UNIVERSITAT
JAUME-1|

Hand-held portfolio
for 3D animated models

Author: Jose Luis Recatala Bort
Supervisor: Raul Montoliu Colas

Universitat Jaume |, Video Games Design and Development Degree, 03/06/2018

Abstract

This document is presented as a Project Memory for the development process of an
application that allows the user to create his/her own personalized portfolios for 3D
animated models.

Such project consists of developing an application for Android mobile devices with two
basic functionalities. On the one hand, the possibility of allowing the user to import his/her
own 3D animated models from the memory of his/her device in runtime, with the help of an
integrated file browser. On the other hand, a series of tools that the user will be able to use
to interact with the previously imported model, in order to create unique compositions by
editing the rotation of the model, the zoom of the camera, the current frame of the
animation, or the background scenario. Once finished, the user will be able to export those
compositions as image files, so they can be easily shared through the Internet.

The software used to develop the application is Unity Engine 2017.

Index of contents

N =Tl oY a1 Tor=1 I o To] o o 17- | FOS PRSPPI 1
3 YU [0 0 0 = /U 1
0 A =Y Ao T o [PPSR 1
1.3 Introduction and project MOtIVAtioN.......cceiviiiiiii i 2
A 0= oY L =To Y U] o T Tt 4T OO P O TR 2
T oY1=t = o ¥- | SRR 2
1.6 Task and timMe PlaNNiNG....cceiiiiiiiiiie e e e e e e e e e e e e e nee s 3
1.7 EXPECTEA MESUIES. . uuuiiiieiiiiiiieiiee et e e et e et e e et r e e e eeeeeeseeeeessessnnsssssrrereneees 4
08 T o L3O 4

2 DESIZN GOCUMEBNT....uiiiieiiiiiieie ettt e e e e e e e re e e e e st b e e e e e e s bbaeeeessaabsaeeeeeensssaaeaeessnsseneeessnnns 5
D% W SV o Yot u o] o = o [T ol T o) n (o] VUSSP 5
B A VLYY G| o1 = o - ol TR 7

R I DoAY FoT oo g 1=t 1 A o] o Yol <L PR UPPPRTTPPP 12
70 A [0 o Yo [n (o o USSP 12
3.2 Interactions With 3D MOdElS..........uuemiiiiiieeee e e 13

S N (o] =Y u o] o 15 o Lo SRS 14
302 A 4 o Yo T2 1 i 1o Yo | SRR 15
3.2.3 Play/pause animation tOO0L..........cccuveiiiiiiiiiie e s 17
3.2.4 Background Change tOO0N.......c.uuiiiiiiiiiiiiiee et 19
I B Y ol =TT] T} o o SRR 21
3.3 IMPOrt Of 3D MOAEIS......uiiiiiiiieeiee e e et e e e e e e e e e e etean 23
3.3.1 File browser implementation..........cceeiiiiiiieeee e e 25
3.3.2 Model importer Preparation......ccoveeeeeeeeeeeeeeeeeenieccciirrrrerrreeeeeeeeeeeeeseeserreeeeeeeeesensnes 28
3.3.3 Data saving and 10ading..........coo oo e 29
3.4 SCENE NAVIATION. ..ttt e e e e 31
3.4.1 Standard NAVIZAtION.......coeecceiiriieeeeeeeeee e e e e e e e e e e e e e et bbrrerareeaeee eens 32
I O [W] (ol - Tol ol =TIl o TU L {0 1P 34

R R I VT e [7= o PSP PPPRR 35
3.5.1 USErinterface deSIZN......uuvvreeeeiiiiieeiieiieeieecicriteeeee e e e e ee e e e s ee s e snarbrereeereeeeseeeeeeeeen e 35
3.5.1-A Mockup €laboration..........ueeeeeeiieiiii e s 36
3.5.1-B 2D dESIZN PrOCESS.cceiiiiiutriieeeieiititieeeeesittteeeesssitrteesesssaraeeeesesssssneaessssssereeeessnnns s 37
o T8 I OO 254 T =1 u [0 I o] o Tl =113 37

T 10 I 410 T =] o 1Y = o PSPPSR 38
3.5.2-A GEOMELIY AESIGN..utiiiiiiiiiiiiiee i ittt ee e e ettt e e e eere e e e s s saaeeeesessbbaeeeessesereeaesennns 39

R T = T 1= 4 U o g V=S 40
3.5.2-C Model animation......cccccuuiiiiiiiiieeceee e e e e e e 42

G RESUILS .ceeeeeeeee ettt et e e e e e e e ee et e e e e et e e e aeeaaeeaeeaa e aaarab—a——aaattaaaaaaeeeaaaaaaaantarrrae sraeereeneenns 45
0 I 1o Y o Yo [Tt u o Y TSR 45
4.2 3D models import fuNCioNality.......ccooee e 46
B B [=Y =Tt o] o IR (o Lo FTRN U 47
A4 FINQL FESUIES....vtiieeeeeieiie et et e e e et e e e s e sta e e e e e e e s saeeeeeeessnteeeeeaansen sresressens 47
LT @] o ol [0 1] o s 13PTSR 48
LT A o o o [1 [t u o o OSSR 48
5.2 Visualization 0f 3D MOdeIS........ouiiiiiiiiieee s 48
5.3 Scene composition and exXportation..........ccccuviiiiiiieiiecee e 49
5.4 Model import and creation of customized portfolios..........cccevvveiiieieiiiiiiiieee e 49
T T CT= g =T = I ol T Vol [0 1] e o -SSRSO 49

LSRR L= (=] =T 1oL I TP RPPTRN 50

Index of figures

Figure 1 MOCKUP: MaIN SCIEEN...ciiiiiiei e et e eeeeccccttrerre e et e e e e e e e e e e s s s eaaraneaeeeeeeaeeaeeseessasannnsenssnnnnnens 7
Figure 2 Mockup: main Screen, after selecting a model.......cccccvuvvrreeeeeiiieeiiiieeeeecccee e, 7
Figure 3 Mockup: model deletion dialogUE...........ueveevieiiiieiie e 8
Figure 4 Mockup: model deletion confirmation........ccccvveeeeeeiiiiiiiieiiecccreeee e, 8
Figure 5 MoOCKUP: fil@ DrOWSEL.......ueeieiiiiiiieeieee et e e e e e e e e e e e e aeans 9
Figure 6 Mockup: confirmation for importing a file.........cccuveeeioeiiiee e 9
Figure 7 Mockup: error when trying to import a model.........ccccoooeeeeiiciiiiiieeeeee e, 10
Figure 8 Mockup: model successfully imported..........ccoeeiciiieieecciiiee e e 10
FIGUrE 9 IMOCKUP: 3D SCENE....uuuiiiiiiiiieieeieee e e e e e e ececctre e e reeeeeeeeeeeeessea s anestaasaaeraaaaaaaaaesesseesannsnnes 11
Figure 10 Free rotation versus horizontal rotation.........cccccceeeei e 14
Figure 11 3D model viewer without background............cccevvviiiiiiiiniiiiecee e 20
Figure 12 MOCKUP SAMPIE IMaEES.....cccciieiiiiiiiiieeieeeeeeee e eeecccct e e e eeeeaaaeae s e e s eeaanssreraeeseeeeeens 36
Figure 13 Graphic defnition of @ T VEIrteX. ... it 40
Figure 14 No-textured model versus textured model............coooiiiiiiiii e, 41
Figure 15 Template texture and final teXTUre........cooviiiiiiiiii e 41
Figure 16 Geometry and skeleton in @ standing POSE.........cceeiiiiiiriieeiiriiiieeee e e 44
Figure 17 Geometry and skeleton in @ running POSE........cccceveeiiieicciiiiiiinieeeeeeeeeeeee e e 44
Figure 18 File browser final apPearENCe......cciiiviiiiiie it e 46
Figure 19 Main Screen final @PPEaArENCE. ... vuviveeiiiieeee et ee e e e e e e e e e e e eeseaarrrrereeeee e enes 46
Figure 20 3D model viewer final apPeareNCe.......cuiiiiiiiiiiee et e 47

Index of tables

Table 1 Developed tools for interacting with 3D models.........ccoooeieoiiicciiiiiieee e, 13
Table 2 Import tools from the AsSet StOre.........cccuuuiiiiiiiiiieeeeeee e 24

1.1

1 Technical Proposal

Summary

1.2

This section presents the Technical Proposal for the end-of-degree project of the Video
Games Design and Development Degree. Such project consists of the development of an
application for Android mobile devices whose basic function is to show three-dimensional
models and play their animations through a predefined 3D scene. This will allow the user to
show his/her work quickly, easily and attractively in any situation that requires it. The
application will be developed using Unity Engine, and will include tools for modifying
different visualization parameters, obtaining screenshots for an easy sharing, and even
updating the work with new models and animations created by the user.

Keywords

- Personal portfolio.

- 3D modeling and animation.
- Unity engine.

- Android operating system.

- Mobile application.

1.3

Introduction and project motivation

1.4

This end-of-degree project aims to develop an application that may be useful for those
with a 3D design oriented profile who seek to show their work through a more physical
approach, and not digital.

The programming of the application is established as the part of the project with the
highest weight, so most of the time will be dedicated to implement functionalities of the
application, starting with the simplest ones and leaving the most complex ones for the end,
given its higher level of difficulty and the consequent need to search for documentation.

So, first, those functionalities related to the treatment of three-dimensional models
will be implemented, as its rotation, the play of animations and the capture of screenshots,
followed by those that allow the navigation between the different screens and the general
control of the application through touch controls. Finally, the import of models from file will
be implemented, which will allow the user to load his/her own models.

Once the programming section has been completed, the different visual elements that
the application requires will be designed. This is, on the one hand, a 2D interface that allows
users to receive information and interact with buttons and other elements, and, on the other
hand, a few three-dimensional models to be able to test the features implemented for the
application.

The motivation to carry out this project lies in the lack of tools of these characteristics,

as well as in the bet for personal treatment when showing the own work and/or seeking for
employment in the field of 3D design.

Related subjects

1.5

- Programming | and Il (VJ1203 & VJ1208).
- Game Engines (VJ1227).

- 2D Design (VJ1209).

- Video Game Art (VJ1223).

- 3D Design (VJ1216).

Project goals

1: Develop an application that allows to visualize three-dimensional models and reproduce
their animations.

2: Allow the composition of scenes that contain those models for its later exportation as
image files.

3: Offer the user the possibility of importing his/her own models and animations, thus being
able to create a personalized portable portfolio.

1.6 Task and time planning

Next, the content of the project in terms of specific tasks to be carried out, with its
corresponding temporary cost is exposed. These tasks are divided into three blocks, depending on
the area they are related to.

PROGRAMMING (160h)

- Interface functionalities (30h):
- Implement menu navigation (10h).
- Implement button functions (20h).

- Interactions with the models (50h):
- Implement the rotation of the models (20h).
- Implement the camera zoom (5h).
- Implement the functionalities for displaying the animations (10h).
- Implement a screenshoting tool (5h).
- Implement the scenario change (10h).

- Model import in runtime (80h):
- Implement a system file browser (30h).
- Implement the model import in the current senario (50h).

DESIGN (80h)

- Design the interface elements (20h).
- 3D models (25h):
- Model the 3D geometry (10h).
- Texturize the model (5h).
- Animate the model (10h).

- Scenarios (25h):
- Model the 3D geometry (10h).
- Texturize the model (15h).

- Compose scenarios in Unity (10h).

DOCUMENTS (60h)

- Elaborate the Technical Proposal (5h).
- Elaborate the Design Document (5h).
- Elaborate the Project Memory (40h).
- Prepare the final presentation (10h).

1.7 Expected results

After completing the project, it is expected to obtain a tool provided with easy and
quick access that will help the designer to show his/her work in the situations that require it,
being able to use it to elaborate a hand-held portfolio that contains his/her most
representative works, as well as to share them with his/her contacts for a better diffusion.

