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Abstract
Two approaches are commonly in use for analyzing panel data: the univariate, which arranges data in
long format and estimates just one regression equation; and the multivariate, which arranges data in
wide format, and simultaneously estimates a set of regression equations. Although technical articles
relating the two approaches exist, they do not seem to have had an impact in organizational
research. This article revisits the connection between the univariate and multivariate approaches,
elucidating conditions under which they yield the same—or similar—results, and discusses their
complementariness. The article is addressed to applied researchers. For those familiar only with the
univariate approach, it contributes with conceptual simplicity on goodness-of-fit testing and a variety
of tests for misspecification (Hausman test, heteroscedasticity, autocorrelation, etc.), and simplifies
expanding the model to time-varying parameters, dynamics, measurement error, and so on. For all
practitioners, the comparative and side-by-side analyses of the two approaches on two data sets—
demonstration data and empirical data with missing values—contributes to broadening their
perspective of panel data modeling and expanding their tools for analyses. Both univariate and
multivariate analyses are performed in Stata and R.
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structural equation modeling, longitudinal data analysis, quantitative research, multiple regression,
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Panel data are widely used in social and behavioral sciences such as economics, organizational

research, and applied psychology. They offer researchers theoretical and methodological advantages
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over cross-sectional data: Panel data allow the analysis of dynamic effects (effects among variables

over time; Bergh, 1993; Greve & Goldeng, 2004; Pitariu & Ployhart, 2010); provide a way to control

for unmeasured stable variables (the so-called unobserved heterogeneity in the econometric literature);

and can address some sources of endogeneity of regressors (Hamilton & Nickerson, 2003) that prevent

estimates from being interpreted as causal effects (Antonakis, Bendahan, Jacquart, & Lalive, 2010).

In the panel data literature two apparently distinct modeling approaches are in use: the univariate

approach, where observations are stacked across units and time (so a unit generates as many rows as

time points observed in the panel) and just one regression equation is estimated; and the multivariate

approach, where each unit generates a single row of data (and each time-varying variable generates a

different column for each time point) and a set of regression equations—one for each time point—is

estimated simultaneously.

The univariate approach to panel data is extensively described in classic econometric manuals

(e.g., Arellano, 2003, chaps. 2-3, 7-8; Baltagi, 2013, chaps. 2-5; Greene, 2003, chap. 13; Hsiao,

2014, chaps. 3-4; Wooldridge, 2013, chap. 14). It is also present in behavioral sciences and orga-

nizational research (Bliese & Ployhart, 2002; Holcomb, Combs, Sirmon, & Sexton, 2010; Hom &

Haynes, 2007; Pedhazur, 1982; Rabe-Hesketh & Skrondal, 2012, chaps. 3-6; Snijders & Bosker,

2012, chap. 12). It encompasses both static models such as regression with random intercept, random

coefficients models, growth models, and also dynamic models with lagged effects of dependent and

independent variables (e.g., autoregressive models, finite distributed lag models). The multivariate

perspective has a long tradition in social and behavioral sciences (e.g., Chamberlain, 1982;

Davidson, 1972; O. D. Duncan, 1969; Finkel, 1995, chaps. 2-3, 5-6; Finn, 1969; Jöreskog, 1978;

Markus, 1979, chaps. 3; Montfort, Oud, & Satorra, 2007, chaps. 9-17; Rogan, Keselman, &

Mendoza, 1979). It is implicit in a variety of models discussed in the literature such as repeated-

measures ANOVA (Bergh, 1995; O’Brien & Kaiser, 1985), repeated-measures regression

(Misangyi, LePine, Algina, & Goeddeke, 2006), autoregressive panel models (Kessler & Greenberg,

1981, chap. 7), cross-lagged regression models (Mayer, 1986; Rogosa, 1980), and latent growth

curve (LGC) models (Bollen & Curran, 2006, chaps. 2-3, 5, 7; Chou, Bentler, & Pentz, 1998; T. E.

Duncan & Duncan, 1995; McArdle & Epstein, 1987; Meredith & Tisak, 1990; among others).

Recent research has investigated the relation between the univariate and multivariate approaches

to panel data (Allison, 2009; Allison & Bollen, 1997; Ejrnaes & Holm, 2006; Teachman, Duncan,

Yeung, & Levy, 2001); more specifically, Bollen and Brand (2010) have made explicit the restric-

tions under which the multivariate formulation matches particular univariate panel data estimators.

This literature, however, is a somewhat technical body of work addressed to users of structural

equation modeling (SEM), and it is confined to social and political science methodologies; it does

not seem to have had an impact in the organizational research arena. A literature review on some of

the leading journals in organizational sciences (Academy of Management Journal, Journal of

Applied Psychology, Journal of Management, and Strategic Management Journal) for the three

years 2013, 2014, and 2015 returned 247 articles that explicitly involved the use of panel data. The

vast majority of these articles, 216, used the univariate perspective for panel data analysis; specif-

ically, they all estimated one regression equation based on the specification of a varying intercept

and, in some cases, also lagged dependent and independent variables. Only 31 out of the 247 articles

could be classified as using the multivariate perspective to panel data (cross-lagged models, LGC

models, path analysis, and others). Clearly, the univariate perspective for panel data is dominant in

organization research and related disciplines. None of the articles classified as univariate do not even

mentioned the multivariate perspective as referred to by Bollen and Brand (2010) and others.1

We believe researchers using the univariate approach could benefit from knowing about the tools

for estimation and model search in panel data that are readily available in the multivariate setup and

implemented in current software. For organizational researchers familiar with the multivariate

models discussed in the psychology and management literatures (e.g., Bollen & Curran, 2006; Chan,
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1998; T. E. Duncan, Duncan, & Strycker, 2006; MacCallum, Kim, Malarkey, & Kiecolt-Glaser,

1997; Ployhart & Vandenberg, 2010), the present article will help to connect their models with the

panel data models discussed in the econometric literature.

The present article discusses the two approaches to panel data side by side, focusing on the

regression models with varying intercepts. In the comparison, we adopt a didactic, nontechnical

approach, providing step-by-step guidance to applied researchers on how to estimate, compare, and

modify the models in the univariate and multivariate approaches. Our aim is to help organizational

researchers understand the comparative advantages and limitations of the two approaches, and to

acquaint them with practical tools now available in the multivariate setup that they may not be aware

of. We also feel that a more balanced view of the two approaches could help researchers widen their

view of panel data modeling and broaden the range of tools for their analysis.

The article is structured as follows. Section 1 presents the long and wide format arrangement of

panel data and their basic models. Section 2 presents the models: model conditions for the equality

or divergence of the two approaches; and, by capitalizing on the multivariate approach, expansion of

the family of models to include time-varying parameters, dynamics, and other extensions. Section 3

compares the two approaches using artificial data. In Section 4, through an illustration using

empirical data, the two approaches tackle practical issues such as missing data and model specifica-

tion. Section 5 concludes with a discussion.

Long and Wide Formats

In panel data, a set of variables are observed for each of i ¼ 1, 2, . . . N units (individuals, firms)

repetitively at t¼ 1, 2, . . . , T time points. We have the time-varying variables (in our notation, y and

the xs), characteristics of the units that vary with time, and the time-invariant variables (the zs),

characteristics of the units that remain constant across time. Panel data can be arranged in two

different formats. In the long (or stacked) format each row corresponds to the values of a unit

recorded at one time point, so a unit generates as many rows as time points observed in the panel.

In the wide format, each unit is represented by a single row and each time-varying variable generates

a different column for each time point. Tables 1 and 2 illustrate the long and wide arrangements for

panel data. The tables display the data of variables x, y and z observed at 4 time points for the units 1,

2, and 3000 of the data used in Illustration 1. Long and wide formats are two alternative representa-

tions of the same data (Tables 1 and 2 show the same numbers, but in different arrangements).

Table 1. The Long Format.

Unit Time x y z

1 1 –0.34 –4.53 –1.42
1 2 –0.85 –1.96 –1.42
1 3 0.05 –2.17 –1.42
1 4 1.48 3.65 –1.42
2 1 –0.85 0.42 0.22
2 2 0.61 3.41 0.22
2 3 0.06 4.39 0.22
2 4 0.83 6.86 0.22
..
.

3000 1 1.00 1.79 0.82
3000 2 0.06 1.27 0.82
3000 3 0.25 3.14 0.82
3000 4 –0.64 –3.42 0.82
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Software routines are available to convert wide format data to long format, and vice versa (in

Stata and R, the command reshape).

In the long format, increasing T increases the number of rows but not the number of columns. In

the wide format, increasing T increases the number of columns but not the number of rows. An

advantage of the wide format is that it allows the researcher more flexible specifications of the

temporal interdependence in the model. However, in some research contexts, such as when dealing

with a large number of time points, and/or the timing of the measurement occasions varies across

units, the wide format may be impractical because of the considerable increase in the number of

columns (Singer & Willett, 2003, p. 21). It should also be mentioned that some temporal inter-

dependencies, such as an autoregressive error term, can also be specified in the long format data (see,

for example, Rabe-Hesketh & Skrondal, 2012, chap. 6).

An essential feature of the long format for panel data is the likely association (statistical depen-

dence) among rows that belong to the same unit (e.g., the same firm). Therefore, the long format

panel data are likely to produce what is called positive intraclass correlation (ICC), which is the

proportion of total variance of a variable that can be explained by group (unit) membership. One

estimate of ICC is the ICC(1) (Bliese, 2000, pp. 354-355).2 Positive values of the ICC(1) indicate

that, on average, scores of rows belonging to the same group are more similar than scores between

groups (Kenny & Judd, 1986). In the wide format, however, since different rows correspond to the

different units, they are assumed to be independent, and ICC(1) manifests as a correlation between

the variables that store the different time observations.

These two formats give rise to the two approaches to panel data discussed in this article: uni-

variate for the long format data; multivariate for the wide format. The basic models for these two

approaches are discussed next.

Models

Univariate Approach

The basic model for the univariate approach is the following regression equation:3

yit ¼ aþ bxit þ gzi þ ui þ eit; ð1Þ

where, for unit i at time t, yit, xit and zi are the values of the dependent variable y and the independent

variables x and z, respectively; b and g are the regression coefficients; a is a constant intercept; ui is a

centered unobserved variable varying only with the unit i, with variance s2
u; and eit is an equation

disturbance term (that varies with unit and time), centered, with variance s2
e , and independent of x, z

and ui. Considering ai � aþ ui, equation (1) can be viewed as a regression equation with an

intercept ai that varies with the unit i. Even though equation (1) is a multiple regression model, it

Table 2. The Wide Format.

