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Abstract 

This work evaluated the Fenton process in the removal of eight pharmaceuticals 

(gemfibrozil, nimesulide, furosemide, paracetamol, propranolol, dipyrone, fluoxetine, 

and diazepam), present at an initial concentration of 500 µg L-1 for each compound, 

from three different water matrixes (distilled water, simulated wastewater, and hospital 

wastewater). The Fenton process conditions (iron and hydrogen peroxide 

concentrations, and pH) were optimized for the distilled water matrix by Doehlert 

design associated with response surface methodology. These corresponded to an initial 

Fe
2+

 concentration of 12.5 mg L-1, an initial hydrogen peroxide concentration of 533 mg 

L-1, and pH 5.0. Mineralization rates and pharmaceutical degradation were monitored 

for all water matrixes and different experimental conditions employed. Unique iron 

addition, using low iron concentration (12.5 mg L-1) and increased iron concentration 

(37.5 mg L-1) were evaluated. These preliminary results motivated the study of the 

Fenton process employing successive iron additions and using an excess of hydrogen 

peroxide in the reaction medium. Multiple iron addition favored higher oxidation of the 

initial contaminants. Finally, the most persistent transformation products generated 

during the Fenton process were identified by liquid chromatography coupled with 

quadrupole-time of flight mass spectrometry (UHPLC-QTOF MS) using a purpose-built 

database that allowed monitoring of 97 transformation products, simultaneously, in one 

chromatographic analysis only. In this study, 12 transformation products (TPs) were 

tentatively identified employing this purpose-built database. Most TPs generated were 

classified as high toxicity (Cramer rules) and showed ready biodegradability (START 

biodegradability). 
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1. Introduction 

 Pharmaceuticals can be considered one of the most important groups of 

unregulated micropollutants, especially by the increase in the use of these substances, 

and by the enhanced limits of detection of these compounds due to the impressive 

advance in some analytical tools, such as chromatographic techniques coupled with 

mass spectrometry. These compounds may be candidates for future regulation, 

depending on the results of research into their effects on human health and aquatic 

biota, and on follow-up data regarding the frequency of their presence in the 

environment. Is known that pharmaceuticals do not need to persist in the environment to 

cause negative effects, since the high rates of transformation or removal that they are 

able to undergo can be offset by their continuous introduction into the environment 

(Barceló, 2003).  

 Recent studies have detected more than 80 compounds with pharmacological 

activity in different environmental aqueous matrixes at concentrations ranging from 

ng L-1 to μg L-1 (Ibáñez et al., 2017; Carraro et al., 2016; Marković et al., 2015; Lin et 

al., 2010; Mendoza et al., 2015; Santos et al., 2013; Gómez et al., 2007; Roberts and 

Thomaz, 2006; Lishman et al., 2006; Andreozzi et al., 2003; Sedlak et al., 2005; Lacey 

et al., 2008; Sui et al., 2010; Spongberg and Witter, 2008; Santos et al., 2005; Bueno et 

al., 2007; Kim et al., 2007; Gros et al., 2006; Ternes et al., 2001a; Ternes et al., 2001b; 

Farré et al., 2001; Metcalfe et al., 2004; Castiglioni et al., 2005; Bartelt-Hunt et al., 

2009; Escher et al., 2011). Moreover, according to these studies, the highest levels of 

pharmaceuticals are found near sewage spillways (Heberer, 2002).  

In this context, special attention should be given to hospital effluents, which are 

characterized by high concentrations of pharmaceuticals and metabolites, disinfectants, 

pigments/dyes, reagents, etc. (Gupta et al., 2009; Langford and Thomas, 2009). In 
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general, hospital effluents have an extra contribution of organic content that favors high 

COD, low BOD and, therefore, biological processes conventionally used are not 

suitable for the treatment of these hospital wastewaters (Elmolla and Chaudhuri, 2009; 

Rahim Pouran et al., 2015). According to Carraro et al. (2016) in only a few countries is 

hospital effluent classified as industrial wastewater, and because of its characteristics 

goes through some kind of pre-treatment before discharge into the sewage system. 

In this sense, Advanced Oxidation Processes (AOPs) represent an option that has 

proven effective for the treatment of water contaminated with organic compounds. 

These processes are characterized by the generation of hydroxyl radicals, a highly 

oxidizing species, at atmospheric pressure and at room temperature. The high potential 

of AOPs for the treatment of water containing pharmaceuticals is widely recognized 

(Klavarioti et al., 2009; Giannakis et al., 2015). Among the different PAOs, photo-

Fenton and Fenton processes have been shown to be good options for removal of 

pharmaceuticals from different effluents and environmental or water matrixes (Miralles-

Cuevas et al., 2014a and 2014b; Rahim Pouran et al., 2015; Mirzaei et al., 2017; Li et 

al., 2012; Wilde et al., 2017; Perini et al., 2018). 

The Fenton process combines H2O2 and Fe2+ as reactants (reactions 1 and 2) to 

produce hydroxyl radicals and other transient species that can oxidize a wide range of 

organic compounds. For the classical Fenton process, a more restricted pH control is 

necessary and for this reason this treatment process was traditionally performed at acid 

pH (2.5–3) (Gallard et al., 1998). However, now there are some studies demonstrating 

the possibility of working with near-neutral pHs. These studies emphasize the 

importance of working with almost neutral pH for practical applications of these 

treatment processes. Two interesting examples of manuscripts where this subject has 



 

 5 

been properly highlighted were published by Vermilye and Volker (2009) and Clarizia 

et al. (2017). 

  (1) 

 (2) 

Generally, in the Fenton process, organic compounds are oxidized by hydroxyl 

radicals and other reactive transient species, but are not completely mineralized, 

favoring generation of transformation products (TPs) (Ostra et al., 2007). The TPs 

formed can present numerous possible chemical structures because there is no 

previously defined favored path. The TPs are only identifiable through the use of 

advanced chromatographic techniques, mainly high-resolution mass spectrometry 

coupled to liquid chromatography (LC-HRMS) (Gago-Ferrero et al., 2016). There is no 

doubt that there are many studies in the literature that aim at identification of TPs during 

different AOP treatment processes (Gupta and Garg, 2018; Fatta-Kassinos et al., 2011; 

García-Galán et al., 2016; Jallouli et al., 2016). However, in these studies, only ideal 

conditions are considered: just one model compound was employed, at significantly 

higher initial concentrations than those found in natural or raw waters and wastewaters 

(at mg L-1), and using distilled water as matrix. All these conditions are quite different 

from those found in real effluents where numerous pharmaceuticals, metabolites and 

TPs are present in low concentrations in complex aqueous matrixes.  

In view of the above, this work aims, for the first time, to optimize the 

experimental conditions of a Fenton process using Doehlert design and, afterwards, to 

evaluate the influence of three different water matrixes – distilled water (DW), 

simulated wastewater (SW), and raw hospital wastewater (RHW) – to treat, 

simultaneously, eight pharmaceuticals at µg L-1 concentrations, by a Fenton process. As 

a final step, this study intends to identify the major TPs generated during the Fenton 

process by liquid chromatography coupled with quadrupole-time of flight mass 
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spectrometry (UHPLC-QTOF MS), employing a new purpose-built database that 

allowed tentative identification of 97 TPs in one chromatographic analysis. 

 

2. Material and methods 

2.1 Chemicals, solutions and water matrixes 

All reagents used for chromatographic analyses were LC-MS grade. Acetonitrile 

(ACN) and methanol (MeOH) and formic acid (purity = 98%) were purchased from 

Merck (Darmstadt, Germany) and from Scharlau (Barcelona, Spain). Ammonium 

acetate LC-MS grade was purchase from Fluka, Sigma-Aldrich (Germany). All 

pharmaceuticals included in this work were purchased from different providers and 

were analytical grade (purity > 98.99%). Fenton experiments were performed using iron 

sulfate heptahydrate (FeSO4·7H2O) purchased from Reagen (Rio de Janeiro, Brazil). 

