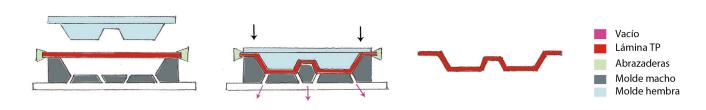
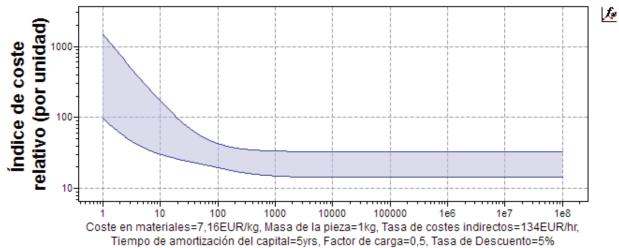


Fig. 8. Termoformado por molde coincidente.

Atributos de físicos y de calidad

Rango de masas	(i)	* 0,03	-	10	kg
Rango de espesores	(i)	0,25	-	6	mm
Tolerancia	(i)	0,5	-	1	mm
Rugosidad	(i)	* 0,3	-	1,6	μm
Rugosidad superficial (A=muy suave)	(i)	Α			


Compatibilidad Económica

Coste relativo del utillaje	(i)	Bajo
Coste relativo del equipamiento	(i)	Bajo
Consumo de mano de obra	(i)	Alto
Lote económico (unidades)	(i)	10 - 1e3

Modelo de coste y parámetros iniciales

Parameters: Coste en materiales = 7,16EUR/kg, Masa de la pieza = 1kg, Tamaño de lotes = 1e3, Tasa de costes indirectos = 134EUR/hr, Tasa de Descuento = 5%, Tiempo de amortización del capital = 5yrs, Factor de carga = 0,5

Tamaño de lotes

Repercusión del capital	(i)	* 7,34e3	-	7,34e4	EUR
Fracción de material usado	(i)	* 0,6	-	0,9	
Tasa de producción (unidades)	(i)	* 6	-	30	/hr
Coste del utillaje	(i)	* 73,4	-	1,47e3	EUR
Vida del utillaje (unidades)	(i)	* 1e4	-	1e6	

Tabla 16. Características de proceso. CES Edupack.

Las herramientas necesarias son baratas. Para las pequeñas rígidas de metal o resina de epoxi y flexibles, el precio es menor de 100€.

En los factores ligados a la sostenibilidad, este proceso no presenta ningún inconveniente, ya que no presenta ningún tipo de daño medioambiental.

3.2. Moldeo por inyección

Para conformar las piezas del Grupo 2 de materiales (poliamida reforzada con fibra de vidrio) se hará uso del moldeo por inyección.

Este procesos consiste en calentar un polímero hasta que alcanza un estado muy plástico y se le fuerza a que fluya hacia la cavidad de un molde por presión. Entonces, la pieza moldeada se enfría, solidifica y se retira de la cavidad.

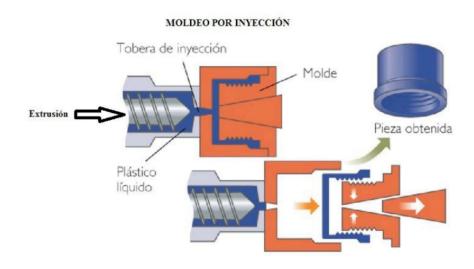


Fig. 9. Moldeo por inyección.

El ciclo del proceso de moldeo por inyección se divide en las siguientes fases:

El molde se coloca en la máquina de moldeo por inyección (IMM). La máquina de moldeo cierra el molde y, gracias a las herramientas de fijación, el molde permanece cerrado durante el moldeo por inyección del plástico.

Lo normal es que el ciclo dure entre 10 y 30 segundos, aunque lo hay de un minuto o más.