Time-Varying

Time-InvariantTime 1 Time 2 Time 3 Time 4

Unit x1 y1 x2 y2 x3 y3 x4 y4 z

1 –0.34 –4.53 –0.85 –1.96 0.05 –2.17 1.48 3.65 –1.42
2 –0.85 0.42 0.61 3.41 0.06 4.39 0.83 6.86 0.22
..
.

3000 1.00 1.79 0.06 1.27 0.25 3.14 –0.64 –3.42 0.82
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is univariate in nature since it expresses the variation of a single variable, the dependent variable y,

conditional to the values of independent variables.

The varying ui represents the combined effect on y of all unobserved unit-specific characteristics

that are constant (or fixed) over time (Halaby, 2004). In empirical applications it is reasonable to

assume that units are heterogeneous with respect to these unobserved characteristics. Suppressing

the term ui in equation (1) is equivalent to merging ui with the disturbance term eit.
4 In this case,

when ui correlates with the independent variables x and z, we have what is called “omitted variable

bias” (Antonakis et al., 2010) and the OLS estimates of b and g fail to be consistent (an estimator is

said to be consistent when it converges to the true value when sample size increases, and this is the

basic criterion for an estimator to be considered useful).

The traditional econometrics of panel data (see, e.g., Wooldridge, 2013, chap. 14) use two type of

estimators for the parameters in equation (1), the so-called “fixed effect” (FE) and “random effect”

(RE). Before discussing these estimators, it is useful to clarify the terms “fixed” and “random” as used

in mixed-effect regression (or hierarchical linear models, HLM) versus their use in the econometric

literature on panel data. In mixed-effects regression (and HLM), a parameter is said to be “fixed” when

it remains constant at all levels of the hierarchy, for example, the b and g of our model; it is said to be

“random” when it varies at a certain level of the hierarchy, for example, the intercept ai � aþ ui that

varies with the units. In the econometric literature, however, FE and RE simply denote two type of

estimators of b in a model where ai varies across units; so, in both cases, using mixed-effects

regression terminology, the intercept is not a fixed parameter! In the present article, we assume ai

is an unobserved random variable varying across units. Two different models will emerge depending

on whether ai is allowed to correlate or not (at unit level) with the time varying variables.5

The Fixed-Effect (FE) Estimator

Under the presence of the varying intercept ai, one simple procedure to estimate the regression

coefficient b of (1) consists in eliminating the between-unit variation and then applying OLS to the

resulting within-unit variation. The specification (1) implies the between-unit regression

�yi ¼ aþ b�xi þ gzi þ ui þ �ei ð2Þ

where the bar over a symbol denotes a cluster mean; thus, subtracting (2) from (1) gives

y�it ¼ bkx�it þ e�it ð3Þ

where y�it ¼ ðyit � �yiÞ, x�it ¼ ðxit � �xiÞ and e�it ¼ ðeit � �eiÞ. The transformed regression (3) has the

same regression coefficient b as in (1) and is free of the problem of a varying intercept. The OLS

estimator of b in (3) is known as the fixed effects (FE) estimator (also known as the within estima-

tor).6 Adjustment for the degrees of freedom consumed by computing the averages is required in the

OLS formulas for standard errors and test statistics (see Wooldridge, 2013, p. 484). Statistical

software such as Stata (Stata Corp., 2015), for example, uses the xtreg command with the option

fe to produce the FE estimator. One important property of the FE is that it is a consistent estimator

of b (Allison, 2009, p. 7). Simple differentiation of the data has removed all possible influences of

the (stable) unit characteristics on the dependent variable, rendering x* exogenous with respect to e�it
(Antonakis et al., 2010).

There are however some disadvantages in the FE estimator. First, it does not provide estimators

for g, since the time-invariant variable z has been eliminated from the equation (Antonakis et al.,

2010). Second, as the between-unit variation has been eliminated by the transformation, there is a

loss of efficiency (i.e., precision of the estimates), thus decreasing the likelihood of detecting a

significant effect (Bliese & Ployhart, 2002), unless the within-unit variation dominates in the

analysis. Finally, as in any regression analysis, consistency of the FE estimator of b requires the
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correct specification of the regression equation (with no omitted variables, lack of interaction terms,

etc.) and—this is essential in our panel data setup—having invariance across time of all the regres-

sion parameters. Violation of the latter assumption is exemplified in Illustration 1 below.

Random-Effect (RE) Estimator

An alternative approach to estimate (1) is to assume the ai s are realizations of a random variable of

mean a and variance s2
u independent of the variables x and z. This is a particular case of the so-called

mixed-effects regression where b and g are fixed parameters and the intercept ai is a random

parameter. Mixed-effects regression models have a long tradition in biometrics; estimation methods

have been developed based on maximum likelihood (ML) or iterative generalized least squares

(Croissant & Millo, 2008; Laird & Ware, 1982).

Despite the fact that b and g are fixed parameters (the only random parameter is ai), in econo-

metrics the estimates of b and g arising from mixed-effect regression are denoted “random effects”

(RE) estimators. The xtreg command in Stata uses two implementations of an RE estimator: the

feasible generalized least squares (GLS) estimator with quasi-groups mean centered data, based on

estimated variance components,7 and the ML estimator of a random intercept model. These esti-

mators are produced with the options re and mle respectively.8 In what follows, by (univariate) RE

estimator we mean the latter estimator. This is the estimator that will be compared to a (multivariate)

RE estimator discussed in the section on the multivariate approach.

When the random interceptai is independent of x and z, the RE estimator is consistent forb and g, and

the RE estimator ofb is more efficient (i.e., it has smaller variance) than the FE estimator. The efficiency

gain of the RE increases with the increase of the between-unit variation (Halaby, 2004, p. 520).

A problem with the RE estimator, however, is that it may suffer from bias (i.e., its expected value

deviates from the true value) when ai correlates with the independent variables (Antonakis et al., 2010);

in that case, the FE estimator would be preferred since it provides a consistent estimator for b. The FE

estimator of b (and its corresponding standard error) can also be obtained when the RE estimator is

applied to a model where the cluster mean �xi has been added as an independent variable (Mundlak,

1978); this is called the correlated random effect approach (see Wooldridge, 2013, sec. 14.3).9

Multivariate Approach

The alternative to the univariate approach of (1) is the following set of T simultaneous regression

equations:

yit ¼ at þ btxit þ gtzi þ ui þ eit; t ¼ 1; . . . ; T ; ð5Þ

where the variables xit, zi, ui and eit are the same as in equation (1), and at, bt and gt are the

parameters a, b and g of equation (1), now possibly varying with t. The disturbance term eit has

variance s2
eðtÞ, allowed to be heteroscedastic (varying with t) and, unless explicitly stated otherwise,

it is assumed to be uncorrelated across time. Note that the equivalent to the random intercept ai of

equation (1) is ait � at þ ui, whose mean at now possibly varies with t.

Time-varying coefficients could be reproduced in the univariate approach by introducing

time-dummy variables and their interactions with the xs (see Allison, 2009, p. 19), as well as

heteroscedasticity and autocorrelated error terms (see Rabe-Hesketh & Skrondal, 2012, chaps.

3-6; Snijders & Bosker, 2012, chap. 12).10 In the illustration sections we will comment further on

the univariate approach with time varying parameters.

To complete the specification, we need to introduce the parameters of covariances among

x1; . . . ; xT ; z; ui. It is assumed that ui is uncorrelated with the time-invariant variables (the zs). This

assumption of zero correlation is needed to have an identified model (a free correlation would

6 Organizational Research Methods XX(X)



confound ui with z), though equivalent models (Bentler & Satorra, 2010) are obtained when fixing

the covariance between ui and z to any arbitrary value. An even more general multivariate model

than (5) could be specified. For example, Bollen and Brand (2010) propose a model specification

that replaces ui with ltui where the lt accounts for heterogeneity across time of the random inter-

cept’s impact on the dependent variables. As in regular factor analysis, one lt needs to be set to 1 for

identification of the model. When x and z are absent from the model, then (5) is simply a

“confirmatory” single-factor model (Jöreskog, 1969).

As noted already in Bollen and Brand (2010), the specification (5) is a particular structural

equation model. A useful language to represent an SEM is the path diagram. Figure 1 shows the

path diagram representation of (5). The unobserved unit effect is represented by the variable ui in the

circle. The variables in the squares are the time-varying variables y and x and the time-invariant z.

Arrows in the figure correspond to regression coefficients, and double-headed arrows (both solid and

dashed) correspond to covariances among variables. The path diagram has set free the correlations

among the unobserved u and the time-varying independent variables xs, denoted in the path model

by rðx; uÞ, with the correlation between u and z set to zero. Disturbance terms are represented by the

ets with single-headed arrows pointing to yts. Finally, the triangle is the constant to 1 and serves to

represent the intercepts of the equations (arrows emanating from the constant to 1 correspond to the

ats). Figure 1 shows that the loadings of u to ys are set to 1.

Maximum likelihood (ML) estimation (and weighted least squares, for different weight matrices)

of (5), can routinely be obtained using regular software for SEM analyses, such as EQS (Bentler,

2006), Mplus (Muthén & Muthén, 1998-2012), LISREL (Jöreskog & Sörbom, 2006), sem in Stata,

the lavaan package of R (Rosseel, 2012), and others. Nowadays, these software packages also offer

the option of ML analysis with missing data (Arbuckle, 1996), which can deal with MAR-type

informative missingness (Rubin, 1976; we use this estimation method in Illustration 2 to cope with

unbalance in the panel and missing values, as will be clarified below). See Bollen (1989) for a

general overview of SEM methods; and, for example, Satorra and Bentler (1990, 1994) for technical

Figure 1. Path model representation of the multivariate specification (5).
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details of estimation, model testing and model modification in SEM under general conditions on the

distribution of the data.

A Restricted Multivariate Panel Data Model

A more restricted specification of (5) is when we impose the following TI assumption:

Time Invariance (TI): Invariance across time of the intercept, regression parameters and

variance of the disturbance terms: at ¼ a, bt ¼ b, gt ¼ g, s2
eðtÞ ¼ s2

e .