Reagent-grade hydrogen peroxide (H2O2, 39% w/v) and sulfuric acid (H2SO4, 98%) 

used for pH adjustment were purchased from Synth (São Paulo, Brazil). 

Eight pharmaceuticals selected were employed with individual initial average 

concentrations below 500 µg L-1: gemfibrozil (GFZ), nimesulide (NMD), furosemide 

(FRS), paracetamol (PCT), propranolol (PPN), dipyrone (DIP), fluoxetine (FXT) and 

diazepam (DZP). Working solutions were prepared by appropriate dilution of the stock 

solutions that were prepared using analytical standards of the selected pharmaceuticals 

and MeOH/ACN, 1:2 (v/v). The choice of these pharmaceuticals was due to the fact that 

most of them are consumed continuously or in specific cases without medical 

prescription (analgesics). Moreover, the existence of national regulations in Brazil that 

control the acquisition and manipulation of many drugs led to the selection of the 

compounds mentioned above.  



 

 7 

Experiments were carried out in three different water matrixes: DW, SW, and 

RHW. The composition of SW was from the method reported by the OECD (1999) to 

simulate the organic content of the real hospital wastewater employed in this work 

(Composition for 1L of SW: peptone 160 mg L-1, beef extract 110 mg L-1, urea 30 mg 

L-1, Mg2SO4·7H2O 2 mg L-1, CaCl2·2H2O 4 mg L-1). The RHW used in this study came 

from a public hospital located in the city of Porto Alegre (Brazil). Its main 

characteristics were: pH 7.85, chloride 35.7 mg L-1, conductivity 691.3 μS cm-1, BOD 

130.3 mg L-1 O2, DOC 72.9 mg L-1, COD 291 mg L-1 O2, phosphate 13.98 mg L-1, total 

suspended solids 85.3 mg L-1, and total solids 378 mg L-1. RHW consisted of raw 

hospital wastewater, which was used as it came (without filtration) in degradation 

studies. 

 

2.2 Fenton process 

Fenton experiments were performed in a borosilicate-glass vessel (1L) equipped 

with magnetic stirring. During the reaction, the system was protected from light. For 

this, the reaction was carried out in a black box with total insulation and, in addition, the 

system was covered with black polymeric material. This material did not come into 

contact with the treated solution and only guaranteed extra protection from radiation. 

The optimization of Fenton reaction conditions was carried out using Doehlert designs.  

In all experiments, pH was adjusted using H2SO4, and H2O2 (39% w/v) was 

added only at the beginning of the experiments. For Fe(II) two different approaches 

were evaluated: a single dose of Fe2+ at the beginning of the treatment process, and 

other successive iron additions at different times during the treatment. The selected 

pharmaceuticals were added (as described in Section 2.1), to each water matrix, before 

the pH adjustment and iron and H2O2 additions, in that order.  
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2.3 Analytical Determinations during Fenton Process 

Mineralization was followed by measuring the dissolved organic carbon (DOC) 

by Analytik Jena AG multi N/C 2100 S. Total iron concentration was monitored using 

colorimetric determination with 1,10-phenanthroline, following ISO 6332 (1988), using 

a UV-vis Cary 50 spectrophotometer. Hydrogen peroxide was analyzed by a 

spectrophotometric method using ammonium metavanadate, based on the formation of a 

red-orange peroxovanadium cation during the reaction of H2O2 with metavanadate 

(Nogueira et al., 2005). Monitoring of the degradation of the selected pharmaceuticals 

was performed by the reduction of the chromatographic peak area (A/A0) in UHPLC-

QTOF MS at different treatment times.  

 

2.4 UHPLC-QTOF MS instrumentation 

Pharmaceutical TPs generated during the Fenton process were monitored, for the 

first time, at Federal University of Rio Grande do Sul (UFRGS-Brazil) by an UHPLC 

system (Shimadzu Nexera X2) connected to a QTOF mass spectrometer (Bruker 

Daltonics, Impact II). The UHPLC was equipped with a reverse-phase Luna®Omega 

C18 analytical column (2.1 mm × 50 mm × 1.6 μm). When ionization in positive mode 

was selected, the mobile phase was a mixture of MeOH acidified with 0.1% formic acid 

(A) and H2O acidified with 0.1% formic acid (B) at a flow rate of 0.28 mL/min. In this 

case, the gradient progressed from 10% A (initial conditions) to 90% A in 10 min, and 

then maintained for 2 min. The QTOF mass spectrometer was operated in positive 

ionization mode under the following conditions: capillary 4000 V, nebulizer 40 psi, 

drying gas 9 L/min, gas temperature 200 °C. In turn, when the analysis was conducted 

in negative ionization mode, the mobile phase employed was composed by a mixture of 
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methanol acidified with 0.01% formic acid (A) and water acidified with 0.01% formic 

acid (B) at a flow rate of 0.28 mL/min. The same gradient as applied in positive mode 

was used. The QTOF mass spectrometer was operated in negative ionization mode 

under the following conditions: capillary 2500 V, nebulizer 40 psi, drying gas 9 L/min, 

gas temperature 190 °C. In all analyses, the injection volume was 10 μL. The samples 

injected were previously filtered through a 0.22 µm PVDF filter. The QTOF MS system 

was operated in broadband collision-induced dissociation (bbCID) acquisition mode 

that provided MS and MS/MS spectra at the same time. All MS information was 

recorded over the m/z range of 50−1000 with a scan rate of 2 Hz. The bbCID mode 

allowed for work with two different collision energies: one with a Low Collision 

Energy (LE) of 10 eV, and a second that applies a High Collision Energy (HE) of 20 eV 

to obtain MS/MS spectra. Data from TP analysis were processed with DataAnalysis 4.2 

software. Elemental composition and double-bond equivalent (RDB) were selected. In 

most cases, possible elemental compositions for ions with a deviation of ±5 ppm of 

error were assigned. 

In a second moment, due to the higher complexity of the hospital wastewater 

and difficulties associated with the identification of compounds, the TPs generated 

during the Fenton process in RHW were also analyzed in University Jaume I (UJI-

Spain) in order to complement the present study. A Waters Acquity UHPLC system 

(Waters, Milford, MA, USA) coupled to a hybrid quadrupole-orthogonal acceleration-

TOF mass spectrometer (XEVO G2 QTOF, Waters Micromass, Manchester, UK), using 

an orthogonal Z-spray-ESI interface was used, operating in both positive and negative 

ionization modes. The chromatographic separation was performed using an Acquity 

UHPLC BEH C18 analytical column (2.1 mm × 100 mm × 1.7 μm) from Waters. The 

mobile phase employed was composed by a mixture of methanol acidified with 0.01% 
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formic acid (A) and water acidified with 0.01% formic acid (B), at a flow rate of 300 

µL/min. The initial percentage of A was 10%, which was linearly increased to 90% in 

14 min, followed by a 2 min isocratic period, and then returned to initial conditions over 

2 min. The QTOF MS was operated in both ionization modes under the following 

conditions: capillary voltages of 700 (ESI+) and 2000 V (ESI-), cone voltage of 20 V, 

desolvation temperature set to 600 °C, the source temperature to 130 °C and the column 

temperature to 40 °C. In all analyses, the injection volume was 25 μL. The samples 

injected were previously filtered through a 0.22 µm filter.  

For MSE experiments, two acquisition functions with different collision energies 

were selected. The low energy function (LE), selecting a collision energy of 4 eV, and 

the high energy (HE) function, with a collision energy ramp ranging from 15 to 40 eV 

were used, in order to obtain a greater range of fragment ions. The LE and HE functions 

settings were both for a scan time of 0.4 s. Mass data was acquired with MassLynx v 

4.1 (Waters) and all data were processed by ChromaLynx application manager (within 

MassLynx v 4.1). In all cases, possible elemental compositions for ions with a deviation 

of 2 mDa were assigned. 

