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ABSTRACT

This  degree’s  Final  Project  consists  in  the  implementation  of  machine  learning
techniques and its adaptation to a video game. The game has various types of AI
which include traditional approaches and newer ones, like Montecarlo Tree Search and
Deep Reinforcement Learning trained models. The game its a real-time strategy game
built using Unity3D engine.
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1 TECHNICAL PROPOSAL

1.1. Summary
This document explains the basics of the project that will be developed by the author
during the following months based in finding ways of applying machine learning to
video games. Machine learning is a group of algorithms and techniques that allow
computers to learn to solve problems efficiently and effectively. The main idea is to
explore  some  machine-learning  mechanisms  and  apply  them  to  a  video  game,
adapting them to its flow and performance necessities.

1.2 Introduction and motivations
This  project  main  objective  is  to  implement  machine-learning i mechanisms  like
Montecarlo Tree Searchii and Deep Reinforcement Learningiii in a video game. This
techniques  present  some  challenges  in  terms  of  adapting  them  to  this  type  of
applications that hopefully will be overcome.

The main motivation is the interest of the author in the subject. During the course of
the  current  academic  year,  the  concept  of  machine  learning  has  captivated  his
attention and thus, encouraged him to explore it further trough this project. One of
the objectives is the gain of knowledge in this area. 

Another motivation is the experience of the author as a player. Hundreds of hours of
gameplay  have  made  the  writer  notice  that  the  current  IA  development  systems,
although complex, are not as good as they could be when presented to players away
from the average. Either because their skill level is too high or to low, the AI fails to
adapt to them and making the game fun. An example would be Ratchet & Clank iv,
where  enemies  too  easy  to  beat  reduce  the  fun  factor  of  the  game.  Segmented
difficulties often leave players in the gaps between the steps they provide (easy –
medium – hard). Progressive ones (those that can be scaled by the player) provide the
player with the control of the world, and that not only affects the immersion, it also
delegates the balancing difficulties to the player. Bottom line, a game should push the
player to his or her limits, this limits being a difficulty hard enough to be challenging
but not frustrating. 
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The project will be developed following 3 main steps: developing the base game in
which everything will be tested, implementation of the  Montecarlo Tree Search and
implementation and training of the machine learning AI.

Auraluxv has been chosen as the base game in which this systems will be developed.
The project will use a simplified version with the same main mechanics. We believe
that this kind of games is perfect for the purpose of the project. They provide a simple
set  of  rules  and  direct  confrontation  between  players,  in  other  words,  an  ideal
environment to develop and test machine-controlled agents. 

The game is simple: each level contains a determined number of stars. Some of them
belong to a player (IA or human).  The remaining ones are empty. The players can
conquer stars sending enough units to their location. They can also fight each other
the same way. When a unit is used, either fighting or conquering a star, it is destroyed.
When a star is conquered, it will start producing units for the player that conquered it.
To win the game, a player must be the only one with stars in its possession.

1.3 Related Courses
• Advanced Interaction Techniques (VJ1234)   –  This  subject introduced different

ways of interaction with the user. One of them was machine learning. It has
served as the main inspiration source for the project.
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• Algorithms  &  Data  Structures  (VJ1215)   –  The  techniques  that  will  be
implemented will require appropiate data structures and its optimization, besides
the implementation of the algorithms. This is why this course is related with the
project.

• Programation I & II (VJ1203 – VJ 1208)   – The main focus of the project will be
the  implementation  of  a  game  and  AI/Machine  Learning  techniques,  so
programming is a basic skill required.

• Artificial  Intelligence (VJ1231)   –  AI  techniques will  be used in the project  to
compare them with more modern machine learning aproaches.

• Game  Engines  (VJ1227)    –  The  game  will  be  developed  using  Unity  game
enginevi, which usage was explained in this course.

1.4 Objectives
- Using machine learning techniques in the game.

- Using Montecarlo Tree Traversal and Deep Reinforcement Learning as AI in the game.

- Create a basic game based on Auralux.

- Create a fun and challenging game.

1.5 Expected Results
- Research of methods of adapting machine learning techniques to video games.

- Implementation of Montecalo Tree Search and its integration in the game flow.

- Usage of Deep Learning as an AI in the game.

- Difficulty adaptation.

1.6 Tools
- Unity 3D (2017.2.0f3)vi.

- Tensorboard (1.6.0)vii.

- TensorFlow (1.4.0)viii.
- ML – Agents plugin for Unity (0.3.1a for Unity – 0.3 for Python)ix.
- Python (3..6.4)x.
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1.7 Scheduling

Table 1: Scheduling

ID Task Description Estimated
Hours

G01 Game design Implementation and testing of a
simplified version of the game

Auralux.

40 hours

G02 Training
version of the

game

A simplified version of the core
game designed to execute without

graphical elements as fast as
possible.

20

MT01 Montecarlo
Tree Search
Research

Research to learn the basics of the
method and to prepare its

implementation

10 hours

MT02 Montecarlo
Search

Implementatio
n

Implementation and testing of this
machine learning technique in the

game.

40 hours

MT03 Montecarlo
Search Game
Adaptation

Investigation of methods to adjust
the method to gaming to obtain

adapted and fun behaviours.

30 hours

DL01 Neural
Network
Research

Research to learn the basics of the
model and to prepare its

implementation.

15 hours

DL02 Neural
Network

implementatio
n

Implementation and testing of this
machine learning technique in the

game.

75 hours

DL03 Neural
Networks

Adaptation

Investigation of methods to adjust
the method to gaming to obtain

adapted and fun behaviours.

30 hours

Note: The remaining 40 hours will be used for the following tasks:

1. Redaction of  project documentation. This task will be done continuously during the
project. That is the reason of its exclusion from the planification table (ID DOCU).

10



2. Security margin: If one of the mentioned tasks took longer than expected, this hours
will be used to complete it without affecting others.

Note 2: If the project development is faster than the predictions, the spare hours will
be dedicated to finding new adaptations that use both methods.

Note 3: This note has been redacted after the end of the project. The documentation
task took 79 hours. This has been longer than expected, but necessary in order to keep
the memory accessible to most people, even if they don’t know about programming or
machine learning.
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2 DESIGN

2.1 Introduction
Lux Aura is a simplified version of Auraluxv, launched in 2013 by E. McNeill and ported
to different platforms by WardRum Studios. The version proposed is a simplification of
the  game in  terms  of  game play  mechanics  and  in  graphics.  This  is  due  to  the
objective of the game: the objective is to create a controlled environment with simple
but firmly defined rules to train and execute the machine learning mechanisms that will
be implemented later. Because of this, elements that would be included to make it
more attractive to users (like fancy graphics) will be ignored. Our approach will also
include the possible implementations of the AI techniques that will be programmed, as
well as how they will be tweaked to adapt them to the player level.

In this document the concept “player” (or “players”) will be used. Unless it is explicitly
specified (case in which the term “human player” will be used), the expression will refer
to all the agents with capacity to play the game. The term “agent” will also be used,
referring the concept of an autonomous agent with a certain behavior that interacts
with the space within the game where it is.

2.2 Gameplay
Lux Aura is a real-time strategy game in which the players fight for the control of a
planetary system. The objective is to be the last entity alive, that is, the last player that
controls at least one planet. To achieve this, the players have to conquer and attack
each other by ordering their units what to do.

These  units  are  generated  periodically  in  the  conquered  planets.  Each  planet  will
produce a certain number of units every time a certain time passes. These units will
belong to the player that controls that planet. If a planet is not controlled by anyone
(i.e. that planet is neutral neutral) no units will be produced. The number of units a
planet produces depends on the level that planet has. All planets start at level one,  in
which they will  produce two units  per second.  Some planets can be upgraded by
ordering units to do so. If a planet levels up, the amount of units produced per second
will increase.
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Each player has at least one planet under its control while it’s still alive. The units that
are currently in those planets can be controlled and have to be used by the player to
achieve his goals. Units can be sent to enemy planets by selecting the desired number
to conquer them. They can also be sent to a planet that belongs to the player to
upgrade it or heal it or simply wait there until the player decides to use them.

Conquering, attacking, healing or upgrading planets has a cost.  A unit can destroy
another one, decrease by one the health points of a planet, increase its health points
by one (if the planet belongs to the same player as the units) or increase by one the
experiences points of a planet (again, if the planet belongs to the same player). Once
one of this actions is performed, the unit will be destroyed. For example, let’s assume
that we have a planet controlled by player one with one hundred of units in it and
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Figure 2: Attack to a neutral planet (grey) step
by step. Player one attacks first but does not
conquer  the  planet.  Player  2  attacks  and
“overpowers”  player  one  attack  (by  restoring
the  health  player  1  attack  took)  and  then
conquers the planet. Figure 3: Example of an attack



another controlled by player two with only twenty. If player one attacks player two with
his one hundred units, the units in player’s two planet will be destroyed and twenty of
the  one  hundred  player’s  one  units  will  be  as  well.  That  means  that  the  eighty
remaining units will decrease the same amount of health points to player’s two planet
and then they will be also destroyed. This example can be seen in Figure 3.

Planets have three main attributes: health, experience and their current units. The first
one is used to conquer the planet, the second one to upgrade it and the third one
stores the units that are currently in that planet. Units increase periodically,  but to
modify the other two values,  players must spend units in a planet.  The health will
always  increase  before  the  experience  and  this  order  will  be  inverted  when  the
numbers decrease. In other words, if a planet has some experience and full health and
it is attacked, the experience will suffer damage first and, if it reaches zero and the
attack continues (i.e. there are still some units attacking), the health will decrease. If the
player spend units to upgrade a planet, first the health will be restored and only if the
health is at its maximum value the experience will increase.

Planets can belong to a player or be neutral. Neutral planets won’t produce units and
will  have health points that players will  need to reduce (sending units) to conquer
them. Planets that belong to a player will produce units and are harder to domain,
because before reducing their health points, the units and experience points have to
be eliminated first.

It is important to notice that if a player attacks a planet but does not conquer it, the
other player will  have to “overpower” their attack before trying to conquer it.  This
translates  to  what  can  be  seen  in  Figure  2.  The  health  points  that  other  players
reduced have to be restored before conquering the planet.

To  make  the  game  more  friendly  for  the  player,  each  player  will  have  its  own
representative  color.  Planets  and spaceships  will  be  of  this  color,  to  identify  them
easily. When a planet is neutral, its color will be grey until it is conquered (Figure 2).

2.3 Mechanics
The mechanics of the game define what can happen or be done while playing it. In our
case, these are centered in the units. The main mechanism players have to interact and
change the state of the world are their units. Thus, the main mechanics are:

• Unit Generation:   Periodically, units will be generated in every planet that belongs
to a player. The number of units that planet has will increase depending on that
planet level. No player interaction is required for this to happen.

• Upgrading Planets:   If a planet can be upgraded, once enough units have been
sent to it and the experience reaches the required amount, the planet will level
up. This will imply a minor visual change (the planet will grow in size) and will
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increase its units production ratio. This ratio, as well the experience needed to
level up the planet, will evolve as follows:

◦ Level 0: 2 units per second (initial level).

◦ Level 1: 4 units per second (100 experience points required).

◦ Level 2: 6 units per second (150 experience points required).

• Unit Selection:   Each player will be able to select the number of units that needs
from the planets that controls. The number of units that can be selected goes
from zero to all the units available in the planet, and this can be extended to
every planet the player has under his domain.

• Unit movement:   Once some units have been selected, they can be sent to any
planet in the system. 

◦ If  that  planet  belongs  to  the  player,  the  units  will  heal  it,  increase  its
experience points if the health it’s at its maximum value or just be stored
there if the health and experience can’t be increased. 

◦ If the planet belongs to another player or it is neutral, the sent units will
destroy the units  that are stored in it,  decease its  experience points and
lastly, decrease its health points, again, as seen in Figure 3.

These attacks will manifest in a spaceship that will move from the attacker to

the  objective.  They  will  become  effective  once  the  spaceship  reaches  the

objective. It is important to notice that, while in the original game units can

collide with each other and are shown independently,  in  Lux Aura the units

move in huge space crafts and do not collide with each other.

• Conquer planets:   If  there are enough units sent to a planet that belongs to
another  player  that  the  health  points  of  it  reach  zero,  the  planet  then  will
become neutral and, again, if its health points reach zero (Figure 2), it will be
conquered by the player that sent the units. When a planet is conquered, it will
turn the color of the player that conquered it.

• Camera movement:   To be able to see the entire system, the camera moves in a
plane parallel to the plane that contains the planets and can be zoomed in and
out.

A diagram of these mechanics and how they relate to each other can be seen in Figure
4.
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Figure 5: Control scheme

Figure  6:  Scheme  of  mouse  control.  When  the
cursos enters the red area, the camera will move
in the direction of the arrows. In the corners, it will
move in the direction of the two closest arrows.

Figure 4: Mechanics scheme



2.4 Controls
The human player will control the game using mouse and keyboard. This will allow for
displacement and unit selection and control.

Moving the mouse to the edges of the screen will make that camera move in that
direction. This will allow the player to move freely around the map. If the left control
button is pressed, the camera won’t move.

If the player scrolls the mouse wheel up and down or presses the “w” or “s” keys, the
camera will  zoom in and out respectively.  This will  allow the player to control  the
amount of the map visible at any moment.

If the player left-clicks in a planet that belongs to him, 1/5 of that planet units will be
selected Those unit will be subtracted from the planet and added to a text that will be
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placed near the cursor, so the amount of selected units is visible at any moment. If he
or she clicks with the right button, all the units of the planet will be selected.

If  there  are  units  selected  and  the  player  clicks  in  an  empty  area,  they  will  be
deselected and returned to their planets. If a planet that belongs to another player is
clicked, each planet will send the units that were selected to that planet. To do the
same with a planet that already belongs to the player (to upgrade or heal it), it has to
be left-clicked while holding the left control key.

2.5 Levels
The levels that can be found in the game are quite similar. Set in space, they represent
systems  of  planets  and  stars.  The  planets  that  can  be  found  there  are  the  only
intractable elements in the game. This are the agents that will store the units and that
will be conquered and upgraded.

Their composition is simple: a group of planets that are distributed through the map.
Some of these planets will belong from start to a player while other will start being
neutral.  The  distribution  itself  is  quite  meaningless.  Stars,  background  and  other
elements besides from planets that can be found are only there for decoration.

Figure 8 shows examples of levels in the original game and in our own game.