Bollen and Brand (2010; see also Ejrnaes & Holm, 2006; Teachman et al., 2001) argue that the TI

assumption and the specification of the correlation between ui and the independent variables x––

correlation set free, or restricted to be zero––make FE and RE estimates of parameters obtained

under specifications (1) and (5) (asymptotically) equal. Illustration 1 below explores this equiva-

lence in the context of a specific data set.

In some research scenarios, the restrictions imposed by the TI assumption may be questionable,

such as when the effect of an independent variable on the dependent variable increases (or decreases)

over time. For instance, in the organizational research context it is plausible that the impact of yearly

R&D investments on firm profitability differs for recession and expansion periods; or that the impact

of advertising investments decreases as the message filters through to current customers. Similarly,

homoscedastic error terms is not a suitable assumption when the dependent variable tends to become

either more or less variable over time, as in the case, for example, of analyzing the performance of

employees in a new job, which initially shows a high degree of variability but diminishes over time

as their expertise grows (Bliese & Ployhart, 2002), or in the study of firm profitability, whose

variation may diminish over time when, as consequence of competitive pressures, less profitable

firms exit the market. Therefore, the TI assumption is essential for the validity of inferences of the

univariate approach to panel data. Violation of this assumption can introduce severe bias in the FE

and RE parameter estimates. Tools for assessing the validity of the restrictions are important in

practice and will be further discussed below.

Multivariate FE and RE Estimates

The TI assumption does not fully determine the equivalence between estimates derived from the

univariate and multivariate approaches. We also need to specify the free or restricted nature of the

covariances between u and the independent variables xs (recall that the covariance of u with the zs

have already been set to zero). In the multivariate specification (5) we distinguish two cases:

(A): covariances of u with each x1; . . . ; xT set free

(B): covariances of u with each x1; . . . ; xT set to zero

Illustration 1 below (which uses demonstration balanced panel data) will show that the multi-

variate approach under hypotheses (A) or (B) exactly matches the (univariate) FE estimate of b, or

the (univariate) RE estimate of b and g, respectively. This exact match also applies to the corre-

sponding standard error.11 So inferences are asymptotically equivalent for the univariate and multi-

variate approaches for FE and RE estimates. In the present article, multivariate FE and RE estimates

refer to the estimates obtained under the specification (5), conditions (A) and (B), respectively, and

the TI assumption. A path diagram representation of both options is obtained when all the para-

meters in Figure 1 are set time-invariant and the covariance parameters rðx; uÞ are set free (FE) or

restricted to zero (RE).

Since the specification (B) is nested within (A), a SEM chi-square difference test for the two

models should serve the same purpose as the classic Hausman test (Hausman, 1978) common in the

univariate approach (Allison & Bollen, 1997; Bollen & Brand, 2010; Teachman et al., 2001).
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A significant value of the test statistics will reject using the RE estimator (assumption B) in favor of

the FE estimator (assumption A).

Both specifications (A) and (B) imply SEMs with a large number of overidentifying restrictions

that may induce model misfit, not only the time-invariance constraints implied by TI, but the lack of

dynamic components of the model (i.e., serial correlated disturbances, lagged dependent variables,

etc.). The path diagram of Figure 1 clearly shows the missing paths between variables across

different years; in SEM, these missing paths correspond to parameters that are set to zero.

Dynamic Panel Data Models

The multivariate specification (5) can be expanded very simply to the so-called dynamic panel data

models where the lagged variable yt-1 is included in the regression equation. The model is expressed

as the following set of T � 1 simultaneous equations:

yit ¼ at þ btxit þ gtzi þ dtyit�1 þ ui þ eit; t ¼ 2; . . . ; T ; ð6Þ

where, as in the previous multivariate model (5), we allow time-varying parameters and covariances

among the varying intercept and the time-varying variables xs and y at time 1. The corresponding

path diagram representation of this model is shown in Figure 2. Note the one-way arrows connecting

the ys (dynamics in the model), and that one wave of data is lost in the analysis. A formal presenta-

tion of this model and the assumptions for estimating it can be found in Bollen and Brand (2010).

This specification is a SEM that can be estimated using standard software.

This multivariate formulation considerably expands the type of dynamic panel models accessible

to practitioners. Estimating models with autoregressive errors is often recommended in the univari-

ate perspective (Bliese & Ployhart, 2002; Short, Ketchen, Bennett, & Du Toit, 2006). Halaby (2004)

makes, however, a distinction between the dynamics introduced as an autoregressive structure on the

ys, or simply as correlation among error terms. We could also have measurement error on the

dependent variable, lagged effects of independent variables, multiple indicators, and so on. These

models can be easily estimated in the same SEM setup. See Finkel (1995, chap. 5) for more

examples of dynamic panel data models expressed in the multivariate approach, and Bou and Satorra

Figure 2. General multivariate model for dynamic panel data.
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(2007, 2009, 2010) for specific analyses of dynamic panel data models with measurement error in

different data settings (multiple-group, hierarchical data, and finite mixtures).

The univariate approach also deals with dynamic panel data models; the presence, however, of

both a varying intercept and lagged dependent variables pose endogeneity problems that go beyond

the methods described above for the FE and RE estimates (Antonakis et al., 2010). A great deal of

econometric research has been devoted to dynamic panel data models. Estimation methods based on

instrumental variables have been developed following Anderson and Hsiao (1982) with estimators

differing on the transformation of the data used and the choice of instruments (see Arellano, 2003,

chaps. 5-7, for full details of these methods).

Other Extensions of the Multivariate Approach

A variety of related models can be proposed in the multivariate framework, depending whether the

model includes time-varying independent variables or not, and whether the independent variables

are observable or latent. For example, the classic first-order autoregressive model (Kessler &

Greenberg, 1981, chap. 7) can be specified as a special case of the dynamic multivariate model in

equation (6) in which the independent variables are not included in the model. Similarly, other

dynamic models allowing lagged values of both the dependent and independent variables and

reciprocal effects, such as the cross-lagged model, have been estimated in the same multivariate

framework (see Allison, 2009, chap. 6). These models, framed within the tradition of the analysis

of interindividual differences (Baltes & Nesselroade, 1979), provide a better understanding of the

relationships between repeatedly measured variables (and constructs) over time.

Other well-established panel data models used in repeated-measures designs to study intrain-

dividual differences over time can be fitted using the multivariate panel data approach. This is the

case of univariate and multivariate repeated-measures ANOVA (Misangyi et al., 2006; O’Brien &

Kaiser, 1985) used for testing changes (i.e., growth) in means over time (Bergh, 1995), and LGC

models (T. E. Duncan & Duncan, 1995; McArdle & Epstein, 1987; Meredith & Tisak, 1990;

Rogosa & Willett, 1985) that allow change trajectories that vary across individuals. In particular, a

standard LGC model (i.e., with no independent variables) can be specified by adding to the

multivariate model in Figure 1 a second latent variable with time varying loadings (the random

slope component) that accounts for unit-specific variation across time of the mean of y. The

loadings of the random slope variable can be specified as either fixed values (defining linear or

polynomial growth trajectories), or free parameters to empirically define the functional form of

the changes in the mean of y.12 Similarly, repeated-measures ANOVA can be considered as a

particular case of the LGC model where the random slopes are not allowed to vary across

individuals (i.e., setting to zero the variance and the covariances of the random slope latent

variable; McArdle, 2012).

Illustration 1: Demonstration Data

To aid the comparison of the univariate and multivariate approaches, we first present an illustration

with demonstration—i.e., artificial—data. This involves one-sample panel data with certainty on the

model and population values of the parameters. This type of data allows estimates to be compared with

each other and with respect to the true values, and uncovers the impact of misspecification on the

values of various test statistics. For simplicity, only three variables, the y, x and z, and four time points

are considered. The data was produced by equation (5) with the polulation values of parameters shown

in Table 3. Note that the regression coefficient b is not constant across time. This violation of the TI

assumption will allow model misspecification to be illustrated. A reasonably large sample, N ¼ 3000,

was chosen to avoid cluttering with small sample size artifacts. The Stata syntax and seed number that
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generates the one-sample data is shown in Appendix A. The code for all the univariate and multivariate

analyses reported in this section is shown in Appendix A (code in Stata) and Appendix B (code in R).

Table 3 shows estimates, standard errors, and 95% confidence intervals (CIs) for all the para-

meters of the true model (a model that do not impose the TI assumption). Since we are analyzing a

(true) correct model, it is not surprising that the 95% CI of each of the parameters contains its true

population value. Furthermore, the chi-square goodness-of-fit test equals 14.65, df¼ 13, p¼ .33; so,

as expected, the model is not rejected by the test. Our intention, however, with this illustration is to

see the estimates and test statistics when the model is misspecified.

Comparison of Univariate and Multivariate Approaches

Table 4 shows the estimation results (estimates, SE, and CI) for the univariate (first panel) and

multivariate (second panel) representations of FE (left-hand side of the table) and RE (right-hand

side). The results were obtained with Stata: the univariate used xtreg, fe (for FE) and xtreg,
mle, or mixed with ml (for RE); the multivariate used sem, estimation method ml. Identical

numbers were obtained when using other SEM software such as EQS and Mplus.13

Table 3. Population Values and SEM Analysis: Demonstration Data.