 

2.5 Predicted biodegradability and the toxicological risk of TPs 

Toxtree software (version 2.6.13) was used to evaluate the predicted 

biodegradability (START biodegradability) and the toxicological risk (Cramer rules) of 

the TPs tentatively identified. 

 

 

3. Results and Discussion 

3.1 Doehlert design 
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In this study, the Doehlert design was applied to optimize experimental Fenton 

conditions, such as Fe2+ and H2O2 concentrations and pH, using DW matrix. Initial 

average concentration for each selected pharmaceutical was below 500 µg L-1 and the 

initial solution was prepared according was described in Section 2.1.  

Multivariate models, such as the Doehlert model, are second-order experimental 

designs, which are more complete than univariate models, since they allow the study of 

several variables simultaneously (Ferreira et al., 2004). This model reduces the number 

of experiments to be performed and it is used in conjunction with multivariate statistic 

techniques such as response surface methodology (RSM). This approach is very useful 

to optimize reaction conditions, and is based on the fit of a polynomial equation to the 

experimental data, to describe the behavior of a data set aiming at statistical previsions 

(Bezerra et al., 2008). The levels evaluated for each variable are presented in Table 1. 

 

Table 1. Variables and levels tested in Doehlert design and their respective responses as 

mineralization (%) after 60 minutes for DW matrix. 

Fe2+ levels (mg L-1) 

-1 -0.5 0 0.5 1 

5.0 7.5 10.0 12.5 15.0 

H2O2 levels (mg L-1) 

-0.866 -0.577 -0.289 0 0.289 0.577 0.866 

100 208 316 425 533 641 750 

pH levels 

-0.817 0 0.817 

2.8 3.9 5.0 

Test 
Fe2+ 

(mg L-1) 
H2O2 

(mg L-1) 
pH 

Response 

(mineralization % 

after 60 min) 

1 15.0 425.0 3.9 23.7 

2 12.5 750.0 3.9 22.0 

3 12.5 533.5 5.0 27.3 

4 5.0 425.0 3.9 19.3 

5 7.5 100.0 3.9 4.3 

6 7.5 316.5 2.8 7.5 

7 12.5 100.0 3.9 5.6 

8 12.5 316.5 2.8 13.5 
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9 7.5 750.0 3.9 7.5 

10 10.0 641.5 2.8 20.8 

11 7.5 533.5 5.0 9.3 

12 10.0 208.5 5.0 9.0 

13 10.0 425.0 3.9 20.2 

14 10.0 425.0 3.9 24.4 

15 10.0 425.0 3.9 23.4 

16 10.0 425.0 3.9 21.0 

 

Sixteen experiments were required by the Doehlert design. The mineralization 

percentage achieved in the Fenton reaction after 60 min was used as experimental 

response. The optimum conditions for the Fenton process were achieved with 12.5 mg 

L-1 of Fe2+, 533 mg L-1 of H2O2, and pH 5 (test number 3). The obtained data were used 

in RSM and the visualization of the predicted model was obtained in the graphical 

representation of the relationship between pH and H2O2 concentration (see Equation 1 

and Figure 1). This illustrates the profile in the optimization of the two variables where 

the maximum point is located within the experimental region, a relationship deemed to 

be important since both the concentration of hydrogen peroxide and pH are main factors 

for the Fenton process. The quality of the adjusted model was assessed by Analysis of 

Variance (ANOVA), allowing for the evaluation of the significance of the regression. 

This verification was carried out using electronic spreadsheets (Teófilo et al., 2006) to 

show whether the mathematical model was well adjusted to the experimental data. All 

results obtained from the Doehlert design are presented in supplementary information 

(Tables S.1.1, S.1.2, Figures S.1.1, S.1.2 and S.1.3). In this case, the present model 

explained more than 88% of the experimental data. There was a good strong match 

between the model’s predicted sensibility efficiency values and the experimental values. 

For this reason, the optimized experimental conditions (test number 3) were selected to 

evaluate Fenton reaction performance to degrade pharmaceuticals in the three water 

matrixes studied.  
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R(i,j) = (11.22) + (7.383521916)*(x(i))+(0.788176186)*(y(j)) + (-9.469458407)*(x(i)^2) 

+ ( -0.014800799)*(y(j)^2) + ( -6.48633116)*((x(i))*(y(j)))   (Equation 1) 

 

 

Figure 1. Response surface for H2O2 and pH interaction.  

 

3.2. Single iron addition  

The Fenton process was carried out at pH 5.0, using a single Fe2+ addition that 

corresponded to 12.5 mg L-1 and an initial H2O2 concentration of 533.5 mg L-1 (see 

Figure 2) in the three matrixes studied. The results showed that some pharmaceuticals 

were eliminated after 1 min of treatment. In this case, DIP and FRS showed the highest 

degradation rate in DW and SW. These data are in agreement with studies by Klamerth 

et al., (2013), where FRS exhibits rapid degradation in the first minutes of the treatment 

process. On the other hand, NMD, FXT, DZP and GFZ were more persistent in all 

matrixes evaluated.  

Experiments performed in DW showed a reduction of 27% in the initial DOC 

after 120 min. In turn, SW did not present significant mineralization until the final 
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treatment time period monitored. At this stage, for SW and RHW, 5% and 3% of the 

initial DOC was reached, respectively. Besides, at this point, for both these water 

matrixes – SW and RHW – initial H2O2 consumed was 258 mg L-1 and 270 mg L-1, 

respectively. In all cases, 533 mg L-1 of H2O2 was used to provide an excess and to 

avoid limiting the reaction. Iron(II) remained practically constant during the Fenton 

reaction in all water matrixes studied when a single dose of iron was used (see Figure 

3). Our results for H2O2 and iron(II) are in agreement with data reported by Carra et al. 

(2013) for dark Fenton and where Fenton was evaluated and compared to solar photo-

Fenton processes.  

 For RHW, it is important consider that the presence of some pharmaceuticals in 

this real wastewater was to be expected. Thus, in order to evaluate whether the model 

pharmaceuticals were already present in this matrix, another study was performed and is 

the subject of other manuscript that now is in preparation. These preliminary analyses 

indicated that paracetamol, dipyrone and diazepam are the only pharmaceuticals that 

were presented in the RHW matrix. However, since the degradation of these and other 

drugs selected for study was monitored by the reduction of the peak area in relation to 

the initial area, the efficiency of the treatment process took into account the potential 

additional loading of these three analytes. 

In this context, it is important to highlight that in this study it was decided to 

carry out the direct injection of initial and degraded samples from all water matrixes 

evaluated; that is, no extraction and/or pre-concentration method was performed in the 

present study. This option aimed to provide minimum manipulation of the samples, and 

thus reduce the possibility of losses of the initial pharmaceuticals and, principally, their 

TPs. Additionally, according Togolla et al. (2014), Solid Phase Extraction (SPE) 

techniques are therefore used, but require large quantities of samples, and in our case, as 
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the experiments were performed in batch and with an initial volume of 1L, these 

conditions did not favor the application of SPE techniques. 

 

 

 

 



 

 16 

Figure 2. Pharmaceuticals degradation during the Fenton process using single iron 

addition (Fe2+ 12.5 mg L-1; H2O2 533 mg L-1 and pH 5) for all water matrixes evaluated.  

 

 

 

 
Figure 3. Total iron, H2O2 consumption and DOC/DOC0 ratio determined during 

Fenton process for three different water matrixes evaluated using single iron addition 

(Fe2+ 12.5 mg L-1; H2O2 533 mg L-1 and pH 5). 

 

The discrete efficiency of the Fenton process in RHW and, especially in SW 

matrixes, could be justified by the presence of organic matter and different ionic species 

(Sirtori et al., 2010). Also, according to Bang et al. (2016), the presence of natural 

organic matter has a negative effect on the removal of some compounds. In their study, 

the authors demonstrated that the removal was inversely proportional to the TOC 

concentration in the synthetic water used in their study. Thus, the presence of natural 

organic matter caused a significant increase in energy consumption, due to the strong 

absorption properties and the high reactivity with OH radicals in the treatment process 

evaluated by the authors. In our results, the effect of the water matrix composition on 

the pharmaceutical degradation during the Fenton process was quite prominent. 
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In this context, according to Zhang et al. (2016) and García-Muñoz et al. (2017), 

pharmaceuticals are much more reactive than the other organic content present in 

complex wastewaters (real or simulated) during different advanced treatment processes. 