El plástico se introduce en la máquina en forma de gránulos o partículas esférica. La máquina de moldeo calienta el plástico hasta que el mismo se vuelve líquido. A continuación, la tobera de la máquina de moldeo por inyección inyecta el plástico fundido en el molde (presión de inyección). Luego, el plástico se enfría para formar un producto sólido. Finalmente los expulsores sacan el producto enfriado de la máquina como pieza terminada. El proceso de moldeo por inyección ha finalizado.

Puede ocurrir que durante el proceso, el polímero fundido se escurra por la superficie de separación del molde y se formen rebabas. Esto se solucionaría quitándolas con otros procesos después de la extracción de la pieza.

3.2.1. Diseño del molde:

Para facilitar la producción, las partes que desempeñan un papel en el proceso de moldeo por inyección del plástico deben ser diseñadas cuidadosamente. Para el moldeo por inyección que se le realiza a las piezas del Grupo 2 de materiales, será necesario un diseño y fabricación de moldes a medida para las diferentes piezas; cubierta, protector, armazón superior y armazón inferior.

A la hora de diseñar el molde, que puede ser de acero o de aluminio, se tiene que tener en cuenta todas las condiciones esenciales: el material utilizado en el producto final, sus características y el material del molde y propiedades de la máquina de moldeo por inyección.

Las condiciones esenciales para realizar el molde de las piezas del Grupo 2 dependen estrictamente de:

- Las dimensiones de la pieza a fabricar
- El material de la pieza a fabricar
- Los ángulos de inclinación
- Las contrasalidas
- El grosor de la pared en función del material
- Los radios

	TAMAÑO
Tamaño máx.	480mm x 770mm
Volumen máx.	966 837mm³
	101 mm desde la línea de apertura (con un ángulo de inclinación de 3 grados)
Profundidad máx.	Hasta 202 mm si la línea de apertura puede pasar a través de la mitad de la pieza

^{*}Tolerancias que tomar en cuenta: +/- 0.08 mm + 0.005 mm/mm

ÁNGULO DE INCLIN	NACIÓN
Caras verticales	0,5°
Mayor partes de las situaciones	2°
Mínimo para cierre	3°
Mínimo para textura ligera (PM-T1)	3°
Mínimo para textura ligera (PM-T2)	5°+

	CONTRASALIDAS	
Anchura	Altura	Profundidad
< 213.84mm	<60.38mm	<73.66mm

GROS	SOR DE LA PARED
Material	Grosor pared recomendado
Nylon	0.762mm - 2.921mm

Tabla 17. Características del molde.

En cuanto a los radios, se dejarán algunas esquinas redondeadas en lugar de ángulos, debido a que, para la realización del molde, se utiliza un fresado CNC automatizado.

Al diseñar un molde para una pieza moldeada por inyección también es importante mantener en la mente que la meta es producir piezas con la mejor calidad, en un ciclo tan corto como sea posible. Para lograr esto, se necesitará que el molde tenga una temperatura de molde uniforme, un relleno equilibrado, y esté ventilado adecuadamente.

Como consejos adicionales para el diseño de los moldes, se debe tener en cuenta que el orificio del manguito de bebedero siempre tiene que ser más grande que la de la boquilla de la prensa.

Se recomienda una inclinación reversada de 5° en el mecanismo de expulsión, además, un radio pequeño en la unión del mecanismo de expulsión y el canal y un radio más grande en la unión del bebedero y canal.

Además, las entradas para los moldes deberían hacerse usando una inserción reemplazable, así cuando la entrada está muy desgastada, puede ser fácilmente reemplazada. También es recomendable que le material de dichas entradas no sea fácilmente desgastable.

3.3. Laminado y soldado

En cuanto al Grupo 3, los soportes de la luminaria, de acero inoxidable, se realizaran en dos partes. La primera de ellas consiste en un laminado. Este proceso consiste en deformar plásticamente un lingote de material tras pasarlo por unos grandes rodillos que lo comprimen.

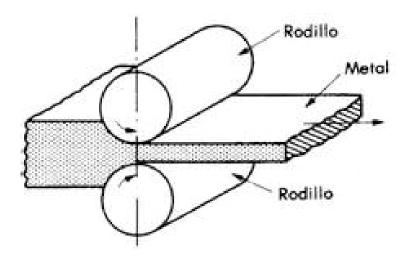
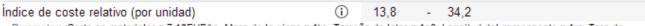


Fig. 10. Laminado.