Population Value Estimate SE 95% CI

t ¼ 1:
x 2.000 2.002 0.023 [1.945, 2.036]
z 3.000 2.996 0.021 [2.935, 3.042]
a 0.000 0.987 0.019 [–0.0258, 0.046]
s2
e 1.000 1.016 0.028 [0.960, 1.069]

t ¼ 2:
x 0.000 0.050 0.037 [–0.022, 0.122]
z 3.000 2.938 0.035 [2.869, 3.006]
a 0.000 0.954 0.018 [0.918, 0.991]
s2
e 1.000 0.979 0.027 [0.928, 1.034]

t ¼ 3:
x 2.000 2.022 0.022 [1.978, 2.066]
z 3.000 3.021 0.019 [2.983, 3.058]
a 0.000 0.996 0.018 [0.960, 1.032]
s2
e 1.000 0.996 0.018 [0.960, 1.032]

t ¼ 4:
x 4.000 4.020 0.021 [3.978, 4.062]
z 3.000 2.969 0.018 [2.933, 3.005]
a 0.000 0.978 0.018 [0.943, 1.014]
s2
e 1.000 0.948 0.026 [0.898, 1.001]

s2
u 1.000 0.962 0.025 [0.914, 1.012]

covðui; x1Þ 0.1 0.131 0.011 [0.110, 0.152]
covðui; x2Þ 0.5 0.472 0.007 [0.458, 0.486]
covðui; x3Þ 0.2 0.187 0.012 [0.164, 0.210
covðui; x4Þ 0.8 0.785 0.012 [0.761, 0.810]

w2 14.65
df 13
p value .33
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We first discuss the results for FE estimates. The univariate and multivariate FE estimates of b are

identical, with the same standard error, in the three decimal places reported. The multivariate FE

also produces an estimator (and standard error) for g, the regression coefficient of z, which was not

available in the univariate FE. An estimate of g, however, could also have been obtained by using the

correlated random effect approach discussed in the RE estimator section; in our data, this estimate is

2.101 (SE ¼ 0.021), a value that departs from the multivariate FE estimate reported in the table. We

note equality of the univariate and multivariate FE estimates of s2
e ; the multivariate FE also

providing a standard error that could be useful to assess the significance of this variance. There is

identity between the univariate and multivariate FE estimates of the mean of the random intercept

a.14 Note, however, there is no equality among the univariate and multivariate FE estimates of the

variance s2
u of the varying intercept. This deviation should be expected, since they are two different

types of estimates: in the univariate FE, the estimate of s2
u is a between variance computed from the

“observed” residuals (thus it has no standard error); in multivariate FE, the value for s2
u is a regular

ML estimation (thus equipped with standard error); the 95% CI for s2
u, obtained with multivariate

FE, is a useful tool for assessing the presence of panel effects in the data. In the univariate approach,

alternative tests for the presence of a significant variance of ai are the Breusch and Pagan (1980) test,

if the model is estimated using the GLS estimator, or a likelihood-ratio test if the model is estimated

with ML (see Antonakis et al., 2010, p. 1093). Finally, the multivariate approach provides a chi-

square goodness-of-fit test for the model, the w2 ¼ 10531.35 (df ¼ 25, p ¼ .00), which indicates

(strong!) rejection of the model. This warning of model misspecification is absent in the univariate

FE. While there is no equivalent overall test in the univariate approach, several diagnostics of

Table 4. Results for the Univariate and Multivariate Analyses (FE and RE): Demonstration Data.

Univariate

FE RE

Coef. SE 95% CI Coef. SE 95% CI

x 2.079 0.023 [2.034, 2.124] 2.503 0.022 [2.461, 2.545]
z — 2.415 0.022 [2.371, 2.459]
a 0.999 0.016 [0.967, 1.031] 0.973 0.021 [0.932, 1.014]
s2
a 8.082 0.489 0.040 [0.417, 0.574]

s2
e 3.160 3.278 0.050 [3.181, 3.378]

Multivariate

FE RE

rðX;ZÞ 6¼ 0 rðX;ZÞ ¼ 0, rðZ;ZÞ ¼ 0

Coef. SE 95% CI Coef. SE 95% CI

x 2.079 0.023 [2.034, 2.124] 2.503 0.022 [2.461, 2.545]
z 2.563 0.013 [2.538, 2.588] 2.415 0.022 [2.371, 2.459]
a 0.999 0.010 [0.979, 1.018] 0.973 0.021 [0.932, 1.014]
s2

u 0.870 0.035 [0.803, 0.941] 0.489 0.040 [0.417, 0.574]
s2
e 3.160 0.047 [3.069, 3.253] 3.278 0.050 [3.181, 3.378]

w2 10531.35 15436.41
df 25 29
p .00 .00
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possible model misspecification can be applied in the postestimation stage, as discussed in the

following subsection.

For the multivariate RE, we now observe equality of estimates (and the same standard error) for

all the parameters of the model: all regression coefficients, mean and variance of the varying

intercept, and the variance of the disturbance term. Here also, the multivariate RE provides a chi-

square goodness-of-fit test for the model: w2 ¼ 15436.41 (df ¼ 29, p ¼ .00), an indication that the

model is rejected. Note that RE increases by 4 the df of FE; this corresponds to 4 zero constraints (the

correlations of ui with x1; x2; x3; and x4) added to the model (option (B) of the subsection

“Multivariate FE and RE Estimates”).

Comparing the population values of parameters (see second column of Table 3) with the 95% CI

of the multivariate FE and RE estimates, we see that none of the population values is covered by the

CI, in clear contrast to the results shown in Table 3 when a true model was used. We know TI does

not hold in our data, since the population values of b are 2, 0, 2 and 4 for t ¼ 1, 2, 3, 4. The models

underlying the FE and RE estimates force all the parameters to be equal, obtaining a common

estimate for b equal to 2.079 (SE ¼ 0.023) in the case of FE, and 2.503 (SE ¼ 0.022) in the case

of RE, both numbers biased with respect to the true values. Note that bias is also observed for the

estimates of g, a parameter that is correctly restricted invariant across time, but whose population

value also falls outside the 95% CI of the FE and RE estimate for both univariate and multivariate

approaches. We see that misspecification of the model, attested by the chi-square goodness-of-fit

test, may substantially deteriorate the quality of estimates. Thus, prior to attempting substantive

interpretation of results, a model diagnostic is desirable. Misfit and model modification for the

models underlying FE and RE estimates are discussed next.

Diagnostics for Model Modification

The chi-square goodness-of-fit test shown in the multivariate approach (both for FE and RE) alerts

the researcher to problems of misspecification of the model, likely prompting her/him to search for

its sources. In SEM, the “Modification Indices” (MI; Sörbom, 1989; these are Lagrange Multiplier

test statistics) in combination with the “Expected Parameter Change” (EPC; Saris, Satorra, &

Sörbom, 1987) are commonly used to detect restrictions causing model misfit. Inspection of the

MIs of the model for FE point clearly to the parameter b at times 2 and 4. The MI value for b at t¼ 4

was w2 ¼ 6198.56 (df ¼ 1, p ¼ .00), EPC ¼ 1.937 (i.e., an estimated shift of 1.937, from the current

estimate 2.079, if the restriction were released) strongly suggests the need to relax the constraint of b
at t ¼ 4 (note that the true value for b is 4). A model that sets free all the bs yields w2 ¼ 27.54

(df ¼ 22, p ¼ .19); so, the model now fits the data. The chi-square difference of the two nested

models (Dw2 ¼ 10531.35 – 27.54 ¼ 10503.81, df ¼ 3, p ¼ .00) is highly significant, indicating the

need to release the time-invariance constraint on bs.

The univariate approach provides F or Wald tests for the overall significance of the regression

coefficients (as well as tests of significance of individual parameters). However, these tests give no

information on the validity of the TI assumption or other sources of misspecification. Even though

the univariate approach lacks overall testing of goodness-of-fit, regression-based diagnostic tools for

misspecification could be applied to assess deviations from TI. An anonymous reviewer suggested

using the added variable plot; Figure 3 shows this plot for the regression of y on x and z, with line fits

for each time point added to the classic plot. This plot clearly shows the time-variation of the

regression coefficient (slopes) for x (when controlling for z), a pattern of variation coincident with

the true one. Adaptation to panel data analysis of classic regression diagnostics tools is an interesting

avenue that could supplement the results of the MIs and other tests with graphical information.

As mentioned above, regression coefficients that change over time can also be contemplated in

the univariate approach. A model with time-varying b (i.e., introducing interaction terms of x with
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the time-dummy variables) gives an estimate of b of 2.003 (SE¼ 0.021), and the following estimates

for the interaction terms (standard errors in parentheses): –2.000 (0.028), 0.022 (0.028), and 2.013

(0.028) for time periods 2, 3, and 4, respectively (the first time period is taken as a reference

category). These values correctly reproduce the population values shown in Table 3.

Illustration 2: Empirical Data

We now compare the univariate and multivariate approaches in a real-data setup where we confront

important practical issues such as missing data and uncertainty on the true model. The dependent

variable y is firms’ profitability, the analysis aiming to specify a model that gives a reasonable

description of the relation of profitability with firms’ characteristics such as investment in R&D,

advertising, size, and so on. First, we briefly describe the variables and the panel.

Variables

The data come from the Encuesta Sobre Estrategias Empresariales (ESEE; Survey on Business

Strategies), a survey carried out annually by the Spanish Ministry of Industry to collect information

on Spanish manufacturing firms. The survey involves annual data for 10 consecutive years, 1993 to

2002, for a sample of N ¼ 2; 515 firms.

The dependent variable y is Return on Assets (roa; the ratio of annual net income to total assets),

a measure of firm profitability widely used in organizational research (for exhaustive details on this

variable, see, e.g., McGahan & Porter, 1997; Rumelt, 1991; Schmalensee, 1985). The following

time-varying independent variables (xs) are used: Capacity Utilization (cu; ratio of the utilized

productive capacity to the total installed capacity of the firm); R&D Intensity (r&d; the firms’

annual R&D expenditures divided by annual sales); Advertising Intensity (adv; ratio of the firms’

total advertising expenses to sales); Size of the firm (size; log of number of employees). Just one

time-invariant independent variable (z) is included in the data analyzed: the year the firm was

founded (Founding year, founded) taking 2002 as the reference year. Previous studies (e.g.,

Capon, Farley, & Hoenig, 1990) found that these variables have a significant impact on firms’

Figure 3. Added variable plot of model diagnostics in the univariate approach: Demonstration data.
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profitability. See also classic references that report a positive influence of independent variables on

roa such as Aaker and Jacobson (1987), Farris and Reibstein (1979), Andras and Srinivasan (2003),

Phillips, Chang, and Buzzell (1983), Kirner, Kinkel, and Jaeger (2009), Thornhill (2006), Brown and

Eisenhardt (1995), Sinclair, Keppler, and Cohen (2000), and Buzzell, Gale, and Sultan (1975).

Missing Data

The data for this illustration deviate from the balanced panel data setup of Illustration 1, where every

unit had complete information on all the variables for all time points. Panel data are said to be

balanced when all the units are observed in all the time periods. In our data, only 560 firms (22% of

the firms) have complete information for all the variables in all the years; that is, 78% of the firms

have some form of missingness, either because they are not in the panel in some years (unbalanced

panel), or because they miss one or more variables in some years (missing data); that is, in addition

to deviation from a balanced panel, we still suffer from missingness in some variables. An important

point in discussing consequences of missing data is the assumption of missing at random (MAR).