Moreover, Lanzafame et al. (2017) demonstrated that different ions commonly found in 

wastewater, such as chloride or carbonate among others, can act as scavengers of the 

hydroxyl radicals and lead to the formation of species such as Cl2•
– and CO3•

– 

(significantly less reactive than the hydroxyl radical). This would lead to lower 

degradation of pharmaceuticals in SW. In addition, the presence of phosphate could lead 

to decreasing iron solubility, due to the increase in inter-ionic forces in the solution, 

decreasing the efficiency of the treatment process. In this case, RHW contains 

13.98 mg L-1 of phosphates, unlike the SW matrix which does not contain phosphate.  

Thus, in order to increase the efficiency of the process, the single addition assay 

was repeated using an initial concentration of iron at 37.5 mg L-1, maintaining the initial 

H2O2 at 533 mg L-1 (since it had already been added in excess and was only partially 

consumed after 120 min of treatment) and pH 5. Only DW matrix was evaluated with a 

higher initial concentration of iron (37.5 mg L-1) and the results are shown in Figure 4. 

In this case it is observed that the increase in iron(II) concentration from 12.5 to 37.5 

mg L-1 as initial single addition favored the increase of the mineralization by 12%. On 

the other hand, when multiple iron(II) additions (with a total final concentration of 37.5 

mg L-1 of Fe (II)) was tested, 39% of the initial organic content was mineralized. These 

results indicated that higher concentrations of iron(II) in multiple additions favor the 

Fenton process. 
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Figure 4. Total iron, H2O2 consumption and DOC/DOC0 ratio determined during 

Fenton process for DW matrix using single addition (Fe2+ 12.5 mg L-1) and single 

addition (Fe2+ 37.5 mg L-1) and multiple iron addition (Fe2+ 37.5 mg L-1). All 

experiments were performed using pH 5 and initial H2O2 concentration of 533 mg L-1. 

 

 

3.3 Multiple iron additions  

In an attempt to improve pharmaceutical degradation by the Fenton process, 

multiple iron(II) additions were made with the same initial H2O2 concentration of 533 

mg L-1, based on studies of sequential iron dosage as a strategy for the successful 

removal of environmental pollutants at neutral pH (Carra et al., 2013). Different iron 

dosages were performed (0 min: 12.5 mgL-1; 5 min: 6.25 mgL-1; 10 min: 6.25 mgL-1; 15 

min: 6.25 mgL-1; 25 min: 6.25 mgL-1) for a total iron dose of 37.5 mg L-1. This strategy 

was evaluated because, as is known, the periodic addition of iron(II) to the water 

maintains a stable catalyst concentration (ferrous ions), reflected in superior efficiency 

of the treatment process.  

DIP, FRS and PPN showed the highest degradation rate in the three matrixes 

(Figure 5), and they exhibited rapid degradation in the initial treatment time range. On 

0 20 40 60 80 100 120

0

5

10

15

20

25

30

35

40

0

50

100

150

200

250

300

350

400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
2 O

2
 c

o
n

s
u

m
e
d

 (m
g

 L
-1)

DOC H
2
O

2
 Fe

D
O

C
/D

O
C

0
T

o
ta

l 
F

e
 (

m
g

 L
-1
)

Time (min)

 

 

 

 Fe(II) (12.5 mg L
1
) Single addition

 Fe(II) (37.5 mg L
1
) Single addition

 Fe(II) (37.5 mg L
1
) Multiple addition

 

 

 

 



 

 19 

the other hand, PCT, NMD, FXT, DZP and GFZ were more persistent in RHW. It 

seems that increasing the concentration of iron available in the system by successive 

iron additions favors the formation of hydroxyl radicals, as long as there is an excess of 

hydrogen peroxide in the reaction medium. Consequently, a greater degree of oxidation 

of the contaminants was achieved.  

Experiments performed in DW matrix showed a DOC reduction of 40% after 

120 min. In turn, SW and RHW presented a moderated mineralization (around 15%) 

until the final treatment time period monitored (see Figure 6). At the final treatment 

time, H2O2 consumption was 225.2, 328.4 and 223.8 mg L-1 for DW, SW and RHW, 

respectively. Iron concentration was reduced by 10% only at 120 min for RHW (final 

concentration was 33.4 mg L-1).  

 
 

 

DW 
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Figure 5. Pharmaceuticals degradation during the Fenton process using multiple iron 

additions (Fe2+  37.5mg L-1; H2O2  533 mg L-1 and pH 5) for all water matrices 

evaluated.  

 

RHW 
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Figure 6. Total iron, H2O2 consumption and DOC determined during Fenton process 

for three different water matrixes evaluated using multiple iron additions (Fe2+ 37.5mg 

L-1; H2O2 533 mg L-1 and pH 5). 

 

3.4 Transformation Products  

In order to detect the presence of possible TPs formed, samples from each 

experiment were analyzed by a UHPLC-QTOF MS instrument operating in positive and 

negative ionization modes, as previously described in Section 2.4. A purpose-built 

database containing a total of 97 TPs reported in the literature for the eight 

pharmaceuticals under study was elaborated. The purpose-built database included the 

elemental composition of the TPs as well as information about the product ions reported 

for these species, if available (for more details, see Table S.2.1 - Supporting 

Information).  

It is important to note that, in general, in studies where transformation products 

are proposed, as mentioned in the introduction, only one drug is normally used at high 

initial concentrations (in the order of tens of mg L-1). These individual studies 
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valuable data that were used as a data source for the purpose-built database. Thus, once 

the purpose-built database was elaborated, the data processing was adapted from other 

previous studies that used this tool to qualitatively identify the presence of different 

compounds (such as pharmaceuticals, pesticides, metabolites, among others, with or 

without analytical standard available) (Hernández et al., 2014; Díaz et al., 2013). Thus, 

as far as is known, the elaboration and use of a purpose-built database for tentative 

identification of different TPs generated by AOPs is a new strategy that allows the 

degradation of pharmaceuticals simultaneously and in concentrations closer to those 

found in hospital effluents (Mendoza et al., 2015). For this reason, it can be considered 

that the present work, by bringing this additional aspect of the use of the purpose-built 

database, from an analytical point of view, provides a new application for an automated 

method for the search for TPs.  

Table 2 summarizes the analytical information relative to the TPs identified in 

all water matrixes studied, such as elemental composition, theoretical and experimental 

accurate masses of the ions, their respective errors in ppm and double bond equivalents 

(DBE) provided by the software. The low mass errors observed (below 5ppm in most 

cases), allowed for the correct assignation of the elemental compositions. 

 

Table 2. TPs identified during the Fenton process treatment by UHPLC-QTOF MS 

using the proposed-built database. 