The final appearence should be something similar to Overwatch Hero Gallery [1] where
the 3D models for every character in the game can be found, as well as the corresponding
animations. Other examples and sources of inspiration can be found in the Super Smash
Brothers Trophy gallery [2], or in the Lolking 3D model viewer [3].

1.8 Tools

- Unity Engine [4]

- Monodevelop [5]

- 3D Studio Max [6]

- LibreOffice Writter [7]

2.1

2 Design Document

Functional description

As stated in the Technical Proposal document, the application that is intended to be
developed must offer the user a series of operations and tools with which to interact with
his/her own three-dimensional models, in order to create his/her own virtual viewer. Such
viewer will allow users to display and share their work in a simple and quick way. The
functions that the application must offer in order to achieve this objective are listed and
detailed below:

- 3D model importation from file: the most important feature, that gives the project
meaning as a personal portfolio. This function will allow the user to search their own 3D
models on their mobile device, in order to load them into the application and be able to view
them and play their animations. In order to search for the models, the application will open a
simple file browser engine, which will show the user the file folders in the system, as well as
their content. Once the desired file has been found and selected, it will be loaded into the
application, as long as the file is recognizable. In order to load such files, they must have
been exported in an easily treatable and recognizable format, so the FBX format has been
chosen, since most current 3D editing softwares can export and import files with such
extension. The names of the imported models will appear in a list on the main screen, to
ease their search. The option "import new model" will always appear at the end of this list of
models, as one more element of it. By tapping on it, the mentioned file browser will open.

- Visualization of three-dimensional models: after importing a 3D model, it will be
possible to visualize it through a predefined three-dimensional scene. To visualize a model,
the user just has to press the name of the desired file in the list of models on the main
screen. Once this is done, a tab will be displayed offering the user the possibility of viewing
the model, as well as eliminating it, through two similar buttons. By pressing the visualize
button, the application will load a predefined 3D scene and place the three-dimensional
model in the center. In this scene, it will be possible to interact with the model to visualize it
better through simple touch controls. By tapping anywhere on the screen and draging the
finger, the model will rotate horizontally in the direction in which the finger was dragged, so
that the model can be viewed from any angle. In addition, it will also be possible to zoom-in
or zoom-out, simply by pinching the screen.

- Deletion of three-dimensional models: if the user decided that, in order to keep
his/her portfolio updated and organized, its necessary to eliminate one of the previously
imported models. This can easily be done by pressing the right button in the tab that is
displayed when tapping on the desired model. This action can not be undone, so it is
convenient to show a confirmation message before proceeding with the delete operation.
After a model is deleted, it must disappear from the list of models.

- Playing animations: in addition to the basic visualization features discussed above, it
will also be possible to play the animation of the model (if it is animated). By default, the
animation will be paused in its first frame when entering the model viewer. By pressing the
play button, the animation will be played and repeated in a loop. Pressing the same button
again will stop the animation. In addition to this button, the user can also handle a horizontal
slider to advance or rewind the animation to the frame they want. This slider will only be
interactable while the animation is paused, although while the animation is being played, it
will update its position according to the current frame. The user will be able to return to the
main screen by simply tapping the back button of the device.

- Change the 3D scene: the application will come by default with a variety of three-
dimensional backgrounds, each with its geometry, textures, lighting, and so on. The user will
be able to change the background of the 3D scene when viewing a model to try to find the
best composition of which to take a screenshot. This change will be carried out through a
button, which when pressed will change the current scenario to the next in an internal list. If
the current scenario is the last one, pressing the scenario change button will show the first
one again, so the scenario change will be treated in a cyclical and organized manner.

- Take screenshots: taking a screenshot will be as simple as pressing the capture
button. By pressing this button, the user interface will be hidden, and a screen capture will
be made, which will show the model in the current frame, with the chosen rotation and
zoom, and placed in the scenario that the user chose. After finishing the capture process, the
interface will be displayed again. All the images extracted from the application using this
method will be later found in the images gallery of the Android device.

2.2 User Interface

In this section, a mockup for the user interface of the application is shown, as well as
explanations of how the functionalities are triggered and transitions between screens. It is
worth to mention that, since this is an application whose goal is to clearly show artistic
works, there is no other possible screen orientation than the horizontal for the user
interface, given its panoramic capability.

First, there is the main screen, the one shown when the app is opened. Figure 1 shows
how this screen has a list of the imported models. As stated above, the last element of this
list will always be the "Import model" option. The first time the app is opened, this list will be
empty, except for the "Import model" option.

% Model 1

% Model 2

& Import Models...

Figure 1: Main Screen.

By taping any model listed on this screen, a tab will be shown, which will offer some
options to work with the selected model. Figure 2 shows how such tab is displayed.

% Model 1

You have selected:
"Model 1"

% Model 2

Visualize

< Import Models...

Delete

Back

[

Figure 2: Main Screen, after selecting a model.

By pressing the "Delete" button, the app will show a dialogue window containing a
warning message and asking the user for confirmation. If the user goes on with the deletion
process, the selected model will disappear from the main screen list and a message of
confirmation will be shown. Figures 3 and 4 illustrate this.

Deleting "Model 1"

Warning: this action cannot be undone.
Are you sure you want to continue?

Figure 3: Model deletion dialogue.

"Model 1" has been successfully
deleted.

Figure 4: Model deletion confirmation.

To import a new model, the user may use the "Import model" option, at the end of the
list on the main screen. After doing this, a simple file browser will be shown, where the user
can search for the file he/she wants to load, looking inside the folders in his/her device.
Figure 5 shows how the file browser will look like.

(- -) > Paoth: SD_Storage/

Figure 5: File browser.

When the desired file is selected, the app will show a new dialogue window, asking the
user for confirmation. Selecting "Yes", will import the model into the app, unless the
extension of the selected file is not appropriate. If that is the case, a message will be shown
to acknowledge the user. Otherwise, the model will be successfully loaded and its name will
appear in the model list of the main screen from now on. Figures 6, 7 and 8 illustrate how
the screen will look like in these cases.

Loading "File 1"

Do you want to load the file "File 1"7

Figure 6: Confirmation for importing a file.

"File 1" has an incompatible file
extension. Try again with an .fbx file.

Figure 7: Error when trying to import a model.

"File 1" has been successfully
imported to your gallery.

-

Figure 8: Model successfully imported.

10

Back in the main screen, when the user taps on a model from the list, and chooses the
option "visualize", the app will load a 3D scene to show the model, as shown in Figure 9.
Here, the user can rotate horizontally the model, as well to zoom-in/zoom-out the camera
for a better visualization. Using the play button and the slider in the bottom of the screen,
the user can control the play of the animation, aun using the upper buttons they can perform
a screenshot and change the background of the 3d Scene.

Figure 9: 3D scene.

11

3.1

3 Project Development

Introduction

The preparation of a Technical Proposal, which reflects the general idea of the project
and the time cost of each of its sections, is a very important step to take into consideration
when starting a project like this. Similarly, the elaboration of a Design Document, which
shows an outline of what the final result is intended to be in terms of appearance and
functionality, is very useful to establish a base over which start building the project. However,
taking the step between the aforementioned design process and the development process
can result really hard and confusing if an appropriate procedure is not followed.

A good methodology to be followed in order to focus and know where is better to
start, and so optimize efforts and avoid consuming more time than necessary, is to analyze
the project to differentiate every task in which it is divided, establish objectives and assign a
priority to each task based on such objectives or the influence they will have over other parts
of the project.

Based on this methodology, in the next sections it is explained, orderly and in detail,
the development process, delving into the work done for each one of the tasks that the
project consists of.

12

3.2

Interactions with 3D models

Analyzing the tasks that make up the project, as well as their priority, it can be said that
if there is a better part from which start, this is from the programming section, which
importance far exceeds that of the artistic section.

As it has been reflected both in the Technical Proposal and the Design Document from
the first sections, the developed application has a strong visual component. It displays a
three-dimensional model on the screen and allows the user to interact with it and its
surroundings through simple tactile controls to modify its visualization at the user's own
pleasure.

That is why this visual component is of great importance, as well as the correct
functioning of the tools that allow the user to interact with it, placing it in a more imperative
position than other sections of the project.

Although they will be explained in further sections, Table 1 resumes each one of the
developed tools, explaining briefly what their purposes are, how are they operated, and
what are the expected outputs after operating them.

Tool Purpose Controls Output
Rotation Change the rotation of | Tap with a finger, and The rotation of the model is
tool the 3D model so that it | drag it across the updated in runtime, based
can be seen from screen. on the length and direction
different angles. of the user's drag.

Zoom tool |Change the field of Pinch the screen with The field of view is updated

view of the camera so |two fingers, and drag in runtime, based on the
that the scene can be |them across the screen. |length and direction of the
observed in detail. user's drag.
Play/Pause |Play or pause the Press a button to pause |If the animation is currently
animation | animation of the the animation. Press it | being played, it is stopped.
tool model, depending on |once more to start Otherwise, it starts being
its current state. playing it. played.
Background | Switch between Press a button to hide | The background of the
change tool |backgrounds for the the current background |scene is changed.
3D scene. and show the next one.

Screenshot | Take a picture of the Press a button to take | A picture of the current

tool current state of the the screenshot. state of the scene is taken
scene. and saved in the Android
image gallery.

Table 1: Developed tools for interacting with 3D models.

13

3.2.1 Rotation tool

The rotation had to be an intuitive and easy to use tool, which would allow viewing the
model from different angles by just tapping the screen of the device with a finger, and then
dragging it horizontally across the scene.

At first, the idea of allowing the user to rotate the model around any axis (x, y and z,
the Euler's axes) was considered. However, it was quickly dismissed, since something like that
would make the idea of posing animated humanoid models in three-dimensional scenarios
meaningless. Instead of allowing a total rotation around the three axes, it was decided that
the rotation around a single axis, the vertical one, which would lead to the horizontal
rotation of the model, was a better option. As seen in Figure 10, free rotation made some
models look unnatural.

Figure 10: Free rotation (left) versus horizontal rotation (right).

Once the basic concept for the functionality was established, a first version of a simple
script was written, in order to detect the movement of a finger dragging across the screen of
the device. This script was responsible for collecting and storing the starting and ending
coordinates of the user's drag over the screen, thus drawing a two-dimensional vector
between the positions established by these coordinates, whose module (or length) would be
later converted into degrees, so the model could know how much should it rotate.

This first version succeeded in establishing a standard for reading and storing the
coordinates of the user's input. However, it lacked a mechanism to store and update the
model rotation, so whenever the user tried to rotate the model after a previous drag over
the screen, the model rotation returned to its original value (that is, 0 degrees in each axis).
Furthermore, the value sign of the module of the vector resulting from the drag over the
screen was not taken into account, so the rotation was performed in the same direction
every single time.

In a second version, it was possible to correct these minor errors. The problem of the
rotation restarting with every new input was solved by storing the rotation of the model in a
variable and updating it each time the user modified it. By doing this, the script could know
at any moment the rotation of the object, accessing it every time it had to be modified.

14

On the other hand, to solve the problem of the rotation only working on a single
direction, it only had to be taken into account whether the value of the drag vector module
was positive or negative. Thus, when the value turned out to be negative, the rotation would
be performed to the left and, in case of being positive, to the right.

After finishing this second version, a new problem emerged. The rotation of the model
should be performed whenever the user dragged his/her finger across the screen. However,
if the user tapped first any element of the user interface, such as a button or a slider, and
then dragged the finger, the rotation of the model was modified. This should not happen,
since it would imply that interacting with the elements of the interface would interfere in the
final rotation of the model.

To prevent this from happening, some kind of mechanism such as a function that
would distinguish wether the user was trying to interact with the interface or not, was
needed. This function read the coordinates of the user's input and checked by raycast if it
was in contact with any element of the interface, in order to return a boolean variable
according to the results. A call to this function was placed before the rotation modification
code, so the value of the returned boolean established whether the modification should be
performed or not. This code can be checked in Code 1.

private bool CursorSobrelnterfaz() {

PointerEventData posicionActual = new EventSystem. current);

Fila posicion actual del curser, en coordenadoas X e ¥
posicionActual.position = new Vector2(Input.mousePosition.x, Input.mousePosition.y};
"-T': adonde = g Fraaran o5 CORTacCTos qe C SO Con o5 eLementos de La "'_:'-,__

SALis e se guardardn Los co s del cursor con otros
List<RaycastResult> resultados = new List<RaycastResult:();

anza u 5T desde

EventSystem. current.RaycastAll(posicionActual, resultados);
return resultados.Count > 8;

Code 1: Function that checks if the User Interface (Ul) has been touched.

