
PACO 2017 Extended Abstract

Harvesting Energy in ILUPACK via Slack Elimination

José I. Aliaga1 Maŕıa Barreda1 Asunción Castaño1

We develop a new energy-aware methodology to improve the energy
consumption of a task-parallel preconditioned Conjugate Gradient iter-
ative solver on a Haswell-EP Intel Xeon. This technique leverages the
power-saving modes of the processor and the frequency range of the
userspace Linux governor, modifying the CPU frequency for some oper-
ations. We demonstrate that its application during the main operations
of the PCG solver can reduce its energy consumption.

1 Introduction

ILUPACK2 (Incomplete LU decomposition PACKage) offers an assorted variety of Krylov
subspace-based methods, enhanced with a sophisticated ILU-type preconditioner, for the
iterative solution of sparse linear systems. The computational cost of computing and
applying ILUPACK’s preconditioner has sparked several recent efforts to develop parallel
versions of this solver, for multicore processors, graphics accelerators, and clusters of
computer nodes; see [2, 3] and the references therein.

Task-parallel versions of ILUPACK have also been used as a case study to explore
the energy consumption and optimization of iterative solvers. Concretely, the authors
of [4] investigated the benefits that an energy-aware implementation of the runtime in
charge of the concurrent execution of ILUPACK produces on the time-energy balance of
the application. The study in that paper reported energy savings between 7 and 13%
(for Intel and AMD multicore processors from 2009-2010), with practically no penalty on
performance.

In this paper we explore a new approach to save energy in the task-parallel version of
ILUPACK’s preconditioned Conjugate Gradient (PCG) method, leveraging the iterative
nature of the method to progressively adjust the frequency of the processor cores in order
to reduce idle periods and harvest energy. In rough detail, our algorithmic-based energy-
saving (ABES) technique is applied to the major operations comprised by ILUPACK,
namely the sparse matrix-vector product (SpMV) and the lower/upper triangular solves
required for the application of the preconditioner (respectively denoted as LwTrSv and
UpTrSv). Each one of these operations is divided into a collection of sub-operations,
or tasks, to be executed in parallel. Then, by enforcing a deterministic mapping of these
tasks to cores, we can detect and quantify idle periods during the first initial iterations,
tuning the operating frequency of the cores to reduce these idle times.

2 Brief Overview of ILUPACK

ILUPACK provides C and Fortran routines for the numerical solution of sparse linear
systems via Krylov subspace methods [8], combined with multilevel preconditioners that

1Dpto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I, 12.071–Castellón, Spain,
aliaga@uji.es, mvaya@uji.es, castano@uji.es

2http://ilupack.tu-bs.de

1

mailto:aliaga@uji.es, mvaya@uji.es, castano@uji.es
http://ilupack.tu-bs.de


PACO 2017 Extended Abstract

improve the numerical properties of the linear system, accelerating the convergence of the
iterative solver. ILUPACK derives an efficient preconditioner from the ILU factorization
of the system matrix, dropping the small entries of the factors, while relying on pivoting
to bound the norm of the inverse triangular factors, to compute a numerical multilevel
hierarchy of partial inverse-based approximations [5, 6].

Exposing task-parallelism In the remaining of this section, we focus on the paralleliza-
tion strategy underlying the task-parallel versions of ILU-type iterative solvers in general,
and ILUPACK PCG in particular; see, e.g., [2]. Basically, these methods exploit the
connection between sparse matrices and adjacency graphs, recursively applying nested
dissection to permute the sparse matrix. The goal of this re-organization of the matrix is
to obtain a hierarchy of subgraphs and separators that fix the order in which the diagonal
blocks have to be factorized. This process renders a task dependency graph (TDG) for the
preconditioner calculation with the shape of a balanced binary tree, where the subgraphs
occupy the leaves and the separators correspond to the internal nodes.

From the perspective of computational cost and complexity, the major operations in
ILUPACK’s PCG solve are SpMV, LwTrSv and UpTrSv, each ocurring once per it-
eration. With a proper organization of the data and distribution of the work, for a TDG
with l leaf nodes, the SpMV kernel can be decomposed into an equal number of indepen-
dent tasks. The parallelization of the triangular solves is more complex. These kernels
can both be decomposed into the same number of tasks as the TDG identified during
the preconditioner calculation, maintaining the same task dependency. Thus, there exist
dependencies in the binary-tree, pointing bottom-up for the lower triangular kernel and
top-bottom for the upper triangular case. As a result, when these tasks are mapped to
the cores, the information flows as in a reduction for LwTrSv or as in a broadcast for
UpTrSv.