La laminación permite obtener piezas con propiedades mecánicas muy buenas, por la manera en la que la deformación refina la microestructura y reduce la porosidad.

En cuanto al coste, es un proceso que tiene un elevado coste del utillaje, pero para formas simples y grandes series, el coste del utillaje es relativamente bajo aunque la inversión de capital sea importante.


Com	natil	ailid	ad	Econd	hmi	ica
COIII	pau	JIIIU	lau	LCOIN	7111 11	ıca

Atributos de físicos y de calidad				
Lote económico (unidades)	(i)	100	- 1e4	
Consumo de mano de obra	(i)	Bajo		
Coste relativo del equipamiento	(i)	Alto		
Coste relativo del utillaje	(i)	Alto		

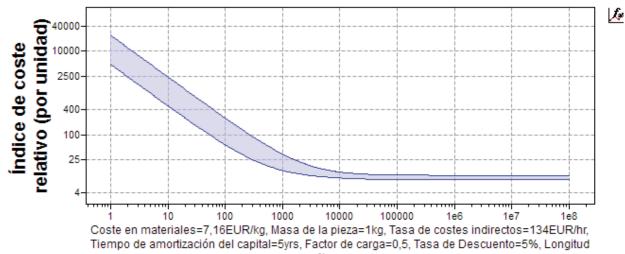

· · · · · · · · · · · · · · · · · · ·						
Rango de masas	(i)	0,1	-	2e3	kg	
Rango de espesores	(i)	2	-	250	mm	
Tolerancia	(i)	0,1	-	0,5	mm	
Rugosidad	(i)	3,2	-	12,5	μm	
Rugosidad superficial (A=muy suave)	(i)	В				

Tabla 18. Características de proceso. CES Edupack.

Modelo de coste y parámetros iniciales

Parameters: Coste en materiales = 7,16EUR/kg, Masa de la pieza = 1kg, Tamaño de lotes = 1e3, Longitud del componente = 1m, Tasa de costes indirectos = 134EUR/hr, Tasa de Descuento = 5%, Tiempo de amortización del capital = 5yrs, Factor de carga = 0,5

Tamaño de lotes

Repercusión del capital	(i)	2,41e5	-	2,41e6	EUR
Fracción de material usado	(i)	0,9	-	1	
Tasa de producción (duración)	(i)	0,02	-	10	m/s
Coste del utillaje	(i)	4,81e3	-	2,41e4	EUR
Vida útil de la herramienta (duración)	(i)	1e4	-	1e6	m

Tabla 19. Características de proceso. CES Edupack.

El segundo proceso para conformar los soportes, tras el laminado (obviando el corte de las piezas) es la soldadura TIG.

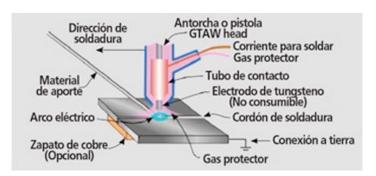


Fig. 11. Soldadura TIG.

Dicha soldadura es la más limpia y precisa, aunque también la más cara. Consiste en cebar un arco entre un electrodo de tungsteno y la pieza a soldar, bajo una atmósfera protectora de gas inerte para proteger el metal fundido de la contaminación. El material de relleno se suministra por separado en forma de alambre o varilla. Es un proceso muy fácil de automatizar. Además la penetración y las tasas de deposición son mucho menores que en otro tipo de soldaduras.