 

Compound 

Elemental 

composition 

[M+H]+/ [M-H]- 

Ion Mass (m/z) 
Error 

(ppm) 
DBE* 

Ionization 

mode 

Matrices 

occurrence 
Experimental Calculated 

TP3 PPN C6H16NO2 134.1175 134.1176 0.4 0.5 P DW 

 C6H14NO 116.1069 116.1070 -0.3 0.5   

 C6H12N 98.0974 98.0964 -9.5 1.5   

 C3H8NO 74.0603 74.0600 -1.5 0.5   

 C4H10N 72.0807 72.0808 0.6 0.5   

 C3H6N 56.0492 56.0495 4.7 1.5   
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TP6 PPN C16H22NO4 292.1545 292.1543 -0.7 6.5 P DW, SW, 

RHW 

 C10H7O2 159.0422 159.0441 11.7 7.5   

 C9H7O 131.0490 72.0808 -4.1 0.5   

 C6H14NO 116.1067 116.1070 2.8 0.5   

 C8H7 103.0536 103.0542 5.8 5.5   

 C6H12N 98.0968 98.0964 -4.3 1.5   

 C4H10N 72.0806 72.0808 1.9 0.5   

 C3H6N 56.0496 56.0495 -2.9 1.5   

TP7 PPN C14H20NO4 266.1394 266.1387 -1.7 5.5 P DW, SW, 

RHW 

 C6H12N 98.0969 98.0964 -4.7 1.5   

 C3H8NO 74.0610 74.0600 -13.1 0.5   

 C4H10N 72.0813 72.0808 -6.7 0.5   

TP19 PPN 

or 

TP5 PPN 

C14H20NO5 282.1340 282.1336 -1.4 5.5 P DW, SW, 

RHW 

 C6H14NO 116.107 116.107 0.3 0.5   

 C6H12N 98.0969 98.0964 -4.6 1.5   

 C4H10N 72.0811 72.0808 -4.0 0.5   

 C5H6N 56.0495 56.0495 -0.6 1.5   

TP26 PPN C16H22NO5 308.1501 308.1492 -2.8 6.5 P DW, SW, 

RHW 

 C9H7O2* 147.0456* 147.0446* 6.8* 6.5*   

 C6H14NO 116.1072 116.1070 -1.5 0.5   

 C4H10N 72.0811 72.0808 -4.1 0.5   

 C3H6N 56.0491 56.0495 5.9 1.5   

TP1 FXT C17H19F3NO2 326.1368 326.1362 -1.4 7.5 P DW, RHW 

 C10H14NO 164.1067 164.1070 1.5 4.5   

 C9H9O 133.0657 133.0648 -6.9 5.5   

 C3H7O 59.0493 59.0491 -2.9 0.5   

TP1 NMD C13H11N2O6S 323.0333 323.0343 3.2 9.5 N DW, RHW 

 C12H9N2O4 245.0563 245.0568 1.9 9.5   

 C10H4N3O2S 229.9993 230.0030 16.0 10.5   

TP6 PCT C8H8NO5 198.0404 198.0408 1.8 5.5 N DW 

 C8H5O5 181.0136 181.0142 3.5 6.5   

 C7H8NO3 154.0526 154.0510 -10.5 4.5   

 C6H6NO3 140.0355 140.0353 -1.4 4.5   

TP1 GFZ C15H21O4 265.1481 265.1445 -13.3 5.5 N DW, RHW 
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TP3 GFZ C8H9O2 137.0606 137.0608 1.7 4.5 N DW 

TP7 GFZ C15H19O4 263.1277 263.1289 4.6 6.5 N DW 

 C8H9O 121.0670 121.0659 -9.2 4.5   

TP8 GFZ C9H9O3 165.0580 165.0557 -14.1 5.5 N DW 

* For more information see Figure S 2.2 (supporting information).  

 

As it has been previously indicated, only those by-products that had been 

previously reported in the literature were sought (Santiago-Morales et al., 2013; Zhao et 

al., 2017; Sun et al., 2016; Moctezuma et al., 2012; Najjar et al., 2014; Chen et al., 

2017). Likewise, in this study, the data processing to identify some TPs was adapted 

with some modifications from Ibáñez et al. (2017) and Llorca et al. (2016). An 

automatic screening for peak detection was performed, and a mass error of the 

suspected TPs (± 5ppm) was used. As shown in Table 2, 12 TPs were found in the 

matrixes studied.  

As Table 2 shows, four TPs were identified in the three types of water tested, 

three more TPs were identified in DW and RHW only, and four TPs were found in DW 

only. The fact that more TPs were present in DW might be explained by the formation 

of a greater number of OH radicals, which in turn provided a greater degradation and 

mineralization of the pharmaceuticals. Consequently, a greater number of TPs were 

detected in that matrix. In addition, the composition of the other matrixes could favor 

ion suppression effects that would have an effect on the lower number of TPs observed 

for SW and RHW. 

According to our results, a total of five TPs were found for PPN (see Figure 

S.2.1). Of these, three (TP3 PPN, TP6 PPN and TP7 PPN) could be associated with 

photocatalytic by-products using Ce-doped TiO2 as catalyst, as reported by Santiago-

Morales et al. (2013). The fourth of the TPs (m/z 282.1336 Da, C14H20NO5) could not be 

fully elucidated because two isomeric compounds were plausible (TP5 PPN or TP19 
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PPN). Both of them present similar fragmentation, with few specific characteristic 

fragments. Unfortunately, specific fragments of the suspected TPs were not observed, 

making it to unfeasible to identify which of the two TPs was involved. 

The last PPN TP corresponded to m/z 308.1492 Da, with an elemental 

composition C16H22NO5. It might correspond to TP26 PPN or TP27 PPN. In this case, 

the complementary QTOF analysis performed at UJI allowed for the identification of 

the characteristic signal fragment (m/z 147.0446, C9H7O2) of TP26 PPN. Accurate mass 

spectra obtained for TP26 PPN at high collision energy are shown in Figure S 2.2 

(Supporting Information). 

Regarding FXT, only one TP was observed. TP1 FXT exhibited an m/z of 

326.1368 Da, corresponding to the elemental composition C17H19F3NO2. This TP had  

been previously identified by Zhao et al. (2017) as an intermediate product 

generated after ozonation processes at different pHs. In that study, the authors also 

indicated that generation of this hydroxylated TP was enhanced with increasing pH, by 

increasing the concentration of hydroxyl radicals in the alkaline medium of the 

treatment process. 

In addition to the TPs discussed above, and identified in positive mode, six more 

TPs were identified in negative ionization mode: one for NMD and PCT and four for 

GFZ. TP1 NMD showed an accurate mass of 323.0338 Da, corresponding to an 

elemental composition of C13H11N2O6S (expressed as deprotonated molecule). This 

hydroxylated metabolite was one of the major compounds observed in human plasma 

by Sun et al. (2016), after administration of NMD. Thus, it seems that this metabolite 

can also be considered a transformation product from the Fenton degradation. 

In the case of paracetamol, the identified TP was TP6 PCT (m/z 198.0404 Da, 

C8H8NO5). This TP was previously identified as a transformation product generated by 
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photocatalytic degradation (UV–TiO2) (Moctezuma et al., 2012) and ozonation, or a 

UV–H2O2 TP of PCT in aqueous medium (Najjar et al., 2014). 

For the GFZ, four identified TPs (TP1 GFZ, TP3 GFZ, TP7 GFZ and TP8 GFZ) 

were by-products previously found by Cheng et al. (2017) in the degradation of 

gemfibrozil by photocatalysis mediated by sunlight-driven TiO2 (carbon dots 

photocatalyst). These TPs showed reduced fragmentation, even when employing high 

collision-energy HE, as can be seen in Figure S.2.1. 

It is possible that other TPs could have been produced during treatment with the 

Fenton process in all matrixes evaluated. However, they were not detected definitively 

due to their low persistence throughout the process, or to their formation in very small 

concentrations. It must be pointed out that analyses were made by direct injection of the 

samples, without any type of pre-concentration, in order to minimize potential losses of 

TPs of different polarities associated with the sample treatment. 

 Finally, tentatively identified TPs were evaluated by Toxtree software (version 

2.6.13), which determined, based on predictions of the chemical structure of the 

molecule to be analyzed, the biodegradability (START biodegradability) and the 

toxicological risk (Cramer rules) that each TP offers. This strategy was previously 

employed by Urbano et al. (2017) for toxicity and biodegradability determination of 

some TPs of sulfaquinoxaline generated by an ozonation process. The results obtained 

by the Toxtree software for TPs tentatively identified in the present study can be seen in 

Table 3.  