Taking the changes made into account, it can be said that this third version meets all
the requirements that the rotation tool should take care of and, therefore, it can be
considered finished and polished.

A demo video of the rotation tool can be found by following the next link:
https://drive.google.com/open?id=1llIKxReofCyKv_6mgrX1rgHre8jSr87E .

3.2.2 Zoom tool

Keeping the focus in the strong visual component the application has, that is the
possibility of showing animated three-dimensional models on the screen in an attractive and
natural way, it becomes evident the need for a tool that allows the user to expand and
reduce the field of view to be able to notice more detailed information in the geometry of
the model, in its textures or even in its animations. The zoom is a common tool which can be
found easily in any 3D edition software, so it is something the user is supposed to be familiar
with, and thus it is appropriate to think that the inclusion of such a tool is a good option to
complete the toolbox for the application.

15

https://drive.google.com/open?id=1llIKxReofCyKv_6mgrX1rqHre8jSr87E

The first step to develop this tool was to think about the most appropriate way to carry
out the zoom-in/zoom-out operation, giving rise to three key proposals.

The first one of them relied on a "zoom mode" button, which would override the
rotation controls and allow the user to zoom by tapping and dragging one finger across the
screen. On the one hand, this option was simple, given its easy implementation, which would
have recycled almost completely the model rotation code, thus eliminating the need to
implement new controls. However, on the other hand, it would have been uncomfortable to
rely on a button to change from rotation mode to zoom mode. Also, the idea of dragging a
finger horizontally across the screen to enlarge/reduce the field of view was not intuitive at
all. Taking this into consideration, this proposal was dismissed almost immediately.

The second proposal took the idea of controlling the zoom through a button, but taking
away the change between rotation mode and zoom mode, as well the cancellation of the
rotation controls. Even simpler than the previous one, this proposal relied on two similar
functions: one for expansion and another for reduction, that respectively decreased or
increased (to a certain extent) the field of view of the camera, each one of them being
assigned to a different button. By doing this, it would be easy to control the zoom level of the
camera without having to change between rotation and zoom modes. However, it was a bit
orthopedic, since the zoom level could not be controlled with total precision and several
attempts could be required to find the desired level of zoom. It was decided to also dismiss
this idea, due to the lack of comfort and precision.

The third and last proposal was to implement the method that nowadays is considered
standard for zooming images on mobile devices, which allows the user to control the zoom
level by pinching the screen of the device with two fingers. This completely eliminated the
need to interact with buttons, keeping the user interface simple and clean, and also gave the
user full control and precision over the zoom level. The only problem was the possibility that
zoom controls and rotation controls overlapped, so it would be necessary to control that the
rotation would only be executed when the user made a single touch on the screen, since
pinching the screen needs two touches.

Thus, it would be necessary to store the coordinates of both touches, as well as
calculate the distance between the initial coordinates (those stored at the moment the user
touches the screen) and the final ones (the ones stored after dragging the fingers across the
screen), which is, as explained before, the module of a vector defined by two positions (only
this time two modules are needed). This distance, multiplied by a scaling factor, will result in
a value, which added to the value of the current field of view of the camera will produce that
desired zoom-in/zoom-out effect. In the Code 2, the full zoom tool code is provided.

In a similar way to the rotation tool, it had to be taken into account if the value of the
distances was positive or negative, and also assign a maximum value and a minimum value to
the field of view of the camera to avoid problems with infinite zooms.

A demo video that shows the usage of the zoom tool can be found through the
following link: https://drive.google.com/open?id=1hbYCJoFvG5VXkNOVu24kBJrgMOxvJAVK .

16

https://drive.google.com/open?id=1hbYCJoFvG5VXkN0Vu24kBJrgM0xvJAVK

public Camera camaraPrincipal; //Cdmara o la que se gplicardn los operaciones de zoom.

public float zoomEnPerspectiva
public float zoomEnOrtografica = @.85f;

m om
[~

void Update(){

if (Inpu+ tnuchCount

Almacenamos ambos toques para calcular posteriormente la distancia entre sus coordenadas.

Tcuch toquePrimero = Input.GetTouch (8);
Touch toqueSegundo = Input.GetTouch (1);

thuePrlmero position - thuePrlmero deltaP051t10n,
toqueSegundo.position - toqueSegundo.deltaPosition;

Mecfc 2 toquePrlmeroDlstanc1a
Vector2 toqueSegundoDistancia

FAfahora simplemente calculamos la distancia inicial y fingl para poder calcular mds tarde Lt

float distancialnicial = (toquePrimeroDistancia - toqueSegundoDistancia).magnitude;
float distanciaFinal = (toquePrimero.position - toqueSegundo.position).magnitude;

Aflalculamas pues La dlferencia entre distanclias.

float diferenciabDeDistancia = distanciaInicial - distanciaFinal;

to/reduccicon se calcula m e P 7 diLferencio o P e L N

QumeENTO/ reducCclLon s colcula multTiplicando L dijerenclid de distancids pd el actor ot

raz -'-f:_._-_,__,._.- eL campo de _:-_

camaraPrlnc1pal fleldeV1ew = | *hf Clawp (camaraPrincipal. fleldofvlew, af, eaf);

Code 2: Zoom tool code.

3.2.3 Play/Pause animation tool

Rotation and zoom tools are very useful for appreaciating in more detail the shape and
appearence of the three-dimensional model, but without a tool responsible of playing and
pausing its animations, the application loses a lot of potential, especially when it is intended
to be used as an artistic portfolio, in which 3D animations are an important feature, providing
a dynamism and variety that otherwise would not be possible.

The play and pause animation tool had to have several well differentiated parts. In first
place, a mechanism that would allow the user to play and pause the animations of a three-
dimensional model easily and effectively. Since both the rotation and the zoom tools used
touches and drags on the screen, it would have been difficult to use touches for this one as
well, since the functions could easily overlap. Instead, it was decided to use a simple button,
that by a first press would play the animation of the model, and by another press would
pause it.

Nowadays, many video players for mobile devices, despite offering the possibility of
touching the screen to pause or play a content, keep a button on its interface dedicated to
this same purpose. So, even though it may not be the most intuitive and common option, it
was still a good choice.

17

Secondly, the user had to have some kind of control over the animation, such as the
possibility of changing its current frame (that is, the current state of a video or, in this case,
animation), as well as the playback speed. Following the example of video players, a kind of
slide bar is usually the most common element for controlling frames, so it was decided to
add a slider next to the mentioned play/pause button. However, the user would only be able
to interact with this bar while the animation was paused. If the animation was currently
playing, this slider would constantly update the current frame of the animation instead. For
the playback speed control, it was decided to use two buttons: one to accelerate the speed,
and another to slow it down.

With all these ideas about the functionalities of the tool, it only remained to write the
necessary code so that everything started to work.

The functionality of playing and pausing the animations of the three-dimensional
models was simple to implement. The only thing to take care of was to find the animation of
the model and put it into operation. This was possible thanks to a Unity component, that is
attached to anything that has an animation, namely, a 3D model, a sprite, or even an
element from the interface. That is the Animation component. Once this component is
assigned to a 3D model, playing its animation, as well as pausing it, is as easy as writing a
single line of code.

Since the responsible for both playing and pausing the 3D model animation was going
to be a single button, it was necessary that the function assigned to it could be able to
distinguish in some way when it had to do one thing and when the other one. A simple
method to carry out this distinction could be to check the playback speed of the animation,
and proceed accordingly. If its value is 0, that means that the animation is currently paused,
and therefore the necessary code to start playing it must be executed. Otherwise, the
animation is currently being played, and thus it has to be paused. This is shown in the Code
3.

public woid PausarAnimacion(}{

Animation animacion = GestorModelos.Instancia ().GetModelo ().G@etComponent<Animation» ();

if (animacion != null) {
if (animacion [animacion.clip.name].speed > 8) {
animacion [animacion.clip.name].speed = 8;
1
else {
animacion [animacion.clip.name].speed = 1;

1

Code 3: Play/pause animation function.

Making the slider or time bar functional was also easy, thanks to the aforementioned
Animation component. Since the values of the slider are normalized (that means that its
minimum value is 0, and its maximum value is 1), the most optimal option was to also
normalize the number of frames in the animation.

18

By doing this, the initial position of the slider would correspond to the initial frame of
the animation, the final position would correspond to the last frame, and thus, any position
of the slider between these two will correspond to the appropriate frame. Knowing this, the
only thing to take care of was to make the slider update its position based on the normalized
value of the current frame of the animation whenever the animation was being played and,
when the animation was paused, make the frame of the animation take its normalized value
based on the position of the slider. This is shown in Code 4.

void Update () {

if (animacion != null) {

if (animacion [animacion.clip.name].speed != @) {

CruaL

Hacemos que la posicidn del slider se mueva conforme el fotog : de |
barraDeTiempo.normalizedValue = animacion [animacion.clip.name].normalizedTime;

if (animacion [animacion.clip.name].normalizedTime »>= 1) {
animacion [animacicn.clip.name].time = @;

1
i
1
I
De contrario elociaad de reproducclion itgual o B

else {

animacion [animacion.clip.name].normalizedTime = barraDeTiempo.normalizedValue;
1
I

Code 4: Slider management implementation.

For the functions that had to be assigned to the buttons responsible of accelerating
and slowing the animation, a simple solution was to increase or decrease the playback speed
of the animation by a fixed amount with every press. This was possible by accessing the
Animation component once more. The only thing that had to be taken into account were the
maximum and minimum values. These values were necessary so that the playback speed of
the animation could not become too high, nor below zero, in which case the animation
would be played in reverse.

In case an imported model was not animated, the Animation component would not be
found, and therefore none of these features of the play/pause tool could be operated,
although they would still be visible in the interface.

A demo video of the play/pause animation tool can be found by following the next link:
https://drive.google.com/open?id=1XgIxW2WHUuLV1sKBx7JIHUEdg3gr69Mb .

3.2.4 Background change tool

Showing an animated three-dimensional model over an empty background was an
unattractive feature, as can be seen in Figure 11. It was evident that an application with such
emphasis on the idea of showing artistic works needed an appropriate canvas or background
where the works of the users could be placed. But with a generic background it would be
very difficult to encapsulate the general idea of every model, as well as defining an
appropriate environment. So it was decided to implement a tool that would allow the user to
change the background of the 3D scene, being able to choose one from a list of backgrounds
that the application would have as a default feature.

19

https://drive.google.com/open?id=1XgIxW2WHUuLV1sKBx7JIHuEdg3gr69Mb

This tool had to use some kind of mechanism that the user could activate easily, in
order to change the current background for another one that could fit better the concept of
the work. To avoid the overlapping between the tactile controls of the tools, it was decided
to use a simple button, which would cause the background change with just a single press.

Figure 11: 3D model viewer without background.

But first, a couple of backgrounds which could be used to test the tool would be
necessary. So, using basic 3D primitives of Unity such as planes, quads, cubes and spheres,
two simple backgrounds were created. These auxiliar compositions would be useful to
perform tests for the implementation of the background change tool, as well as the general
lighting of the scene, the angle and position of the camera, and the projections of the
shadows of the model over the stage and vice versa. Once these backgrounds were designed,
the necessary code to make the tool operative was the next thing to take into consideration.

The main problem was to maintain visual cleanliness in the viewer, since adding an
emerging window just to offer the user the possibility to choose an option from a list in order
to change the scene background, would have implied to temporarily cover the model,
something that had to be avoided by all means. So it was decided to look for an alternative
solution, one that depended exclusively on pressing a single button to perform the
background change.