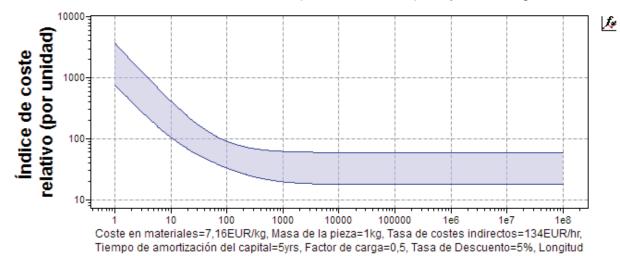
3.4. Extrusión y doblado

Por otro lado tenemos los esqueletos de las lámparas, que también son de acero AISI 304, pero se conforman de manera diferentes. Para realizar los tubos macizos que conforman los esqueletos es necesario realizar una extrusión y un doblado.

Este proceso consiste en forzar al material viscoso por la presión a fluir atravesando una matriz con forma, tomando de esta forma, la forma del orificio.

Compatibilidad de Materiales						
Cerámicas	(i)	✓				
Metales - no-férreos	(i)	✓				
Forma						
Prisma circular	(i)	✓				
Prisma no circular	(i)	✓				
Compatibilidad Económica						
Coste relativo del utillaje	(i)	Alto				
Coste relativo del equipamiento	(i)	Alto				
Consumo de mano de obra	(i)	Bajo				
Atributos de físicos y de calidad						
Rango de masas	(i)	1	-	1e3	kg	
Rango de espesores	(i)	1	-	900	mm	
Tolerancia	(i)	0,5	-	1	mm	
Rugosidad	(i)	0,8	-	3,2	μm	
Rugosidad superficial (A=muy suave)	(i)	В				
Características de proceso						
Procesos de conformado primario	(i)	✓				
Continuo	(i)	✓				

Tabla 20. Características de proceso. CES Edupack.


El coste de los equipos y de las herramientas son bajos, mucho menores que para el moldeo por inyección, pero los tiempos de ciclo son más largos que cualquier otro proceso de moldeo, y la mano de obra intensiva.

En cuanto al consumo medioambiental, este proceso no presenta ningún problema para el medio ambiente.

Modelo de coste y parámetros iniciales

Parameters: Coste en materiales = 7,16EUR/kg, Masa de la pieza = 1kg, Tamaño de lotes = 1e3, Longitud del componente = 1m, Tasa de costes indirectos = 134EUR/hr, Tasa de Descuento = 5%, Tiempo de amortización del capital = 5yrs, Factor de carga = 0,5

Tamaño de lotes

Repercusión del capital	(i)	1,47e5	-	1,47e6	EUR
Fracción de material usado	(i)	0,9	-	0,97	
Tasa de producción (duración)	i	0,001	-	5	m/s
Coste del utillaje	(i)	734	-	3,67e3	EUR
Vida útil de la herramienta (duración)	(i)	100	-	1e5	m

Tabla 21. Características de proceso. CES Edupack.

4. Ensamblaje

En el presente apartado se procede a analizar el ensamblaje de los diferentes componentes de la luminaria. Por un lado tenemos el ensamblaje de las lámparas o módulos; pequeño, mediano y grande, y por otro el de los soportes.

El ensamblaje de las lámparas es igual, independientemente del tamaño de estas. Para el correcto ensamblaje en fábrica de estas, los pasos a seguir son los detallamos a continuación.

Lo primero que se tiene que hacer es insertar los componentes eléctricos en cada uno de los armazones y pasar el cable conductor de unión por los taladros situados en los laterales (Fig.12). Después se colocan los protectores sobre los armazones. El método de unión es un adhesivo, para garantizar una unión fija no desmontable (Fig.13-14).

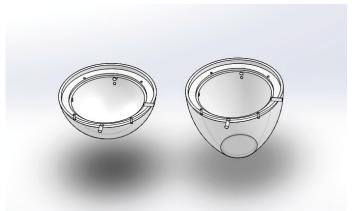


Fig. 12.