This is the case when conditioning on the observed data the probability of missingness is unrelated

with the value actually missed. See Rubin’s (1976) seminal discussion on missing data. We address

the analysis under MAR.

The simplest approach to missing data is listwise deletion: It discards any row of the data matrix

that has an empty slot (i.e., a missing value in some of the columns). In our wide format data,

applying listwise deletion leaves a data matrix with only 560 rows (the firms with complete data in

all the years); that is, we lost 78% of the firms. In our long format data, we have 15,567 rows (firms

by year with information in some of the variables), and listwise deletion leaves a data matrix with

13,980 rows (the remaining 1,587 rows have missing data in some variables in some years). So, in

our data, the information retained with the listwise deletion varies for the wide and long format data

sets. In the demonstration data of Illustration 1, where panel data was balanced with no missingness,

this issue did not arise.

Fortunately, nearly all current software for SEM analysis now has the estimation option of ML

with missing data (Arbuckle, 1996; Graham, 2003). This estimator is invoked in sem of Stata by

mlmv, the option to be used for the multivariate approach reported in the present illustration. This

estimate ensures consistency under MAR and it retains and processes all the data of the initial 2,515

rows of the wide format data. In fact it uses more data than when applying listwise deletion to the

long format data (the only option available in xtreg and mixed of Stata) that will necessarily

discard the mentioned 1,587 rows that have missingness in some variables. It will be interesting the

comparison of the results obtained from the univariate (listwise to long format data) and multivariate

(ML for missing data) in this context of empirical data.

Comparison of Univariate and Multivariate Approaches

Table 5 shows the estimation results for the univariate (first panel) and multivariate (second panel)

representations of the FE (left-hand side) and RE estimates (right-hand side). Estimates, standard

errors, and 95% CIs are displayed in the table. All the numbers in this table were produced using

Stata: in the univariate approach using xtreg, fe for FE, and xtreg, mle (or mixed with ml)

for the RE; the multivariate approach using sem, estimation method mlmv.

We first discuss the results for FE estimates. The univariate and multivariate FE estimates

of the regression coefficients for the time-varying variables (the b s) are very similar, with

also similar standard error (the largest difference on estimates occurs for b of variable size,

an estimate, however, that has a large standard error in both the univariate and multivariate

approaches). The univariate and multivariate FE estimates of s2
e and the mean of the random
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intercept are also very similar. As was noted in the illustration with demonstration data, uni-

variate and multivariate FE estimates of the variance of the varying intercept differ due to the

estimators being based on different principles. The chi-square goodness-of-fit test w2 ¼ 1,658.81

(df ¼ 427, p ¼ .00), pointed to rejection of the model, a warning that is not present in the univariate

approach.

The univariate and multivariate RE results also show very close estimates and standard error, now

for all the parameters of the model: regression coefficients, mean and variances of the varying

intercept, and the variance of the disturbance term. Clearly, the z-values of the estimates lead to

the same conclusion for the univariate and multivariate approaches. Now the chi-square goodness-

of-fit test is w2¼ 1,815.39 (df¼ 467, p¼ .00), which also indicates rejection of the model. Note that

the number of df of the RE estimator has increased by 40, as we have restricted to zero the 40

parameters corresponding to the covariances of ui with the time-varying independent variables (4

variables times 10 years).

In addition, FE and RE estimates give nearly the same results except for the significance of the

variable advertising adv, which is highly significant in the case of FE but nonsignificant in the case

Table 5. Results for the Univariate and Multivariate Analyses (FE and RE): Empirical Data.

Univariate

FE RE

Coef. SE z-valuey Coef. SE z-valuey

cu 0.072 0.009 8.08 0.078 0.008 10.31
r&d –0.290 0.063 –4.64 –0.243 0.051 –4.73
adv –0.356 0.074 –4.80 –0.033 0.048 –0.68
size –0.809 0.359 –2.25 –0.587 0.116 –5.04
founded — — — –0.029 0.008 –3.51
a 7.250 1.654 4.38 6.075 0.763 7.96
s2
a 78.194 34.378 1.663 20.67

s2
e 84.670 86.527 1.143 75.70

Multivariate

FE RE

rðX;ZÞ ¼ free rðX;ZÞ ¼ 0

Coef. SE z-valuey Coef. SE z-valuey

cu 0.084 0.009 9.33 0.082 0.007 10.99
r&d –0.268 0.062 –4.30 –0.215 0.049 –4.36
adv –0.361 0.075 –4.80 0.016 0.046 0.34
size –1.290 0.343 –3.76 –0.670 0.104 –6.44
foundation — — — –0.029 0.007 –3.86
a 8.225 1.576 5.22 6.016 0.724 8.31
s2

u 40.250 2.272 17.48 36.377 1.732 21.00

s2
eðtÞ 88.059 1.137 77.48 80.305 1.142 77.35

w2 1658.81 1815.39
df 427 467
p .00 .00

yRatio between estimate and SE.
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of RE. We note that the standard error of the RE estimates are generally smaller than those of the FE

estimates. For example, in the case of regression coefficient size, the standard error of the RE

estimate is three times smaller than for the FE estimate. The gross misfit of the model, however,

indicated by the chi-square goodness-of-fit tests, raises suspicions on any substantive interpretation

of both FE and RE estimates. Clearly, model modification is needed.

Diagnostics for Model Modification

In the univariate setup, the differences observed between the FE and the RE estimates prompt the

researcher to perform a Hausman test to choose between both estimators. In this data, the Hausman test

equals w2¼ 37.08, df¼ 4, p¼ .00, and suggests basing the inferences on the FE estimator. A cautious

researcher, however, would apply other tests for misspecification before proceeding with the substan-

tive interpretation of the FE estimates. Specifically, the Wald test for heteroscedasticity in the FE

model rejects the hypothesis of homoscedasticity of error variances (Wald test is w2 ¼ 6:4� 1036, df

¼ 2268, p ¼ .00). Similarly, the Wooldridge test for autocorrelation (Wooldridge, 2002) rejects the

hypothesis of zero first-order serial correlation, F(1, 1867) ¼ 45.32, p ¼ .00. A residuals plot, not

shown due to space restrictions, indicates that the assumption of normality of the error term is also

violated. Similarly, other regression diagnostic plots, such as the added variable plot used with the

demonstration data, could also be applied here, though the number of these plots increases with the

number of time-invariant variables, and no clear conclusion is obtained. Overall, these tests would lead

us to modify the model by considering not only dropping TI constraints, but also allowing for

heteroscedasticity and autocorrelation on the residuals. Models with complex error structures (homo-

scedasticity and autocorrelation) can be estimated using the mixed command of Stata.15 See Snijders

and Bosker (2012, chap. 6) for strategies on model specification and testing in the context of the

univariate HLM, and Bliese and Ployhart (2002) and Holcomb et al. (2010) on the more specific

context of growth-curve models and linear models with random effects at all levels.

In the multivariate approach, the test statistics for model search are based on the simple principle of

the overall goodness-of-fit test, and the chi-square difference test for nested models. The MIs are just

handy tools that approximate chi-square difference testing for restricted models that are nested to the

fitted one. The difference between the chi-square goodness-of-fit test for the model with covariances

rðx; uÞ set free, and the other with the same covariances set to zero, is our multivariate version of the

Hausman test. The chi-square values for the two models are 1815:39 (df¼ 467) and 1769:11 (df¼ 463).

This yields the chi-square differenceDw2¼ 46.2816 with a difference of degrees of freedomD df¼ 4 (4 is

the number of time-varying independent variables in the model), and p ¼ .00. The test rejects the null

hypothesis of zero correlation among the varying intercept and time varying independent variables, the

same conclusion obtained when using the classic Hausman test for this data in the univariate approach.

The multivariate RE and FE are both rejected by the chi-square goodness-of-fit test (see the w2

values in Table 5). Table 6 shows a “‘bottom-up” strategy (from more to fewer restrictions) for

Table 6. A Sequence of Model Testing.

Model Model Restrictions (Within TI) w2(df) Dw2(df)

M0: FE at ¼ a; bt ¼ b; gt ¼ g; lt ¼ l; s2
eðtÞ ¼ s2

e 1658.805* (427) 156.58* (40)

M1: at ¼ a bt ¼ b; gt ¼ g; lt ¼ l; s2
eðtÞ ¼ s2

e 1509.082* (418) 149.72* (9)

M2: bt ¼ b gt ¼ g; lt ¼ l; s2
eðtÞ ¼ s2

e 1423.567* (382) 85.52* (36)

M3: gt ¼ g lt ¼ l; s2
eðtÞ ¼ s2

e 1414.970* (373) 8.60 (9)

M4: lt ¼ l gt ¼ g; s2
eðtÞ ¼ s2

e 1184.477* (373) 239.09* (9)

M5: s2
eðtÞ ¼ s2

e gt ¼ g 865.513* (364) 318.96* (9)
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model modification within TI. The first column of the table shows the sequence of nested

models considered, with an indication of which set of TI restrictions is relaxed in each step.

The second column specifies the restrictions associated to each model. The chi-square

goodness-of-fit test for each model and the chi-square difference test in each step are presented

in the last two columns of the table. In parenthesis we show the corresponding df of the test, an

asterisk denoting the test is significant at the 5% level. The sequence starts with a model that

imposes TI in full. Subsets of restrictions of TI are subsequently released according to whether

the corresponding chi-square difference test is significant. The choice of the sets of parameter

to be freed in each step is left to the research context and the researcher. In panel data,

however, the choice made in Table 5 seems reasonable: setting free first the means, then the

regression coefficients, and so on, as shown in the table. It also left to the researcher to decide

on the number of parameters to be freed in each step; for example, some of the b coefficients

could be invariant across time while others could vary. In other research contexts, a similar

table could be used as a “top-down” strategy, starting with a less restricted model and adding

restrictions as we move up.17

For our data, in each step the chi-square goodness-of-fit test is significant (indicating the model in

that step does not fit the data) and also the chi-square differences are all significant except when

testing for the time invariance of g. Therefore, the strategy suggests keeping g invariant in the final

model. Model search within the family of TI restrictions, however, leaves us with a chi-square

goodness-of-fit of w2¼ 865.513 (df ¼ 364, p ¼ .00), still a nonfitting model. Other modifications of

the model therefore seem to be required. Given the type of data, allowing for dynamics in the model

is likely to be the course of action.