Thus, it was decided that a good solution was to create a list of three-dimensional
backgrounds, which could be traversed based on an index that increased as the button was
pressed. The element corresponding to the current index remained visible in the scene,
while the others were deactivated so that they could not be seen. Once reached the end of
the list, the index would start again from the beginning. By doing this, the control of the
background would be covered with just the press of a button.

However, it is worth mentioning that this solution is valid only due to the
characteristics of the project itself, which requires only a few backgrounds. If a greater
number of backgrounds would be needed, this solution would be a very bad one, since it
would require to press the button many times to go through the entire list of backgrounds,
not to mention that a mistake as simple as pressing the button one more time than needed
would imply having to travel again through the list to find the desired background.

20

Taking this into consideration, a good proposal for an alternative solution would be to
use two buttons, one to increase the index of the list, and another one to decrease it. But,
without doubt, the best solution for that case would be the one that has been dismissed
from the beginning: an emerging window that offers the user a list of backgrounds to choose,
at the cost of sacrificing the visualization of the model.

However, given the prototypical nature of the project, only a few backgrounds were
needed, and thus the one-button solution was more than enough. This solution is shown
through Code 5.

i éi;.;;;fE_;-_[: N

indicelLista = @;

FL primer escenario activeo serd el primero de La £
escenariofActual = listaDeEscenarios [8];
escenariofActual.SetActive (true);

public woid CambiarEscenario(){

escenariofctual.SetActive (false);

if (indicelLista != listaDeEscenarios.Length - 1) {

indicelLista++;

1
4

else {
indicelLista = @;
1
}
escenariofActual = listaDeEscenarios [indicelLista];
escenariofActual.SetActive (true);

Code 5: Implementation of the Background change tool.

A video showing how the background change tool works can be found by following the
next link: https://drive.google.com/open?id=1IXxJkst8SLmMnfzomB_ja8ksi3HhgqWxc .

3.2.5 Screenshot tool

Although the main objective of the application is to show personal artistic work in a
physical approach, it is also interesting to offer the user the possibility of sharing his/her
work through the Internet. That is why the idea of implementing a tool to save the scene that
the user has made, combining their model and a background, through an image is quite
convenient, since it is easier to share an image than a 3D scene.

Nowadays, the use of social networks through mobile devices is more common and
frequent than ever (WhatsApp, Facebook, Instagram, etc.), and sharing images through these
social networks is very simple.

So, such tool could be beneficial for several reasons. First, posting and sharing personal
work on social networks increases the scope and diffusion of it. Secondly, saving images of
the work done helps to keep a register and to elaborate a more consistent portfolio, and
although it is not the best medium to show 3D modeling and animation, it does help to get a
general idea of the final appearence of the work.

21

https://drive.google.com/open?id=1IXxJkst8SLmMnfzomB_ja8ksi3HhqWxc

Finally, it should be noted that an image needs much less space than a three-
dimensional model, so saving screenshots of the models made, will help to save space,
keeping images in the device instead of 3D files.

Nowadays, tools to take screenshots are very common and easy to find in any mobile
device. However to operate them it is usually necessary to run the current application in
background. For this case, it was intended something easier to use and more intuitive, so it
was decided to integrate a screenshot taking tool in the application itself, which could be
operated simply by pressing a button.

Pressing that button would capture what is currently being displayed on the screen,
and convert it into a bidimensional texture, which would later be saved in a JPG format
image inside the images gallery of the mobile device (the JPG format has been chosen
because of its balance between image quality and file size).

To write the code, first a function was created to take the screenshot. Thanks to the
ReadPixels and Apply methods of the Texture2D class of Unity, which read and store the
color information of each pixel in a defined area (in this case, the whole screen) and transfer
that information into a texture, creating such function was very simple. However, saving that
screenshot as an image inside the image gallery of the mobile device, needed some research
and extra job.

Searching about the matter in the Unity forums and official documentation was very
useful, since it revealed that, for this to be possible, it was necessary to make use of certain
Android classes and activities, whose usage is illustrated below, through Code 6.

public Game0 ct canvas;

kA A e e

private string nombreDeCaptura;

protected const string MEDIA_STORE_IMAGE_MEDIA =

protected static Androidlaval®bject m_Activity;

Funcidn gue gugrdg 7 im =p 9 golerig

protected s ing SaueImageToGailery(Textu’eZD a_Texture, string a_Title, string a_Description}{
using (AndroidJavaClass mediaClass = new AndroidJavaClass(MEDIA_STORE_IMAGE_MEDIA)){

using (AndroidlawvaObject contentResolver = Activity.Call<AndroidlavaObject>("getContentResolver”)}{
AndroidlavaObject image = Texture2DTo&ndroidBitmap(a_Texture};
return mediaClass.CallStatic<string>("insertImage”, contentResolver, image, a_Title, a_Description};
¥

¥

cic QUE © ierte ng texturo?D en un mapg de bit

protected static AndroidJlavaCbject Texture2DToAndroidBitmap(TexturelD a_Texture){
byte[] encodedTexture = a_Texture.EncodeToPNG();

using (AndroidlavaClass bitmapFactory = new AndroidlavaClass("android.graphics.Bitmar “tory™))}
return bitmapFactory.CallStatic<AndroidlavaObject>("decodeByteadrray™, encodedTexture, @, encodedTexture.lLength);
¥
¥
protected static AndroidJlavalbject Activity {
get {
if (m_Activity == null) {
AndroidJlavaClass unityPlayer = new AndroidlavaClass ("com.unity3d.player.UnityPlayer");

m_Activity = unityPlayer.GetStatic<AndroiddavaObject® ("currentActivity™);
¥
return m_Activity;

Code 6: Functions to use Android images gallery.

22

3.3

So, just by adding a few simple adjustments, such as hiding the user interface before
taking the screenshot and showing it again once the process finished, encapsulate the
capture function in a coroutine so that it does not interfere in the process of hiding/showing
the interface, and make the name of the resulting image to be generated automatically, the
screen capture tool was considered to be succesfully implemented. The result can be seen in
Code 7.

public veid CapturarPantalla(){
canvas.SetActive (false);
StartCoroutine (CorutinaCapturarPantalla (Screen.width, Screen.height));

private IEnumerator CorutinaCapturarPantalla(int anchura, int altura){
yield return new WaitForEndOfFrame ();
nombreDeCaptura = System.DateTime.MNow.ToString (“yyyy-MH- mm-ss")3
Texture2D textura = new Texture2D (anchura, altura);
textura.ReadPixels (new Rect (@, @, anchura, altura), @, @);
textura.Apply ();
yield return textura;
string ruta = SaveImageToGallery (textura, nombreDeCaptura, "ScreenShot™);
canvas.SetActive (true);

Code 7: Screenshot functions.

A demo video that shows the usage of the screenshot tool can be found by following
the next link: https://drive.google.com/open?id=1ZVcDXKDayCiyHsRdXYkeFqYD61BbfXgT .

Import of 3D models

Even taking into consideration the importance of the implementation of the 3D models
interaction tools, the user would be unable to use such tools without the possibility of
importing any of his/her artistic works into the application itself.

Given that the implementation of the different interaction tools was initially meant to
have a much lower time cost, and since the tasks related to them were supposed to have a
lower difficulty, it was decided that the implementation of an importer tool for three-
dimensional models, as well as of any support tool that could be needed, such as a file
browser dialog, was not the top priority.

Once all the functionalities that allowed the user to interact with their work were
implemented, the next step was to identify the tasks to be performed for the model importer
implementation process, check their weight over the entire project, and assign a proper
priority to each one of them.

In the first place was the 3D model import tool itself, whose importance was vital, since
it was the characteristic that gave meaning to the project as a hand-held portfolio for 3D
artistic works.

23

https://drive.google.com/open?id=1ZVcDXKDayCiyHsRdXYkeFqYD61BbfXgT

Although it was considered a crucial part of the project, it was not considered at first as
the most difficult one since, apparently, there were many external tools in the Unity Asset
Store capable of importing 3D models into a Unity project (although later it was found that
this was not the case). This is why, at the beginning, priority was given to supposedly more
difficult tasks, such as the implementation of the file browser engine or the serialization and
deserialization system, whose mission was to keep all the information of the application after
its closure, so that after reopening it, everything could be found in its place.

However, after an exhaustive search of documentation about this matter, it became
guite evident how extremely difficult it was to develop a tool for importing 3D models at
runtime for mobile devices from scratch. The amount of knowledge that this process
demanded about internal procedures of the Unity game engine, texture processing, format
reading, and modification of native Unity classes, as well as, of course, Java and Android in
general, was overwhelming.

Implementing something like that without a base, would have required more resources
and more time than was available for this end-of-degree project, not to mention that it
would have been a too much difficult task for a single developer.

It was undoubtedly a great problem that jeopardized the integrity of the project and
threatened to make it impossible to complete it without having to modify its characteristics,
renouncing the import of models in runtime, which, without a doubt, was the most
important feature of the entire application. It was necessary to look for an alternative
solution.

After looking for information in the Unity forums, it became quite clear how many
developers demanded a 3D model import tool of these characteristics, easy to access and
utilize. Among the most recommended answers, numerous links were found to the Unity
Asset Store, where it was possible to find a multitude of import tools, mostly free, whose
technical specifications explained that, apparently, these tools were in fact able to work in
runtime.

Employing any of these tools seemed like a viable solution. However, most of these
tools did not work as expected. Some were very old and, after numerous Unity updates, they
had become obsolete. Others worked well, but only when using certain 3D file formats (OBJ,
STL, etc). Some tools were only able to work inside the Unity editor, and not in real runtime.
But nevertheless, the biggest problem of them all was that none of them worked on Android
devices, and, since the application was expected to run exclusively in Android devices, that
made them useless for this project. Table 2 shows some of these importers.

Importer Supported file extensions Platform Runtime
Runtime OBJ Importer [8] OBl Windows/Mac Yes
Asset Importer [9] FBX Windows/Mac No
3DS Loader runtime importer [10] 3DS Windows/Mac Yes
OBJ Mesh 10 [11] OBl Windows/Mac Yes

Table 2: Import tools from the Asset Store.
24

It seemed that it was an unsolvable problem, and that the project was destined to fail.
But one last search on Unity forums showed, through various user opinions, a specific tool
that could be found in the Asset Store: TriLib [12]. Among its technical specifications, the
wide variety of formats of 3D files that it admitted was explained. It also seemed to work in
both the Unity editor and the actual runtime. And, in addition, the most important feature: it
was able to run on Android mobile devices.

The tool also had many functionalities that the project did not need, such as their own
rotation and animation play/pause tools, which had already been implemented for this
project, the possibility of downloading 3D models from the Internet to import them directly
into the application, scripts that modified the behaviour of the Unity editor to carry out tests,
and a large etcetera.

Within the technical specifications, a downloadable test version was included for free,
which served to verify that, indeed, each and every one of the technical specifications were
met.

It was the solution that the project was looking for and, although it was not a free tool,
knowing that several weeks had passed by without the project showing a single sign of
improvement, it seemed to be the only possibility to save the situation. Not to mention that,
after seeing the great performance of the free trial version attached to the technical
specifications by the developer, it was clear that the tool was of high quality and that it
deserved the 25 dolar price.

Therefore, with an apparently valid solution, priorities were reassigned for the tasks
related with the importer implementation process. Since, instead of developing an importer
from scratch, an external tool was going to be used, this part lost priority (though not
importance). So, now, the implementation of a file browser engine was placed in a higher
priority position.

The next step was to prepare the model importer. This implied getting rid of all those
features that the tool possessed that were not necessary for the project, as well as making
the necessary adaptations for the code to conduct the inclusion of the file browser engine
and the 3D models interaction tools that had already been implemented.

And the last step was the serialization and deserialization functionality
implementation, which is a very important feature to take into consideration.

3.3.1 File browser implementation

Even having managed to solve the problem with the 3D models importer tool, it was
evident that some kind of system was needed to offer the user the possibility of searching,
among the files of their mobile device, a three-dimensional model for its later import into
his/her personal portfolio.