The transformation products TP6 PPN, TP1 FXT, TP1 NMD, TP6 PCT, and 

TP3 GFZ were classified as highly toxic according to Cramer's rules. These TPs are 

substances that have significant toxicity, or still have reactive functional groups. In turn, 

TP1 GFZ has been classified as of intermediate toxicity; that is, it is clearly less 
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innocuous than those of Class I, but does not provide either a positive indication of 

toxicity, or a lack of those characteristics in Class III. Finally, TP3 PPN, TP7 PPN, TP7 

GFZ and TP8 GFZ were classified as Class I. Compounds classified as Class I are 

substances with those structures and related data suggesting a low order of oral toxicity. 

If combined with low human exposure, they should not present a particular priority for 

research (Cramer et al., 1978). 

Evaluating the biodegradability of the different TPs it was observed that TP3 

PPN, TP6 PPN, TP1 FXT and TP1 NMD were classified as persistent substances. The 

other TPs (TP7 PPN, TP6 PCT, TP1 GFZ, TP3 GFZ, TP7 GFZ and TP8 GFZ) which 

were present in greater amounts, in turn, were considered to be readily biodegradable. 

This capability of the Fenton process, and of AOPs in general, to favor the formation of 

more biodegradable substances is an important aspect already reported in previous 

studies (Sirtori et al., 2010; Zapata et al., 2010). 

 

Table 3. Toxicological risk (Cramer rules) and START biodegrability determined by 

the TPs generated during Fenton process. 

TP Chemical structure 
Toxicological 

risk 

START 

biodegrability 

TP3 PPN 

 

Low (class I) 

Persistent 

chemical 

(class 2) 

TP6 PPN 

 

High 

(class III) 

Persistent 

chemical 

(class 2) 

TP7 PPN 

 

Low (class I) 

Easily 

biodegradable 

chemical 

(class 1) 
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TP1 FXT 

 

High 

(class III) 

Persistent 

chemical 

(class 2) 

TP1 NMD 

 

High 

(class III) 

Persistent 

chemical 

(class 2) 

TP6 PCT 

 

High 

(class III) 

Easily 

biodegradable 

chemical 

(class 1) 

TP1 GFZ 

 

Intermediate 

(class II) 

Easily 

biodegradable 

chemical 

(class 1) 

TP3 GFZ 

 

High 

(class III) 

Easily 

biodegradable 

chemical 

(class 1) 

TP7 GFZ 

 

Low (class I) 

Easily 

biodegradable 

chemical 

(class 1) 

TP8 GFZ 

 

Low (class I) 

Easily 

biodegradable 

chemical 

(class 1) 

 

Conclusions 

In this work, the optimum experimental conditions to perform the Fenton 

process on three different waster matrixes containing eight pharmaceuticals were 
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achieved using a Doehlert model. For the DW matrix, the treatment process using 

increased and multiple Iron(II) additions studied showed an efficient mineralization rate 

and degradation of the selected pharmaceuticals. A less favorable behavior was 

observed for the other matrixes under study (SW and RHW). The purpose-built 

database containing up to 97 TPs was elaborated for analysis of the samples by 

UHPLC-QTOF MS. This allowed identification of 12 TPs generated during the Fenton 

process, making use of the accurate masses and fragmentation behavior. Most TPs 

identified were hydroxylation products of the pharmaceuticals initially present, and 

these compounds were classified as high toxicity (Cramer rules). Finally, the 

biodegradability assessment (START biodegradability) indicated that most TPs 

generated by the Fenton process are readily biodegradable. 

 

Acknowledgments 

The authors wish to thank the Brazilian Ministry of Science, Technology, 

Innovation and Communications-CNPq (Processo: 403051/2016-9) and Mrs. Eng. 

Tainá Flores da Rosa and HCPA for the RHW. Carla Sirtori thanks the CNPq for her 

Research grant (Processo: 303474/2015-7) and thanks the CAPES Foundation for her 

Postdoctoral Research grant (Processo: 88881.119908/2016-01). Elisabeth Cuervo 

Lumbaque thanks the CAPES Foundation for her PhD. Research grant. The authors 

from UJI acknowledge the financial support from Generalitat Valenciana (Research 

Group of Excellence, PrometeoII/2014/023). 

 

References 

Andreozzi R., Raffaele M., Nicklas P., 2003. Pharmaceuticals in STP effluents and their 

solar photodegradation in aquatic environment. Chemosphere. 50, 1319-1330. 



 

 30 

APHA – Standart Methods for the examination of water and wastewater, 19th  edition,  

3500D,  1995. 

Bang, H., Slokar, Y.M., Ferrero, G., Kruithof, J.C., Kennedy, M.D. 2016. Removal of 

taste and odor causing compounds by UV/H2O2 treatment: effect of the organic 

and  inorganic water matrix. Desalin. Water Treat. 57, 1-10. 

Barceló, D., 2003. Emerging pollutants in water analysis. TrAC Trends Analyt. Chem. 

22, xiv-xvi. 

Bartelt-Hunt S.L., Snow D.D., Damon T., Shockley J., Hoagland K., 2009. The 

occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and 

surface waters in Nebraska. Environ. Pollut. 157, 786-791. 

Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A., 2008. 

Response surface methodology (RSM) as a tool for optimization in analytical 

chemistry. Talanta76, 965-977. 

Bueno M.J.M., Agüera A., Gómez M.J., Hernando M.D., García J.F., Fernández-Alba 

A.R., 2007. Application of Liquid Chromatography/Quadrupole-Linear Ion Trap 

Mass Spectrometry and Time-of-Flight Mass Spectrometry to the determination 

of pharmaceuticals and related contaminants in wastewater. Anal. Chem. 79, 

9372-9384. 

Carra, I., Casas López, J.L., Santos-Juanes, L., Malato, S., Sánchez Pérez, J.A., 2013. 

Iron dosage as a strategy to operate the photo-Fenton process at initial neutral 

pH. Chem. Eng. J. 224, 67–74. 

Carraro, E., Bonetta, S., Bertino, C., Lorenzi, E., Bonetta, S., Gilli, G., 2016. Hospital 

effluents management: Chemical, physical, microbiological risks and legislation 

in different countries. J. Environ. Manage. 168, 185-199.  



 

 31 

Castiglioni S., Bagnati R., Calamari D., Fanelli R., Zuccato E., 2005. A multiresidue 

analytical method using solid-phase extraction and high-pressure liquid 

chromatography tandem mass spectrometry to measure pharmaceuticals of 

different therapeutic classes in urban wastewaters. J. Chromatogr. A.  1092, 206-

215. 

Chen, P., Wang, F., Chen, Z.-F., Zhang, Q., Su, Y., Shen, L., Yao, K., Liu, Y., Cai, Z., 

Lv, W., Liu, G., 2017. Study on the photocatalytic mechanism and detoxicity of 

gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: The significant 

roles of reactive oxygen species. Appl. Catal. B Environ. 204, 250–275. 

Clarizia, L., Russo, D.,  Di Somma, I., Marotta, R., Andreozzi, R., 2017. Homogeneous 

photo-Fenton processes at near neutral pH: A review. Appl. Catal. B Environ. 

209, 358–371 

Cramer, G.M., Ford, R.A., Hall, R.L., 1978. Estimation of toxic hazard – a decision tree 

approach. Fd. Cosmet. Toxicol. 16, 255-276. 

Diaz, R., Ibáñez, M., Sancho, J.V., Hernández, F., 2013. Qualitative validation of a 

liquid chromatography–quadrupole-time of flight mass spectrometry screening 

method for organic pollutants in waters. J. Chromatogr. A. 1276, 47-57 

 El Najjar, N.H., Touffet, A., Deborde, M., Journel, R., Vel Leitner, N.K., 2014. 

Kinetics of paracetamol oxidation by ozone and hydroxyl radicals, formation of 

transformation products and toxicity. Sep. Purif. Technol.136, 137-143. 

Elmolla, E.S., Chaudhuri, M., 2009. Degradation of the antibiotics amoxicillin, 

ampicillin and cloxacillin in aqueous solution by the photo-Fenton process. J. 