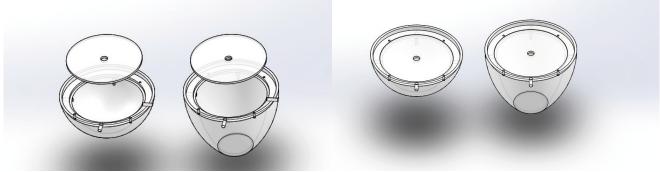
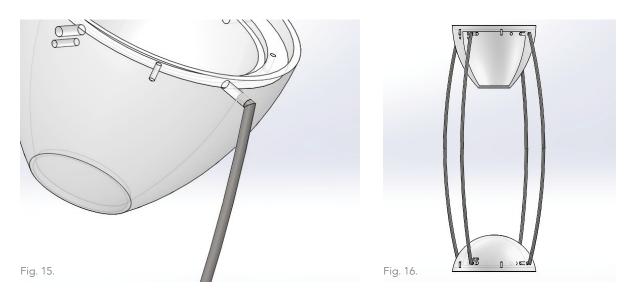
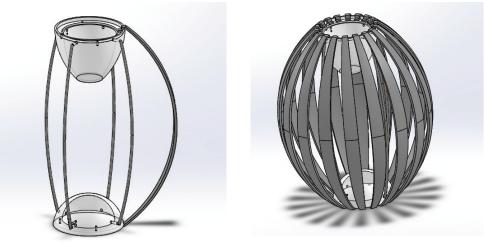
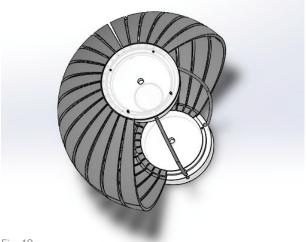
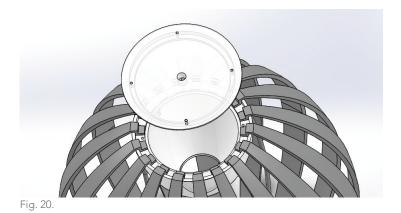
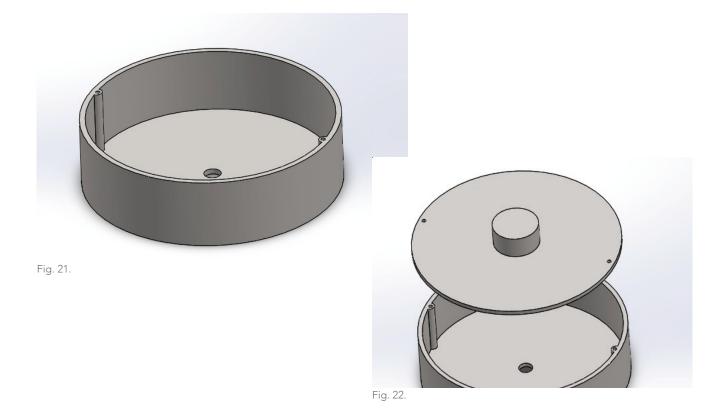




Fig. 13. Fig. 14.

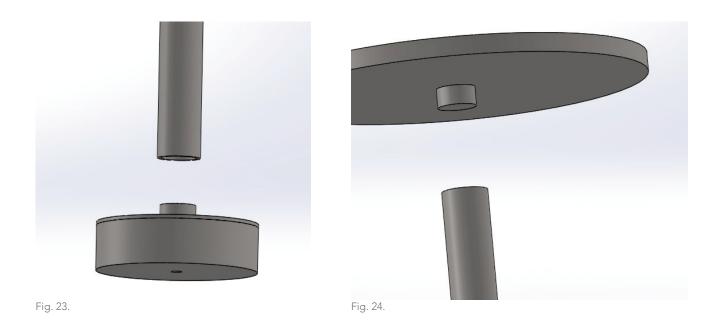
El paso siguiente es introducir los esqueletos en los agujeros de los armazones (Fig.15), tanto inferior como exterior, de tal modo que quede una estructura fija y estable (Fig.16).

Después se procede a la colocación de los listones de la pantalla (Fig.17). En este caso solo uno de los listones irá pegado con adhesivo a cada uno de los armazones. El resto de pantallas simplemente enganchadas (Fig.18), permitiendo el movimiento de estas para cerrar y abrir la luminaria cuando se desee cambiar la bombilla (Fig.19).


Fig. 19.