25

The basic proposal was to implement a pop-up dialog window that would show the
user the hierarchy of directories of their mobile device, so they could navigate between
those directories to find a proper 3D model to import. Once found the desired 3D model, its
file path would be stored in a text string, which would later be used by the importer to locate
and load the model.

Based on this simple idea, three basic elements were clearly differentiated that would
establish guidelines for the operation of the file browser engine:

* The files, contained within folders, which were the end goal of the user. Depending
on their extension, it would be able to import them or not, in which case it would be
appropriate to show an error message.

* The directories or folders, in which files (or more folders) could be found. The user
could be located at a specific moment based on the combined path of these
directories.

* The parent directories, folders from an immediately superior level to the one in which
the user was located. The path of these directories would have to be saved so that it
would be possible to go through the hierarchy in reverse.

Once these three elements were differentiated, it was necessary to indicate Unity that
the project needed to work with the directory hierarchy of the system, otherwise it would be
impossible for the browser to access the files in the memory of the mobile device. This was
possible thanks to the Unity 10 class, which offers exclusive methods for dealing with files
and directories.

It was also necessary to think about the appearance of the file browser engine, and
which elements of the interface were going to compose it. Since the file browser was going
to be a pop-up dialog window that showed the user a list of selectable options, and that in
the directory hierarchy of any device there are usually many folder branches, it was obvious
that the list of options could become really long. Thus, the best thing for containing this was,
without a doubt, a tactile scroll container, whose content would be a list of touchable
elements.

In addition, it also seemed appropriate to add an escape mechanism, so that, in case of
human mistake, or in case the user decided to stop searching for a model, the user could
close the file search dialog window and perform other actions normally. So, taking all this
into consideration, it was decided to start writing the code that would allow the file browser
to operate correctly.

In first place, a function for locating the user in an initial directory was created. This
function also collected the paths of all the elements contained in that directory, whether
they were files or other folders, and created a list within a scroll with one touchable element
for each path obtained. This initial directory seemed to change from one device to another,
but it was usually established at the root of the internal memory. This is shown in Code 8.

26

LZd o5 eLementos gue SE feEstra en eL DUsCaad

private woid ActualizarElementos()

{

DestruirElementos();

2E CFEd U eLEME o par gL dLiFre O%E .

CrearElemento(TipoDeElemento.DirectorioPadre, “[Parent Directory]™);

CE macEendr dos dire r 5 e Cor eneg g

var directorios = Directory.GetDirectories(_directorio);

0% ILFECT oL gue .o £ EL ULFECTOrlo DOSE

coaa wrng ge eLLos =€ EQ urn eLementco €n el DuUsCado

foreach (var directorio in directorios) {
CrearElemento(TipoDeElemento.Directorio, directorio);
1

var archivos = Directory.GetFiles{ directorio, ¥s
if (!string.IsNullOrEmpty(Filtro} && Filtro != Y R

archivos = archivos.Where(x => Filtro.Contains(Path.GetExtension(x).ToLower())).Tolrray();
1

]
foreach (var archive in archivos) {

CrearElemento(TipoDeElemento.Archivo, Path.GetFileName(archivo));
1

Code 8: Update elements function.

So, the next step was to create a function that would make the file browser engine
update the list of elements displayed based on the user's selection. The only necessary thing
was to take into consideration three possible cases, each corresponding to one of the three
types of elements discussed previously:

* In case of having selected a file, it would not be necessary to continue advancing
further in the folder hierarchy. Instead, it would be necessary to store the file name of
the selected file, combine it with the path of the folder it was located in, and return
the resulting path as a text string.

* In case of having selected a folder, it would be necessary to change the path of the
parent directory for the path of the current folder, as well as calling the function for
obtaining the elements of the directory.

* Finally, in case of selecting the parent directory element, it would be necessary to
ascend in the hierarchy, as well as obtaining the path of the parent directory based on
the current directory path, in order to call the function again to obtain the elements
of a directory.

In short, this function was defined as a simple switch that checked the nature of the
element selected (file, directory, or parent directory), and in case it was not a file, it would
update the current directory path, as well as the list of elements based on that path. In case
a file was selected, it would return its path in a text string. This function is shown through
Code 9.

Finally, since the file browser was a pop-up dialog window that was not always going to
be visible, two similar, very simple functions, were created that simply activated or

deactivated the elements of the interface that composed the file browser engine.

27

FUNCLONn gue geterming gue ocurre a seleccionar umn eLlLemer

public void Controlarseleccion(TipoDeElemento tipoDeElemento, string nombreArchivo) {
switch (tipoDeElemento)} {

Erl FECTOrio Tdre

; se pulsa en el di toric pad
case TipoDeElemento.DirectorioPadre:

var directorioPadre = Directory.GetParent (_directorio);
if (directorioPadre != null) {
_directoric = directorioPadre.FullName;

ActualizarElementos ();

!
I

else {
MostrarNombresDirectorios ();

/51 es un directorio lo que se ha pulsado
case TipoDeElemento.Directorio:
'se 4 T el directorio actual y se Llama a la funcidn de actualizacidn

F/5e actualiza L6
_directorio = nombreArchivo;
ActualizarElementos();
break;

default:

//5e devuelve la ruta completa del archive y se cierra el buscador
Archivofbierto(Path.Combine(_directorio, nombreArchivo});
EsconderBuscador();
break;

et
—t

Code 9: Selection handle function.

3.3.2 Model importer preparation

Preparing the importer to work in perfect synchrony was more complicated than
initially expected. Although the tool was very complete, attaching it to the project was not as
simple as simply importing the Unity package into an empty scene. It was necessary to study
the tool in depth and find out how it worked.

Thanks to the attached documentation, which could be described as a very complete
list with explanations of classes and methods (i.e., an APl reference), it was possible to
understand better the way some scripts interacted with other ones, as well as which ones
were vital for the project and which ones were not. Thus, the basic operation of the tool was
divided into three different levels.

First, in the most internal level, a script with a huge number of methods worked as a
library. All these methods were responsible for carrying out complicated tasks that had to do
with the translation of data from a 3D file of known format, to a three-dimensional object
with a format that Unity could understand (GameObjects).

For this purpose, other auxiliary scripts were used, located in a second level, which
were in charge of modifying the native Unity classes to facilitate the tasks of the library script
methods. Some of the modified classes were Transform, which represents the physical
appearance of objects in Unity, or 2D texture, which, as its name suggests, is responsible for
the correct visualization, storage and reading of the textures of three-dimensional objects.

28

These modifications were not trivial. They required a deep knowledge of the
environment and just by looking at the code of these scripts it could be seen that behind
them there was a huge work.

Lastly, in a last outermost level, were the scripts that were in charge of calling the
functions of the library script, so that, in a simpler and most superficial way, all the pertinent
methods were triggered, so that the file of a 3D model could become part of a Unity scene,
like any other GameObject, at runtime.

And so, it was discovered that to adapt the importer to the file browser engine, and to
the rest of the tools developed so far, it was in this last layer where the pertinent code had to
be written, accessing the library of the innermost layer in a simple and totally parallel
manner.

It was also dispensed with all those native features of the tool that were not necessary
or important enough for the project, such as the ability to connect to the Internet to
download models at runtime, rotation and animation play/pause tools (since they were
implemented in the first phases of the project already), modifications for the editor of Unity,
and so on.

Taking into consideration everything studied so far, which had taken weeks of work, it
became even more evident that it would not have been possible to develop something as
complex in the short space of time available for this project, and that using an external tool
was the only viable alternative.

So, to adapt the importer to the file browser, the only thing needed was to create a
script that could get the path that returned the function of the file browser engine script, to
use it as a parameter when calling the model import method, which would trigger a series of
internal methods that would eventually result in the import of a 3D file into the current
scene.

This model would be the one that would later appear in the viewer scene, where, by
using the tools developed in the first phases of the project, it would be possible to interact
with it. The preparation of the model, as well as the transition from the importer scene to
the viewer scene, will be explained in future sections.

3.3.3 Data saving and loading

Now that both the file browser engine and the 3D models import tool were functional,
it seemed that the only remaining task was to program the navigation between scenes. That
is, to perform a transition from the scene of the importer to the scene of the viewer and vice
versa, to conclude the section of programming. It was even possible to perform the first tests
with the importer to verify that it already worked correctly. However, it was still necessary to
work on a fundamental aspect: the saving and loading of data.

Even though everything would have worked perfectly, without a data loading and
saving system, the user would lose everything he/she had done with the application just
after closing it. It was necessary to create some kind of system that could be responsible for
keeping a registry of the user's actions, so that, when closing the application and opening it
again, it would be possible to find the user's works as he/she had left them.

29

This involved two things. On the one hand, it was needed to store somehow references
to the imported models, so that they could survive the closure of the application and, on the
other hand, some type of mechanism responsible for reading these model references so it
could be possible to load them later into the application.

Something like this was a problem, since the effects of any operation that was carried
out through the scripts of the application in runtime, were only visible through the current
execution, disappearing completely with the closure of the application and, to carry this out,
it was necessary that the references to 3D models persisted between executions.

A quick search in the official documentation of Unity brought to light a possible
solution: what is known as persistent data.

After building an application, when installing it on a mobile device, a folder tree is
created within the directory defined on the device for that purpose. These folders contain
information about the application, whether it is cache data, user preferences, analytics, and
so on. And one of them stores information accessible from the application itself, thanks to
the Application.persistentDataPath Unity method, which returns the path of this mentioned
folder.

Based on this, it was decided that a good solution would be to save a text file inside
this folder, which would contain a list of file paths belonging to the models imported by the
user. By doing this, each time the user imported a model, it would simply be necessary to
update the list of file paths and proceed to update the text file. And, when opening the
application after a closure, it would simply be necessary to read this text file to get the file
paths of every previously imported model. Something like this could be achieved through a
process of serialization and deserialization.

Serializing and deserializing can be defined as a process of translation and subsequent
interpretation. A series of data is converted into an easily understandable format, so that the
process can then be carried out in reverse later on. Thereby, something complex like a list,
with its elements ordered by indexes, can become a single text string to keep it as persistent
data. Later, the interpretation of such text string would result in the same list, intact and
ready for its reading.

In this case, it was decided that the optimal option was to use the JSON utility, because
it works with text file format and is very easy to use.

First, it was necessary to create the list of routes. This was just a regular list of text
strings that was updated every time the user imported a new model, thanks to a simple
function called at the end of the import process.

Then, it was necessary to serialize that list and save it in the persistent data, so a
function that would take care of the serialization process was written. This function was
called every time the list of file paths was updated, either because a new path was added, or
because some path was deleted.

And, of course, a homologous function was necessary, which would be in charge of the
deserialization process. This function was automatically called whenever the main scene was
loaded, in order to keep the file path list constantly updated.

30

Thus, by means of a simple JSON file in the folder of the persistent data and two simple
functions that modified its content, it was possible to guarantee the survival of the user data
between executions of the application.

All these functions can be checked through Code 10.

Ml gue dgregd Lo SCFLPpL: AECEEZOdr1iok

public void AgregarComponentes(){
modelo. AddComponent<RotarModelor ()3
modelo.GetComponent<RotarModelo> ().velocidadDeRotacion = 4;

1
¥

B f CEr 1% e Lo: modelos: 1TmMporooalos.

public woid AlmacenarRuta(string ruta){
if (!rutas.Contains (ruta)) {
rutas.Add (ruta);
Debug.Log (ruta);
SerializarlListaDeRutas (rutas);

1
¥

- LiF JUE ZEML LZad LEL g FUtax OE > mModeELOE

public wvoid SerializarListaDeRutas(List<string> rutas){
string listaRutas = JsonConvert.SerializeObject (rutas);
PlayerPrefs.SetString (tas"”, listaRutas);

1
¥

i~ LiF Jue deseri LZO 5T g rutas de Los

public wvoid DeserializarListaDeRutas (){

string rutaslson = PlayerPrefs.GetString (as™};
if (rutaslson != ¥ £
rutas = JsonConvert.DeserializeObject<List<string»> (rutaslson};

1
i)

Code 10: Saving and loading functions (with helper functions).