Hazard. Mater. 172(2–3), 1476-1481.  



 

 32 

Escher, B. I., Baumgartner, R., Koller, M., Treyer, K., Lienert, J., McArdell, C.S., 2011. 

Environmental toxicology and risk assessment of pharmaceuticals from hospital 

wastewater. Water Res. 45(1), 75-92.  

Farré M., Ferrer I., Ginebreda A., Figueras M., Olivella L., Tirepu L., Vilanova M., 

Barceló D., 2001. Determination of drugs in surface water and wastewater 

samples by liquid chromatography-mass spectrometry: methods and preliminary 

results including toxicity studies with Vibrio fischeri. J. Chromatogr. A. 938, 

187-197. 

Fatta-Kassinos, D., Vasquez, M.I., Kümmerer, K., 2011. Transformation products of 

pharmaceuticals in surface waters and wastewater formed during photolysis and 

advanced oxidation processes – Degradation, elucidation of byproducts and 

assessment of their biological potency. Chemosphere, 85 (5), 693-709. 

Ferreira, S.L.C., dos Santos, W.N.L., Quintella, C.M., Neto, B.B., Bosque-Sendra, J.M., 

2004. Doehlert matrix: a chemometric tool for analytical chemistry-review. 

Talanta 63, 1061–1067. 

Gago-Ferrero, P., Schymanski, E.L., Hollender, J., Thomaidis, N.S., 2016. Chapter 13: 

Non target Analysis of Environmental Samples Based on Liquid 

Chromatography Coupled to High Resolution Mass Spectrometry (LC-HRMS), 

Comprehensive Analytical Chemistry.71, 381-403. 

Gallard H., De Laat J., Legube B., 1998. Influence du pH sur la vitsse d´oxydation de 

composes organiques par FeII/H2O2. Mechanismes reactionnels et modelization. 

New J. Chem.  263-268. 

García-Galán, M.J., Anfruns, A., Gonzalez-Olmos, R., Rodríguez-Mozaz, S., Comas, J., 

2016. UV/H2O2 degradation of the antidepressants venlafaxine and O-



 

 33 

desmethylvenlafaxine: Elucidation of their transformation pathway and 

environmental fate. J. Hazard Mater. 311, 70-80. 

García-Muñoz, P., Pliego, G., Zazo, J.A., Munoz, M., de Pedro, Z.H., Bahamonde, A., 

Casas, J.A. 2017.  Treatment of hospital wastewater through the CWPO-

photoassisted process catalyzed by ilmenite. J. Environ. Chem. Eng., In Press, 

Available online 24 August 2017. 

Giannakis, S., Gamarra Vives, F. A., Grandjean, D., Magnet, A., De Alencastro, L. F., 

Pulgarin, C., 2015. Effect of advanced oxidation processes on the 

micropollutants and the effluent organic matter contained in municipal 

wastewater previously treated by three different secondary methods. Water Res. 

84, 295-306.  

Gómez M.J., Bueno M.J.M., Lacorte S., Fernández-Alba A.R., Agüera A., 2007. Pilot 

survey monitoring pharmaceuticals and related compounds in a sewage 

treatment plant located on the Mediterranean coast. Chemosphere. 66, 993-1002. 

Gros M., Petrovic M., Barceló D., 2006. Development of a multi-residue analytical 

methodology based on liquid chromatography-tandem mass spectrometry (LC-

MS/MS) for screening and trace level determination of pharmaceuticals in 

surface and wastewaters. Talanta. 70, 678-690.  

Gupta, A., Garg, A., 2018. Degradation of ciprofloxacin using Fenton's oxidation: 

Effect of operating parameters, identification of oxidized by-products and 

toxicity assessment. Chemosphere, 193,  1181-1188. 

Gupta, P., Mathur, N., Bhatnagar, P., Nagar, P., Srivastava, S., 2009. Genotoxicity 

evaluation of hospital wastewaters. Ecotoxicol Environ Saf. 72(7), 1925-1932.  

Heberer T., 2002. Occurrence, fate, and removal of pharmaceutical residues in the 

aquatic environment: a review of recent research data. Toxicol. Lett. 131, 5–17. 



 

 34 

Hernández, F., Ibáñez, M., Bade, R., Bijlsma, L., Sancho, J.V., 2014. Investigation of 

pharmaceuticals and illicit drugs in waters by liquid chromatography-high-

resolution mass spectrometry. TrAC Trends Anal. Chem. 63, 140-157. 

Ibáñez, M., Borova, V.,Boix, C., Aalizadeh, R., Bade, R., Thomaidis, N.S., Hernández, 

F., 2017. UHPLC-QTOF MS screening of pharmaceuticals and their metabolites 

in treated wastewater samples from Athens. J. Hazard Mater. 323, 26-35. 

ISO 6332, Water quality - Determination of iron - Spectrometric method using 1,10-

phenanthroline, 1988. 

Jallouli,  N., Elghniji, K., Hentati, O., Ribeiro, A.R., Silva, A.M.T., Ksibi, M., 2016. 

UV and solar photo-degradation of naproxen: TiO2 catalyst effect, reaction 

kinetics, products identification and toxicity assessment. J. Hazard Mater. 304, 

329–336.  

Kern, D.I., Schwaickhardt, R.d.O., Mohr, G., Lobo, E.A., Kist, L. T., Machado, Ê.L., 

2013. Toxicity and genotoxicity of hospital laundry wastewaters treated with 

photocatalytic ozonation. Sci Total Environ. 443, 566-572.  

Kim S.D., Cho J., Kim I.S., Vanderford B.J., Snyder S.A., 2007. Occurrence and 

removal of pharmaceuticals and endocrine disruptors in South Korean surface, 

drinking and waste waters. Water Res. 41, 1013-1021. 

Klamerth, N., Malato, S., Agüera, A., Fernández-Alba, A., 2013. Photo-Fenton and 

modified photo-Fenton at neutral pH for the treatment of emerging contaminants 

in wastewater treatment plant effluents: A comparison.Water Res.47, 833–840. 

Klavarioti, M., Mantzavinos, D., Kassinos, D., 2009. Removal of residual 

pharmaceuticals from aqueous systems by advanced oxidation processes. 

Environ. Int. 35, 402–417. 



 

 35 

Lacey C., McMahon G., Bones J., Barron L., Morrissey A., Tobin J.M, 2008. An LC–

MS method for the determination of pharmaceutical compounds in wastewater 

treatment plant influent and effluent samples. Talanta. 75, 1089-1097. 

Langford, K. H., Thomas, K.V., 2009. Determination of pharmaceutical compounds in 

hospital effluents and their contribution to wastewater treatment works. Environ. 

Int. 35(5), 766-770.  

Lanzafame, G.M., Sarakha, M., Fabbri, D., Vione, D., 2017. Degradation of Methyl 2-

Aminobenzoate (Methyl Anthranilate) by H2O2/UV: Effect of Inorganic Anions 

and Derived Radicals. Molecules 22, 619. 

Li, W., Nanaboina, V., Zhou, Q., Korshin, G.V., 2012. Effects of Fenton treatment on 

the properties of effluent organic matter and their relationships with the 

degradation of pharmaceuticals and personal care products. Water Res. 46, 403-

412.  

Lin, A. Y.-C., Wang, X.-H., Lin, C.-F., 2010. Impact of wastewaters and hospital 

effluents on the occurrence of controlled substances in surface waters. 

Chemosphere. 81(5), 562-570.  

Lishman L., Smyth S.A., Sarafin K., Kleywegt S., Toito J., Peart T., Lee B., Servos M., 

Beland M., Seto P., 2006. Occurrence and reductions of pharmaceuticals and 

personal care products and estrogens by municipal wastewater treatment plants 

in Ontario, Canada. Sci Total Environ. 367, 544-558. 