As noted by one reviewer, this sequence of testing could also be undertaken in the univariate

using the mixed of Stata. Minus two times the differences of log likelihoods of two nested models is

a likelihood ratio test statistic (see Bliese & Ployhart, 2002; and Snijders & Bosker, 2012, chap. 6),

that can be used to contrast alternative models and to aid decisions about including specific terms in

the model. This approach, however, would be limited to the class of models allowed by mixed. In

particular, following the strategy proposed by Bliese and Ployhart (2002) to build and test mixed

models, the univariate approach would lead to a model with across time heteroscedastic error terms,

which is different from the dynamic model proposed using the “bottom-up” strategy described

below. This, therefore, is an example where the univariate and multivariate approaches lead to

different final models.

Comparison of models could also be undertaken using the AIC (Akaike, 1974) and BIC (Raftery,

1995) criteria instead of chi-square values. These information criteria provide a rational trade-off

between fit and complexity and can be useful to compare nonnested models (Rabe-Hesketh &

Skrondal, 2012, sec. 6.5).

A Dynamic Model

Inspection of the MIs of the last model fitted in Table 6 points to the significance of autoregressive

effects in the dependent variable. This suggests enlarging the model within the family of dynamic

panel data models. In particular, we fit the dynamic model represented by equation (6), shown in the

path diagram of Figure 2, except that (as a result of the model modification strategy of previous

section) we set the parameter g invariant over time and we also allow interaction between time and

the varying intercept (loadings lts varying in t).

The chi-square goodness-of-fit test for this model is w2 ¼ 479.406 (df ¼ 286, p ¼ .00). We see a

large decrease in the chi-square value, compared with the decrease in df, but the test still rejects the

model. The scaled chi-square goodness-of-fit test (correction for nonnormality, Satorra & Bentler,

1994) gives a w2¼ 415.644 (df¼ 286, p¼ .00), values that still fall in the rejection side. In a further
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search for model improvement, inspection of MIs shows significant values for second-order auto-

regressive effects in some years, with small EPCs (expected parameter change) in comparison with

the first-order effects already introduced. Significant MIs and small EPCs have been argued as

indications of nonsubstantial misspecification in the model (Saris, Satorra, & Van der Veld,

2009); this leads us to halt our search for a better fitting model. We now describe the results of this

final model.

Table 7 displays estimates and standard error for all the parameters of the dynamic model. Note

that in addition to the dynamics, the TI assumption is not in place, so the table displays parameter

estimates varying across time. The table shows a significant autoregressive coefficient d for the roat

in 8 out of the 10 years, a dynamic effect that was ignored (i.e., set to zero) by the previous static

models. With regard to the other model parameters, most of the regression coefficients have the

same sign as in the estimates obtained under the static model (see Table 5). Regression coefficients

are positive (and significant in 8 out of the 10 years) in the case of cu, and negative in the case of

both r&d and adv (significant values in 7 and 6 years, respectively). The exception, however, is the

regression coefficient of size, which was estimated as negative and significant in the static model

(�1:396, z-value ¼ �3:84) and now is still negative, but not significant. The results derived from

this dynamic model show a substantial difference with regard to the impact of size on roa. Note

also that the estimates of lt change over time, and that the varying intercept has a smaller variance

(although still significant) as compared with the previous FE and RE models; that is, introduction of

the autoregressive structure roat�1 decreases the variance of the unobserved permanent differences

across firms. In summary, our search strategy, which started with a very poor fitting static model,

suggests a dynamic panel data model that shows time variation in fundamental parameters and an

autoregressive structure on the dependent variable roa.

Table 7. Estimates (With Standard Errors in Parentheses and Italic) for the Dynamic Panel Data Model:
Empirical Data.

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

roa t�1! roa t — 0.209* 0.277* 0.282* 0.219* 0.118* 0.075 0.099 0.240* 0.148*
(0.043) (0.058) (0.084) (0.055) (0.049) (0.087) (0.066) (0.060) (0.053)

cu ! roa t — 0.140* 0.051* 0.092* 0.034 0.079* 0.099* 0.071* 0.051* 0.039*
(0.024) (0.022) (0.023) (0.023) (0.024) (0.026) (0.021) (0.022) (0.019)

r&d! roa t — –0.353* –0.268* 0.022 –0.366* –0.244 –0.501* –0.318* –0.419* –0.458*
(0.144) (0.124) (0.150) (0.112) (0.141) (0.167) (0.139) (0.202) (0.123)

adv ! roa t — –0.249 –0.143 –0.289* –0.249* –0.396* –0.331 –0.306* –0.319* –0.238*
(0.145) (0.122) (0.131) (0.114) (0.146) (0.181) (0.129) (0.121) (0.117)

size ! roa t — –0.278 –0.283 –0.488 0.246 –0.057 0.032 0.123 0.004 0.133
(0.511) (0.334) (0.429) (0.418) (0.532) (0.584) (0.410) (0.369) (0.397)

founded !
roa t

— –0.026* –0.026* –0.026* –0.026* –0.026* –0.026* –0.026* –0.026* –0.026*

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012)
u ! roa t — 1.000 0.547* 0.752* 0.714* 0.957* 1.108* 0.722* 0.600* 0.705*

– (0.159) (0.198) (0.145) (0.221) (0.283) (0.212) (0.156) (0.150)
s2

u — 26.373* 26.373* 26.373* 26.373* 26.373* 26.373* 26.373* 26.373* 26.373*
(8.127) (8.127) (8.127) (8.127) (8.127) (8.127) (8.127) (8.127) (8.127)

a — –0.938 5.181* 3.723 4.225 3.386 1.322 1.848 3.453 3.631
(2.632) (1.965) (2.297) (2.461) (2.807) (3.034) (2.182) (2.074) (2.144)

s2
EðtÞ — 106.497* 101.831* 89.488* 82.022* 64.609* 64.075* 76.959* 82.109* 62.503*

(10.220) (11.221) (9.943) (9.733) (8.237) (9.662) (11.207) (11.157) (7.530)

*Significant at the 5% level.
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Discussion and Conclusions

Two perspectives for analyzing panel data have been discussed and illustrated with demonstration

and empirical data: one perspective arranges the data in long format and uses univariate regression

methods; the other perspective arranges the data in wide format and uses a set of regression

equations. Although few technical articles have compared the two approaches (Allison, 2009;

Allison & Bollen, 1997; Bollen & Brand, 2010; Ejrnaes & Holm, 2006; Teachman et al., 2001),

we find a body of work in organization research using the univariate approach to panel data which

reveals a lack of awareness that a similar analysis could be undertaken using the multivariate

approach. By reviewing the two approaches side by side, and by working with the illustrations,

we provide an overview of the practice of panel data modeling that we feel would be useful to the

wide audience of practitioners, especially in the field of organizational research.

Illustration 1, using demonstration data, first allows the researcher to exemplify the exact equality

of results of the univariate and multivariate approaches for the classic FE and RE estimates. Second,

it provides evidence of the severe consequences on bias of estimates (not only on misspecified

parameters, but also on other correctly specified ones) of ignoring the violation of what has been

called the TI assumption, an assumption that may be violated in practice and, thus, as with other

assumptions (i.e., random slopes), should be empirically tested (Bliese & Ployhart, 2002). Third, it

allows tools for model modification to be assessed by comparing the ones obtained using the

univariate approach (e.g., regression diagnostic tools, added variable plots, deviance tests, etc.) with

the ones provided by the multivariate perspective (chi-square goodness-of-fit test, chi-square dif-

ference tests, MI, EPC, etc.). Classic test statistics used in the univariate approach to panel data can

be replicated in the multivariate approach. For example, the Hausman test for panel data can be

framed as a chi-square difference test. Other common tests in the econometrics of panel data (e.g.,

tests for heteroscedasticity, autocorrelation, etc.) can be performed with the chi-square difference

test common in SEM analysis. This may add conceptual simplicity to a plethora of apparently

conceptually different tests presently in use in the econometric approach to panel data.

Illustration 2 uses an empirical data set and allows us to compare the two approaches in a setup

where we have missing data and uncertainty about which is the true model. Capitalizing on diag-

nostic and model modification tools available in the multivariate approach using SEM, we provide a

step-by-step guide on how to analyze panel data to achieve a better fitting model. The “bottom-up”

strategy of model modification proposes a sequence of models (from the most to the least restrictive)

that releases the restrictions implied by the TI assumption, and helps applied researchers in the

search for a model that significantly improves the fit to the data. Although the choice of the sets of

parameters to be freed usually depends on the research context and substantive knowledge, we

propose a sequence of models that we believe is reasonable in the case of panel data analysis. In

any case, all modifications should make sense theoretically (Green & Thompson, 2010). The multi-

variate approach would also simplify the expansion of the model to include measurement error,

multiple indicators, lagged regressors, random slopes, and other aspects of SEM. In Illustration 2 we

showed how the search for a fitted model, and the need to introduce an autoregressive structure on

the dependent variable, led us to enlarge the model within the family of dynamic panel data models.

In the multivariate approach this extension can be accomplished in the same frame of models and

estimation methods, unlike the univariate approach which requires the use of instrumental variables

adapted to this problem (hence, adding conceptual and practical complexities, e.g., Halaby, 2004,

p. 541). The article also discusses how the general multivariate panel data model encompasses

typical models in organizational research such as repeated-measures ANOVA models and LGC

models. A comparison of the models discussed in the article and extensions is shown in Table 8.

The comparison of the univariate and multivariate approaches to panel data also brings up front

practical differences regarding the treatment of missing data that has not received much attention to
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date. It has been argued that the increased number of columns needed to record the data in the wide

format makes the multivariate approach unfeasible, and that the univariate approach, using the long

format, is more appropriate to deal with panels in which missing data are present (Singer & Willett,

2003). The illustration with empirical data has demonstrated that nowadays missing data are no

longer an issue since we can circumvent the problem with no trouble to the practitioner by using the

estimation method of ML with missing data. The missing data issue adds further interest to the

comparison of the univariate and multivariate approaches.

To conclude, our comparison of the univariate and multivariate perspectives for panel data should

raise awareness among practitioners of the commonalities and differences of the two alternative

ways of analyzing panel data. This comparison should also facilitate communication among

researchers working with different methodologies. Improved understanding of how the two

approaches are related to one another will help them to make better use of each approach. Although

we argued that the multivariate perspective excels on conceptual simplicity and in facilitating

diagnostic statistics for goodness-of-fit tests and model modification, this should not be understood

as a recommendation for the widespread use of one approach over the other. Researchers will find it

useful to add the other approach to their repertoire of analytic skills, and we encourage them to do so.