3.4 Scene navigation

At this point, the project was divided into two well differentiated parts or scenes (Unity
scenes): a scene for the model viewer, where the user could visualize his/her artistic works
and interact with them, and another scene for the model importer, where the user could
search for 3D files in the folder system of his/her device, to import them into the application
later. So, the next step was to implement transitions between these two scenes.

It is obvious to think that the file importer scene should be loaded in the first place,
before the viewer's scene, since otherwise there would not be models to show.

Implementing a scene transition in Unity is trivial. Thanks to the existence of the Scene
Manager, allowing the change from one scene to another is as simple as writing a single line
of code. However, in order to design the scene transitions effectively, it was necessary to
think about all the possible situations and how to trigger them, in this case:

* Move from the importer scene to the viewer scene.
* Move from the viewer scene to the importer scene.

In the first case, the transition from one importer scene to the viewer scene would
have to be carried out immediately after the model import process, which inevitably involves

carrying out the pressing of one of the buttons of the interface.
31

In the second case, it would be optimal to offer the user the possibility of returning to
the importer scene at any time, and the best way to do this seemed to be through a simple
back button located on the interface itself. Thus, it was decided that to implement the scene
changes, the different buttons of the user interface would be used.

3.4.1 Standard navigation

As stated before, establishing a scene transition in Unity is very easy by using the Scene
Manager. However, loading a scene from another one is not the only thing that has to be
taken into consideration for this project.

In the scene where the model importer can be found, the file of a 3D model is searched
through the folder system of the device, in order to import it as a 3D object into the
application. However, when loading a scene, every single element that is contained in the
current scene is destroyed, which in this case would imply to destroy the imported model in
the process. Thus, the viewer scene would be loaded without a model to show. Some type of
mechanism would be necessary to allow the model to survive the transition between the
importer scene and the viewer scene.

At first glance, the usage of the method DontDestroyOnLoad, which allows an element
inside the game engine to persist in the space even after loading a new scene, seemed a
good option. This should allow the model to exist even after a transition between scenes.

However, this solution was not as optimal as first thought, since certain operations with
the model had to be performed during the transition between one scene and another, such
as creating a quick access button for the model in the importer scene and placing it in a
dynamically generated scroll, or nesting the imported model in a hierarchy of objects in the
viewer scene and add an Animation component to it, to be able to access their animation
later. That is to say: at the time of the transition, the model required to interact with
elements both from the importer and viewer scenes at the same time, and this was at first
glance impossible, since while one scene was active, the other remained inactive.

Therefore, even the model would be able to persist between transitions using the
DontDestroyOnLoad method, it would not be able to prepare it so the user could interact
properly with it.

It was necessary to rethink the problem. If ensuring the survival of the model was not
the point, since it was necessary to access certain elements from both scenes at the same
time, a good proposal could be to store those needed elements in some way at a point that
would be accessible from any scene. So it was decided to use a singleton class (that is, a class
that refererences to itself) to store those essential elements for the preparation of the 3D
animated model.

Within this singleton class, which can be checked in Code 11, functions that stored and
returned the imported model were written, so that there was always an accessible reference
to it. Functions that added the necessary components to the model were also created, so
that when loading the viewer scene all the controls and tools could work properly.

32

In addition, the singleton class also contained the necessary elements to store the file
path of the imported files in a list of strings that would later be used to create the quick
access buttons, as well as the serialization and deserialization functions that ensured the
correct saving and loading of the data, as well its subsequent reading when opening the
application again after a closure, using a self-generated JSON file.

Then, the only thing that had to be taken into consideration was to attach the singleton
class to a manager object (which in Unity can be nothing more than an empty GameObject)
existing in both scenes, in order to access its content easily and from anywhere, as well as to
make this manager object indestructible between scenes. And as explained before, this is
easy to achieve thanks to the DontDestroyOnLoad method.

Once the manager object, with the singleton class attached to it, was prepared, the
only thing left was to implement the functions that would allow the application to switch
between scenes. In the viewer scene, such thing was easy to achieve, since, as stated before,
a button was created with the only purpose of returning to the importer scene.

In the importer scene, on the other hand, there is more than one way to trigger a
transition to the viewer scene. As explained before, the importer consists of a list of buttons
contained in a scroll, whose content is updated as new models are imported into the
application. In the first run of the application, there will only be one button, the one that
allows the user to import a new model, which will open the file browser so that the user can
choose a model to import it. Thus, it will be right after this import process when the
transition will happen. But for the other buttons, the quick access ones, it was more
complicated to proceed.

1€ SLAgLETON Bdrd JESTLondr modelos EfALFE ESCerd=>.

public class GestorModelos {

A0sTO L de LOa prof O%E

static GestorModelos instanciaj;

GameObject modelo;
[SerializeField]

[
£
Ir
L
D
j
L

Llista de rutas dond
List<string> rutas;

GestortModelos(){
modelo = null;
rutas = new List<string> ();

}
public static GestorModelos Instancia(){
if (instancia == null) {
instancia = new GestorModelos (};

= 5T La gg LC adse £ COs0 de gue

‘.
i
return instancia;

1
}

public GameObject GetModelo(){
return modelo;

1
T

public void SetModelo (GameObject nuevo_modelo){
modelo = nuevo_modelo;

Code 11: Singleton class basic structure.
33

3.4.2 Quick access buttons

Controlling that, after an import, the model manager picks up the imported model and
moves it to the viewer scene, has some degree of complication, but with the singleton class,
which supports the communication between scenes, can be achieved, as explained in the
previous section. However, this is possible because the import function receives the file path
where the model is located, since it is obtained directly from the file browser that opens up
when the button that imports a new model is pressed.

However, the quick access buttons do not use the file browser engine: its utility lies in
reimporting a model that has already been imported previously, without having to search for
it in the system again.

These buttons are automatically created when the application starts, thanks to the
serialization and deserialization process. Thus, when the information of the last execution is
deserialized, for each file path obtained, a new quick access button is created in the scroll
from the main menu. And as these buttons appear, it is necessary to dynamically control that
each button is responsible for importing the model associated with it, so that the scene
transition can be performed.

And this is where the difficulty of the process lies, since in Unity, the functions that are
assigned dynamically to the buttons can not receive parameters. This makes it impossible to
dynamically assign functions that receive as a parameter the file path of a three-dimensional
model to the quick access buttons, and therefore makes it impossible to perform a transition
to the viewer scene, since there is no imported model to visualize.

Some research about the matter on the Unity forums and documentation ilustrated
that the only way to solve this problem, that at first glance had no solution, was to make use
of lambda expressions. These expressions, which easy usage is exemplified below through
Code 12, allowed the dynamically assigned functions to receive parameters for their correct
operation.

void PrepararBoton (GameObject boton, int indice){

int indicelista = indice;
boton.GetComponent<Button:().onClick.AddListener (() =» PrepararVentanaOpciones(indicelista));

boton.GetComponentInChildren<Text> ().text = ObtenerNombre (listaRutas [indicelista]);

Code 12: Lambda expressions usage sample.

And by doing so, the import function could now be assigned to the quick access
buttons, receiving the file path of their associated 3D model, obtained thanks to the
deserialization process, as a parameter, and thus allowing the model to be passed to the
manager, so the scene transition could be performed.

34

3.5 Visual design

Once the programming tasks were finished, it could be affirmed that the application
was already functional. However, the need to work on certain visual elements, in order to
provide the application with a more professional and attractive look, became evident. This
involved getting rid of the Unity native 2D elements, such as the default sprites of the
buttons and sliders, whose appearance was very flat and basic, and substitute them by other
ones designed in line with the general idea of the application.

To fill this gap, it was necessary to design and elaborate a user interface, to facilitate
the global visualization of the application and allow the controls to be executed in a simple
and comfortable way.

In addition to the creation of a user interface, it was also necessary to work on
different three-dimensional elements, such as scenarios, which would be used as dynamic
backgrounds for the 3D model viewer, as well as models to test the implemented tools,
which implied designing their shape and also animating them.

It should be noted that, except for the animation tasks, the methodology to be
followed for modeling the backgorunds and standard models was going to be the same, so,
to avoid explaining the same process several times, the modeling process of a standard
model will be used to explain the procedure.

Thus, it is concluded that the design process included the following phases, which will
be explained in detail in the following sections:

* User interface design: 2D design process through which it is intended to obtain an
appropriate user interface for the application, starting with a simple sketch, and
improving it iteratively until the ideal result is obtained for its export and subsequent
inclusion in the application.

* 3D model design: design process whose objective is to generate three-dimensional

objects for illustrative and test purposes, and which includes tasks such as modeling
geometry, texturing it and animating its components.

3.5.1 User interface design

The design of the user interface is a really important step in the development of any
application. Not only for the visual appearence, but for what is known as user experience.

The user experience can be defined as a series of factors that the user perceives
through interacting with an application, whose results directly influence the conception that
the user generates about the used application, which can be positive or negative.

Through the interface design process, it is intended to make the perception of the user
as positive as possible, although the visual appearence is not the only element involved: it is
also important that the controls respond well, that the application execution is fluid, that the
tools provided are useful and pleasant to use, and so on.

35

It is also an iterative process. It starts with a very schematic initial design which is very
susceptible to future changes and, based on this scheme, something bigger is gradually built
up, substituting the basic ideas by more developed ones, until the final result is achieved.

Given the general theme and the main purpose of the application, it was decided that
the user interface had to be clean and simple, without shocking details that could cause the
user look away from what actually mattered: his/her own work. Following this general idea
of design, the main proposal was the use of subtle gradients of dark and pale colors, since, in
general, the interfaces with excessively clear and saturated colors are uncomfortable to look
at. For shapes (buttons, containers, sliders, windows, etc.), simplicity would also be used:
straight lines and slightly rounded corners, since this type of compositions transmit
professionalism and cleanliness.

Good examples of interfaces with all these characteristics are Krita's [13], a free 2D
design program with a very friendly interface for the designer, and Artstation's [14], a web
page where artists of different artistic genres can post their works and see other people's,
whose use is quite standardized given the professionalism it transmits.

So, to start with the process, the first step was to design a basic scheme or sketch that
showed the basic layout of the elements of the interface, taking into account the
functionality of each one of them. That is, a mockup.

3.5.1-A Mockup elaboration

The elaboration of the mockup is an essential step in any project of this type. It is not
only useful to form a basis on which to start designing the user interface, but it is also really
useful during the initial phases of the project to elaborate a Design Document, where an idea
of what the final result, in terms of appearance and functionality, is intended to look like, is
shown.

This scheme does not have to be necessarily detailed, as shown in Figure 12. With a

few lines and scribbles it is more than enough to capture the general idea, as can be seen in
the first sections of this report, where the design document prepared for this project is

shown.
-
Model 1 I]

& Moof
u & Imp}

4 |
= |

Figure 12: Mockup sample images.

36

Nowadays, there are numerous programs whose purpose is to facilitate the
development of the mockup, allowing to capture the general idea of an application for
mobile devices in a very short amount of time, for example, Balsamiqg Mockups 3 [15], the
tool used in this project.

3.5.1-B 2D design process

Once the mockup was designed, the next step was to start designing the elements of
the interface.

To do this, using the scheme obtained by making the mockup as a base, it was needed
to draw the elements of the user interface in a digital image editing program dedicated to
artistic design tasks.

Normally, to carry out this type of tasks, the most common and recommended is to use
vector image editing software, such as Adobe lllustrator [16] or Inkscape [17], since they
allow the images designed and edited to be scaled to any size without loss of quality . This
makes them optimal for designing interfaces for mobile applications, since a different screen
resolution is used for each device.

However, given the unique and prototypical nature of the project, it was decided that
the best option was to renounce the diversity of resolutions to avoid losing more time than
necessary. So, it was decided to use a raster image editing tool (Krita) instead, since its use is
usually more comfortable and faster.

To avoid suffering loss of quality due to the scaling of images, it was decided to
elaborate the interface designs to a rather large size (1920 x 1080). By doing this, the need to
enlarge images was eliminated, which usually causes a loss of image information much
higher than the fact of reducing its size.