El cuarto paso consiste en colocar las cubiertas sobre los dos armazones y unirlas mediante tornillos (Fig.20). Una vez concluido este paso, ya tenemos montado el módulo lumínico.



El ensamblaje del soporte de pie y el soporte de mesa se realizan del mismo modo, con lo cual, para el correcto ensamblaje en fábrica, los pasos a seguir son los siguientes:

Primero se introducen los componentes eléctricos en el contenedor (Fig.21). Luego se coloca la tapa y se sujeta con uniones atornilladas (Fig.22).

Después de estos pasos, se rosca el fuste a la tapa (Fig.23) y seguidamente se vuelve a roscar al otro extremo a la base, quedando bien sujeta de ambos lados (Fig.24).

Para el ensamblaje del soporte de techo, el proceso es el mismo, sustituyendo el roscado del fuste por el roscado de un embellecedor.

Diseño y desarrollo de una lámpara LED modular

Índice:

1. Estado de mediciones	196
1.1. Listado de componentes diseñados	196
1.2. Listado de elementos comerciales	198
1.3. Operaciones y tiempos de fabricación	198
1.4. Operaciones y tiempos de ensamblaje	199
2. Costes	200
2.1. Costes de las piezas	200
2.2. Costes de fabricación	200
3. Precio de venta al público	201
3.1. Análisis del precio de venta	201
3.1.1. VAN	202
3.1.2. TIR	202
4 Viahilidad	203

1. Estado de mediciones

En el presente apartado se muestran los componentes que componen el producto distinguiendo entre los que se diseñan y fabrican de forma específica para el producto, de los que se adquieren directamente de proveedores.

Para calcular el coste total se definen las medidas de cada uno de los componentes que se van a fabricar y la cantidad de material, procesos y horas de trabajo que se invertirán para procesarlas; los componentes adquiridos necesarios para su funcionamiento y las operaciones de ensamblaje.

1.1. Listado de componentes diseñados

En la siguiente tabla se describen las características de los componentes que forma cada producto, distinguiendo entre cada uno de los módulos y cada uno de los soportes:

	N° PIEZAS	VOLUMEN	DENSIDAD	PESO	PRECIO
LÁMPARA PEQUEÑA	unidades	mm ³	kg/mm³	kg	€/kg
Pantalla pequeña	18	11094,28	890	0,0097	1,53
Cubierta	2	25773,59	1400	0,036	2,09
Protector	2	5667,53	1400	0,00793	2,09
Armazón superior	1	72290,72	1400	0,101	2,09
Armazón inferior	1	37071,41	1400	0,051	2,09
Esqueleto pequeño	4	1418,79	8000	0,0113	5,02

Tabla 1. Lámpara pequeña.

	N° PIEZAS	VOLUMEN	DENSIDAD	PESO	PRECIO
LÁMPARA MEDIANA	unidades	mm³	kg/mm³	kg	€/kg
Pantalla mediana	18	25807,25	890	0,0229	1,53
Cubierta	2	25773,59	1400	0,036	2,09
Protector	2	5667,53	1400	0,00793	2,09
Armazón superior	1	72290,72	1400	0,101	2,09
Armazón inferior	1	37071,41	1400	0,051	2,09
Esqueleto mediano	4	1781,55	8000	0,014	5,02

Tabla 2. Lámpara mediana.

LÁMBADA CDANIDE	N° PIEZAS	VOLUMEN	DENSIDAD	PESO	PRECIO
LÁMPARA GRANDE	unidades	mm³	kg/mm³	kg	€/kg
Pantalla grande	18	38202,91	890	0,034	1,53
Cubierta	2	25773,59	1400	0,036	2,09
Protector	2	5667,53	1400	0,00793	2,09
Armazón superior	1	72290,72	1400	0,101	2,09
Armazón inferior	1	37071,41	1400	0,051	2,09
Esqueleto grande	4	1659,45	8000	0,013	5,02

Tabla 3. Lámpara grande.