2.6 Flowchart
In  Figure 7 the main flowchart of the game can be seen. The game will start in the
main menu. There, the human player will be able to choose to play the game or to
exit. If he or she wants to play, the level selection screen will be shown. This screen will
display the different levels of the game, including the training one. Once one is chosen,
the level will load and he game will start. The player will be able to exit the game and
return to the main menu at any moment if he pauses the game and chooses to do it.
If the game is won or lost he will also be redirected to the main menu.

2.7 Camera and graphics
In this section discusses the graphics of the game and how the player will see the
world. It is necessary to remember the reader that, since our game is a copy of another
one and its main purpose it’s not to entertain, but rather to serve as a support for our
machine  learning  techniques  to  develop,  the  graphical  part  of  the  game  will  be
simplified.

The  colorful  scenarios  of  Auraluxv will  be  substituted  with  spheres  and  numbers,
because the main objective of the project is the implementation of machine-learning
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techniques,  not  the  creation  of  the  game  itself.  This  will  allow  for  a  better
demonstration of the decision making level that the machine has been able to achieve,
because the total  number of units will  be easily readable at all  times. This will  be
harder if the original approach would have been followed.

Human player will be able to see the world through a camera that will cover the whole
level. It will be situated in front of the level and will point at it perpendicularly. As it
has been mentioned before, It can be moved by moving the pointer close enough to

the limits of the screen. The camera will have limitations to avoid moving too far away
from the planets.

The units will never be visible. They will be shown as numbers in the planets (a number
that will display the total units a planet has at the moment) and as a spaceship with
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Figure  9: Experience and health indicators wraping the planet in
blue. The experience one is not full like the health (right) one. 

Figure 8: Example of AuraLux level (right) and a recreation (left)



another number when they move (the number showing how many units are being
transported in the ship).

Health and experience of the planets will be shown using a circle that will wrap it. This
circle will fill as the health and experience increase or decrease. There will be two: one
for the health (white) and another one for the experience (red). These indicators will
only be displayed when the health of a planet is not full or when the experience of a
planet is not zero. Figure 9 showcases this aspect.
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3 DEVELOPMENT

Having explained the elements that compose the game now we will expose how these
have been implemented to construct the final game. We will follow a bottom-top road
in which we will start explaining the most basic elements of the game and advance
towards those more complicated.

The most basic elements are the classes. These form the basic objects from which the
game is built. After that, classes that derive from the basic ones will be treated, as they
form the complex objects that are present in the game world. Finally, the relations
between these objects, and thus, how the game works, will be treated. The obtained
results will also be commented in their respective sections.

3.1 Normal Game Classes
These conform the most basic entities of the game. Most of them are designed to be
expanded through heritage by other classes. They conform the very core of the game
and  are  responsible  of  the  communication  between  entities  of  higher  complexity.
Because  of  that,  they  are  very  simple  and wide-purposed,  they  accomplish  simple
functions and have to be used in contexts that can differ drastically between them.

Some of  these  have  MonoBehaviourxi as  their  parent  class.  This  implies  that  they
cannot be instantiated. Instead, they have to be inside an object in the scene and will
execute some functions following the  Unity execution orderxii. Despite this, they can
have their own methods and attributes and those can be accessed and called like a
normal class. These methods whose call is controlled by Unity will be marked with the
characters “MB”, so the reader can easily identify them.

The  classes  will  be  presented  in  an  order  that  we  believe  is  optimal  for  its
comprehension, since they are introduced as they relate to each other, starting with
the central class and switching to the ones more closely related. We hope that this
helps the reader to understand easily how the game has been implemented.

The classes related to the machine-learnings techniques that have been implemented
will be covered in their respective section.  A diagram of the classes can be found in
Figure  10.  Structsxv and  Enumsxxi have  not  been  included  to  make  it  more  easily
readable.
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Table 2: ClockEventReceiver methods

NAME ARGUMENTS RETURN DESCRIPTION

Tick EventType - To be called when a clock event is fired.

Table 3: Clock mehtods

NAME ARGUMENTS RETURN DESCRIPTION

AddListener ClockEventReceiver -
Subscribes  the  provided  element  to  the  events,  so
when they are fired, the object will be notified.

Awake 
(MB)

- -

Two timers are created: the AI and the main clock.
The first one ticks every 4 seconds (4000 milliseconds)
and  the  second  every  0.5  seconds  (or  500
milliseconds). Both reset automatically once the event
is fired and are active until the game ends.

OnApplicationQuit
(MB)

- -
Stops the timers.

OnMainTick /
On AI Tick

Object
ElapsedEventArgs

-

When  one  of  the  timers  ticks,  the  corresponding
function  is  called.  These  start  a  new  thread  that
spreads the  event  trough all  the  entities that  have
subscribed  to  them,  so  they  can  perform  the
corresponding actions in response to the tick.

The first one fires a MainTick event, whilst the second
one fires an AITick one.

RemoveListener ClockEventReceiver -

Deletes a listener.  Since the moment this fnction is
called, the object will stop being notified of the new
clock-related events.

Stop - -
Same as OnApplicationQuit, but is not called by the
engine.

GlobalData
We start with this one because it is used almost by every other class. It is simply an
information storage. It doesn’t have any methods and it’s not meant to be instantiated.
Contains variables that are used by other classes and thus, is recommendable having in
one place accessible by all.

ClockEventReceiver
A base class that derives from MonoBehaviour. This class is abstract, which means that
it cannot be instantiated or appear in the scene by itself; instead, another class has to
implement it. The purpose of this class is to standardize the relation of the clases in
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the  game  with  the  clock.  No  matter  what  class  implements  this  one,  thanks  to
polymorphismxiii it can be treated as a ClockEventReceiver object and thus, simplify
the interaction.

If an object wants to interact with the clock (subscribe to its events, be alerted when
these are fired) it needs to implement this class.

Its method can be found in Table 2.

Clock
The name of this class says it all. It is the one in charge of making the game advance
and evolve through time. It is basically a clock that ticks every 0.5 and 4 seconds. It
extends the MonoBehaviour of Unity, so it needs to be in the scene to be used. There
is only one Clock per scene.

We understand a tick as an event that triggers a response in the internal logic of the
game and that  fires  when  a  determined  interval  of  time has  passed since  it  was
activated. This class uses the C# Timerxiv class.

Its methods can be seen in Table 3.

EventType
An enumerator usedxxi to identify the two types of events that can be fired:

• Main Tick: Fired every 0.5 seconds by the Main Timer.
• AI Tick: Fired every 4 seconds by the AI Timer.

The main idea is that the main tick is used to create units and other basic operations.
Their cost is cheap and can be executed without overloading with tasks the main flow
of the engine. It also controls the peace of the gameplay, as explained before.

The AI timer triggers the execution of the different AIs. This event has been separated
for a couple of reasons: first, these process are very expensive and, like in the case of
Montecarlo, can can take several seconds; second, it makes no sense to trigger them
so frequently as the other event because the AI will most probably react taking the
same actions and thus, no new behavior will be produced.

In further detail: the changes in the state of the game between the main ticks are so
little that the AI will react by performing the same actions over and over until enough
events have passed to change the world in a sufficient manner for the AI to react
differently. These times the AI is triggered and reacts by doing the same it is already
doing (in other words, by doing nothing) are a waste of resources.
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Table 4: EventEntity attributes

NAME TYPE VALUE RANGE DESCRIPTION

Conquerable Boolean True - False Indicates  if  the  object  can  be  conquered  by  a
player

CurrentContestantId Int -1 – 5

When a planet is neutral,  a player has to send
enough units  to conquer it  by itself.  If  another
player send units, he has to eliminate all the rivals
units  first  before  being  able  to  begin  the
conquest.  This  variable  stores  which  player  is
currently claiming the planet so other attacks can
be treated accoridingly.

CurrentExp Int 0 - ExpForNextLevel Current experience points

CurrentHealth Int 0 - MaxHealth Current amount of health

CurrentLevel Int 0 – MaxLevel The level the entity has at a given moment

CurrentPlayerOwner Int -1 - 5 Id of the player in control of the entity

CurrentUnits Int 0 – 9999 Units the entity has at a given moment.

ExpForNextLevel Int 0 – 1000 Necessary units to upgrade the entity to its next
level.

GenerationRatio Float 0 – 10 Units produced per second.

MaxHealth Int 0 - 300 Maximum amount of health possible in a given
moment for this entity.

MaxLevel Int 0 - 5 The maximum level achievable in an entity.

UnitsToConquer Int 0 - 1000 Number of units necessary to conquer the entity.

EventEntity
Holds the basic and common information to all the entities that can be placed in the
map.  The  basic  idea  behind this  class  is  to  provide  methods  to  interact  between
entities without specifying how each type will  react and thus, allowing for different
behaviors. Because of this,  EventEntities can’t be spawned in a level, but instead
serve as a base class for the rest of the entities.

For example, we can have stars and planets in our level. Both have a certain amount of
health and can be attacked and conquered. However, the star can react differently to
an attack than the planet. By deriving from this class, both will have a “SufferAttack”
method, but each one can perform different actions.

EventEntity derives from ClockEventReceiver, which implies that will react to the
clock events. However, it does not implement the Tick function.
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Table 5: EventEntity methods

NAME ARGUMENTS RETURN DESCRIPTION

UseUnits AttackInfo -

It  spawns  an  Attack using  the  amount  of  units
necessary  to  fulfill  the  requisites  given  by
AttackInfo. If it hasn’t got enough, it will use all the
units that has.

Table 6: EventEntity input-related attributes

NAME TYPE VALUE RANGE DESCRIPTION

SelectedUnits Int 0-9999
Stores the number of units selected by the player.
These units  (and only these ones)  will  be used
when an attack is fired.

Table 7: EventEntity input-related methods

NAME ARGUMENTS RETURN DESCRIPTION

DeselectUnits - - Returns all the units that were selected to the entity

SelectUnits - -

Adds:
- 1 unit to SelectedUnits if the entity has 5 or less
in total.
- 1/3 of the total units
- 0 units if the Entity has none.
- All if the entity is interacted while holding the left
control button.

Useunits Gameobject -
Spawns an Attack that contains the SelectedUnits
headed for the provided Gamobject.

Its attributes can be found in Table 4 and its method in Table 5.

This class is also responsible to handle user interaction. Given that all the elements in a
level are susceptible of having to react to player input, that aspect is handled at this
level to, again, simplify its implementation. The attributes and methods related with
this aspect can be found in Table 6 and Table 7, respectively.

It is important to note that selected units will be discounted from the total units that
entity has when they are selected. If an entity is attacked, this units will behave like if
they were not on it. That means they won’t be destroyed, but if the entity is lost, these
units will disappear.

Planet
An extension of EventEntity. This one symbolizes a planet and is the standard entity
that can be found in the game. It extends EventEntity so attacks, upgrades and unit 

25



26

Figure 10: Diagram of classes (higher resolution version here)

https://drive.google.com/file/d/1kqlyNd1H_KmLPMSMHlEBJdhnPkIspkss/view?usp=sharing


Table 8: Planet attributes

NAME TYPE VALUE RANGE DESCRIPTION

UnitsNumberText Text - Hold a reference to the UI  text  element where
CurrentUnits will be displayed.

Material Material -
Reference  of  the  material  of  the  object  in  the
scene. It is used to change colors when the entity
is conquered.

HealthSlider Slider - Reference  of  the  UI  slider  used  for  displaying
health values.

ExpSlider Slider - Reference  of  the  UI  slider  used  for  displaying
experience values.

Table 9: Planet methods

NAME ARGUMENTS RETURN DESCRIPTION

AttackFromSelf AttackInfo -

Handles attacks of the player that owns the player.
- If the planet’s health is not at maximum, it will be
healed.
- If the maximum level of the planet has not been
reached and it has full health, the planet is upgraded
(its experience points are increased). If it has enough
experience points, the planet levels up.
- If the planet has full health and can’t level up more,
the units are added to the units of the planet.

More information on this subject in Section 2.2.

AttackFromOther AttackInfo -

Handles attacks of player that do not own the planet.
- If the planet has some experience points but has
not leveled up yet, these are reduced.
- If the planet contains units and has no experience
points, they will be destroyed.
- if the planet doesn’t have units, its health points are
reduced. If these reach zero, the planet is conquered
and the owner is the player that produced the attack.

SufferAttack AttackInfo -

Handles the provided attack. If the planet is neutral,
the  function  will  conquer  it  (if  AttackInfo has
enough units) or damage it.

However, if the planet is not neutral:
-  If  the  attacker  is  the  owner  of  the  planet,
AttackFromSelf is called.
- If the attacker is not the owner,  AttackFromOther
is called.

Tick EventType -

Handles the clock events:
-  Main  Tick:  Adds  1  +  current  level  to  the  total
number of units.
- AI Tick: Does nothing.
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Table 10: AttackInfo attributes

TABLE 9: AttackInfo attributes

NAME TYPE VALUE RANGE DESCRIPTION

Origin GameObject - The entity from which the attack was fired.

Objective GameObject - The entity towards which the attack is headed.

Player Int 0 – 5 ID of the player that ordered the attack.

Units Int 0-999 Number of units contained in the Attack.

Table 11: Attack attributes

NAME TYPE VALUE RANGE DESCRIPTION

CurrentAttackInfo AttackInfo - The  information  of  the  attack  that  is  being
transported by the object.

text Text - Reference  to  a  text  object  used to  display  the
units that are being transported.

generation can be processed in a certain way. This design will allow for different types
of entities to be easily added to the game in a future. Its attributes and methods can
be seen in Table 8 and Table 9 receptively.

AttackInfo
A structxv that stores the basic information needed to define an Attack. It is used to
transfer this information between objects. Its attributes are explained in Table 10.

Attack
This class controls the attacks in the game. It  is  responsible of its movement and
behavior since its spawning until its arrival. It “transports” the units from their home
entity to its objective.

It is important to notice that attacks move at a constant speed and do not depend on
events. Once they are created, they will start to move until they reach their objective,
moment in which the attack will be effective.

Attacks start at the same position as the entity which units are being used. They slowly
move until the objective is reached, when the attack is made effective and the object 
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Table 12: Attack methods

NAME ARGUMENTS RETURN DESCRIPTION

Prepare AttackInfo -
Prepares  the  Attack  to  be  spawned  using  the
information that AttackInfo contains.

Update (MB) - -
Moves the object towards its destination and changes
the size accordingly.

Table 13: AttackPool attributes

NAME TYPE VALUE RANGE DESCRIPTION

AttackPrefab GameObject - Model  used  to  create  the  attacks  that  will  be
used by the pool.