Mapping tasks to cores In practice, each operation appearing in ILUPACK’s PCG is
decomposed into a number of tasks that exceeds the number of cores as this produces
a more balanced distribution of the workload during the execution. For LwTrSv and
UpTrSv, most of the computational work is concentrated into the leaf nodes of the TDG.
However, as the number of levels in the TDG is increased, the processing of the separators
(non-leaf nodes) introduces some overhead, ultimately constraining the practical number
of leaf nodes to a few hundreds. The take-away from this discussion is that, when de-
ciding the number of levels/leaf nodes of the TDG, there is a trade-off between workload
balancing and cost of processing the separators of the TDG.

Figure 1 displays an Extrae trace for one iteration of the PCG solver, executed on an
Intel Xeon 16-core processor using 16 threads. The TDG in this example is composed of
64 leaves (4 leaf tasks per thread) and 7 levels. This trace shows that, even with 4× more
leaf nodes than threads, there still appear significant idle times for SpMV, LwTrSv and
UpTrSv, motivating the approach to save energy described in the next section.

3 Applying ABES in ILUPACK

In order to describe the principle underlying the ABES technique, let us consider initially
a simple TDG consisting of three tasks, T0, T1, T2, organized into two levels, with data
dependencies T0→T1, T0→T2; and T1, T2 independent of each other. (This reflects the
scenario occuring during the lower triangular solve, LwTrSv).

2



PACO 2017 Extended Abstract

7.

Figure 1: Execution traces of the PCG iterative solve preconditioned with ILUPACK for
16 threads.

In addition, assume a task-parallel execution using two threads, on a platform consisting
of two hardware cores, denoted as C1, C2; and let us map the execution of T1 to C1 and
that of T2 to C2. Thus, in case the execution time of T1 does not exactly match that
of T2, due to the data dependencies, the thread in charge of the less expensive task will
have to wait for its counterpart to complete its task. It is precisely this “slack” (or idle)
period that we aim to eliminate with our ABES technique.

Consider the execution of ILUPACK next. The execution of the main tasks appearing
in the iterative solve of ILUPACK’s PCG method yield idle periods, due to an unbalanced
distribution of the workload (see Figure 1), that our ABES technique targets as follows:

• For the preconditioner computation, we allow a dynamic mapping of tasks to threads,
and the same mapping is enforced for the PCG solve. Furthermore, threads are
assigned to specific cores (no thread migration is allowed) and all threads/cores ini-
tially proceed at the nominal frequency fn. Because of the strict mapping of threads
to cores, we will use “thread” to refer to both terms hereafter.

• During the first five iterations, the ABES mechanism records the termination time
for each thread–operation pair, identifying the slowest thread. The ABES mech-
anism then determines the operating frequency of each thread–operation for sub-
sequent iterations. Concretely, the frequency-tuning policy aims to slow-down the
last task of all threads that terminate the execution of their tasks earlier than the
slowest thread.

• Each four iterations, the ABES mechanism analyze the impact of the frequency-
tuning policy. If the defined operating frequencies in a thread yields in longer
execution time than the execution time of slowest thread, the last changed task
is fixed to the next higher level and the corresponding thread is removed to the
ABES policy. Otherwise, the policy aims to slow-down the corresponding task, or
the previous task, if its minimum operating frequency has been reached.

• When all the threads are removed to the policy, the operating frequency of each
thread–operation has been fixed.

3



PACO 2017 Extended Abstract

4 Experimental Results

For the experiments in this section, we employ a server equipped with two 8-core Intel
Xeon(R) E5-2630 processors (2.4 GHz), with 64 GBytes of DDR3 RAM. The userspace
Linux governor allows the processor cores to operate at 13 possible frequencies ranging
from 1.2 GHz to 2.4 GHz, with a stride of 0.1 GHz. The operating system running in the
server is Linux version 2.6.32-642.4.2.el6.centos.plus.x86 64, and the compiler is gcc 4.4.7.