COPORTE DIE	N° PIEZAS	VOLUMEN	DENSIDAD	PESO	PRECIO
SOPORTE PIE	unidades	mm³	kg/mm³	kg	€/kg
Тара	1	15857	8000	0,126	5,02
Contenedor	1	25658	8000	0,205	5,02
Fuste grande	1	131318,57	8000	1,505	5,02
Base grande	1	317300	8000	2,538	5,02

Tabla 4. Soporte pie.

CODODTE MESA	N° PIEZAS	VOLUMEN	DENSIDAD	PESO	PRECIO
SOPORTE MESA	unidades	mm³	kg/mm³	kg	€/kg
Тара	1	15857	8000	0,126	5,02
Contenedor	1	25658	8000	0,205	5,02
Fuste pequeño	1	41469,02	8000	0,331	5,02
Base pequeña	1	177079	8000	1,256	5,02

Tabla 5. Soporte mesa.

CORORTE TECLIO	N° PIEZAS	VOLUMEN	DENSIDAD	PESO	PRECIO
SOPORTE TECHO	unidades	mm³	kg/mm³	kg	€/kg
Тара	1	15857	8000	0,126	5,02
Contenedor	1	25658	8000	0,205	5,02

Tabla 6. Soporte techo.

1.2. Listado de elementos comerciales

En la siguiente tabla se describen las características de los componentes del producto que se adquieren directamente de proveedores.

ELEMENTOS	N° PIEZAS	PRECIO UNITARIO	PRECIO FINAL
COMERCIALES	unidades	€/ud	€
Conector	6	5,8	34,8
lmán	30	0,18	5,4
Cable tensor	1	0,99	0,99
Cable conductor	1	0,424	0,424
Pasacables	3	0,014	0,042
Interruptor	2	1	2
Bombilla LED	3	4,3	12,9
Tornillos	18	0,123	2,214
		TOTAL	59,76

Tabla 7. Elementos comerciales.

1.3. Operaciones y tiempos de fabricación

En el siguiente apartado se estudia el coste del coste de los procesos de fabricación, estimando la duración de cada proceso con el coste de la máquina y la mano de obra de cada uno.

LÁMPARAS	TIEMPO	PRECIO	COSTE TOTAL
LAMPARAS	h	€/h	€
Corte	0,2	10	2
Termoformado	0,6	10	6
Moldeo inyección	0,01	15000	150
Extrusión	0,02	50	1
Doblado	0,05	15	0,75
		TOTAL	159,75

Tabla 8. Tiempos lámparas.

SOPORTES	TIEMPO	PRECIO	COSTE TOTAL
	h	€/h	€
Laminado	0,04	30	1,2
Soldado	0,2	30	6
Taladrado	0,06	50	3
		TOTAL	10,2

Tabla 9. Tiempos soportes.

1.4. Operaciones y tiempos de ensamblaje

En el siguiente apartado se estudia el coste del coste de los procesos de ensamblaje, estimando la duración de cada proceso con el coste de la máquina y la mano de obra de cada uno.

ENICANADI A IE	TIEMPO	PRECIO	O COSTE TOTAL	
ENSAMBLAJE	h	€/h	€	
Colocación eléctrica	0,17	15	2,55	
Protectores	otectores 0,013		0,1	
Esqueletos 0,013		10	0,1	
Listón pegado 0,03		10	0,3	
Resto de listones	0,06	10	0,6	
Cubiertas	0,02	10	0,2	
Colocar bombillas 0,01		10	0,1	
Roscado fustes 0,024		15	0,36	
Roscado tornillos 0,082		15	1,23	
Pegar imanes 0,097		10	0,97	
Pasacables 0,01		10	0,1	
Cable tensor	0,004	30	0,125	
		TOTAL	6,73	

Tabla 10. Tiempos ensamblaje.

2. Costes

Para calcular el coste de la luminaria sumaremos los procesos necesarios para la realización del producto anteriormente estudiado. Se suman, por un lado, todos los costes de las piezas, y por otro los costes de los procesos de fabricación.