AvailableAttacks List<Attack> -
List that stores all the attacks in the pool (those
that are and that aren’t being used at any given
moment)

pendingAttacksInfo List<AttackInfo> -

When  an  object  is  instantiated  in  Unity,  a
complete cycle must have been passed before it
is usable. This list stores the information of those
attacks that have to wait a frame to be prepared
because  all  the  atacks  in  the  pool  were  being
used and a new one had to be instantiated. 

disappears. Its size varies: it starts at size 0 and slowly increases until its completely
outside  the origin entity.  This  process  is  reverted when it  is  close  enough to the
objective. This is done to make the game easier to understand.

AttackPool
Generating and destroying  GameObjectsxvi in Unity is an expensive task in time and
resources. Attacks are so common in our game that generating and destroying them
would affect negatively the game’s performance. That is why an object poolxvii is used. 

At the very start of a level, 5 Attacks are created and deactivated, so they are invisible
and have no effect in the game. When an entity needs to use one, instead of creating
a new one, it simply uses one of these (one that is not already being used), changing
its position and the information it contains. There is only one instance of this class per
scene.

The  AttackPool class  administrates  this  collection of  objects.  When an Attack is
needed,  the  entity  that  demands  it  provides  this  class  with  the  corresponding
AttackInfo and this class generates the corresponding Attack. Doing thing this way,
entities don’t need to know how the pool is implemented nor used, simplifying the
task, thus benefiting of the principle of cohesionxviii. 
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Table 14: AttackPool methods

NAME ARGUMENTS RETURN DESCRIPTION

Attack AttackInfo -

Selects  an  available  Attack from  the  pool  and
prepares  it.  If  not  available  Attack is  found,
instantiates  a  new  one,  stores  the  AttackInfo in
pendingAttacksInfo and starts PrepareNextFrame.

PrepareNextFram
e

- -
Waits  one  frame  and  then  iterates  over
pendingAttacksInfo and  invokes  the  Attack
function for each one of the elements in the list.

Table 15: SelectionManager attribute

NAME TYPE VALUE RANGE DESCRIPTION

entitiesSelected List<EventEntity> - Stores all the entities that have at least one unit
selected by the player.

unitsCarried Int 0 - 999
Stores the total amount of units selected by the
player  (counting  selected  units  of  all  entities
selected)

UnitsMouseText Text - Reference to a text that will follow the mouse and
will display unitsCarried.

Table 16: SelectionManager methods

NAME ARGUMENTS RETURN DESCRIPTION

checkForSelection - -
Implements  the  logic  described  in  the  Controls
section for selecting units.

deselect - - Deselects all selected units.

prepareAttack GameObject -
Prepares the necessary attacks to send all  selected
units to GameObject.

The pool size (that is, the number of attacks it contains) it’s not constant. If all of its
elements are being used and a new one is required, the pool size will be increased
(new attacks will be created). After that the pool will keep its new size until the game
ends or it is increased again.

SelectionManager
This class handles the interaction of the player with the game. It is in charge to select
the desired units by the player, to use them or to deselect them again. Together with
CameraMovement it covers the input needs of the game.

More information about attributes and methods in Table 14 and Table 15.
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Table 17: Game attributes

NAME TYPE VALUE RANGE DESCRIPTION

attackPool AttackPool - Reference to the scene’s AttackPool.

Planets EventEntity[] - Array of all the  EventEntities that exist in the
level.

Players Player[] - References  to  the  players  that  compete  in  the
level.

Table 18: Game methods

NAME ARGUMENTS RETURN DESCRIPTION

SomeoneWon - Int Returns the ID of the Player that won or -1 if no one
did.

CameraMovement
Moves the player’s camera following the logic described in Controls section.

Game
Stores  information  about  the  game  that  is  currently  being  played.  Contains  level
(entities that can be found in the scene), players and attacks information. It is used
mainly by players and entities to obtain information about the state of the game and
other players and entities.

It is important to notice that this class can be accessed from anywhere in the scene,
but not modified.

Player
Represents  the  entities  that  can play  the game,  whether  they  are controlled  by a
human or by an AI. They are used basically to keep record of the state of each player
and what entities belong to him and thus which units can control.

It derives from ClockEventReceiver, because each Player controls its AI in terms of
starting their process. This class is also responsible for executing the Actions that the
AI orders. For more information, see Table 19 and Table 14.
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Table 19: Player attributes

NAME TYPE VALUE RANGE DESCRIPTION

AI AI - Stores the AI of the player, independently of its
type.

CurrentGame Game - Reference to the game that is being played.

Deactivated Boolean True – False

When a player is eliminated, it still receives clock
events and, thus, its AI is triggered. This boolean
is set to true when the last  EventEntity of the
player is  conquered,  so it  won’t  use its AI  any
more.

myEffector Effector - Stores a reference to the player’s Effector. More
information in its current section.

pendingAICycle Boolean True – False

The  AI  executes  in  a  separate  thread  to  avoid
affecting  the  game’s  performance.  To  do  so,
coroutinesxix are used. However, because the AI is
triggered through a separate thread (the thread
that spreads the clock events), a coroutine can’t
be  started  (because  of  the  way  Unity  is
implemented).

This value is used to start those coroutines the
next frame  after clock event are recevied. 

typeAI AIType

None - Dumb –
Random – Classic –

Montecarlo -
NeuralNetwork

Stores the type of AI used by the player (if any).

Table 20:  Player methods

NAME ARGUMENTS RETURN DESCRIPTION

AICycle (CR) - -
Coroutine that executes the AI of the player,  waits
one frame and then uses myEffector to execute its
orders.

GetCurrentUnitsNumb
er

- Int Returns the total number of units the player has at
any given moment but does not select them.

HasLost - Boolean Returns true if the player does not has any entities
under its domain.

PrepareList List<EventEntity> - Used  at  the  start  of  the  game  to  set  the  initial
entities of each player.

Start (MB) - - Adds the player to the clock’s listners, instantiates the
corresponding AI and an instance of Effector.

SelectAllUnits - Int
Selects and returns the total number of units of the
player (that is, every unit from every planet the player
controls).
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Tick EventType -
When  an  AITick  is  prouced,  starts  the  process  for
executing its AI.

Update (MB) - -
If  pendingAICycle  is  true,  the  coroutine  AICycle  is
started.

Table 21: AI method

NAME ARGUMENTS RETURN DESCRIPTION

Decide - Actions Returns an action that has to be executed.

Table 22: Actions values

Action Description

NONE Represents the absence of an action.

WAIT The player does nothing.

ATTACK ENEMY The player will attack entities that have been conquered by another
player.

ATTACK NEUTRAL The player will attack entities that have not been conquered yet.

UPGRADE The player will spend units to level up its own entities.

HEAL The player will spend units to restore the healh points of its own
entities.

AI
Interfacexx used to simplify the interaction with the different types of AIs. It has only
one method (Table 21). Again, this is used to avoid dealing with the particularities of
each type of AI. The player only needs to invoke Decide and execute the Action it
returns.

Actions
Enumerator that defines the actions that can perform non-human player (Table 22).

There are some classes (Effector, AI related…) that have not been mentioned. Those
will be explained in greater detail in their corresponding section, because we feel that
treating them like a normal class wouldn’t be enough to cover them correctly.
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3.2 Game Flow
The game flow and the peace at which game events happen depends on two factors:
the clock and the human player. The first one is in charge of all the human-player
independent events and the second one controls one of the participants. That has an
important implication: the player controlled by a human can execute some actions in
an unpredictable manner as long as it has enough units to do so, which implies that
those actions can occur at any given time and are unpredictable.

In opposition, the clock has a cyclic and predictable behavior:

1. A tick is triggered

a) It is a normal tick

a.1.  Non-neutral entities unit number its increased

b) It is an AI tick

b.1. For each player in the game, except the one controlled by a human, the
AI is invoked

b.2. When the AI has decided its next move, it is executed.

Attacks that have been issued but have not yet reached their destiny execute their own
behavior:

1. One player attacks another

◦ The attack is created and moved to the center of the planet (or planets)
where the used units were stored.

2. The attack moves at a constant speed towards its objective.

3. The attack reaches its objective

◦ Th objective processes the attack depending on who fired it, the amount of
units it contains, its own state (the objective state), etc.

Notice  that  attacks  follow  unity’s  execution  flow  in  order  to  move  and  update
accordingly  the  objects  that  represent  them  in  the  scene.  This  will  happen  until
someone wins the game or, in attack’s case, until there are no pending attacks moving
through the level.
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Table 23: Effector attributes

NAME TYPE VALUE RANGE DESCRIPTION

map GameObject - Reference to the parent object in the scene that
contains all the entities of the level.

myPlayer Player - Reference of the player that owns the instance of
the class.

Table 24: Effector methods

NAME ARGUMENTS RETURN DESCRIPTION

Execute Action - Executes the action if possible using the rules above.

3.3 Action Execution
Execution of non-human player actions is done by the Effector class. It was created
to simplify not only the process of action execution, as said before, but also to do it
with the decision making as well. The first part is simple and we have already seen it
before: it simplifies the execution of the actions by the principle of cohesionxviii.

By having this class, the players do not need to know anything about how to execute
actions or what criteria to follow depending on its state, etc. It only needs to trigger
the AI, store the action it chooses as the best and let Effector do the job.

But  the  most  important  simplification  is  the  one  related  to  decision  making.  By
defining a constant  set  of  rules  about  how every  action has  to be done,  we can
simplify the possible number of actions. In its original state, a player could do nothing
or could attack every entity there was with any number of units between 0 and the
amount of units the entity that was “using” had. And that is if only one of its own
entities were used, because several can be used at the same time.

As the reader can see, that represents a huge number of possible actions. And trying
to  choose  only  on  using any  type of  AI  would  be highly  difficult.  By  having  the
Effector, players now can only perform 5 actions: wait, attack entities conquered by
other players, attack neutral entities, upgrade its own entities and heal them.

The Effector is in charge of deciding the best way of performing those actions and
executing  them  using  the  player’s  resources.  Of  course,  this  is  done  introducing
random factors that adapt to the difficulty to perform these actions not as optimal as
they could be done.

Here we explain how the Effector executes the actions. Again, keep in mind this is
the best performance scenario. By introducing variations in the number of units that
will be used, the difficulty can be adjusted so the player is presented with a challenge
and not overwhelmed with a merciless rival.
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• Wait: It simply does nothing. But in a very effective way.

• Attack enemies / Attack neutral entities: Both actions are executed similarly. 

1. The number of units necessary to conquer the objective is counted.  That
includes (in the case of non-neutral entities) counting the health points, the
experience points and the units that the entity possesses. The Effector will
try to send 1.5 times this numbers, to ensure success.

2. A list of the player’s entities sorted by distance to the objective is obtained.

◦ Units of the players entities will be used starting by the closest one to the
objective, as it can be seen in Figure 1.

• Upgrade / heal:  The process is similar to the followed in the attack actions,
however, only the necessary amount of units is sent. Again, the closest units are
used first.

This  approach  has  also  some  limitations.  Only  one  entity  can  be  attacked  per
execution. This slows the gameplay and makes the game easier, because the player has
time to react to the attacks and the AI has to be executed again implying that several
seconds have to pass for another attack to be produced.

To be able to function, the class needs two attributes, found in Table 23 and a method,
shown in Table 24.

The Effector also has security checks. It handles the special cases like, for example,
when it receives an Upgrade action and all the player’s entities are already at their
maximum level. In those cases, the Effector behaves the same way that does when it
receives a Wait action type. 

3.4 Training Version
Until  now,  we described  the  “normal”  version  of  the  game and how it  has  been
implemented. This version is the one users can play and interact with. It has also a
graphical component that represents the state of the game at any given moment in a
screen, in an easy and understandable way.

However, this has some limitations. First of all, the execution of the actual “game” has
to wait and take care of the graphical part. Attacks and entities have to be updated
and that has to be done at a slow enough speed for the human player to be able to
interact and react to the events. The second limitation is that the game must follow the
Unity execution flow, being very careful to not block it. If it does, the game freezes,
temporarily or forcing he user to close the application.
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There are some tasks that cannot be performed under those circumstances.  Either
because they need to be done as fast as possible and have to be repeated huge
amounts  of  times  or  because  need  to  use  all  the  resources  possible.  Using  the
“normal” version of the game is impossible to perform those tasks.

Is at this point where developing a “training” version of the game becomes a necessity.
By  “training version”  we refer  to  a  variation in which no graphical  nor  interactive
aspects of the original game remain. It is simply the core logic of the game executed
as fast as possible and communicating with the exterior through console output. In this
section how this variant has been implemented and the most fundamentals aspects of
it will be discussed.

The first thing the reader needs to know is that this version will be an exact copy of
the games logic.  The rules and outcomes will  be the very same that those of the
normal version. This version modifies how the game is executed, not how is it played.
And by  how is  it  played we refer  to how the performance of  determined actions
changes the game’s state, we are not talking about input.
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But in regards to that, the input is eliminated from this version. No human will be able
to interact (and of course, to play) this variation. We want the game to execute as fast
as a computer is able to do it and adding a human factor will make this impossible.
Humans  are  infinitely  slower  than  any  machine  and  thus,  need  to  be  ignored  to
achieve fast execution.

New flow
In the normal version, the gameplay depends on the clock. The AI and the units are
produced  as  a  response  of  the  events  triggered  by  timers.  The  human player,  of
course, can perform actions between events, but still needs units to do so, and units
are created when these events are triggered. So it is pretty fair to say, the flow of the
game is completely bound to the clock.

Because  we  want  to  execute  the  game  as  quick  as  we  can,  this  bound  has  to
disappear.  Attacks behavior needs to be revised too.  In the normal  version of  the
game, they moved from the entity which created them to their objective, but now
there are no objects in the scene and thus, nothing to be moved.

The solution we adopted was to use turns instead of time or movement. A turn is
equivalent  to  a  MainTick  event.  There  is  nothing between turns  and they  happen
constantly, one after the other, as seen in Figure 13.

Now only the attack aspect remains. Our solution was to count how many turns would
it take for an attack to reach its objective by dividing the distance by the speed, and
then by the time between MainTicks (Formula 1). The first operation returns how many
seconds the travel  would take and the second translates  that  into turns.  It  is  not
perfect,  but  because  all  attacks  will  follow  the  same  rules,  the  precision  loss  is
compensated.Every attack will now store this information and update it accordingly as
the turns pass. When all the necessary turns have passed, the attack becomes effective.
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turns=
Distance(origin . position,objective . position)

SPEED
÷TICK INTERVAL

Formula 1: Conversion from real-time movement to turns.

turnsToAdvance=MIN (nearestAttack , turnsForAITrigger)

Formula 2: Formula to calculate turns to advance
at once.



