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Abstract The unitary group approach (UGA) to the many-fermion problem is

based on the Gel’fand-Tsetlin (G-T) representation theory of the unitary or general

linear groups. It exploits the group chain U(n) ⊃ U(n− 1) ⊃ · · · ⊃ U(2) ⊃ U(1) and

the associated G-T triangular tableau labeling basis vectors of the relevant irreducible

representations (irreps). The general G-T formalism can be drastically simplified in

the many-electron case enabling an efficient exploitation in either configuration inter-

action (CI) or coupled cluster (CC) approaches to the molecular electronic structure.

However, while the reliance on the G-T chain provides an excellent general formal-

ism from the mathematical point of view, it has no specific physical significance and

dictates a fixed Yamanouchi-Kotani coupling scheme, which in turn leads to a rather

arbitrary linear combination of distinct components of the same multiplet with a given

orbital occupancy. While this is of a minor importance in molecular orbital (MO)

based CI approaches, it is very inconvenient when relying on the valence bond (VB)

scheme, since the G-T states do not correspond to canonical Rumer structures. While

this shortcoming can be avoided by relying on the Clifford algebra UGA (CAUGA)

formalism, which enables an exploitation of a more or less arbitrary coupling scheme,

it is worthwhile to point out the suitability of the so-called Verma basis sets for the

VB-type approaches.

Keywords Valence bond (VB) method · unitary group approach (UGA) ·

Verma bases · covalent and ionic VB structures · π-electron model · canonical vs

non-canonical VB structures
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1. Introduction

The unitary group approach (UGA) to the many-electron correlation problem

proved to be very useful in key approaches to the molecular electronic structure, irre-

spective whether based on the configuration interaction (CI) or coupled cluster (CC)

methodologies (see, e.g., [1–22]). In each case one relies on the molecular orbital

(MO) formalism rather than on the atomic orbital (AO) based valence bond (VB)

method in spite of the fact that the latter are better disposed to a chemical intuition

and interpretation. Needless to say, however, that the nonorthogonality of the AOs

leads to the well-known N ! problem which greatly complicates VB approaches, par-

ticularly when applied in an ab initio context. For this very reason one often relies on

an orthonormalized form of the AOs in which case one employs the acronym VB [23]

(see also the generalized VB (GVB) [24], spin-coupled VB [25], and PPP-VB [26] ap-

proaches). The same applies to semi-empirical approaches to π-electron systems with

conjugated double bonds of either the Hückel or the Pariser-Parr-Pople (PPP) type,

in which case one relies on hypothetical Löwdin or symmetrically orthonormalized

AOs.

An exploitation of a representation theory of the unitary group U(n) – or rather

of its Lie algebra1 (LA) u(n) – when handling many-fermion systems stems from

the fact that the second quantized version of the relevant Hamiltonian H can be

express as a second degree polynomial in terms of the U(∞) generators. Although

this observation was made already in 1935 by Jordan [27], the relevant formalism for

an actual exploitation – both in the algebra and the quantum chemical methodology

– was not available until much later.

Now, in the MO based methods one exploits a finite dimensional N -electron sub-

space of a relevant Fock space spanned by antisymmetrized products of 2n orthonor-

mal molecular spinorbitals, which in turn are expressed as linear combinations of

1Needless to say that in view of a close relationship between the Lie groups and their Lie algebras
one often does not distinguish between these object, especially in physics literature when employing
a relevant representation theory.
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atomic (spin)orbitals (LCAO approximation). When modeling molecular systems one

usually relies on a spin-independent electronic Hamiltonian H that can be expressed

as a second degree polynomial in terms of U(n) generators and on a non-relativistic,

time-independent Schrödinger equation. When the spin effects play an important,

though subsidiary, role, as when dealing with phenomena such as the intersystem

crossing, phosphorescent lifetimes, molecular predissociation, etc., or when interpret-

ing high-resolution spectra, the spin-independent, non-relativistic wave functions still

provide an excellent starting point for the description of such phenomena. Even here

UGA provides an efficient tool (see, e.g., [28] and references therein).

Thus, in MO based approaches the relevant LAs are the spinorbital LA u(2n) and

the orbital LA u(n), spanned by the generators EAA′ ≡ Eaσ,a′σ′ and Eaa′ , respectively,

the latter representing partial traces over the spin variables σ. The spinorbitals are

then represented via a simple product of the orbital (|a⟩) and spin (|σ⟩) components,

i.e., |A⟩ = |a⟩|σ⟩. Thus Eaa′ =
∑

σ Eaσ,a′σ, where Eaσ,a′σ′ ≡ EAA′ = X†
AXA′ , with

X†
A and XA representing the spinorbital creation and annihilation operators (see,

e.g., [1, 3, 6, 10, 13] for details). These generators then satisfy the usual u(n) [or, in

fact gl(n)] commutation relations, e.g., [Eab, Ecd] = δbcEad − δadEcb, and similarly for

the spinorbital generators EAA′ .