All the experiments employed ieee754 real double-precision arithmetic. In the first
experiment we generated a large-scale linear system for the Laplacian equation −∆u = f
in a 3D unit cube Ω = [0, 1]3 with Dirichlet boundary conditions, u = g on ∂Ω, and a
discretization that resulted in a sparse symmetric positive system. This A200 matrix has
8 ·106 rows/columns. The second matrix in the experimentation corresponds to the sparse
symmetric audikw 1 example from the SuiteSparse Matrix Collection [1], with close to
1,000,000 rows/columns.

Energy was measured using Intel’s RAPL (Running Average Power Limit) interface [7],
reflecting the estimated consumption of the core-uncore (package), DRAM and the total
(core, uncore and DRAM) system. For the Haswell-EP, the isolated on-core consumption
is not provided by RAPL. The idle power was obtained during the executing the Linux
sleep command by all cores during 100 sec. This value was then subtracted to the total
power in order to obtain the net energy. The experiments were executed after a warm
up period of 150 sec. using a busy-wait loop, and each experiment was repeated 5 times,
showing the average values.

In our energy consumption analysis, we consider the following configurations: performance-
oriented (PO), energy–aware (EnAw), and three variants of ABES. For PO, the PCG is
executed using a power-oblivious runtime; in contrast, for EnAw, the runtime exploits the
power-saving modes of the Intel Xeon processors, promoting the idle threads to one of the
power-saving C-states [4]. The ABES variants combine EnAw with the ABES technique
applied to SpMV(ABES1), SpMV & LwTrSv(ABES2), or SpMV & LwTrSv & Up-
TrSv(ABES3).

Tables 1 and 2 report the time-power-energy of the five policies applied to the itera-
tive solution of the two sparse examples, using a 32-leaf TDG executed on 8 cores. Two
different mappings are considered: balanced and unbalanced. In the first mapping, the
operations are issued in decreasing order of computational cost; the second mapping is
manually generated to enforce additional ABES steps. The last column in the tables in-
cludes the ABES steps which are added to the policy sited in previous row, thus ABES1,
ABES2 and ABES3 respectively represent the ABES steps in SpMV, LwTrSv and Up-
TrSv. Moreover, the remaining columns numbers show the relative improvement of the
corresponding variant with respect to the PO policy, therefore, negative values reflect a
decrease of performance, power dissipation or energy consumption. Several conclusions
can be obtained from the analysis of these tables:

• The number of ABES steps is greater in unbalanced configuration than in their
balanced counterparts.

• A higher number of ABES steps is necessary for audikw 1 than for A200, mainly
because the nonzero pattern of the last example is more regular.

• A significant part of the increase in the execution time is due to the introduction of
EnAw while the impact of ABES variants are smaller.

4



PACO 2017 Extended Abstract

Balanced mapping
Total energy Net energy Time Total power Add.

Package DRAM Total Package DRAM Total Package DRAM Total steps
EnAw 0.62 -0.57 0.49 1.09 -0.55 0.90 -0.65 1.28 0.07 1.14 –
ABES1 0.97 -0.72 0.77 1.56 -0.76 1.29 -0.63 1.61 -0.09 1.41 21
ABES2 1.09 -0.65 0.89 1.73 -0.65 1.46 -0.65 1.75 0.00 1.55 0
ABES3 0.99 -0.74 0.79 1.62 -0.75 1.35 -0.71 1.72 -0.03 1.52 5

Unbalanced mapping
Total energy Net energy Time Total power Add.

Package DRAM Total Package DRAM Total Package DRAM Total steps
EnAw 0.62 -0.58 0.48 1.14 -0.50 0.95 -0.79 1.42 0.22 1.28 –
ABES1 1.75 -0.82 1.45 2.71 -0.83 2.29 -0.81 2.58 -0.01 2.28 41
ABES2 1.72 -0.86 1.42 2.69 -0.85 2.28 -0.87 2.61 0.01 2.31 10
ABES3 1.57 -0.68 1.31 2.46 -0.63 2.10 -0.84 2.43 0.16 2.16 16

Table 1: Relative variation (in %) of the energy-aware variants with respect to PO, consid-
ering the balanced and unbalanced mappings of the A200 matrix when a 32-leaf
TDG processed by 8 cores.