With this new system, a minor change can be performed to optimize the execution.
Instead of advancing turns at a time, which would produce the execution of operations
that don’t have any important effect on the game whatsoever, we can advance several
at a time.

The idea behind this is that a normal turn only increases the number of units in the
entities of  the level.  But  as  long as  an attack reaches its  destination or  the AI  is
triggered, nothing happens. In the normal version we had a human player, that could
perform actions whenever he wished, but now that element does not exist.

So, to avoid performing operations each time a turn is executed, we execute several
turns at once.  This implies that instead of  having to check and add one to every
entities units counter, we can add the corresponding number at once.

This has to respect a simple condition: the number of turns that will be advanced will
correspond to the minimum between the remaining turns for the next attack to arrive
at its destination and the remaining turns for the next AI tick (Formula 2).

Simplified classes
Until now, the main classes and mechanisms of the game have been explained to the
reader. However, all of this classes were designed to create a playable game. This can
be seen clearly taking into account how the flow is dependent on a clock. By doing
things this way, the game can be tied to real time and allow humans to interact.

But in this version, as it has already been said, we need to free the game flow from
human needs. That is why, a lot of classes need to be redesigned. Redesigned, but not
rebuilt, because the logic is still the same. So the first pass we are going to take is to
modify the main aspects of the game and create new modified classes, designed to
execute as fast as possible. We will also suppress any graphical elements from them,
because graphics would slow down the game.

All the attributes related to graphical elements and with the Clock class have been
suppressed. This has also happened with the mono behavior methods. By doing so,
specially the last part,  we obtain independence from  Unity’s execution cycle,  which
allows the game to execute as fast as possible.

Because these classes do the same as their user-friendly sisters, they will be presented
by alphabetical order. Their functions are the same that their original counterparts, so if
the corresponding section  Section 3.1 was read, the reader should understand how
they relate with each other and form the game. They have the same name, but whit a
capital “T” at the beginning.

39



Table 25: TattackInfo attributes

NAME TYPE VALUE RANGE DESCRIPTION

Destiny Int
0 – number of

entities in the scene

Stores the index of the entity where the attack is
headed.  With  it,  the  Entities  array  in  the  class
TGame can be accessed and thus, perform it.

Player Int 0 – 5
Index of  the player in  the Players array  of  the
class TGame. Used to identify who launched the
attack.

remainingTurns Int 0 – 99
The amount of turns, obtained the way explained
before,  that  remain  until  the  attack  becomes
effective. Each turn is reduced by 1.

Units Int 0 - 999 Amount of units contained within.

Table 26: Teffector attributes

NAME TYPE VALUE RANGE DESCRIPTION

player Tplayer - Reference to the player that owns the instance.

planets TEventEntity[] - Reference to all the entities in the level.

Table 27: TEventEntity attributes

NAME TYPE VALUE RANGE DESCRIPTION

game TGame -
A  reference  to  the  game  being  played.  Its
function  is  the  same,  but  the  type  has  been
updated.

Position Vector3

(-1000, -1000, -1000)

 – 

(10000, 10000, 10000)

Because  there  isn’t  an  object  in  the  scene  to
which position attribute can be accessed, it needs
to be stored when the TEventEntities are stored

Table 28: TGame attributes

NAME TYPE VALUE RANGE DESCRIPTION

PendingAttacks List<TAttackInfo> - Stores the attacks that have been launched but
have not reached their destiny.

Planets TEventEntity[] - Stores the entities of the game.

Players Tplayer[] - Stores the players of the game.

WeHaveAWinner Boolean True - False Set to true when a player wins the game, false
otherwise.

Winner Int 0 – 5 ID of the player that won.
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Table 29: TGame methods

NAME ARGUMENTS RETURN DESCRIPTION

AITick - -
Triggers  an  AITick,  making  all  players  decide  their
next action.

GetUnitGenerationRati
o int Float

Returns the amount of units generated per turn by
the player whose id is passed as the argument.

Initialize
Tplayer[],

TeventEntity[],
List<TAttackInfo>

-
Initializes the game at a given state.

CheckPendingAttac
ks

Int Int

When a turn is advanced, all  the attacks that have
been launched but have no reached its destiny have
to  be  updated  (their  remaining  turns  have  to  be
decreased).  This  function  receives  the  number  of
turns  the  game  has  advanced  and  updates  the
attacks accordingly.

If  an  attack,  after  being updated,  has  zero  or  less
remaining turns, it is executed and removed from the
list.

It also returns the maximum number of turns that can
be advanced; that is, the turns until the next attack
arrives at its destiny.

CreateUnits Int -

Advances the provided number of turns for all  the
entities.  The  corresponding  amount  of  unities  per
turn  are  created  in  every  entity  multiplied  by  the
number of turns that have passed.

TattackInfo

Modifies Attack and AttackInfo.

This  enumeratorxxi replaces both  Attack and  AttackInfo.  It  stores the information
needed to track an attack since the moment it is created until it reaches its destiny.
Because it will not be an object in the scene any more, only this info is required to
keep track of each attack’s state. Its attributes can be found in Table 25.

It  does  not  require  any  methods,  because  it  simply  holds  the  information  that
represents an attack, but it is processed externally by other classes.

AI classes (dumb, random, montecarlo and NN)

Minor updates to accept the new training types (TEventEntity and Tplayer).
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Table 30: TPlayer attributes.

NAME TYPE VALUE RANGE DESCRIPTION

Planets List<TEventEntity> - List of the entities under control of the player.

effector Teffector - Instance  of  the  TEffector  that  will  execute  the
actions commanded by the AI.

Teffector

Modifies Effector.

Again, same as the original, but the attributes suffered minor changes (Table 26).

TEventEntity

Modifies EventEntity.

Again, little has changed when adapting this class. Its attributes can be found in 27.

TGame

Modifies Game.
This class has suffered some major changes to adapt it to the new flow of execution. It
now handles the events and passes them to the corresponding entities, because there
is no clock that does that in this version. Its attributes and methods can be found at
tables 28 and 29, respectively.

Tplanet

Modifies Planet.
The modifications made in this class only suppress the graphical elements. The logic is
still the same and no new elements have been added.

Tplayer

Modifies Player.
Again,  this  class  only  modifies  the  types  of  some  of  the  variables.  The  logic  is
untouched (30).  The classes diagram of this version of the game can be found in
Figure 14.

3.5 Snapshots
Some classes have a method that hasn't been explained until now: the TakeSnapshot
method. This method is very simple and returns an instance of the simplified class
corresponding to the type of the object that invoked this function.
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3.6 Training Game Execution Cycle
The  training  has  been  designed  with  the  idea  of  playing  more  than  one  game
consecutively. A diagram of the full cycle can be found in Figure 15. Here its explained
in detail:

1. The  information  from the  scene  is  loaded.  The  distribution  of  entities,  and
players  is  read.  A  new  instance  of  the  class  TGame is  created  with  this
information.

2. The training instances  of  objects  that  represent the entities are created and
initialized following the information that was found in the scene. That includes:

2.1.Creating training instances for every entity,  specifying its position, current
level, maximum level,  etc.

2.2. Initializing the entities by providing them with the player that owns them (or
none if that’s the case).

3. Generate the players:

3.1. Instances of TPlayer are created and its AI its initialized.

3.2.The planets that belong to each player since the beginning of the game are
added to each player’s Planets list.

4. A snapshot of the current state of the game is taken. This will be used to restart
the game when needed.

At this point we have all that we need to start playing, the entities are prepared and
the players have an AI and some initial planets. The game can start.

5. If the required amount of games have been played the execution ends.

6. If  not, the game is restarted using snapshots. That means that the snapshot
taken at step 4 is loaded, to ensure a fresh start.

7. Main loop of the game:

7.1. The decided amount of turns (or 1 by default) is advanced. This implies that,
the operations that will be performed in this iteration of the main loop will
do so for this amount of turns at once.

7.2.The  attacks  are  checked.  Their  remaining  turns  are  updated,  that  is,  the
amount  of  turns  advanced  in  step  one  is  subtracted  for  each  attack
remainingTurns attribute.  If  one  or  more  has  reached  its  destination
(remainingTurns = 0), the attack is executed. 

44



This  step  also  provides  the  amount  of  turns  that  can be advanced until
another  attack  reaches  its  destination.  This  number  will  be  used  as  a
candidate for the next execution of step 7.1.

7.3. If someone has won, the game ends and the execution returns to step 5.

7.4. If nobody won, units are created. The number of units that will be created in
each entity corresponds to the units that will be created in one turn times
the number of turns that have been advanced.

7.5. It is checked if the AI should be triggered.

A) If it has to be, we continue to step 7.6.

B) If  not,  the remaining turns  for  it  to  be triggered is  compared to the
number of turns obtained in step 7.2.

(a) If the number of turns remaining until the AI is triggered is less than
the turns obtained in step 7.2, the game will advance the number of
turns remaining for the AI to be executed.

(b) If not, the number of turns obtained in 7.2 will be advanced.

      After that, the flow returns to step 7.1.

7.6. Number of turns until next AI execution is reset.

7.7.For every player, its AI its triggered and the action it decides to execute is
passed to the player’s Teffector for execution.

7.8.After all actions have been executed, the flow returns to step 7.1.
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Simulations
In the following sections, the term “simulation” will be used various times. We would
like to clarify here what are we talking about when we use that term. A simulation is a
complete execution of the training game execution cycle where the total numbers to
play is 1 that can be started using a provided state of the game.

In other words, is the execution of a full game in training mode until it is finished that
starts either from the state read from the information found in the scene or another
state that can be provided to the algorithm as the starting point.

3.7 AI
In this section the basic AI mechanisms will be explained in detail. Both Montecarlo
Tree Search and Deep Learning will be treated in their own section. This techniques are
more simple approaches (trivial in some cases) that allow a game to take place, with or
without  human player.  These  AI  techniques  have  been implemented mainly  to be
compared with the more complex ones, main subject of this project.

Again, we want to remember that all of these techniques implement the interface AI.
They all implement a different version of the Decide method, where the work is done.
After finishing, an action (passed as a variable of type Actions) is returned, and the AI
work is done.

There will be explained three AI types in this section: dumb, random and classic.

We start  with the  Dumb AI.  The most simple and easy to defeat.  It  simply waits,
forever. When the Decide function is called, it immediately returns the action wait, and
does nothing else. It is useful for checking the main strategies of other types of AI.

The Random AI is a little more complex. Instead of returning always the same action, it
chooses one  arbitrarily. Very useful for checking the reaction of other types of AI to its
behavior.
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The classic AI is the most complex of these three, although it is rather simple. It uses a
behavior tree to decide which action is the most appropriate given the context of the
game that is being played. To avoid making an AI too predictable, random elements
have been introduced in the decision-making process, so it might perform strange and
even illogical actions at any moment. Its decision tree can be found in Figure 16. The
random values that can be appreciated are included to create a behavior more human-
like. This will enhance the game play quality, by having an AI more enjoyable to fight
and it will also will provide a rival less predictable for the machine learning techniques
to practice. This is because the  classic AI will be used to train and test the machine
learning techniques that will be implemented.

Note that the classic AI does not use a tree in its implementation. The behaviour tree
in  Figure 16 is  only a representation of  a series of  if-else structures used to take
decisions.

The different types of AI will be implemented in separated classes that implement the
AI  interface  (see  Section  3.1).  They  will  all  be  used  the  same  way,  except  the
montecarlo class (more information in  S  ection 3.8  ); they will call the  Decide method
(Table 21) and return an action.

48

Figure 16: Classic AI decision tree.



3.8 Montecarlo Tree Search
Montecarlo tree search (from now on, M.T.S.ii) is an AI technique that explores the
space state of the game and chooses, based on the actual state of the game, the best
possible  action  that  can  be  done.  The  “best  action”  is  the  action  with  higher
possibilities of being the first of a chain that ends with the player executing this AI
type victory.

To do this, the states are represented as the nodes of a tree and the actions as the
links that connect them. The algorithm then searches in this tree a chain of states that
ends in victory and executes the next action in that chain to try to get to that victory
state.  An example can be seen in  Figure  18 (tree)  and  Figure  17 (node).  For  this
algorithm the training version of the game is used.

In our case, every node has 5 children (one per action) and the “distance” between
states is the turns between AI ticks. Each connection represents an action, and its order
is always the same.

However,  because the space state of  the game is  so immensely huge,  it  can’t  be
explored (or even stored) at a high enough speed for the algorithm to execute in a
time period acceptable to be responsive in a videogame. Because of this, the algorithm
uses heuristic techniques and rollouts to estimate the action with higher possibilities to
lead to a victory.

This section provides only a basic introduction to the algorithm and its functioning. For
more detailed information and implementation details, see Annex I.

Heuristics
A heuristic  is  a  technique  used  to  optimize  algorithms by  achieving  good results
immediately but without guaranteeing perfect or optimal ones. In other words, they
are methods that “guide” algorithms to take decisions that  seem to be the correct
ones because they provide good results in the short term or because the fulfil other
criteria but, in the long term, can lead to solutions that are not optimal (that is, there 
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formula
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are  better  solutions  than  the  one  obtained).  In  exchange,  heuristics  accelerate
algorithm and usually obtain answers quickly.

In M.T.S.  heuristics are used to determine which states are explored before others.
Based on the score and the number of visits, a value is computed for each child node
of the node that is currently being explored (if it has children). The node with the
higher score will be explored, and so on and so forth. Formula 3 is the formula being
used for this purpose.

Again, for more information see Annex I – Heursitics.

Rollouts
A rollout is a simulation of the game. It might start from the very beginning or from
any given state stored in a node and continues until the game ends.. The simulation is
conducted by choosing random actions for each player and executing them.

Rollouts are executed using the training version of the game, as explained in Training
Game Execution Cycle section.

Back-propagation
Once a rollout has finished, a score is obtained based on its results (for example, if the
player using montecarlo wins a +10 score is obtained and if it loses, a -10 one is
obtained). This score, however,  needs to be extended through the tree to have an
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influence  in  the  exploration  of  new nodes.  In  other  words,  to  decide  whether  to
explore or not that node again, we need that score to influence the nodes that is
necessary traverse to reach the simulated node again.

To do this, the score is backpropagated. Starting from the leaf node where the rollout
started, its lower-level nodes (parents, grandparents, etc.) are traversed again until the
root node is reached. While traversing these nodes, the obtained score is added to
them, modifying he score they previously had and increasing their visit number.

Expansion
An expansion is when the children of a node are created. That is, the state of a node is
taken as the origin point and simulated for the amount of turns between AI ticks. In
this “mini-simulation”, each player takes a random action except the one controlled by
M.T.S.;  which  will  execute  the  action  corresponding  to  the  children  that  is  being
created.