2.1. Costes de las piezas

CONTRACTO	COSTE		
CONJUNTO	€		
Módulo pequeño	1,023		
Módulo mediano	1,38		
Módulo grande	1,69		
Soporte pie	21,9		
Soporte mesa	9,628		
Soporte techo	1,66		
TOTAL	37,281		

Tabla 11. Costes.

2.2. Costes de fabricación

CONTINUE	COSTE	
CONJUNTO	€	
Corte	2	
Termoformado	6	
Moldeo inyección	150	
Extrusión	1	
Doblado	0,75	
Laminado	1,2	
Soldado	6	
Taladrado	3	
TOTAL	169,95	

Tabla 12. Costes.

3. Precio de venta al público

Al coste de producción le sumaremos el 25% de este destinado a marketing y distribución del producto. También le sumaremos otro 25% al producto del beneficio.

PVP			
Coste materias primas	37,281 €		
Coste de fabricación	169,95 €		
Coste componentes adquiridos	59,76 €		
Coste ensamblaje	6,73 €		
Coste de producción	273,69 €		
Marketing y distribución (25%)	68,42		
Beneficio (25%)	68,42		
Iva (21%)	57,47		
PVP	468 €		

Tabla 13. PVP.

Con el precio de venta al público definido, incluyendo el IVA, es recomendable adaptar el precio para que el consumidor lo perciba atractivo, técnica de marketing que se basa en el redondeo del precio al alza cercano a su valor redondo. En nuestro caso el precio de venta al público final del producto de los 3 módulos y los 3 soportes será de 469,95 €

3.1. Análisis del precio de venta

Para analizar el precio de venta obtenido en el anterior apartado se estudiará la viabilidad económica del producto y del proyecto.

Los métodos para el análisis del precio de venta son el método VAN (Valor Actual Neto) y el método TR (Tiempo de Retorno).

3.1.1. VAN:

Tendremos en cuenta una inversión de A = 20.000€. EL flujo de caja se obtiene al restar el ingreso anual y los gastos al año. Por tanto, para los tres años que se quiere estudiar quedaría de la siguiente manera: Suponiendo los siguientes datos:

- Flujo de caja (cobros - pagos):

- Tasa de descuento:

$$k = 3\%$$

El cálculo del Valor Actual Neto se realiza mediante la siguiente fórmula:

$$VAN = -A + \frac{Q1}{(1+k)^{año1}} + \frac{Q2}{(1+k)^{año2}} + \frac{Q3}{(1+k)^{año3}}$$

$$VAN = -20000 + \frac{5000}{(1+0,03)^1} + \frac{8000}{(1+0,03)^2} + \frac{10000}{(1+0,03)^3} = 1546,55$$

$$VAN = 1546,55$$

3.1.2. TIR:

Para poder hallar el TIR de la forma correcta, los datos que se van a necesitar son el tamaño de la inversión y el flujo de caja neto proyectado. Siempre que se vaya a hallar el TIR, se debe usar la fórmula del VAN que te hemos dado en la parte superior. Pero reemplazando el nivel de Van por 0 para que nos pueda dar la tasa de descuento.

De tal modo que para el TIR no quedaría esta fórmula:

$$0 = -A + \frac{Q1}{(1+k)^{a\bar{n}o1}} + \frac{Q2}{(1+k)^{a\bar{n}o2}} + \frac{Q3}{(1+k)^{a\bar{n}o3}}$$

$$0 = -20000 + \frac{5000}{(1+k)^1} + \frac{8000}{(1+k)^2} + \frac{10000}{(1+k)^3} = k$$

$$k = 3000€ = 7\%$$

4. Viabilidad

De este modo, se concluye que el proyecto cumple con los objetivos establecidos en el apartado 1.1. Objetivos. Volumen I. Memoria, reuniendo las condiciones y garantías mínimas exigidas para el tipo de objeto que se desarrolla.

Se obtiene un objeto con total libertad de personalización, con una gran funcionalidad y con materiales y procesos de fabricación respetuosos con el medio ambiente. Además el diseño supera las prestaciones a otros productos del mercado, ofreciendo un precio de venta competitivo.