Balanced mapping
Total energy Net energy Time Total power add.

Package DRAM Total Package DRAM Total Package DRAM Total steps
EnAw 1.02 -0.46 0.86 1.59 -0.40 1.39 -0.61 1.63 0.14 1.48 –
ABES1 3.26 -0.96 2.81 4.73 -1.03 4.15 -0.79 4.08 -0.17 3.63 41
ABES2 3.41 -1.00 2.95 4.97 -1.07 4.35 -0.84 4.29 -0.16 3.82 22
ABES3 3.24 -0.96 2.80 4.73 -1.01 4.14 -0.84 4.11 -0.12 3.67 17

Unbalanced mapping
Total energy Net energy Time Total power Add.

Package DRAM Total Package DRAM Total Package DRAM Total steps
EnAw 2.30 -0.91 1.97 3.46 -0.99 3.01 -0.75 3.08 -0.16 2.74 –
ABES1 5.92 -2.25 5.03 8.67 -2.79 7.45 -0.97 6.95 -1.29 6.06 65
ABES2 6.10 -2.26 5.19 8.96 -2.78 7.70 -1.03 7.21 -1.24 6.29 60
ABES3 5.88 -2.36 4.98 8.68 -2.90 7.44 -1.10 7.06 -1.27 6.16 59

Table 2: Relative variation (in %) of the energy-aware variants with respect to PO, con-
sidering the balanced and unbalanced mappings of the audikw 1 matrix when a
32-leaf TDG processed by 8 cores.

• In general, the improvements in net energy are higher than those observed in the
total energy.

• The savings of the ABES variants occur in package energy consumption; in contrast,
the DRAM energy is increased. These figures grow with the number of ABES steps.

• The application of ABES to SpMV produces larger savings than the use of the same
technique in LwTrSv or UpTrSv.

5 Conclusions

We have introduced the ABES technique to improve the performance of energy-aware vari-
ants of a PCG solver. The results demonstrate that the application of this methodology
on the main operations of the solver reduces the energy consumption with a negligible im-
pact on the execution time. Furthermore, the technique adapts to the problem, increasing
the energy savings for unbalanced mappings.

5



PACO 2017 Extended Abstract

Acknowledgements

This work was supported by the CICYT project TIN2014-53495-R of the MINECO and
FEDER.

References

[1] The suitesparse matrix collection. http://www.cise.ufl.edu/research/sparse/

matrices, 2017.

[2] J. I. Aliaga, R. M. Badia, M. Barreda, M. Bollhöfer, E. Dufrechou,
P. Ezzatti, and E. S. Quintana-Ort́ı, Exploiting task- and data-parallelism in
ILUPACK’s preconditioned CG solver on NUMA architectures and many-core accel-
erators, Parallel Computing, 54 (2016), pp. 97–107.

[3] J. I. Aliaga, M. Barreda, M. Bollhöfer, and E. S. Quintana-Ort́ı, Ex-
ploiting task-parallelism in message-passing sparse linear system solvers using OmpSs,
in Euro-Par 2016: Parallel Processing: 22nd Int. Conf. Parallel and Distributed Com-
puting, Springer, 2016, pp. 631–643.

[4] J. I. Aliaga, M. Barreda, M. F. Dolz, A. F. Mart́ın, R. Mayo, and E. S.
Quintana-Ort́ı, Assessing the impact of the CPU power-saving modes on the task-
parallel solution of sparse linear systems, Cluster Computing, 17 (2014), pp. 1335–
1348.

[5] M. Bollhöfer, M. J. Grote, and O. Schenk, Algebraic multilevel preconditioner
for the Helmholtz equation in heterogeneous media, SIAM J. Sci. Comput., 31 (2009),
pp. 3781–3805.

[6] M. Bollhöfer and Y. Saad, Multilevel preconditioners constructed from inverse–
based ILUs, SIAM J. Sci. Comput., 27 (2006), pp. 1627–1650. special issue on the
8–th Copper Mountain Conference on Iterative Methods.

[7] Intel Corp., Intel 64 and IA-32 architectures software developer manual. Volume
3B: System programming guide, Part 2, 2015.

[8] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.

6

http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices

	Introduction
	Brief Overview of ILUPACK
	Applying ABES in ILUPACK
	Experimental Results
	Conclusions