Notice that the state of the original node does not change at all. After each simulation
it is copied to the new node and reset.

Algorithm
When the algorithm starts, the tree has only a root node with the current state of the
game. The algorithm the expands this node by simulating every possible action and
creates the first child nodes. After that, the exploration begins. For each node, besides
the state, the number of visits and a score is stored (Figure 17). The algorithm then
uses heuristics to choose a node to explore. When the node has been chosen, the
algorithm can face three scenarios:

1. The node has children. In this case, another node is chosen from those children
using heuristics again and explored.

2. The node is a leaf node (has no children) and has not been explored yet. In this
case,  a  rollout  is  performed.  After  the  rollout,  the  obtained  score  is  back-
propagated and the process starts again from the root node.

3. The node  is  a  leaf  node and  has  been explored.  In  this  case,  the  node is
expanded and a child is chosen using step 1.

An iteration is a full search - rollout - back-propagation cycle.

Because not all the state space can be explored, this algorithm is executed until a fixed
number of iterations or a certain time has passed. Once this limit has been reached,
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the execution stops and the best action is chosen comparing the score of the root
node children, this time without using heuristics.

Results
The implementation of this technique has been successful.  The main algorithm has
been implemented and functions as expected. Even more, implementation decisions
such as using an array for the information storage and thread usage  resulted in a very
good  performance,  leading  to  executions  with  120.000  iterations  in  2  seconds.
However, the learning part of the algorithm has been severely affected by the game
nature.

Because of the real-time gameplay in the normal version of the game, the human
player actions can’t be predicted in any way and can’t be adapted to the tree structure.
Human player can perform no actions, one action or several actions between AI ticks
whether the AI can only perform one and thus, the tree with the fraction of the space
state already explored is not valid between AI ticks.

This implies that instead of exploring a fraction of the space state, returning an action
and waiting until the next turn to continue exploring where the last execution was
stopped, the tree has to be discarded in its entirety and thus; a new one has to be
created  from scratch.  Staring  from  the  state  of  the  game  when  the  AI  tick  was
triggered, of course.

However,  due  to  good  performance,  the  algorithm  is  still  capable  of  offering  a
challenge to the player despite only having two seconds to learn from scratch.

The duration of this technique’s implementation was more than expected. As a result
of  this,  the  second  part  of  the  project  related  to  this  technique,  the  difficulty
adaptation,  was  suppressed  to  be  able  to  achieve  acceptable  results  in  the  Deep
Reinforcement Learning part. This is also the reason behind not revising this technique
for a better adaptation to the real-time nature of the game and leaving it as it is.

3.9 DEEP REINFORCEMENT LEARNING
Deep reinforcement learning is the newest and last technique that will be implemented
in the project. It belongs to the machine learning domain, a research field that has
revolutionized  certain  aspects  of  our  life  and  promises  to  keep  doing  so  in  the
following years.
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Again, this section will describe the technique and its implementation briefly. For a
more detailed version, see Annex II.

Machine Learning
Machine  learning  refers  to  a  group  of  techniques  based  on  statistics  that  try  to
improve  the  performance  of  machines  doing  a  certain  task  without  explicitly
programming them to do so. In other words, these techniques try to make computers
and other devices learn how to do a task the most efficient and effective way possible.

The  process  starts  with  a  computer  or  device  trying  to  perform a  task  executing
random actions and, obviously, failing miserably. However, with enough trial and error,
the machine ends up performing the task remarkably well.  In an ideal  scenario,  of
course.

Models are used to achieve this. Models are mathematical representation of systems.
In machine learning case,  they represent the decision process the machine has to
perform given certain output. When input values are provided to a model, it outputs
another series of values that, if the model has been trained, represent the action that
should take place next to perform whichever task the device is performing.

Machine learning techniques start with random models that are progressively modified.
At the start, the output they produced is poor in quality (in terms of how the task is
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performed) and slowly becomes better. This process called training, and it is necessary
in all machine-learning techniques.

The devices, characters, etc. that perform the actions are called agents and the space
(real  or  not)  in  with  which  they  interact  and  the  actions  are  performed is  called
environment.

Deep Reinforcement Learning
This  group  of  techniques  combine  two  of  the  most  popular  machine  learning
approaches: Deep Learning and Reinforcement Learning. The first one focuses in data
representations. In other words, it studies ways of creatingand storing models in ways
that allow for better learning. In this particular case, Deep Neural Networks are used.

A Deep Neural Network is a directed graph that can be traversed from one side (input
side) to the other (output side). The graph is composed by layers of nodes. There are 

three main types: input layer, hidden layer and output layer. An example can be seen
in Figure 19.

Reinforcement learning uses the reward-punishment technique for learning. Based in
the performance of the agent a positive or negative (punishment) reward is given. With
enough time and rewards,  the  agent  learns  to  maximize  the  reward and thus,  to
perform the required task correctly.

ML-Agentsix

ML-Agents is a plugin provided by Unity-Technologiesxxii that allows the usage of some
machine learning techniques in the Unity game engine. It simplifies this task by taking
care of the implementation of the machine learning algorithms by himself and letting
the developer focus on the environment and agent developing.

In this project, due to time and scope considerations, this plugin has been used to
create  an AI  capable of  playing the  game  Auralux learning to  do so  by its  own.
However, the plugin executes following its own cycle and thus, some adaptations are
necessary to use it. This adaptations are manly the use of class heritage to implement
functions that are later called by the plugin.

Setup
In our case, the environment is already developed.  Levels of the game will be used to
train  and to  let  the  AI  show its  acquired abilities.  The  main  task  is  to  obtain  an
appropriate agent, able to learn and to interact with the environment properly. As a
base, a normal AI player of the game it is used. It can interact with the environment
both acting upon it with its Effector and gather information about its state.
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For the environment, both normal and training versions of the game will be used. The
first one is used when the model has already been trained and it is ready to play
against humans. The second is used to, as its own name hints, train the model.

Agent
Because  the  machine  learning techniques  are  controlled  and executed by  the  ml-
agents  plugin,  agents  only need to be able to interact  with the environment and
gather data. As it has been said, this has already been accomplished with a regular AI
player,  which  can  is  able  to  interact  using  its  Effector instance  and  can  gather
information from the scene.

However, the information needed is beyond the capabilities of a normal AI player for
obtaining it. Because of this, the agent needs to be modified to be able to access the
information directly from the game class which contains all  the information in the
environment.  In  addition,  it  has  to implement  some base  classes  provided by  the
plugin to be able to have some functions that belong to its (the plugin) execution
cycle. This way the agent can send and receive information from the model.

The agent interacts mainly in three different phases with the plugin cycle:

• Sending information:   When the plugin needs to gather information to feed the
model  and  let  this  last  one  take  decisions,  this  phase  is  executed.  It  is
implemented  with  a  function  called  CollectObservations that  has  to  be
implemented in the agent.

• Executing actions:   After sending information, the model outputs values that the
agent has to translate to actions and execute them.

• Reward:   After executing actions, the agent has to gather information again and
determine how good or bad it’s  situation is.  This information is sent to the
model in the form of positive and negative rewards.

Training
In training phases the plugin takes total control over the environment execution. It is
executed at very high speed and saving as much as possible in the graphical aspect to
provide faster and more efficient training.

Training is simply executing the environment (in our case, a game) over and over again
until  some criteria  is  met  (for  example,  one million games have been completed).
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Developers can program how it has to be reset every time one of this cycles ends and
other minor things.

In  our  case,  training  sessions  between  500.000  and  1.000.000  steps  long  were
performed several times changing the output and the reward system of the model to
try to get the best possible results. A plugin-adapted training version of the player was
used.

For more information in this sessions and the changes between them, see Annex II –
Training Sesions.

Normal Gameplay
Once the model is trained, it can be exported as a file and used inside the normal
version of the game. The feeds output to it and it provides output which is provided to
the  agents  by  the  plugin.  The  environment  executes  normally.  A  plugin-adapted
version of the normal player is used.

Results
The usage of the plugin and the necessary adaptations were done in much less time
than planned originally.  This  task  was  surprisingly  easy  and no major  issues  were
found.

However,  designing  the  agent  and  implementing  it  (by  adapting  the  already
programmed players) was harder. Not only that, the training phase was very deceiving.
Not only the process is slow and hard to debug, but the obtained results were far from
the best-case scenario.

To measure its success, the model-controlled player was confronted with random AI
controlled  players  in  a  large  number  of  games.  The obtained  models  had  only  a
slighter  better  performance than players  executing random actions and even then,
obtaining this models was a hard and long process. In fact, the best model obtained
only 65% of victories in a two player game environment.

We believe that this might be due to a poor reward or/and input system that does not
provide the model with adequate values.

Because of this, the difficulty adaptation part has been again suppressed again from
the project to try to obtain better models.
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4 TESTING AND RESULTS

4.1 Results
Although  some  already  mentioned  problems,  the  results  of  this  project  are,
nonetheless,  satisfactory.  The  main  objective,  the  implementation  and  usage  of
machine learning techniques, has been reached and functions correctly. However, as it
has been said, some parts of the project have been abandoned due to poor scheduling
and lack of time. 

The complete development of the project by weeks can be seen in Annex III.

• Research of methods of adapting machine learning techniques to video games. 

• Implementation of Montecalo Tree Search and its integration in the game flow.

• Usage of Deep Learning as an AI in the game.

• Difficulty adaptation.

The  last  part,  the  difficulty  adaptation  of  the  implemented  techniques  has  been
completely suppressed from the project.

In terms of the main game, we consider its implementation a success and no major
problems were encountered.

As form MTS, its implementation and execution, although more difficult than expected,
were also successful. Not only that, we consider that our implementation is efficient
and optimized. This is supported by the fact that, because the tree has to be started
from scratch every AI tick it still presents a challenge to the player.

However, the time consumed in the implementation and testing part was more than
expected  and  it  could  not  be  adapted  to  modify  the  difficulty  in  regards  player
performance.

Lastly,  Deep  Reinforcement  Learning  implementation  was  easier  than  expected.
However, training and obtaining good results as not. The performance of the agent
was 65% of victory in a 2 player scenario where one was controlled by deep learning
and the other executed random actions.
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4.2 Testing
To test  performance and implementation success of M.T.S.  and Deep Reinforcment
Learning as well  as simulations,  the following procedures have been designed and
followed:

• M.T.S.  

This technique has two main parts that need to be tested: the tree construction
and the decision making process. Both of them were tested by executing the
algorithm very few iterations (enough to create a big enough tree for testing)
and by revising the creation process and the results by hand.

In terms of performance, the test was performed by obtaining the greatest child
number that had been visited during a more lengthy execution. The numbers
obtained tend to differ greatly, which is normal due to the random nature of the
simulations. However, the maximum child number tends to be between 80.000
and 120.000.

Another factor that proves the correct execution of the algorithm is the fact that
the number of iterations decreases when the root state is close to the game
end.

• Deep Reinforcement Learning  

Because  the  algorithms  and  procedures  are  implemented  in  the  ML-Agents
plugin, the only thing that can be tested in our side is the model performance.
To do this, the model is confronted against other AI players thousands of times
and its performance is obtained as its ratio of victories.

• Simulations  

Simulations were tested by executing them step by step and analyzing their
performance.  All  edge cases  were  simulated specifically  and later  revised to
ensure correct executions.

4.3 Links
The game ready to be played, Unity project files and videos showing the most relevant
AI combats can be found HERE.
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5 CONCLUSION

This project has been a very long and sometimes frustrating journey. Parts of it have
been abandoned and other parts have taken its time only to provide with improvable
results. However, from its three main parts (leaving documentation out) the three have
been successfully implemented which opens the door to future revisions that allow for
the correction of the actual problems.

The first part, the game itself, was the easiest one. Due to the simplicity of the game
and the growing experience of the author, it was the only part completed in time and
with good results.

The  second  part,  Montecarlo  Tree  Traversal,  was  the  most  complex  in  terms  of
implementation. The base algorithm although it might appear simple,  hides lots of
edge cases and unexpected complications. In top of that, implementing it efficiently
provides  with  added  complexity.  Nonetheless,  the  results  are  even  better  than
expected, even with the huge loss of potential due to the real-time nature of the
game.

The third and last part, Deep Reinforcement Learning is the one were the results are
most  disappointing.  The  easier  and  faster  implementation  than  expected  is
overshadowed by the poor results.

On top of that, the difficulty adaptation parts have been completely discarded from the
project due to time issues. This has been caused due to poor time-estimations and the
difficulties that have been found during development.

Despite  all  of  the  above,  the  overall  experience  has  been  gratifying.  Overcoming
unexpected problems and using an experimental plugin for experimental techniques
has resulted in interesting (and sometimes stressful)  challenges.  Challenges that,  at
least most of them, have been overcome.

The author would also like to thank its professor and tutor, Raul Montoliu Colas, for
introducing machine learning in his Advanced Interaction Techniques course, allowing
him (the author) to discover this weird and sometimes magical world.
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ANNEX I 

 MONTECARLO TREE SEARCH
ALGORITHM AND ITS

IMPLEMENTATION IN AURALUX
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A1.1 What is Montecarlo Tree Search?

We are going to begin this part by explaining the basics of this algorithm and its uses.
After this basic insight has been provided the implementation used in the game will be
explained in detail, step by step, as well as its execution flow. However, before we can
even start to explain the basics of the algorithm, there are some concepts that have to
be understood by the reader:

• State:   The values of the properties that configure a system at any given time, in
other words, the information necessary to describe perfectly how is everything in
the game. If we took a snapshot of the screen while playing the game we could
see the number of units that each planet has, the position of the attacks (if any)
and the units they carry, which player owns which planet, etc. That will be a
state  of  the  game,  because we could “load” those values  in  the  game and
continue playing from that point on.

• State space:   A collection of all the possible states of a system at any given time.
In our case, imagine that we are playing the game and we wish to store every
possible frame that can be displayed. That is, every that is different from any
other frame because there is a different number of units in a planet, or because
there is a planet that belongs to a different player or because there is an attack
with a given number of units in a different position, etc.

The Montecarlo Tree Search (MTS from now on) is a heuristic search algorithm used in
decision making. In other words, it is used to search something in a way that tends to
lead to the desired result faster and that the result is used to make a decision. In
greater detail:

• Search algorithm:   If this is an algorithm which objective is to provide an agent
with the best possible decision at any given moment, why is it defined as a
search algorithm? What is it looking for?