We hope the concrete illustrations worked out in the article—with the computed code for the

analyses available in the appendix, and the demonstration data replicable from the seed code

provided— will help researchers apply the methods discussed in their own panel data settings.

Appendix A: Stata Code for the Analysis of Demonstration Data

Generation of the Demonstration Data

set seed 2016
matrix M ¼ 0, 0, 0, 0, 0, 0
matrix V ¼ (1, .4, .3, .2, .1, .4 \.4, 1, .4, .3, .5, .8
\ .3, .4, 1, .4, .2, .2 \.2, .3, .4, 1, .8, 0 \

.1, .5, .2, .8, 1, 0 \ .4, .8, .2, 0, 0, 1)
matrix list M
matrix list V
drawnorm x1 x2 x3 x4 eta z, n(3000) cov(V) means(M)
gen y1 ¼ 1 þ 2*x1 þ 3*z þ eta þ rnormal()
gen y2 ¼ 1 þ 0*x2 þ 3*z þ eta þ rnormal()
gen y3 ¼ 1 þ 2*x3 þ 3*z þ eta þ rnormal()
gen y4 ¼ 1 þ 4*x4 þ 3*z þ eta þ rnormal()
gen i ¼ _n

Convert From Wide to Long Format and Declare the Data as a Panel

reshape long x y, i(i) j(t)
xtset i t

FE (Within Estimator) Model (Table 4)

xtreg y x, fe

RE (ML Estimator) Model (Using the xtreg and mixed Options; Table 4)

xtreg y x z, mle
mixed y x z || i:, variance
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Hausman Test

quietly xtreg y x, fe
estimates store fixed
quietly xtreg y x z, re
estimates store random
hausman fixed random

Multivariate Approach Without the TI Assumption (Table 3)

sem (u@1 x1 z -> y1) (u@1 x2 z -> y2) (u@1 x3 z -> y3) ///
(u@1 x4 z -> y4), latent(u) cov(_lexogenous*_oexogenous) ///
cov(z*u@0)

Multivariate FE (Table 4)

sem(_cons@alphau@1x1@bz@g->y1)(_cons@alphau@1x2@bz@g->y2)///
(_cons@alphau@1 x3@bz@g->y3) (_cons@ alphau@1x4@bz@g->y4),///
latent(u) var(e._OEn@e)cov(_lex*_oex)cov(z*u@0)

Multivariate RE (Table 4)

sem(_cons@alphau@1x1@bz@g->y1)(_cons@alphau@1x2@bz@g->y2)///
(_cons@alphau@1 x3@bz@g->y3) (_cons@ alphau@1x4@bz@g->y4),///
latent(u) var(e._OEn@e)cov(_lex*_oex@0)

Univariate Model With Time-Varying Regression Parameters

tab t, gen(time) ! Generate the time-dummy variables
gen xtime1 ¼ x*time1 ! Generate the interaction terms
gen xtime2 ¼ x*time2
gen xtime3 ¼ x*time3
gen xtime4 ¼ x*time4
xtreg y x xtime2-xtime4, fe
xtreg y x xtime2-xtime4, mle
mixed y x xtime2-xtime4 || i:, variance

Correlated Random Effect Model (Mundlak, 1978, Approach)

bysort i: egen mean_x ¼ mean(x)
mixed y x z mean_x || i:, variance

Univariate Model With Heteroscedastic Disturbances

mixed y x z || i:, residuals(independent, by(t)) variance

Univariate Model With First Order Autocorrelated Disturbances

mixed y x z || i:, residuals(ar 1, t(t)) variance
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Appendix B: R Code for the Analysis of Demonstration Data

Generation of the Demonstration Data

set.seed(2017)
n <- 3000;
sdeta <- 1
muC <- c(1,1,1,1)
beta <- c(2,0,2,4)
gamma <- c(3,3,3,3)
library(MASS)
mu <- rep(0,6)
# X1 X2 X3 X4 eta Z

sigma <- matrix(c(
1.0, 0.4, 0.3, 0.2, 0.1, 0.4,
0.4, 1.0, 0.4, 0.3, 0.5, 0.8,
0.3, 0.4, 1.0, 0.4, 0.2, 0.2,
0.2, 0.3, 0.4, 1.0, 0.8, 0.0,
0.1, 0.5, 0.2, 0.8, 1.0, 0.0,
0.4, 0.8, 0.2, 0.0, 0.0, 1.0

), 6,6)
XX <- mvrnorm(n, mu, sigma)
X <- cbind(XX[,1], XX[,2], XX[,3], XX[,4])
colnames(X) <- c("X1," "X2,""X3,""X4")
eta <- XX[,5]
Z <- XX[,6]

Y1 <- muC[1] þ beta[1] *X[,1] þ gamma[1]*Zþ 1*eta þ 1*rnorm(n)
Y2 <- muC[2] þ beta[2] *X[,2] þ gamma[2]*Zþ 1*eta þ 1*rnorm(n)
Y3 <- muC[3] þ beta[3] *X[,3] þ gamma[3]*Zþ 1*eta þ 1*rnorm(n)
Y4 <- muC[4] þ beta[4] *X[,4] þ gamma[4]*Zþ 1*eta þ 1*rnorm(n)

Y <- cbind(Y1, Y2, Y3, Y4)
dataw <- as.data.frame(cbind(X, Z, Y))
attach(dataw)

Packages Used

install.packages("reshape") # install the reshape package
install.packages("plm") # install the plm package
install.packages("nlme") # install the nlme package
install.packages("lavaan")

Convert From Wide to Long Format

library(reshape)
datal <- reshape(dataw, direction ¼ "long," varying ¼ c(1:4,6:9),

sep ¼ "")
names(datal) <- c("z," "t," "x," "y," "i")
attach(datal)

24 Organizational Research Methods XX(X)



FE (Within Estimator) Model (Using the plm Package; Table 4)

library(plm)
fixed<-plm(y* x,data¼ datal,index¼ c("i,""t"),model¼ "within")
summary(fixed)

RE (Feasible GLS) Model

random <- plm(y * x þ z, data ¼ datal, index ¼ c("i," "t"), model ¼
"random")

summary(random)

Hausman Test

fixed <- plm(y* x, index ¼ c("i," "t"), model ¼ "within," data¼ datal)
summary(fixed)
random <- plm (y* xþ z, index¼ c("i,""t"),model¼ "random,"data¼

datal)
summary(random)
phtest(fixed, random)

RE (ML Estimator) Model (Using the nlme Package; Table 4)

library(nlme)
random <- lme(y * x þ z, random ¼ *1|i, data ¼ datal)
summary(random)

Univariate Model With Heteroscedastic Disturbances

update(random, weights ¼ varIdent(form ¼ *1|t))

Univariate Model With First Order Autocorrelated Disturbances

update(random, correlation ¼ corAR1())

Group-Mean Centering (Note 14)

# function to compute the group-mean centering of variable
groupcentered <- function(x, group ¼ i)f
gm <-aggregate(x, list(group), mean)
xx <- x
for (ii in 1: dim(gm)[1])fxx[group ¼ ¼ ii] ¼ gm[ii,2]g

# gcx is group centered x
gcx <- x-xx
list(gmean ¼ xx, gcentered ¼ gcx)
g

# Computation of the group-mean x and the group-mean centered x
xx <- groupcentered(x, i)$gmean
gcx <- groupcentered(x, i)$gcentered

Correlated Random Effect Model (Mundlak, 1978, Approach)

fixedM <-lme(y * x þ zþxx, random ¼ *1|i, data ¼ datal)
summary(fixedM)
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Hybrid Model (Allison, 2009)

fixedH <- lme(y * gcx þ z þ xx, random ¼ *1|i, data ¼ datal)
summary(fixedH)

Group-Mean Centering (Enders & Tofighi, 2007)

fixedET <- lme(y * gcx þ z, random ¼ *1|i, data ¼ datal)
summary(fixedET)

Univariate Model With Time-Varying Regression Parameters

attach(datal)
# Generate the time-dummy variables
d1 <- 1*(t ¼ ¼ 1)
d2 <- 1*(t ¼ ¼ 2)
d3 <- 1*(t ¼ ¼ 3)
d4 <- 1*(t ¼ ¼ 4)
# Generate the interaction terms
d1x <-d1*x
d2x <-d2*x
d3x <-d3*x
d4x <-d4*x
# Using the function groupcentered defined above:
d2xc <-groupcentered(d2x, i)$gmean
d3xc <-groupcentered(d3x, i)$gmean
d4xc <-groupcentered(d4x, i)$gmean

fixedtv <- lme(y * x þ xx þ d2x þ d3x þ d4x þ d2xc þ d3xc þ d4xc þ z,
random ¼ *1|i, data ¼ datal)

summary(fixedtv)

Multivariate Approach Without the TI Assumption (Table 3)

###reading the data of Demonstration 1
names(dataw)<- c("X1,""X2,""X3,""X4,""Z," "Y1,""Y2,""Y3,""Y4")
attach(dataw)

# calling lavaan
library(lavaan)
pmodel <- ‘
alpha ¼ * 1*Y1 þ 1*Y2þ1*Y3þ1*Y4
Y1 * mu1*1þ be1*X1 þ ga1*Z þ 1*alpha
Y2 * mu2*1þ be2*X2 þ ga2*Z þ 1*alpha
Y3 * mu3*1þ be3*X3 þ ga3*Z þ 1*alpha
Y4 * mu4*1þ be4*X4 þ ga4*Z þ 1*alpha

alpha ** alpha
X1 ** X1þX2þX3þX4
X2 ** X2þX3þX4
X3 ** X3þX4
X4 ** X4
Z ** Z þ X1þX2þX3þX4
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Y1 ** sig1*Y1
Y2 ** sig2*Y2
Y3 ** sig3*Y3
Y4 ** sig4*Y4
X1 * 1
X2 * 1
X3 * 1
X4 * 1
Z * 1

## fixed effect
X1 ** cor1*alpha
X2 ** cor2*alpha
X3 ** cor3*alpha
X4 ** cor4*alpha

‘
fit <- lavaan(pmodel, data ¼ dataw)
summary(fit)

Multivariate FE (Table 4)