Marković, M., Jović, M., Stanković, D., Kovačević, V., Roglić, G., Gojgić-Cvijović, G., 

Manojlović, D., 2015. Application of non-thermal plasma reactor and Fenton 

reaction for degradation of ibuprofen. Sci Total Environ. 505, 1148-1155.  

Mendoza, A., Aceña, J., Pérez, S., López de Alda, M., Barceló, D., Gil, A., Valcárcel, 

Y., 2015. Pharmaceuticals and iodinated contrast media in a hospital 



 

 36 

wastewater: A case study to analyse their presence and characterise their 

environmental risk and hazard. Environ Res. 140, 225-241.  

Metcalfe C.D., Miao X.S., W., H.,R.,L., 2004. Pharmaceuticals in the Canadian 

environment in Pharmaceuticals in the environment- Sources, fate, effects and 

risks. Kümmerer K. (ed). Berlin, Heidelberg, New York: Springer, pp. 67-90. 

Miralles-Cuevas, S., Audino, F., Oller, I., Sánchez-Moreno, R., Sánchez Pérez, J. A., 

Malato, S., 2014a. Pharmaceuticals removal from natural water by nanofiltration 

combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-

like Fe(III)–EDDS complex and ozonation). Sep. Purif. Technol. 122, 515-522.  

Miralles-Cuevas, S., Oller, I., Pérez, J. A. S., & Malato, S., 2014b. Removal of 

pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton 

using two different iron complexes at neutral pH. Water Res. 64, 23-31. 

Mirzaei, A., Chen, Z., Haghighat, F., Yerushalmi. L., 2017. Removal of 

pharmaceuticals from water by homo/heterogonous Fenton-type processes: A 

review. Chemosphere, 174, 665-688.  

Moctezuma, E., Leyva, E., Aguilar, C.A., Luna, R.A., Montalvo, C., 2012. 

Photocatalytic degradation of paracetamol: Intermediates and total reaction 

mechanism. J. Hazard Mater. 243, 130-138. 

Nogueira, R., Oliveira, M., Paterlini, W., 2005. Simple and fast spectrophotometric 

determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 

66, 86–91. 

OECD Guidelinesfor Testing of Chemicals, Simulation Test-Aerobic Sewage Treatment 

303ª, 1999. 



 

 37 

Ostra, M., Ubide, C., Zuriarrain, J., 2007. Interference modelling, experimental design 

and pre-concentration steps in validation of the Fenton’s reagent for pesticides 

determination. Anal. Chim. Acta 584, 228–235. 

 Perini, J.A.L., Tonetti, A.L., Vidal, C., Montagner, C.C., Nogueira. R.F.P., 2018. 

Simultaneous degradation of ciprofloxacin, amoxicillin, sulfathiazole and 

sulfamethazine, and disinfection of hospital effluent after biological treatment 

via photo-Fenton process under ultraviolet germicidal irradiation. Appl. Catal. B 

Environ. 224, 761–771 

Rahim Pouran, S., Abdul Aziz, A.R., Wan Daud, W.M.A., 2015. Review on the main 

advances in photo-Fenton oxidation system for recalcitrant wastewaters. J. Ind. 

Eng. Chem. 21, 53-69.  

Roberts P.H., Thomas K.V., 2006. The occurrence of selected pharmaceuticals in 

wastewater effluent and surface waters of the lower Tyne catchment. Sci Total 

Environ. 356, 143-153. 

Santiago-Morales, J., Agüera, A., Gómez, M del M., Fernández-Alba, A.R., Giménez, 

J., Esplugas, S., Rosal, R., 2013. Transformation products and reaction kinetics 

in simulated solar light photocatalytic degradation of propranolol using Ce-

doped TiO2. Appl. Catal. B Environ.129, 13–29. 

Santos J.L., Aparicio I., Alonso E., Callejón M., 2005. Simultaneous determination of 

pharmaceutically active compounds in wastewater simples by solid extraction 

and highperformance liquid chromatography with diode array and fluorescence 

detectors. Anal. Chim. Acta. 550, 116-122. 

Santos, L.H.M.L.M., Gros, M., Rodriguez-Mozaz, S., Delerue-Matos, C., Pena, A., 

Barceló, D., Montenegro, M.C.B.S.M., 2013. Contribution of hospital effluents 



 

 38 

to the load of pharmaceuticals in urban wastewaters: Identification of 

ecologically relevant pharmaceuticals. Sci Total Environ. 461–462, 302-316.  

Sedlak D.L., Pinkston K., Huang C.H., 2005. Occurrence survey of pharmaceutically 

active compounds. Denver, CO: Awwa Research Foundation. 

Sirtori, C., Zapata, A., Gernjak, W., Malato, S., Lopez, A., Agüera, A., 2010. Solar 

photo-Fenton degradation of nalidixic acid in waters and wastewaters of 

different composition. Analytical assessment by LC TOF-MS. Water Res. 45, 

1736-1744. 

Spongberg A.L., Witter J.D., 2008. Pharmaceutical compounds in the wastewater 

process stream in Northwest Ohio. Sci Total Environ., 397, 148-157. 

Sui Q., Huang J., Deng S., Yu G., Fan Q., 2010. Occurrence and removal of 

pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, 

China. Water Res. 44, 417-426. 

Sun, X. Xue, K-L., Jiao, X-Y., Chen, Q., Xu, L., Zheng, H., Ding, Y-F., 2016. 

Simultaneous determination of nimesulide and its four possible metabolites in 

human plasma by LC–MS/MS and its application in a study of 

pharmacokinetics. J. Chromatogr. B. 1027, 139-148.  

Teófilo, R.F., Ferreira, M.M.C., 2006. Chemometrics II: Spreadsheets for experimental 

desing calculations, a tutorial. Quim. Nova 29, 338-350. 

Ternes T.A., Bonerz M., Schmidt T., 2001a. Determination of neutral pharmaceuticals 

in wastewater and rivers by liquid chromatography-electrospray tandem mass 

spectrometry. J. Chromatogr. A. 938, 175-185.  

Ternes T.A., 2001b. Analytical methods for the determination of pharmaceuticals in 

aqueous environmental samples. TrAC Trends Analyt. Chem. 20, 419-434. 



 

 39 

Togola, A., Baran, N., Coureau, C., 2014.  Advantages of online SPE coupled with 

UPLC/MS/MS for determining the fate of pesticides and pharmaceutical 

compounds. Anal. Bioanal. Chem.  406 (4), 1181-1191. 

Urbano, V.R., Maniero, M.G., Perez-Moya, M., Guimaraes, J.R., 2017. Influence of pH 

and ozone dose on sulfaquinoxaline ozonation. J. Environ. Manage. 195, 224-

231. 

Vermilye A.W., Voelker, B., 2009. Photo-Fenton Reaction at Near Neutral pH. 

Environ. Sci. Technol. 43, 6927–6933. 

Wilde, M.L., Schneider, M., Kümmerer, K., 2017. Fenton process on single and mixture 

components of phenothiazine pharmaceuticals: Assessment of intermediaries, 

fate, and preliminary ecotoxicity. Sci Total Environ. 583, 36-52. 

Zapata, A., Oller, I., Sirtori, C., Rodríguez, A., Sánchez-Pérez, J.A., López, A., Mezcua, 

M., Malato, S., 2010. Decontamination of industrial wastewater containing 

pesticides by combining large-scale homogeneous solar photocatalysis and 

biological treatment. Chem. Eng. J. 160, 447–456. 

Zhang, R. Yang, Y., Huang, C-H., Zhao, L., Sun, P., 2016. Kinetics and modeling of 

sulfonamide antibiotic degradation in wastewater and human urine by UV/H2O2 

and UV/PDS. Water Res. 103, 283-292.  

Zhao, Y., Yu, G., Chen, S., Zhang, S., Wang, B., Huang, J., Deng, S., Wang, Y., 2017. 

Ozonation of antidepressant fluoxetine and its metabolite product norfluoxetine: 

Kinetics, intermediates and toxicity.Chem. Eng. J. 316, 951–963. 

 