First of all, we have to understand that, even tough the game is represented
with  graphics  trough a  screen,  the  computer  itself  it’s  only  able  to  process
numbers. That implies that at any given moment, there is a group of numbers
stored in memory that represent the state of the game. And when the graphics
in the screen are updated, these numbers change accordingly. That means that
for every state, for every frame, there is a group of numbers that configure the
state of the game, a concept defined before as the state space.

There are a lot of possible states in the game, represented by these numbers,
but although they might be billions of them, its number it’s not infinite. We can
collect and store each and everyone of them, even if it uses lots of memory
(again, this is the  state space). And that has an interesting implication: inside
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that collection can be found every possible combination of moves that can be
executed in every possible situation and all their possible consequences.

Imagine that we freeze a game of Lux Aura between player A and B. The state
of the game can be found inside the  state space. But alongside this state are
every  possible  state  that  can be reached by  performing (or  not  performing
actions) from this particular snapshot of the game.

Imagine now that in order for player A to win, a simple attack to the enemy is
necessary. That means that to win, the state of the game will change to one
where player A attacked, to another one where the attack was heading towards
its objective and a final one where the attack reached the enemy and player A
won.

The game has been in four different states until it was finished. But player A
could have done any other action, leading to other states that might not end
with him winning. So, if player A could find the chain of states that ends with
victory at any given time, he will always win.

It is precisely that sequence of states what MTS seeks. It needs to know what
sequence of actions to take in order to win at any given moment. And it is
searched in the state space of the game, starting from the current state of the
game.

• Tree:   The states are organized in a tree structure. The root node is the initial
state. Each node has as many children as there are possible actions that can be
done. Using this structure, searching is quicker and more efficient. An example
can be seen at Figure 20.
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• Heuristic:   The state space is huge. If there was only one planet the space state
would have approximately 37 million possible states. That means that a normal
search  to  find the  desired  sequence of  actions  is  out  of  the  question.  The
algorithm needs something to help him find that sequence faster.

That is where heuristics come in handy. They are a kind of measure that allows
an algorithm to know how “well” is it doing in its task and to point out if the
decisions it has made appear to have brought it closer to the desired result or
not, so it can then continue or stop and redesign its strategy. They are not
perfect and can fail (that is, they can result in a non optimal strategy) because
are based in estimations, but in situations like this its usage it’s necessary.

• Decision  making:   Once  the  algorithm ends,  its  results  describe  the  odds  of
winning  after  executing  certain  actions.  This  information  is  used  to  take
decisions.

MTS execution can be briefly explained (in the case of game applications) as follows:
starting from the current state of the game, the algorithm looks through the  space
state for the sequence (or sequences) of actions that end with the victory of the player
that is using it and returns the odds every action to be the start of a sequence that
leads to victory.

It has been applied in video games such as Total War: Rome IIxxiii and AlphaGoxxiv. This
last  case,  the  most  recent  and  famous  one,  uses  MTS  in  combination  with  deep
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learningxxv to play the game Goxxiv, a table game for which a computer program able to
defeat humans was impossible to program until 2015, the year AlphaGo beat the first
professional human player. 

A1.2 States
We have previously defined what is a state and a state space. However we have not
defined yet what information is necessary to describe a state in our game. A state o a
Lux Aura game can be divided in three sub-states:

1. States of the entities  

Information that describes the state of a single entity at any given moment (31)

2. States of players  

Information that describes the state of a player at any given moment. The state
of a player contains the states of the planets that controls (32)

3. State of attacks  

The information that describes the state of an attack at any given moment (33).

This  states  are  represented  internally  with  the  classes  TeventEntity,  Tplayer  and
TattackInfo respectively and are stored inside an instance of the class TGame. The state
space, again, would be a group made by all the possible states; that is, all the possible
combinations of the presented values.

To  obtain  these  states,  the  previously  explained  in  Snapshots section  snapshot
methods are used. When invoked, they gather the necessary information, create an
instance  of  the  training  class  that  is  required  and  initialize  it  with  the  gathered
information. The result is the state of the object the moment the method was called.
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Table 31: State of entities

INFORMATION VALUE RANGE

Owner -1 – 5 

Level 1 – 3

Experience 0 – 150

Experience for next level 0 – 150 

Health 0 – 100

Units 0 – 9999 

Current contestant 0 – 5 

 

Table 32: State of players

INFORMATION VALUE RANGE

Planets List of entities that can be at any state

Table 33: State of attacks

INFORMATION VALUE RANGE

Remaining turns 0 - 100

Player that fired it 0 - 5

Units 0 – 9

Id of the objective 0 - 10
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A1.3 Heuristics
As explained before, a heuristic is a measure of some kind used to tell if a process
seems to be going in the correct direction to obtain the results it desires. It is used in
many programs and search algorithms to optimize it’s execution time by giving priority
to those paths or decisions that seem to get the algorithm closer to its objective. Its
usage has a counterpart, and that is that the algorithm might not always find the best
solution.

In our case, the heuristic is used to explore further the decision sequences that have a
higher rate of success (that is, those which simulations ended in victory more times). It
translates to having a value per node that shows how “good” it is and to decide which
one should be explored. The value comes from Formula 4.

When we need to choose between the possible actions, represented by child nodes,
this formula will calculate a value for each possible option. Once it has been done, the
higher value obtained is chosen and the node that obtained said score is explored.

We can distinguish two parts in the formula:

• Exploitation term: This term gives weight to keep exploring nodes
that already have been explored based on their  results.  In other
words, it’s the term that pushes the algorithm to only take routes
that have been taken before and have had good results.

• Exploration term: This term gives weight to those nodes that have
not been visited or have been visited less times. In other words, it
pushes  the  algorithm  to  prefer  nodes  that  have  been  little
explored  against those that are well known and have given good
results.

The algorithm has to find a balance between these two values that allows it to explore
enough that the best sequences are found but, at the same time, exploit the good
results obtained to ensure that they are, indeed, good.

To do so, the constant value “ ” ϕ is used. A higher value will focus the algorithm more
on exploration and a lower one will make the algorithm exploit more the good results
already obtained. In our case, different values were tried and we believe that the best
performance for our case can be found between values 1.8 and 2.2.

Another thing to consider is the fact that the formula will return an infinite value for
non-explored nodes. This is because the visits of a non-visited node are 0. When the
division of the second term is computed, an infinite value will be returned. This implies
that the algorithm will always prefer nodes that have not been explored yet instead of
already visited ones, whichever might be its score.
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A1.4 M.T.S. Algorithm

Now that  the  necessary  terms  have  been  explained  and  that  we  gave  a  general
overview about what does this technique exactly does and how are defined the states
through will it will search for the best possible sequence of actions; it’s time to explain
its algorithm. A diagram of this process can be found at Figure 22.

First of all, although the algorithm searches among every possible state of the game,
the complete  state space is  not  stored anywhere.  Storing it  would require  lots  of
memory and, because of its size, searching anything on it would require high resources
usage. Moreover, having every possible state is not necessary, because ate very given
moment, only a fraction of it is accessible. For example, having a level with five planets
discards immediately every state that had more than 5 planets in it.

Because of this, the algorithm starts by storing the actual state of the game. That is, it
takes a snapshot of the whole game and stores it as its initial point. Starting there, the
search begins. But before we can start explaining the actual process,
we need to state the information that is contained in the nodes that
will populate the tree.

A node contains three values:

• A state of the game
• Number of times it was visited
• Score

Having these, the process can perform all the actions required. The
algorithm follows these steps:

1. The state of the game is obtained using snapshots and it is placed at the root
node.  The algorithm will  start  from here,  that  is,  the root  node will  be the
current node.

2. Main loop of the algorithm:

2.1. If the current node has children:

2.1.1. The best child is chosen:

▪ For this, Formula 4 is used.
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of a node



2.1.2. Once a child has been chosen, it becomes the current node and the
algorithm returns to step 2.1.

2.2. If the node has no children:

2.2.1. If the node had not been visited before a rollout is performed.

• A rollout consists of a simulation in which the starting state is the
one found in the node that is being explored and continues until
the game ends.

2.2.1.1. Once  the  simulation  ends,  depending  on  its  result,  a  score  is
obtained (for example, if the game has been won the score will be 10
and if it was lost it would be -10).

2.2.1.2. The score is back-propagated.

• This is, the score is added to all the nodes that were visited starting
from the current node and until the root is reached.

◦ CAREFUL: Only the obtained score is added to each node, not
the total score of its child.

2.2.1.3. We start from the root again at step 2.1

2.2.2. If the node had been visited before, it is expanded

• For every possible action, a new node is created. That implies creating
a  new  node,  simulating  a  step  in  the  simulation  performing  the
corresponding action and setting the node as a child of the current
node.

2.2.3. Once the node ha been expanded, the algorithm returns to step 2.1
with the node that was expanded as the current node.

• To save time and resources, a rollout can be performed in the first
child  of  the node,  because that is  the one that will  be chosen by
Formula 4.

3. This process continues until it finishes or it is stopped (see next sub-section).

4. Once it is done, the best action (the child node of the root that has the best
score) is returned as the best action that the algorithm found.

68



Start and finish
Given the huge size of the state space, we can’t expect the algorithm to search trough
all of it in a reasonable amount of time except in the cases where the game is close to
being finished. Because of this, the algorithm has to stop based on factors like time or
number of iterations to obtain a decision in a period of time short enough to be
acceptable in the flow of a video game.

Since in our case a clock has been already implemented, we will use time limitations.
When the execution of the algorithm is started, a new timer will be set to trigger an
event after a certain amount of time (in our case, 2 seconds were enough). The main
loop of the algorithm (step 2) will be executed until the timer triggers and event. When
this happens, the algorithm will move to step 4, and the exploration will be stopped.

This implies that, since not all possible states will be explored, in order to obtain a
good solution the algorithm needs to have enough time to travel through the biggest
possible  part  of  said space.  In  other  words,  it  has  to run as  fast  and efficient  as
possible to search through the highest possible number of states until it runs out of
time  and  stops.  This  has  been  accomplished  using  the  techniques  described  in
Implementation Notes section..

A1.5 M.T.S. Trace
To help further in M.T.S. understanding, we provide a trace of a simplified case first
steps  execution.  In  this  scenario,  there  are  only  two possible  actions  that  can  be
performed at any given moment. There are only two possible outcomes with +20 and
+10 score values (victory and defeat).

The trace can be found in Figure 23, Figure 24 and Figure 25.
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Figure 22: MTS execution flow
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Figure 23: First part of the M.T.S. execution trace
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Figure 24: Second part of the M.T.S. execution trace



73

Figure 25: Third and last part of the M.T.S. execution trace



A1.6 Implementation Notes
In this section we will expose how this algorithm has been implemented to obtain an
acceptable level of performance and use the available resources in the best possible
way. However, there might be other ways of implementing it that might be better for
other scenarios and/or applications, so we let the reader decide to follow or not these
notes in its own implementation. The two  techniques described optimize the two main
aspects of the algorithm: search and simulation, respectively.

Array implementation
Because we want to obtain the best performance possible, the tree structure used by
the algorithm has been implemented using an array. This results in the exploitation of
the available cache16 memory, because the information will be stored continuously in
memory, and thus, in faster accesses. This will make the search part (the one in which
the algorithm travels from node to node) faster.

Using this structure implies that we no longer need to store memory addresses for the
children and parent nodes, only the position of the node in the array is necessary to
obtain them. To find the children or the parent of a certain node using this number,
formulas Formula 7  and Formula 8 are used. 
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Figure 26: Diagram of the array structure

parent= child position−1
5

Formula  7:  Formula
for finding parent

child=parent position∗5+child number

Formula  8:  Formula  for  finding
children position



Parent and child position refer to its position in the array, while child number refers to
which one of the exisitng children we try to access. The first two have a value range
that goes from 0 to the length of the array and the second one from 0 to 4. This is
because each node has  as  many children as  possible  actions and,  as  it  has  been
previously explained, in our case there are only 5 possible actions. A diagram of the
array can be found in Figure 26.
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Figure 27: Example of mutex - dependent execution



Threading
As already exposed, we need to explore the maximum amount of
the state space possible until the algorithm runs out of time and its
execution stops.  The most  expensive  part  of  this  process  is  the
“rollout”, or the simulation of a game until it ends. This part could
result in only having to simulate a few steps or having to simulate a
whole game from start to finish. The length of the game will also
vary, because of the randomness of the decision-making involved.
In other words, the simulation itself can’t be optimized any further
than  the  optimizations  already  done  when  creating  the  training
version.

The only than that can be done, then, it’s to execute simultaneously
as many simulations as possible and using the available resources as much as possible
while there is still time to do so. To accomplish this, threading will be used.

Threadingxxvi is  the execution of simultaneous flows of execution from a process (a
thread),  sharing  the  information  this  “parent”  process  has  (variables)  among other
things.

To  extract  the  most  performance  of  this  techniques,  there  are  some  minor
modifications that need to be done in the structure of a node; but before we enter in
detail, the reader has to keep in mind two things:

• Simulations are independent  

A simulation is completely independent from every other one in the tree. They
start from a state stored in a node and, for every node, only one simulation is
performed. That implies that, as long as simulations start from different nodes,
they can be performed at the same time.

• Modifications in the tree are not  

Searching a new node to explore or back-propagating a score are tasks that
can’t be done simultaneously, because it might result in race conditions and the
obtaining of strange and unpredictable results. This is because unlike the states
from which  the  simulations  start,  the  tree  data  is  common and thus,  every
modification  is  performed  over  the  same  data  set.  Thus,  thread
synchronizationxxvii is needed.
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In other words, there can be as many simulations as needed being computed at the
same time, but when the tree has to be traversed to find the next node to simulate or
to back-propagate a score, it can only be done by one thread at a time. With this said,
we can start to design the structure and function of the treads that will be used.

Because the algorithm relies on a main loop that executes the same logic over and
over, we can simply use a thread for every iteration that has to be done. That is, a
thread will be in charge of looking for a leaf node to simulate, execute its simulation
and back-propagating the obtained score. As said before, the first and last tasks are
not independent. That means that when a thread needs to back-propagate the score
or to search a new node, it will have to check if there is another thread accessing the
tree (no matter if performing the same or a different task) and, if there is, wait until it
ends.

This has been achieved using locks or mutexxxviii, synchronization mechanism that allow
to block the execution of threads when critical parts of the code are reached. The
reader can imagine them as a shop with only one fitting room. Lots of people can be
choosing clothes at the same time, but when they want to see how they look with
their new outfits, they need to wait until the fitting room is empty. The door of that
room will be a mutex, because it would only allow to access the critical part (the fitting
room) when nobody else was inside. 