The relevant U(n) or GL(n) representation theory was developed in the fifties by

Gel’fand and Tsetlin [29] (G-T), who exploited the fact that the U(n) ↓ U(n− 1)⊗ U(1)

subduction is multiplicity free, as was pointed out already by Weyl in the second

edition of his well known monograph [30] (allegedly this was known already to I.

Schur [31]). The irreducible representations (irreps) Λ of U(n) or GL(n) are uniquely

labeled by a non-increasing sequence of integers ⟨λ1, λ2, · · · , λn⟩, representing the

highest weight (cf. Appendix). Labeling similarly highest weights of the subduced

U(n−1) subalgebra irreps by ⟨µ1, µ2, · · · , µn−1⟩, the pertinent U(n−1) irrep weights

are given by the so-called betweenness conditions λi 6 µi 6 λi+1, (i = 1, · · · , n− 1).
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Gel’fand and Tsetlin then employed the subgroup chain

U(n) ⊃ U(n− 1) ⊃ · · · ⊃ U(1) , (1)

arranging weights for the subsequent subalgebras into a triangular pattern, satisfying

the betweenness conditions at each level. These patterns or tableaux then uniquely

label the basis vectors of a given U(n) irrep Λ in view of the fact that U(1) is abelian.

Moreover, G-T also presented explicit formulas for the matrix elements of u(n) gen-

erators in this basis.

Now, in the spin-independent case, one can achieve a spin-free, automatically

spin-adapted formalism, by relying on a subgroup U(n) of the spin-orbital group

U(2n) by exploiting the chain U(2n) ⊃ U(n) ⊗ SU(2). Indeed, considering n MOs

occupied by N electrons one easily finds a unique irrep of U(n) for any spin multi-

plicity 2S + 1, S being the total spin quantum number. In order to yield a phys-

ically relevant, totally antisymmetric irrep of U(2n), the U(n) irrep must be con-

jugate to that for SU(2), implying at most two-column U(n) irreps Γ of the form

⟨2, 2, · · · , 2, 1, 1, · · · , 1, 0, 0, · · · , 0⟩ ≡ ⟨2a1b0c⟩, Γ ≡ Γ(a, b, c), with a, b, and c indi-

cating number of 2’s, 1’s, and 0’s, respectively [1]. One easily finds that the three

parameters a, b, and c are uniquely determined by the number of MOs n, the number

of electrons N , and the total spin S, namely a = N/2−S, b = 2S and c = n−M/2−S.

In principle, one can chose any basis for the U(n) irrep Γ(a, b, c) ≡ ⟨2a1b0c⟩, the

basis elements of which represent spin-adapted configuration state functions (CSFs)

associated with a chosen spin-coupling scheme. In the G-T case, this basis is or-

thonormal and corresponds to the Yamanouchi-Kotani coupling scheme. Although

the G-T basis may not be the most appropriate one from the chemical viewpoint

(see, e.g., [32, 33]), its great advantage is the availability of the explicit expressions

for the generator matrix elements. While in the general case the latter are rather

unwieldy and the G-T patterns involve n(n + 1)/2 parameters, the entire formalism

can be drastically simplified when dealing with the two-column Γ(a, b, c) irreps that

are relevant when studying many-electron systems [1]. Moreover, in view of the as-
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sociation with the su(2) LA, there is a possibility to exploit graphical methods of

spin algebras providing another efficient route to the evaluation of required matrix

elements of generators and products of generators [34].

Indeed, the basis vectors (or CSFs) of a carrier space of the irrep Γ(a, b, c) of

dimension

dimΓ(a, b, c) =
b+ 1

n+ 1

(
n+ 1

a

)(
n+ 1

c

)
(2)

may be labeled by the n×3 ABC tableau [P ] [1,3,10] (often called Paldus or Gel’fand-

Paldus or electronic G-T tableau, see, e.g., [4, 5, 8, 9, 35–42]). The rows of [P ] ≡

∥aibici∥n×3, i.e., (ai, bi, ci), ai + bi + ci = i, label the irreps of the LAs of U(i) in

the canonical chain (1). Even more efficiently one can employ the labeling by a two-

column ∆a∆c tableaux, where ∆xi = xi − xi−1 and ∆xi = 1−∆xi (i = 0, 1, · · · , n),

with xn ≡ x, x0 ≡ 0, x = a, b, and c. Clearly, ∆ai+∆bi+∆ci = 1. Another convenient

labeling uses the ternary step numbers di, 0 6 di 6 3 (see, e.g., [1, 2, 4, 5, 10, 11,34])

di = 1− 2∆ai −∆ci = 2∆ai +∆ci . (3)

The general U(i) ⊃ U(i−1) step involves at most four subreps characterized by these

step numbers. Thus, an electronic G-T basis can also be labeled by n-component

d-vectors d = {di}.