Once the elaboration of the user interface elements was finished, the only thing left to
do was to save each and every one of those elements as individual images with an
appropriate format, through a process known as exportation process.

3.5.1-C Exportation process

The process of exporting the elements of the interface was slow and tedious, and more
things had to be taken into account than initially expected.

To begin with, each element of the user interface had to be on separate layers, so if
during the visual design process of the user interface this had not been taken into account, it
was necessary to separate them one by one, which in many cases meant having to design
one or more elements again.

Once separated by layers, each one of the elements was copied and pasted into a new
document whose size was adapted to that element, so that, when saving the image, the
resulting element had the correct size and not the complete interface (that is, so that the size
of a simple button was not 1920 x 1080 pixels, where the majority of the pixels were empty
pixels).

37

Once an element was separated and adjusted its size in pixels, it had to take into
account the use that was going to be given to that element.

In the case of a panel, or a background, without rounded corners and without the need
for transparencies, it was already possible to proceed with the saving of the image, in JPEG
format. This choice was made based on the fact that the JPEG format does not support
transparencies and occupies less space in memory.

Otherwise, if it was a button, an icon, or any other element of reduced size and that
used transparency, it was necessary to carry out a few more operations:

* First of all, to avoid display problems in Unity when minimally scaling this type of
elements, it was convenient to leave a margin of one pixel around the original image.
This prevented the edges of the element image from distorting.

* Afterwards, it was necessary to choose an appropriate format for the export of the
element. If it was a small element, with low variety of colors, an appropriate format
was PNG-8, since this format saves space in memory in exchange for offering a lower
variety of colors. If, on the other hand, the element was more detailed and used a
larger color palette, the appropriate format would be PNG-24, although this would
mean that the element would occupy a larger space in memory.

Once the appropriate format was chosen, it was finally possible to proceed to save the
image. At the moment of saving it, it was also necessary to follow a certain methodology,
which consisted in naming the elements following normalization rules.

This is not important in small projects where only one developer works, but in larger
projects with a larger number of collaborators, it is crucial that graphic elements have a

descriptive and easily archivable name, so it is advisable to follow this methodology, anyway.

Once this process was finished, it was necessary to repeat it from the beginning for
each and every one of the elements of the user interface that had been previously designed.

3.5.2 3D model design

The objective of the user interface design process was to create interface elements
that fit the general purpose of the application and that would provide the user with the most
positive perception regarding the use of the tool.

The 3D design process, on the other hand, had the objective of generating three-
dimensional virtual objects to include them later in the application. Thus, by including such
3D elements, it would be possible to test the capabilities of the application and the tools and
functionalities implemented throughout the development process in a real case.

38

The generation of a three-dimensional model suitable for inclusion in the application
went through three basic phases:

* Geometry design: the process by which the appearance of the model is shaped. This
is achieved through the combination of different basic geometric elements using a
series of tools provided by a 3D editing program, which results in a mesh of polygons.

* Texturing: the process by which the geometry of the model is assigned color and
texture. For this, the geometry is divided into different parts separated by lines of
union that define areas on which the textures will later be placed.

* Animation: the process by which the three-dimensional model ceases to be a static
object and comes alive. The methodology to be followed is based on the principles of
classical 2D animation, which used the superposition of frames to simulate

movement.

In the following sections, each one of these phases will be explained.

3.5.2-A Geometry design

The design of the geometry is the simplest of the three phases, although certain
aspects have to be taken into account so that they do not interfere with the procedure of the
other phases.

To carry out the modeling process, a three-dimensional cube was used as starting base.
Any basic primitive could have served to start: a cube, a sphere, a cylinder or even a plane.
On this three-dimensional primitive a series of operations that aimed to change its shape
and appearance were carried out.

In 3D Studio Max these operations are carried out at different levels, depending on the
element on which is wanted to work, through tools that the program makes available to the
designer.

There are other tools that allow operations on all geometry, and not only on the most
basic elements that make it up. These tools are called modifiers, and cause noticeable
changes to the final geometry of the model, such as causing all polygons in the mesh to be
subdivided, or giving the model a smoother, more rounded final appearance without adding
more polygons.

Given the large number of tools and modifiers that exist, not only in 3D Studio Max,
but also in any other modeling program, explanations about most of them will be omitted,
referring only to those most commonly used during the design process.

Thereby, among the most common tools for working geometry at the polygon level,
the "extrude" tool was used, which generated new polygons over the selected ones and
allowed to modify their length. It was also quite common to use the "bevel" tool, which
worked in a similar way to extrusion, but also allowed adding a bevel on the edges, or the
"inset" tool, which caused a polygon to contain a smaller version of itself inside.

39

At the edge level, it was very common to use tools to generate more edges around a
primitive, connecting some edges with others, such as the "connect" tool, or the "bridge"
tool.

And at the vertex level, the most used tool was undoubtedly "weld", which allowed
merging several vertices into one. However, given the spatial characteristics of the vertices,
the most common thing was to perform movement operations on them to reposition them
in the three-dimensional space.

Once the mesh of the model was generated by editing the basic primitive using those
tools, it had to be taken into consideration that the mesh met certain requirements.

First, the overall size of the polygons should be uniform. Otherwise, at the beginning of
the animation process, the difference in size between different polygons could result in
overlaps or display errors. In addition, a mesh which polygons have a uniform size is
considered cleaner and more orderly.

Secondly, the polygons of the mesh had to be correctly connected to each other. This
implied that there were no T vertices and that the normals of all the polygons were oriented
in the same direction. Figure 13 shows the basic appearence of a T vertex.

Polygon A

Polygon C
28

Polygon B

Figure 13: Graphic definition of a T vertex.

This would ensure the correct visualization of the model, allow the textures to be
displayed correctly on the model and facilitate the animation process.

3.5.2-B Texturing

Once the mesh of a model is finished, the texturing process can be carried out.

This process can be defined as a sewing process, in which the geometry is divided into
parts, on which a texture will be coupled, to subsequently sew all the parts together, as if it
were cloth patches. So, the first step to texturize the model was to mark the seams by which
the mesh would later be divided. This was achieved thanks to the UVW Unwrap modifier.

40

Figure 14 shows the difference between a model without textures and ist textured
version.

] [User Defined] [Flak Color]

=

Figure 14: No-textured model (left) versus textured model (right).

Once these seams were defined, the model was divided into different parts, which
were flattened and placed neatly on a white texture. Through this process, the texture
coordinates were defined. Thus, the empty texture with the parts of the model worked as a
template, so that when drawing on that texture, it was actually drawing on the part of the
model associated with the texture coordinates. Relationship between the template texture
and the final texture is shown through Figure 15.

PTTCY (o

"IN T
&sua

Figure 15: Template texture (left) and final texture (right).

41

3.5.2-C_ Model animation

The last phase, the animation process, was undoubtedly the most difficult and
laborious. As mentioned before, the methodology to follow is the same as the one used to
animate cartoons, which consisted of overlapping frames to simulate movement. Of course,
this concept must be transferred to the three-dimensional environment.

In the same way that, in the past, characters were drawn in various poses and then
each pose was overlapped, with a 3D model the same has to be done. Through skeletal
animation, it is possible to generate a three-dimensional hierarchy of bones, so that each
part of a model can be assigned to one of those bones. Thus, by moving these bones, the
associated part of the model would also move accordingly.

Although it is true that 3D Studio Max offers the possibility of using predetermined
biped skeletons (i.e., with an already created hierarchy of bones), these skeletons are
somewhat limited in terms of movement freedom and number of limbs, so in most cases,
the best option is to create a skeleton from scratch using the bone creation tool. This is more
laborious, but in turn leads optimal bone hierarchies for the animation process.

These hierarchies establish father-son relationships between bones, which determine
the degree of freedom that a bone has with respect to the rest. These relationships can be
compared to the ones between the bones of a human skeleton: although when moving the
fingers of one hand the position of these fingers change in space, when moving an entire arm
the position of the fingers also changes, unavoidably. In other words, the movement of a
bone causes the bones in its charge (that is, its children) to move as well.

So, in the first place it was necessary to define an appropriate skeleton. This involved
designing a bone structure that fit the basic characteristics of the model.

En caso un modelo humanoide, estas caracteristicas bdsicas son las proporciones y el
nimero de extremidades. De este modo, si un supuesto modelo tiene unas piernas cortas,
los huesos correspondientes a las piernas deben ajustarse a la longitud de estas; si tiene
cuatro brazos, el esqueleto debe tener un conjunto hombro-brazo-antebrazo-mano para
cada uno de ellos; si tiene cola, una serie de huesos debe prepararse para que esta pueda
retorcerse apropiadamente; si tiene el pelo largo, deben acoplarse a los huesos de la cabeza
una serie de huesos que puedan simular el movimiento del cabello, etcétera.

In case of a humanoid model, these basic characteristics are the proportions and the
number of limbs. In this way, if a supposed model has short legs, the bones corresponding to
the legs must adjust to its length; if it has four arms, the skeleton must have a set shoulder-
arm-forearm-hand for each one of them; if it has a tail, a series of bones must be prepared
so that it can be properly twisted; If it has long hair, a series of bones that can simulate hair
movement must be attached to the bones of the head, etc.

Furthermore, if the character carries some kind of object, such as a hat or cane, bones
must also be added for these objects. However, being independent objects that can be freely
separated from the main body, those bones will be outside the main hierarchy as well.

42

Once a valid and appropriate skeleton was prepared for the model, the next step was
to establish a relationship between the different parts of the model and the bones of the
skeleton, so that, by moving these bones, the associated parts of the model would move
accordingly.

3D Studio Max ofrece diferentes modificadores para llevar a cabo este proceso, como
"Physique" o "Skin". "Physique" funciona creando areas llamadas envelopes alrededor de los
huesos, de modo que, al mover un hueso, todos los vértices del modelo que se encuentren
dentro de su envelope se moverdn en consecuencia. "Skin" por el contrario, emplea una
tabla de relaciones, donde se establece un peso entre 0 y 1 para cada vértice asociado a un
hueso, de modo que los vértices cuyo peso sea 1, seguirdan el movimiento del hueso con
exactitud, y cuanto menor sea este valor, menor serd la influencia del hueso sobre los
vértices.

3D Studio Max offers different modifiers to carry out this process, such as "Physique" or
"Skin". "Physique" works by creating areas called envelopes around the bones, so that, when
moving a bone, all the vertices of the model that are inside its envelope will move
accordingly. "Skin" on the other hand, uses a table of relations, where a weight between 0
and 1 is established for each vertex associated with a bone, so that the vertices whose
weight is 1, will follow the movement of the bone with accuracy, and the lower this weight,
the smaller the influence of the bone over the vertices.

Even though the first is intuitive and easy to use, the second can achieve much more
precise results, so it was decided to use the "Skin" modifier. Thereby, a table was created that
contained all the vertices of the model and all bones of the skeleton, and a weight was
defined for each possible relation.

Once the weights were assigned for all the vertices of the model, it was already
possible to start designing the animation.

A good methodology to be followed is to use references. Watching videos of a specific
movement or animations made by other artists is a great help to make more complete and
natural animations. A very useful tool in this matter is Mixamo [18]. Mixamo is a website
where it is possible to quickly and easily animate a humanoid 3D models, thanks to the large
library of predetermined animations that it offers. For an animator, it is also a very useful
source to find a lot of varied humanoid animations, being able to use them as references to
elaborate their own animations.

It is also common to use storyboards, the sketching on paper of the different keyframes
of the animation. They are very useful to establish a general guide of how the animation will
flow. Once a simple storyboard has been elaborated and enough references have been
collected, it is now possible to start animating the model.

Moving, rotating and scaling the bones of the skeleton, the model was made to pose.
Each pose was recorded in a different frame of a time bar, so that, when advancing through
the time bar, a frame transition was caused, which made it look like the model was actually
moving. Figures 16 and 17 show how a model can be posed to generate several frames.

43

A quick export in FBX format, would result in a 3D file that contains both the geometry,
textures and animations of the model inside, ready to be imported into the application to be
viewed and archived.