In  our  case,  the  tree  has  its  own  mutex.  When  a  thread  wants  to  modify  its
information, the mutex is closed. It will be released when the thread finishes whatever
it needs to do. But until this (the release) happens, other thread that want to access
the tree will  check the mutex,  see that it is locked and wait until  it is released to
continue. A diagram that explains this can be found in Figure 27.

Using threads introduces a new problem that we hadn't before: now we need to keep
track of which nodes are being simulated and which are free. To do this efficiently, we
have to change a little our node structure (Figure 28) adding the number of free
children of the node.

By keeping track of the number of children a certain node has that are not being used
by other threads to simulate, we can efficiently perform searches. Having this number
will allow us to avoid visiting nodes where no children are available. The part of the
algorithm regarding the search of a new node to explore with the necessary changes
goes as follows:

1. Start from the root node

2. If it has free children, continue, if not, wait and repeat this step.

3. Select the best child, which will be the current node.

4. Choose the best child node.

5. Subtract one to the free children number.
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6. The chosen child becomes the current node.

7. If  it  is  not  a  leaf  node,  return  to  step  4;  otherwise  mark  as  occupied and
continue with the algorithm.

Notice that if the leaf node is expanded, it will start with only 4 free children, because
one of the new nodes will be immediately chosen for a rollout.

Now, the second part of the algorithm that has been changed, the one related to
back-propagation of the score:

1. Start from a leaf node.

2. Add the obtained score to the current node parent’s score.

3. Add one to the free children number in the parent.

4. If the parent is not the root node, return to step 1 with the parent as the new
current node.

An example trace using this strategy can be found in Figure 29.

Advantages
Now that this changes have been explained, we will discuss why they are worth to be
applied despite the increase on complexity of the code and is susceptibility to new and
more difficult to detect errors.

Starting with the usage of an array to store the tree, this will allow for smaller access
time periods when a search is  being performed.  Because the whole tree is  stored
continuously in memory and it  is  accessed so frequently (ideally there is  always a
thread that has ended its simulation and needs to perform operations using the tree
date) the cachexxix is highly exploited.

Cache is a small but very quick memory used to retain information that is very likely to
be used soon by the processor to reduce access time to it. The main principles that
determine its usage (spatialxxx and temporal locality) determine that data that has been
used recently and data closer to the later one will probably be used in the future. Since
the tree data is constantly being used and traversed, and using an array implies that it
is stored in a continuous block, it will stay in cache for more time and that will reduce
access time to the information.

In the other hand, because the bottle neck is the access to this information, using
threads grants that there will always be simulations running while other threads wait
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for their turn to use the tree. Because simulating is more expensive than searching for
a node, there should be a balance between the nodes that are waiting to access the
tree data and the ones simulating, because various threads will have accessed the tree
by the time a simulation is done.

Recycling
One last thing to keep in mind is that creating new threads has a cost. If we really
want to obtain the best performance possible, we need to recycle threads to avoid
paying the cost of creating them over and over again.

Given that the threads do always the same (search for a node, simulate and back-
propagate) and that the results of their operations are stored in the tree data, we can
simply make the threads repeat their functions once they are done. The idea is to
create a reasonable amount of  threads for the system capabilities  and generate a
poolxvii of threads ready to be used.

Threads have to be created as needed, that is, they will created whenever the tree
mutexxxviii is free and stop once the maximum thread number has been reached. From
that point on, the threads continue executing until a variable that has to be accessible
and read-only for all of them tells them to stop and exit.

In  our  implementation,  before  a  thread  tries  to  access  the  tree  data  (either  for
searching a new node or for back-propagation) this variable is checked. If it has the
exit value, the thread stops, if not, it continues.

A1.7 Using M.T.S.
Before we explained that, given the huge size of the state space, the algorithm is not
able to explore all the states that can be reached in normal situations. This implies that,
in order to get the best solution possible, the algorithm has to run the longest amount
of time or the highest number of iterations possible. Since iterations can have different
duration, we followed a time-based strategy to use M.T.S. in LuxAura.

In opposition to the other AI types, M.T.S. does not retrieve an action immediately. Its
execution is started and, at the same time, a timer does the same thing. When the
timer triggers an event (that is, when the amount of time we decided has passed), the
main loop stops and an Action is  returned for  its  execution.  All  threads are then
suppressed. That implies that the events that occur in the game during the time that
the M.T.S. needs to take a decision won’t be taken into account in the decision-making
until the next M.T.S. iteration.
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Figure 29: Execution of M.T.S. with threading trace



ANNEX II

DEEP REINFORCEMENT LEARNING
AND ITS IMPLEMENTATION IN
AURALUX USING ML-AGENTS

PLUGIN FOR UNITY
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A2.1 State of the Art
In this section the general state and concepts of machine learning will be explained.
Once a general overview has been given, the techniques hat have been used in this
project will be explained in a more detailed manner.

Machine Learning
The concept of machine learning refers to a group of techniques based on statistics
designed  to  give  machines  the  capacity  to  “learn”,  that  is,  to  allow  them  to
progressively improve their performance on a specific task based on data. In other
words, techniques that gather and process great amounts of information in order to
find relations in that data that allow for a performance improvement.

A basic example would be a software that allows a machine to learn to recognize
apples in pictures. First, the machine would not be capable of recognizing apples, it
would need to be trained. In order to train, thousands of images with apples would
have to be provided to the machine. The software would then process this images and
look  for  patterns  in  the  data  that  allow it  to  successfully  recognize  apples.  After
thousands of images, the machine would be capable of performing its task with a high
success rate.

The example used describes a specific machine learning technique, there are other
methods that follow different approaches. However, all follow the same basic steps:
training iterations (gathering and processing of information) that result in a progressive
improvement in performance on a specified task.

This learned “capability” of performing a task is expressed in a model. A mathematical
representation that, when given input proceeding from the environment outputs values
that represent the next action to be taken.

This techniques have existed for a long time. The term itself was coined in 1959 by
Arthur  Samuelxxxi.  It  surged  from  the  research  of  AI  and  had  a  promising  early
development.  However,  because it  was based in statistics,  a rift  appeared between
machine learning and AI, which followed a more logical knowledge-based approach.
This caused a separation of fields that lasted until now at days. In the 1990 decade,
this  techniques  appeared  as  a  separate  field  and  began  to  flourish,  a  trend  that
continues in the present.

Today, machine learning Is responsible for most of the advances in technology. From
cars  that  drive  themselvesxxxii to  personal  assistantsxxxiii,  machine  learning is  gaining
more and more importance in our everyday life. And It seems that its importance will
continue increasing for a long time.
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Deep reinforcement learning is the combination of two of the most recognizable areas
of machine learning: deep learning and reinforcement learning, which will be explained
in greater detail below.

But first of all, there are some concepts that need to be clarified:

• Environment:   Includes everything that influences in the learning process, that is,
all the elements that the entity that is learning has to process and take into
account to be able to improve.

• Agent:   The entity that is learning. Notice that it doesn’t has to be a machine
itself. It can be a program or an element of a program (that is our case) that
uses this techniques to “learn” to perform correctly a task.

• Actions:   What the agent can do in the environment. Including the lack of action.

• Model:   Models are mathematical representation of systems. When input values
are provided to a model, it outputs another series of values that, if the model
has been trained, represent the action that should take place next to perform
whichever task the device is performing.

Reinforcement learning
This area of machine learning is heavily inspired by behaviorist psychologyxxxiv.  It  is
based in the reward-punishment principle. The agents performs actions that will be
rewarded  or  punished.  Based on  those  rewards,  it  is  capable  of  identifying which
actions to do based on the environment state to get the highest reward possible.

For this to be possible, the role of the interpreter is needed. This role is in charge of
providing with a positive or negative reward to the agent based on the results of its
actions. It’s like a judge that decides whether or not the agent is performing correctly
and rewards it accordingly.

Because the agent has to decide based on the environment state, a set of rules is
needed to determine what will  be seen by him and how. The agent perceives the
environment using this rules and decides what to do, hoping to reach an objective
state that will provide a high reward.

Deep Learning
Deep learning is  part  of  a  broader  family of  machine learning methods based on
learning data representations. They generate models of data that give an appropriate
output when given an input of some sort with a certain value. The most popular and
the method that will be used in this project is deep neural networks.
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Deep neural networks are composed of a series of nodes linked together. Three parts
can be found: input layer, hidden layer(s) and output layers. In the input layer the
values that are needed to take a decision are used. This values are transformed in the
hidden layers and then the desired values are appear in the output layer. The values
are transformed using numbers that are obtained though training sessions.

Each node contains a series of values (weights) used to modify the input and provide a
processed output. The original value enters through the input layer and travels all the
way  to  the  output  layer.  When  the  values  traverse  the  different  nodes,  they  are
transformed until the final values reach the last layer, the input layer. These values are
then used to make a decision.

Deep Reinforcement Learning
Being a combination of the previous two groups of techniques, deep reinforcement
learning uses neural networks as support for the model that is created and trained and
the reward-punishment system of reinforcement learning to adapt and improve the
model.
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Training
Another characteristic of machine learning techniques is that they require extensive
cycles  of  training to be able to learn.  Because agents  have to learn,  they require
periods  in  which they  try  to  resolve  the  problems they  will  have  to  face  later  in
controlled  environments.  This  training  periods  can  be  extremely  long  and  include
thousands or millions of examples, depending on the complexity of the task.

Is during this training periods where the agents adjust their models to be able to
perform correctly in these tasks. In our first case, reinforcement learning, the agent
learns to maximize the reward obtained when performing actions in an environment
and in the second one, the DNN adjust their internal nodes to provide with a correct
output when an input is provided.

Training is the most important aspect of machine learning, because it determines the
situations in which an agent will  respond correctly when provided with data.  If  an
agent is trained in an environment and that environment changes after training it, it
will most likely not be able to respond correctly to any given situation. If the agent
receives  different  or  inaccurate  input,  its  response  won’t  be  good to  perform the
required tasks either.

Besides, training an agent to make it behave correctly in different environments and
situations is extremely difficult and complicated. The more controlled and specific the
environment is, the more likely is for the agent to learn and adapt efficiently, but the
agent will have less flexibility in terms of changes in the environment.

A2.2 ML- Agents
For this project, we have used the ml-agentsxxii plugin provided by Unity Technologiesvi

under the Apache License 2.0xxxv.  This plugin allows the usage of machine learning
techniques in the Unity engine. It simplifies the implementation of this techniques by
allowing the user to skip the implementation and programming of the data structures
and algorithms and enables him to focus only in designing the environment and the
training for the model. In this and later sections the basics of the plugin functioning
will be explained as well as how has been done the implementation for this project.

Ml-agents (from  now  on,  MLA)  works  synchronously  with  the  engine  during
environment executions and as a controller during training. This is done to maximize
performance by adapting the unity flow to the necessities of the plugin. The training
part is executed externally using Python.

Moreover, it could be said that the plugin itself it is only a bridge to communicate
unity with the python environment that executes Tensorflowviii, the framework in which
the model is created and trained.
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The functioning of the plugin can be summed up in a 3-step cycle:

1. Observation: Information of the environment is collected and sent to the neural
network.

2. Action: The neural network returns an action, which is executed.

3. Reward: Based on the changes in the environment, a reward is sent to the neural
network.

Repeating  this  cycle  thousands,  even  millions,  of  times  the  model  improves  its
performance in the execution of the task that it is being trained to do. While training,
the model is not in Unity, it is in the python environment. Necessary variables and the
programs in charge of creating and updating the model are in that environment too.
Unity is only used as support for the simulated environment with which the agent will
interact.

However,  executing  the  environment  normally  wouldn’t  be  enough,  because  the
training could take even weeks.  The python environment takes total  control  of  an
executable with the environment and executes it in very low resolutions and a hundred
times more quickly than normal. This allows for fast and efficient training.

Once the training is done, the model is exported as a file that can be used by the
plugin  to  execute  it  inside  Unity.  That  means  that  the  python  environment  that
controlled the engine is no longer necessary and the game can be played normally. By
using the provided file, the neural network can be questioned for actions at any given
time during the game execution.

A2.3 Academy, Brain and Agents
These are the three components required in a unity scene for the plugin to be able to
function.  In  this  section,  the  basics  of  its  functioning  and,  in  greater  detail,  its
implementation in the project will be explained.

Academy

As its name suggests, the academy is in charge of setting the environment correctly. It
is in charge of controlling the time scale of the engine (the speed at which the time
inside the scene will advance), the resolution of the environment, the steps that will be
executed until it is reset, etc. It also controls the other plugin-related objects in the
scene.

It is also used to change the environment and to reset it. How the environment is reset
and how should it change as time passes are functions defined in this object. However,
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due to  singularities  in  the  project  and decisions  taken during  development,  these
functions have not been used.

For our project this component was simply added.  No changes were made.

Brain

Brains are the components in charge of communicating with the model. They send
information and receive the outputs. It needs an academy in the scene to be able to
do this, and the brain it has to be a child object of it. Brains have different modes, but
here only the two used in the project will be treated.

• External:   In this mode, the model is not in the unity environment, but in the
external python one. During training phases, they share the information of the
scene with the python environment and receive output from it. 

• Internal:   In this mode, the model is inside the unity scene and attached to the
brain. This time, the brain itself feed the model with information and obtains the
output.

Because brains are in charge of collecting and sending information to the model, the
amount of information they should expect needs to be set. In our case we configured
it with the following values:

• Continuous observation space type:   Because data like ratios will be provided to
the model, the space type has to be continuous, that is, the range of values it
can get is not limited.

• Observation space size of 4:   The number of values that will be provided to the
model.

• Discrete  action space  type:   The number  of  possible  actions  Is  limited,  so  a
continuous space type is not needed.

• Action space size of 5:   There are only five possible actions.

Agent

Represents the entity inside the game that will “learn”. It provides a series of functions
that allow interaction with the brain. These functions, however, are executed externally,
from the academy; which means that they can’t be called when needed. Agents also
need a brain in the scene. Various agents can use the same or different brains.

In our implementations, this are the functions and attributes needed. Keep in mind that
the  Agent class extends the  AI interface, so the interaction with other classes is the
same that with other AI types. This attributes are also the same for both training and 
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Table 34: Agent attributes

NAME TYPE VALUE RANGE DESCRIPTION

CurrentGame TGame/Game -
Reference  to  the  instance  of  the  game that  is
being played. It is used to access information in
the observation phase.

playerID int -
ID of the player that uses this AI instance. It is
used  to  access  information  in  the  observation
phase.

effector Teffector /
Effector

- Instance  of  the  Effector/TEffector that  will
execute the actions commanded by the AI.

Table 35: Agent methods

NAME ARGUMENTS RETURN DESCRIPTION

Decide - -
The method of the  AI interface. Because the model
output depends on MLA cycle, it simply returns None.