Zc <- Z � mean(Z) # note: we center Z, see note in article

pmodelFE <- ‘
alpha ¼ * 1*Y1 þ 1*Y2þ1*Y3þ1*Y4
Y1 * mu*1þ be*X1 þ ga*Zc þ 1*alpha
Y2 * mu*1þ be*X2 þ ga*Zc þ 1*alpha
Y3 * mu*1þ be*X3 þ ga*Zc þ 1*alpha
Y4 * mu*1þ be*X4 þ ga*Zc þ 1*alpha

alpha ** alpha
X1 ** X1þX2þX3þX4
X2 ** X2þX3þX4
X3 ** X3þX4
X4 ** X4
Zc ** Zc þ X1þX2þX3þX4

Y1 ** sig*Y1
Y2 ** sig*Y2
Y3 ** sig*Y3
Y4 ** sig*Y4
X1 * 1
X2 * 1
X3 * 1
X4 * 1
Zc * 1

## fixed effect
X1 ** cor1*alpha
X2 ** cor2*alpha
X3 ** cor3*alpha
X4 ** cor4*alpha

‘
fit <- lavaan(pmodelFE, data ¼ as.data.frame(cbind(dataw, Zc)))
summary(fit)

Bou and Satorra 27



Multivariate RE (Table 4)

pmodelRE <- ‘
alpha ¼ * 1*Y1 þ 1*Y2þ1*Y3þ1*Y4
Y1 * mu*1þ be*X1 þ ga*Z þ 1*alpha
Y2 * mu*1þ be*X2 þ ga*Z þ 1*alpha
Y3 * mu*1þ be*X3 þ ga*Z þ 1*alpha
Y4 * mu*1þ be*X4 þ ga*Z þ 1*alpha

alpha ** alpha
X1 ** X1þX2þX3þX4
X2 ** X2þX3þX4
X3 ** X3þX4
X4 ** X4
Z ** Z þ X1þX2þX3þX4

Y1 ** sig*Y1
Y2 ** sig*Y2
Y3 ** sig*Y3
Y4 ** sig*Y4

X1 * 1
X2 * 1
X3 * 1
X4 * 1
Z * 1

‘
fit <- lavaan(pmodelRE, data ¼ dataw)
summary(fit)

Appendix C: Literature Review on Panel Data Modeling in
Organizational Research (2013-2015): Table and List of Articles.

Table C. A Classification of Articles Involving Panel Data Analysis (Academy of Management Journal, Journal of
Applied Psychology, Journal of Management, and Strategic Management Journal)

Approach Studies
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Table C. (continued)

Approach Studies

& Luo, 2015y; Chen, Luo, Tang, & Tong, 2015; Chittoor, Kale, & Puranam, 2015y; Chizema, Liu,
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Serafeim, 2015; Johnson, Lanaj, & Barnes, 2014z; Johnson, Rosen, Chang, & Lin, 2015; Joshi &
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Kukenberger, Mathieu, & Ruddy, 2015; Lahiri & Narayanan, 2013; Lam, Liang, Ashford, & Lee,
2015; Lamin, 2012y; Lecuona & Reitzig, 2014; Lee & Weng, 2013y; Li & Liang, 2015; Li, Qian, &
Yao, 2015; Li, Zhao, Walter, Zhang, & Yu, 2015; Lim & McCann, 2013; Lim, 2015; Lim, Celly,
Morse, & Rowe, 2013; Liu et al., 2015; Lorinkova, Pearsall, & Sims Jr., 2013; Luksyte, Avery, &
Yeo, 2015; Mackey, Molloy, & Morris, 2014; Madsen & Rodgers, 2015y; Malhotra, Zhu, & Reus,
2015y; Manikandan & Ramachandran, 2015; Markóczy, Li Sun, Peng, Shi, & Ren, 2013y; Marquis
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Mathieu, Kukenberger, D’Innocenzo, & Reilly, 2015; Mayer, Stadler, & Hautz, 2015; Milanov &
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Anand, & Dussauge, 2015; Mudambi & Swift, 2014; Mullins, Bachrach, Rapp, Grewal, &
Beitelspacher, 2014; Nadkarni & Chen, 2014y; Nadolska & Barkema, 2014; Ndofor, Sirmon, &
He, 2015; Ndofor, Wesley, & Priem, 2015; O’Brien & David, 2014y; O’Brien, David, Yoshikawa,
& Delios, 2014; O’Connell & O’Sullivan, 2014y; Oc, Bashshur, & Moore, 2015; Operti &
Carnabuci, 2014y; Pacheco & Dean, 2015; Pacheco-de-Almeida, Hawk, & Yeung, 2015y; Pahnke
& Mcdonald, 2015y; Park & Ro, 2013y; Park, Sturman, Vanderpool, & Chan, 2015; Patel &
Cooper, 2014; Petkova, Wadhwa, Yao, & Jain, 2014; Piening, Baluch, & Salge, 2013; Polidoro,
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Markóczy, L., Li Sun, S., Peng, M. W., Shi, W., & Ren, B. (2013). Social network contingency, symbolic

management, and boundary stretching. Strategic Management Journal, 34(11), 1367-1387.

Marquis, C., & Lee, M. (2013). Who is governing whom? Executives, governance, and the structure of

generosity in large U.S. firms. Strategic Management Journal, 34(4), 483-497.

Martin, G. P., Gomez-Mejia, L. R., & Wiseman, R. M. (2013). Executive stock options as mixed gambles:

Revisiting the behavioral agency model. Academy of Management Journal, 56(2), 451-472.
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Notes

1. The literature review resulted from a manual revision of the articles obtained by Boolean searches (on full-

text articles) using the keywords “panel,” “longitudinal,” “repeated measures,” “Hausman test,” “fixed

effects,” “random effects,” “unobserved heterogeneity,” and using the following databases: Business

Source Premier for Academy of Management Journal; PsycARTICLES for Journal of Applied Psychology;

SAGE Complete A-Z List for Journal of Management; and Willey Online Library for Strategic Manage-

ment Journal. The search provided an initial list of (418) articles, from which we discarded (171) articles

that, in fact, did not involve panel data models (hazard models, survival analysis, cross-section regression,

mediation models, etc. were excluded). The final list of articles surveyed is shown in Appendix C, with a

classification on whether they use the univariate or the multivariate approach.

2. See LeBreton and Senter (2008) for more detailed discussion on ICC indices, especially in relation to

measuring interrater reliability and interrater agreement.

3. For simplicity of the exposition, we consider the case of just one x (time-varying variable) and one z (time-

invariant variable). Extending the case to several xs and zs is straightforward.

4. With cross-section data (i.e., when T ¼ 1), this is the only option available to the researcher, since lack of

repeated observations of y across time confounds ui with the disturbance term eit. Provided ui is indepen-

dent of the variables xs and zs, a model with a constant intercept would still yield consistent OLS estimators

of the regression coefficients.

5. We also adhere to Mundlak (1978) in using the term fixed to refer to inferences conditional on the values of

those variables in the sample, leaving the researcher to decide whether inferences are made conditionally

on the sample at hand, or just refer to the population from where the sample is taken.

6. There are alternative estimation approaches to the fixed effect estimator, such as the first-difference

estimator, in which the data are transformed by taking first differences of all the variables, and the least

squares dummy variable (LSDV) model, in which a dummy variable is used for each unit (Antonakis,

Bendahan, Jacquart, & Lalive, 2010; Greene, 2003, chap. 13; Pedhazur, 1982, chap. 14). Since these

estimators are equivalent, in the illustrations we report only the within estimator.
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7. This is a non-iterative GLS whose estimate of the error variance and serial correlation is resolved using the

ICC(1) of the pooled OLS residuals (that is, variance components analysis is applied to the pooled OLS

residuals to estimate an ICC from which we infer the error structure used by the feasible GLS). A basic

assumption for consistency of the estimate of the ICC from pooled OLS residuals is the zero correlation

between the varying intercept and the independent variables at each time point (see Wooldridge, 2013, sec.

14.2, for details).

8. The Stata mixed-regression command mixed with the option ml produces an identical estimator to the

xtreg, mle, but adds more flexibility in modeling the disturbance covariance matrix (e.g., allowing for

heteroscedasticity and autocorrelation) and also in model comparison (likelihood ratio tests).

9. An alternative is Allison’s (2009, pp. 23-25) hybrid model where, in addition to adding the �xi , the time-

varying variables are expressed in deviation from their cluster mean. Therefore, cluster mean centering of

the xs (but not grand mean centering) solves the problem of inconsistency of the RE estimate of b when ai

correlates with the independent variables (see Enders & Tofighi, 2007, for further discussion of centering in

mixed models). Both approaches also produce an estimate of g; however, this estimate “should be inter-

preted with caution” (Wooldridge, 2013, p. 498). See Schunck (2013) for a discussion of the two

approaches and the limitations of the estimate for g when ai correlates with the independent variables.

10. Using the univariate approach regression coefficients may even be assumed to be random, an extension that

is also possible with the multivariate approach, but not discussed in the present article.

11. The same FE estimate (and standard error) would be obtained by the multivariate approach when z is absent

from the model, and also when the covariance between u and z is fixed to any arbitrary value.

12. In this specification, the arrows emanating from the constant to 1 to y1; . . . ; yT (means) should be replaced

by two arrows, one pointing to ui and the other pointing to the added random slope component.

13. The code for the analysis with this alternative software is available from the authors upon request.

14. For this equality to hold, we used a centered z; if z is not centered, then the estimate of a in the univariate

and multivariate approaches would differ by the mean of z multiplied by the estimate of g.

15. See Appendix A for the Stata code of univariate models with time-varying regression coefficient and

heteroscedastic and autocorrelated disturbances. See also Singer and Willett (2003, chap. 7) and Rabe-

Hesketh and Skrondal (2012, chap. 6) for applications using Stata.

16. We computed this test statistic using the difference of chi-square model fit values for two nested models,

one with the correlations set free but equal over time, and the other with correlations set to zero. Another

version of the test statistic could be based on the chi-square difference where the less restricted model sets

the correlations rðx; uÞ completely free (i.e., not equal across time). This would lead to a chi-square value

of 168.59 with 49 degrees of freedom.

17. See in Bollen and Brand (2010, Table 1) a backward search strategy of fitting models from less to more

restrictive.
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Jöreskog, K. G. (1969). A general approach to confirmatory maximum-likelihood factor analysis.

Psychometrika, 34, 183-202.
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