Figure 16: Geometry (left) and skeleton (right) in a standing pose.

Figure 17: Geometry (right) and skeleton (left) in a running pose.

44

4.1

4 Results

Introduction

In this section, the obtained results after completing the whole process of design and
development of the application are shown.

It is worth to mention that, as explained before, the developed application has two
basic functionalities. On the one hand, the possibility of allowing the user to import his/her
own animated three-dimensional models from the memory of his/her device into a 3D scene
to visualize them. On the other hand, a series of tools that the user will be able to use to
interact with his/her imported models, in order to create visual compositions by editing the
basic parameters of the 3D scene.

Thus, these two basic functionalities are going to be analyzed to check if the obtained
results meet the expected results. In addition, a video of the global result, where the final
appearence and operation are shown, is attached, as well as the links to the 3D animated
models made for this project.

45

4.2 3D models import functionality

The 3D models importer had to be an easy to use tool that, with just a few taps on the
screen, would allow the user to import his/her own animated models into a 3D scene to
visualize them. This involved taking two basic concepts into consideration: on the one hand,
the possibility of locating 3D files in the memory of the device and, on the other hand,
importing them just by tapping them once located.

The first concept was covered by implementing a simple file browser, whose final
appearence is shown in Figure 18. Although the main idea was to build a more complex
browser, as can be seen in Figure 5, it was decided to make mechanincs as simple as possible,
so that the user could not be overwhelmed by excessive options. The resulting browser
proved to be both efficient and easy to use.

Figure 18: File browser final appearence.

The second concept was covered by implementing a list of models, as seen in Figure
19. Such list contained the models imported by the user, and by selecting one of them the
user was able to either delete it or visualize it again. Thus, by just tapping on the desired
model of the list, the user had full control over it, making it very easy to visualize models and
keep the list clean and updated.

Model Importer

Import new model

Figure 19: Main screen final appearence.

46

4.3 Interaction tools

The interaction tools had to allow the user to change the global visualization of the 3D
scene where the model was. The tools had to be intuitive and easy to use. This implied
putting special efforts on the implementation of the controls.

Since the tools had different purposes and not every one of them could be operated by
tapping the screen, it was decided to make some tools operable through buttons, but
keeping in mind the simplicity. Thus, while rotation and zoom tools were implemented to be
operated by tapping and dragging across the screen, the other tools (play/pause animation,
background change and screenshot) were designed to be operated through buttons. Figure
20 shows the final appearence of the 3D model viewer.

The resulting tools proved to be intuitive and easy to operate.

Figure 20: 3D model viewer final appearence.

4.4 Final results

By following the next link, a video that shows the final result of the application, both in
terms of appearence and functionalities, can be found:
https://drive.google.com/open?id=1nf3gEJvaKNCHIPAksefBTOohnQjgj4Kx .

The models used to test this project can also be found by following the next link:
https://drive.google.com/open?id=1pK2KukgNOyLNIgRMocrWrgkLAXTHI3t1 .

Finally, the application installer can be found by following the next link:
https://drive.google.com/open?id=1UJVIDQG6MSIPFjLSvJ30kOEnwnv6IFiY .

47

https://drive.google.com/open?id=1UJVIDQG6MSlPFjLSvJ3ok0Enwnv6lFiY
https://drive.google.com/open?id=1pK2KukqN0yLNlqRMocrWrqkLAXTHl3t1
https://drive.google.com/open?id=1nf3qEJvaKNCH9PAksefBT0ohnQjgj4Kx

5.1

5 Conclusions

Introduction

5.2

During the initial phases of the project, specifically during the elaboration of the
Technical Proposal, some goals or objectives were established, which had to be fulfilled after
the end of the application. These objectives were directly related to the application, either by
the very fact of completing its development, or by specific characteristics that it should offer
to the user.

This section checks wether the objectives established during the initial phases of the
project have been met or not, and gives a general conclusion about the work done during
the whole project

Visualization of 3D models

The first of the objectives established that an application should be developed for
allowing the user to visualize three-dimensional models through an Android mobile device.

As seen in the development section, the resulting application allows not only to
visualize 3D models, but also to interact with them to visualize them from different
perspectives in order to better appreciate details of their shape and appearance, thanks to
the rotation and zoom tools. Moreover, if it is an animated model, it will also be possible to
visualize its animation.

With all this, it can be said that the first objective has been fulfilled.
48

5.3 Scene composition and exportation

The second objective required that the possibility of recreating dynamic scenes
composed by a model and a background or scenario was offered to the user, and that, once
these elements were organized to their liking, they could make a screenshot of his work.

Thanks to the background change tool and the screen capture tool, whose
implementation has been detailed in the corresponding sections of the development section,
it can be affirmed that both functionalities have been made available to the user, so that
he/she can make different compositions with his/her own work that can later be saved in an
easily archivable and shareable image.

Thus, it is concluded that, indeed, the second objective has also been met.

5.4 Model import and creation of customized portfolios

The third and final objective established that the user had to be able to import his/her
own models into the application, and that he/she should be able to store them in some way
so that he/she could elaborate a personalized portfolio of animated 3D models.

Thanks to the model import tool and the implementation of a data storage and loading
system, the resulting application allows the user to import various models from his/her
device, and is responsible for keeping a registry of each one of them. In this way, after closing
the application, this system is responsible for reading the registry so that it is possible to
access again the previously imported models.

Thus, it can be said that the third objective has been fulfilled.

5.5 General conclusions

The idea of offering the user the possibility of importing his/her own models and
sharing them in some way changed everything. Something like that arose from the personal
need of a 3D artist to show his/her work at any time and place. Such a feature converted a
simple circumstantial application into a possible useful tool for a 3D artist.

It also turned a relatively simple development process into a much more complex one,
which needed a lot of documentation about programming aspects and the Unity game
engine itself. But, step by step, the project grew with effort and perseverance.

Without a doubt, the fact of not being able to implement an own import tool is a
failure, but something like that also helps to want to learn more, to not fall into the same
fate in the future. And, in the same way, all the mistakes made during the project have led to
learning, providing new knowledge and experiences.

The final result is better than expected and, in addition, each and every one of the
proposed objectives has been met. It is concluded that the project of developing of a hand-
held portfolio for three-dimensional animated models has been a resounding success.

49

6 References

[1] Overwatch — Hero gallery review:
https://youtu.be/rQOPuyUOWA4?t=17m30s

[2] Super Smash Bros. Melee/Brawl — Trophy gallery reviews:
https://youtu.be/DjeUtKEjzo0?t=21s
https://youtu.be/07n7CMYQlag?t=2m42s

[3] Lolking — 3D Champion models viewer examples:
http://www.lolking.net/models?champion=78&skin=0
http://www.lolking.net/models?champion=113&skin=0

[4] Unity Engine — Official webpage:
https://unity3d.com

[5] Monodevelop — Official webpage:
https://www.monodevelop.com

[6] 3D Studio Max — Official webpage:
https://www.autodesk.es/products/3ds-max/overview

[7] LibreOffice Writter — Official webpage:
https://es.libreoffice.org/descubre/writer

50

https://es.libreoffice.org/descubre/writer
https://www.autodesk.es/products/3ds-max/overview
https://www.monodevelop.com/
https://unity3d.com/
http://www.lolking.net/models?champion=113&skin=0
http://www.lolking.net/models?champion=78&skin=0
https://youtu.be/O7n7CMYQIag?t=2m42s
https://youtu.be/DjeUtKEjzo0?t=21s
https://youtu.be/rQ0PuyUOWA4?t=17m30s

[8] Runtime OBJ Importer — Unity Asset Store:
https://assetstore.unity.com/packages/tools/modeling/runtime-obj-importer-49547

[9] Asset Importer — Unity Asset Store:
https://assetstore.unity.com/packages/tools/utilities/asset-importer-9224

[10] 3DS Loader runtime Importer — Unity Asset Store:
https://assetstore.unity.com/packages/tools/3ds-loader-runtime-importer-62536

[11] OBJ Mesh 10 — Unity Asset Store:
https://assetstore.unity.com/packages/tools/modeling /obj-mesh-io-15862

[12] TriLib — Unity Asset Store:
https://assetstore.unity.com/packages/tools/modeling/trilib-unity-model-loader-package-91777

[13] Krita — Official webpage:
https://krita.org

[14] Artstation — Webpage:
https://www.artstation.com

[15] Balsamiq Mockups 3 — Download page:
https://balsamig.com/download

[16] Adobe lllustrator — Webpage:
https://www.adobe.com/es/products/illustrator.html

[17] Inkscape — Official webpage:
https://inkscape.org

[18] Mixamo — Webpage:
https://www.mixamo.com

51

https://www.mixamo.com/
https://inkscape.org/
https://www.adobe.com/es/products/illustrator.html
https://balsamiq.com/download
https://www.artstation.com/
https://krita.org/
https://assetstore.unity.com/packages/tools/modeling/trilib-unity-model-loader-package-91777
https://assetstore.unity.com/packages/tools/modeling/obj-mesh-io-15862
https://assetstore.unity.com/packages/tools/3ds-loader-runtime-importer-62536
https://assetstore.unity.com/packages/tools/utilities/asset-importer-9224
https://assetstore.unity.com/packages/tools/modeling/runtime-obj-importer-49547

Appendix 1: User's Guide

The objective of the developed application is to visualize 3D animated models, as well as their
manipulation through internal tools to alter the visualization and generate results to share them
later. Although the full development of the application has been detailed throughout the main
document, it seems necessary to prepare a document to explain, step by step, how the final
product works. This appendix is attached as a brief user's guide, through which it is intended to
explain in detail the operation of the application. It is worth to be remembered that the application
works only on Android devices.

The operation of the application is simple and easy to master thanks to the tactile controls, which
allow to use all the features just by tapping on the screen a few times. After opening the
application, the start screen will be displayed, which will contain the main menu. The following
diagram briefly details each one of the elements of the menu.

Model Importer 1 Model list

Import new model

2 Model options dialog
3 Delete option
4 Reimport Option

5 Import new model button

6 File browser
7 Parent Directory
8 Close button

* Inthe model list (1) the models that have been previously imported are shown. If this is the
first time the application is executed, this list will be empty.

* Tapping any of the models of this list will bring up the model options dialog (2). This
window offers the possibility of deleting the selected model, by choosing the "Delete"
option (3), or visualizing the model again, by choosing the "Reimport" option (4).

* To import a new model, the "import new model" button (5) must be pressed. Pressing this
button will display a simple file browser (6). This file browser shows the files located in the
memory of the mobile device, allowing to search for the 3D files to import.

* The navigation through the file browser is performed just by tapping the name of the
desired folder. By doing this, the elements shown in the file browser will be updated,
displaying the files and folders contained in the selected folder. A previos folder can be
accessed again by tapping on "Parent Directory" (7).

* Tapping the "X" button (8) in the upper right part of the dialog will close the file browser
and show the main menu again.

By tapping on the name of a 3D file displayed in the file browser dialog, the selected file will be
added to the model list in the main menu, and imported into the model viewer scene. The
following diagram shows the elements that can be found in the model viewer scene.

1 Pause/playback button
2 Frame slider

3 Playback speed buttons
4 Screenshot button

5 Background button

6 Back button

e Using the pause/playback button (1) the animation of the imported model (if any) can be
played or paused.

* Through the frame slider (2) the current frame of the animation can be modified. This
slider can only be operated if the animation is paused.

* By tapping the playback speed buttons (3) the rhythm at which the animation of the model
is played can be altered.

* The screenshot button (4) takes a picture of the current state of the scene (without
including the user interface) and saves it in the image gallery of the device.

* The background button (5) causes the background scenario, over which the model is
displayed, to change.

* The back button (6) closes the model viewer scene and displays the main scene again.

It is worth mentioning that the application lacks an escape mechanism to close its own process, so
to close the application, it is recommended to use the process manager of the mobile device itself.

NOTE: This version of the application is a prototype (3/6/2018), so, in future versions, important
changes in its operation, as well as the implementation of new features, could be found.