InitializaeAge
nt - -

One of the functions of the MLA cycle. It executes
once, at the beginning of the scene, and it is used to
perform the necessary tasks to initialize an agent.

It  is  used  to  initialize  the  current  game  reference
mentioned before. Because the game will  only play
one time in normal mode or reset itself continuously
in training mode, the reference does not need to be
updated  and  thus,  it  is  reasonable  to  use  this
function.

CollectObserva
tions

- -

This  function  is  executed  once  per  observation-
action-reward cycle. It is used to send information to
the model that will be used by it to return an action.
More details about the information that is provided
in NOMBRE SECCION.

AgentAction Float[], string -

This  function  is  executed  once  per  observation-
action-reward  cycle.  It  receives  an  action  that  the
model has chosen as the best and it is the place to
set the reward of the agent for the current cycle.

normal versions. The only change is their type, that corresponds to the version it is
being played.
Again,  functions  that  belong  to  the  observation-action-reward  cycle  are  executed
externally, so the flow of the game has to adapt to them. The agent cycle is explained
in greater detail in the section  Annex II – Agent Cycle  .   An agent cycle is also called
step.
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A2.4 Machine Learning Parameters -PPO
Machine learning process has also some parameters that can be adjusted to obtain
efficient and well-trained models. The parameters presented in this section belong to
the PPO (Proximal Policy Optimization)xxxvi algorithm, the suggested by MLA and the
one that adapts better to our scenario. 

Without entering in much detail, PPO is an algorithm designed to back-propagate the
results of stacks of actions in order to train the model reducing the importance of
stack size and without a great increase in complexity. It is a ploicy-based algorithm,
which means that it gathers data to build a state-action map and then uses the map to
update the model values.

The parameters that can be modified using this algorithm and the values we consider
the best in our case are the following:

• Gamma: Balance between immediate (lower values) and future rewards (higher
values). Value: 0.99.

• Lambda:  Balance between the  reliance  on the estimated value  of  the  agent
rewards and the actual value received in the environment. Value: 0.95.

• Buffer size: Number of steps to do before back-propagation. Value: 20480.

• Batch Size:  Number  of  steps  used in  a  back-propagation iteration (gradient
descent). Value: 4096.

• Number  of  epochs:  Number  of  passes  through  the  buffer  during  gradient
descents. Value: 4.

• Learning  rate:  Strength  with  which  the  model  is  updated  during  back-
propagation. Value: 3.0e-4

• Time horizon: Number of steps to collect before being added to the buffer. If
the episode (in our case, the game) finishes before reaching the number, an
estimate is used until the number is fulfilled. Value: 64.

• Max steps: Amount of steps per session. Value: Between 5e5 and 1e6.

• Beta:  Entropy regularization. Higher values imply more random decisions and
exploration of the action space.  Value: 1e-2.

• Epsilon:  Acceptable  threshold  of  divergence  between  old  and  new  policies
(groups of steps). Value: 0.2.

• Number of layers: Hidden layers present in the neural network (see State of the
art). Value: 2.

• Hidden units: Nodes per hidden layer (see State of the art). Value: 128.
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Keep in mind the provided values might have varied slightly during training session,
but the provided ones provided the best results.

A2.5 Agent Cycle
In this section the functioning of the agent and how the game needs to be adapted to
the MLA plugin is explained. First, we wish to remember that MLA functions follow its
own cycle and thus, can’t be called when needed. This makes changes in the execution
flow necessary, specially in training mode. Both, this mode and normal mode will be
covered separately.

Normal Mode
In the normal mode the only major change needed is that the Agent has to execute
the action that the model outputs by itself, in the AgentAction function. That is why a
reference to the player Effector is needed. During normal games, the agent uses the
“Decision on demand” setting. This allows for decisions to be taken when needed,
instead of every “x” number of MLA cycles.

This does not mean that the MLA functions are called directly, it means that the cycle
is started when needed, but functions are still called when the plugin is ready to do so.

This cycle is:

1. The game is being played in normal mode.

2. An AI tick is issued.

3. Decide method of the agent is called.

3.1. A decision to is requested to the MLA plugin.

3.2. Actions.None is retuned, and thus, no action is executed.

4. The game continues.

5. As part of the MLA cycle, CollectObservations is called.

5.1.The method provides the model with the necessary information.

6. The game continues

7. When the MLA cycle has finished, AgentAction is called with the output of the
model.

7.1.The provided action is executed.

8. The game continues until the next AI tick, when step 2 will happen again.

A diagram of this cycle can be found in Figure 31.
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Training Mode
In training mode, the plugin takes full control of the game execution flow. This grants
maximum performance and faster training. However, that implies that the training cycle
has to be adapted to use the plugin flow as “engine”, that is, to advance following the
plugin cycle.

To do so, the only real change is that the simulations have to be advanced when a
decision has been retrieved by the model. Instead of doing it continuously, when the
AgentAction function is called every player executes an action and the simulation is
advanced until  the following AI  tick.  The  reward is  computed after,  based on the
differences in the state of the game before executing the actions and after advancing
the simulation.

Step by step:
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1. Training is initialized (plugin unity-independent execution)

2. MLA starts Unity environment training version is initialized.

3. The first turns until the first AI tick are simulated.

4. MLA cycle starts.

5. As a part of the MLA cycle, CollectObservations is called.

6. MLA cycle continues.

7. AgentAction is called.

7.1. Relevant variables for reward computation are stored (see Rewards).
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7.2. Every player executes an action (the player with the machine learning AI
executes the action provided by the plugin).

7.3. The simulation is advanced until the next AI tick.

7.4. If some player won:

7.4.1. The game is restarted.

7.4.2. The first turns until the first AI ticks are simulated.

7.5. Based on the changes between the state of the game in point 7.1 and its
current state, reward is computed and passed to the model (see Rewards).

8. If the training is not finished, return to step 4.

Training will finish when the amount of steps provided is reached, This value is ste
before starting the session in the plugin files.

A2.6 Model Input
To give proper output and learn, the model need to perceive the world somehow. This
is were input enters the equation. It will determine what the agent is able (or not) to
learn. If the provided input is too much or not appropriate, noise will be generated and
the model might not learn properly. Not enough input and the model won’t be able to
learn.

As explained before, input is provided in the CollectObservations function, from the
MLA cycle. Across training sessions, the state parameters provided to the model have
changed (see Training Sessions   & Models  ) to look for the combination that allowed for
better learning. Here we expose, one by one, the factor that have been used at least
once.

It has to be kept in mind that these factors have to be level-independent. We want to
train models able to play in very different scenarios, so we can’t evaluate factors that
depend on a specific level (like the total number of planets) to feed the model.

• Unit  generation  ratio:   The  amount  of  units  generated  by  all  the  planets
belonging to the player with the machine learning AI per turn.

• Enemy unit generation ratio:   Same as the last one, but with the combined ratios
of the enemies (mean) or with the ratio of the strongest one.

• Neutral planets:   Number of planets that don’t belong to any player.

• Incoming  attacks:   If  there  is  at  least  one  attack  headed  towards  a  planet
conquered by the player with the machine learning AI.
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• Number of planets:   Number of  planets that belong to the machine learning
controlled player.

• Number of enemy players:   Number of planets that belong to other players.

• Can Heal:   If there is at least one planet without full health.

• Can level up:   If there is at least one planet below its maximum level.

• Units number:   Total number of units of the machine learning player.

A2.7 Rewards
A reward is a number that tells how the agent is doing in the game that it is playing.
They can be positive if the agent is doing the correct things at the correct time or
negative if not. Rewards are given by the designers, that is, it is programmed when the
rewards have to be issued (based on the game state) and its amount.

This is perhaps the most important part of the training because it determines what will
the agent learn through training. For example, let’s suppose that a trainer wants to
teach a dog to jump over barriers. To do so, it uses a ball that throws over the barrier.
The dog learns to go after the ball and jump the obstacle with enough tries. However,
the dog has not learned to jump obstacles, it has learned to go after a ball. If the dog
is in front of an obstacle but the ball is thrown in the opposite direction, it will always
go after the ball, ignoring its real objective, the obstacle.

In our case the same happens. Machine learning techniques find models that give
them the highest score possible, but they don’t really “know” what is happening. A
model  simply  outputs  a  series  of  numbers  that,  based  on  previous  experiences,
translate to a high reward (either immediate or not) given certain input, without taking
into account what is being displayed in the screen.

That means that if rewards are not correctly given, models might learn how to obtain
the highest rewards but not how to, in our particular case, play the game. This can also
happen on the contrary. If the reward is given correctly and the model needs to “learn”
to play the game, it might find design exploits that allow it to win always, suppressing
the fun factor.

Reward Factors
The following are the factors that have been used at some point to compute the final
reward for  the  model.  Please  keep in  mind that  in  the  different  training sessions
explained in  Training Sessions   & Models   the number and importance of the factors
that were used varies between them.
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• Unavailable Actions:   If the model outputs an action that can’t be executed, like
healing  when  there  are  no  wounded  planets  that  belong  to  the  player,  a
negative reward is issued.

• Victory/Defeat:   The most important (in terms of weight) reward. If the player
with the machine-learning AI wins, this reward is issued positively. If not, it is
issued negatively.

• Difference  in  generation  ratio:  If  the  generation  ratio  has  increased  or  not
comparing it to the one obtained in CollectObservations. If it has increased, a
positive reward is given. If it has decreased, a negative one is issued. This ratio
can be modified because:

◦ A planet has been conquered

◦ A planet has been upgraded

Depending on which of the two has happened, the reward varies (see Training
Sessions     & Models  )

• Difference with enemy generation ratio:   If the enemy ratio is higher or equal, a
negative reward is issued. If not, a positive or no reward is given.

• Wounded planets penalization:   If there is at least one planet without full health,
a negative reward is issued.

A2.8 Training Sessions and Models
Because training a model  is  a  rather  empirical  process  in  which trial  and error  is
required, different combinations of the previously mentioned factors have been used
across several sessions. Each session generates a model that is tested to measure its
quality.

The training scene can be seen in  Figure 33. There are three simultaneous players
controlled by the random AI, so the normal percentages of victory for each is 33%. The
quality  of  a  model  is  measured by how much that  percentage increases.  In  some
sessions, one of the enemies uses the dumb AI (which does nothing), so the normal
percent is 50%.

These are the training sessions and the combination of input and reward factors that
have been used. We will refer to the player controlled by the model as “model”.
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1. All the factors are used, for rewards and input. Victory percentages fell below
the 20%. Model only started to “play” after another player unit generation ratio
increased.

2. Ratio difference reward was changed to punish equal ratios. Conquering/losing
planets  factor  was removed from reward computing to reduce noise.  Model
started playing before but, again, the victory ratio was still near random values.
Main problem now was the continuous usage of unavailable actions.

3. Penalty for unavailable actions was increased. The problem, however, continued.

4. Penalty was increased again. The problem continued.

5. Game flow was modified to stop simulating until a valid action was suggested,
increasing the  penalty  for  this  type of  incorrect  behaviour.  One enemy was
switched to the dumb AI.

6. Unavailable actions were reduced drastically,  but Model was still  not playing
good enough. Again, the ratio of victories was only slightly superior to normal
random values.  Main problem now was the attacks to other players in early
phases of the game.

7. Training time was increased with no appreciable results.

8. Changes in flow made in session 5 were undone.  All  rewards were reduced
except victory/defeat. Conquering and losing planets computed for the reward
again. This session obtained the worst model, with a victory ratio of below 18%.
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9. Conquering / losing planets reward suppressed again. No major changes.

10. Training  was  simplified  removing  all  reward  and  input  factors  except  unit
generation ratio (only Model one), conquering planets and victory. Good results,
slightly above random.

11. Ratio  changes  reward  updated  to  give  more  weight  to  upgrades.  Slight
improvement.

12. Input  is  changed to only neutral  planets,  can level  up and generation ratio.
Reward for upgrading was increased. Again, slightly better.
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ANNEX III

PROJECT DEVELOPMENT TABLE
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Table 36: Project development process per weeks

WEEK TASK ID TASKS HOURS OBSERVATIONS DIFFICULTIES
TOTAL
HOURS

29/01 -
04/02

DOCU

TFG Start
(redaction of

technical
proposal)

5
Decision of TFG

theme.
- 5

05/02 -
11/02

G01

Lux Aura
creation

20
Creation of the

base game.
- 25

- Event
System

-Basic
control and

combat
system

- Graphics

DOCU
Design

Document
Redaction

3 - - 28

12/02 -
18/02

G01
Lux Aura AI

and
polishing

20

To be able to work
with threading,

switching to Unity
2018 is needed

Threading in Unity
2018 is not quite

ready, switching back
to 2017.

48

DOCU
Design

Document
Redaction

3 - - 51

19/02 -
25/02

MT01 / G02

Montecarlo
Tree Search
documentati

on

Training
game

creation

7

This version will be
used to simulate

games in
Montecarlo and to

train the neural
network

- 58

DOCU
Design

Document
Redaction

3 - 61

26/02 -
04/03

G02
Training
game

16
Creation of the

training version of
- 77
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creation &
debug

the game and
initial debugging

5/03-
11/03

MT02
Montecarlo

tree
20

Creation of the
classes necessary
to support the

Montecarlo
execution

- 97

12/03 -
18/03

MT02
Montecarlo

testing
21

Inclusion of
Montecarlo Tree

search in the game
and testing

- 118

12/03 -
25/03

MT02 
Montecarlo

testing
7

Testing and bug
fixing

- 125

DOCU

Documentin
g game and

training
verison

14 - 139

26/03-
01/04

DL01

Research of
neural

networks in
Unity

21

Searching
information and
setting a basic
environment

Had to use older
version of the

environment to make
it work

160

02/04 -
08/04

DL02

Create basic
project using
ml-agents in

Unity

15 - 175

update ml-
agents to

last version
7 - 182

09/04 -
15/04

DL02

Adapting
game and
training

structure to
use machine

learning

21

This also includes
investigation on

the different ways
of using ml-agents

- 203

16/04 -
22/04

DL02 “” 21

Creation of
training strategy

and reward
assignation

- 224
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23/04 -
29/04

DL02

Adapting the
agent to
play a

normal game

5 - - 229

DL02
Training the

agent
16 -

Having some
problems, it doesn't

quite learn
245

30/04 -
06/04

DL02 “” 12 - “” 257

DOCU
Writing the

main
document

9 - - 266

7-04 -
13/04

DOCU "" 21 - - 287

14/04 -
20/04

DOCU "" 21
Memory ready for

correction
- 308
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