The entire electronic G-T basis may be conveniently represented by a Shavitt

graph [4,5,7,11] providing a compact and transparent rendering of it structure. These

two-rooted graphs are the basis of the so-called graphical UGA (GUGA), which is very

helpful in designing various computational strategies, particularly in an often required

truncation of the full CI (FCI) basis due to its huge dimensionality, as well as in

graphical visualization of a segmentation of the generator matrix elements. Recently,

the GUGA representation of the electronic G-T basis was exploited by Shepard and

collaborators [43–45]. Their approach makes it possible to handle extremely large CI

expansions, exceeding traditional ones by several orders of magnitude .

A very succinct early presentation of an explicit construction of the GL(n) and
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O(n) irreps by G-T [29] was followed by an important independent work providing

detailed proofs and insights, resulting in an extensive development of the subject.

A comprehensive derivation of G-T results and a formulation of the related tensor

operator formalism was given by Baird and Biedenharn [46, 47] and the lowering

operator approach was advanced by Nagel and Moshinsky [48, 49], as well as by

Zhelobenko [50, 51] and Hou Pei-yu [52]. A completely independent approach based

on polynomial identities for generators and implied projection operators was then

developed by Green [53] and Gould [54–57]. The latter author and collaborators

also applied these techniques in the framework of quantum chemical UGA formalism

[38–42].

Here we should mention that the evaluation of U(n) generator matrix elements

in the context of many-Fermion systems can be often facilitated by considering its

relationship with the symmetric or permutation group Sn, as well as with the spin-

angular-momentum group SU(2). In the latter case it is especially rewarding to

exploit graphical method of spin algebras [58–62], which led to an efficient evaluation

of matrix elements of generator products that are required in handling of the two-

body part of the electronic Hamiltonian. Yet another useful approach has been based

on spin-adapted creation and annihilation operators [63–65].

At this point we should also recollect other than CI exploitations of UGA for-

malism, namely its employment: (i) in the MC-SCF method [66–69], (ii) in the

many-body perturbation theory (MBPT) [70], (iii) in CC methods [14–22, 71–79],

(iv) in quantum dots [80], (v) in system partitioning of composite systems or (vi) in

CAS-CI [65,81–86], (vii) in VB approaches [87–94], (viii) in reduced density matrices

(RDMs) [95, 96], (ix) in nuclear magnetic resonance spectra (NMR) [97], or (x) in

charge migration in fragmentation of peptide ions [98, 99]. We also mention further

innovations and extensions, such as bonded tableaux UGA [100] and exploitation

of parastatistics and para-Fermi algebras [101, 102]. Finally, as already pointed out

above, UGA also provides a good starting point for the handling of spin-effects in
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which case we require matrix elements of U(2n) generators. Much work has been

done in this direction and is still going on [28,40,41,103–113].

All of the above listed developments are based on the G-T type canonical bases

representing CSFs. As already mentioned, and as discussed in some detail in [32]

(see also [33]), the G-T chain is rather artificial from the viewpoint of the molecular

electronic structure applications. This also applies to the so-called generator states

[9, 114–116] which are, moreover, nonorthogonal and over-complete, thus requiring

a special attention (such as Gram-Schmidt or Löwdin orthogonalization so that the

resulting states are no longer true generator states). In fact, in actual applications

these were employed only for very small systems (mostly 2 - 4 electrons), in which case

the required matrix elements were calculated by a brute force relying on commutation

relations. Likewise, the general purpose approaches based on projection operators

or the so-called crystal bases are related to the G-T chain and have a number of

drawbacks (see, e.g., [33]).

A step forward in this direction was the development of the Clifford algebra UGA

(CAUGA) [32,83,101,117,118] that is based on the work of Sarma and collaborators

[119, 120]. Here, in lieu of G-T chain one exploits the imbedding of U(n) in a much

larger group U(2n) via the special orthogonal group SO(m), m = 2n or m = 2n + 1

(i.e., the classical LAs Bn and Dn) and their covering group Spin(m), i.e., the group

chain

U(2n) ⊃ Spin(m) ⊃ SO(m) ⊃ U(n), m = 2n and m = 2n+ 1 , (4)

supplemented, if desired, by the G-T chain or other U(n) chains. As is customary

in physics, we talk in terms of various groups while in fact exploiting their LAs.

At the same time, one also exploits the imbedding of SO(m) in the 2n-dimensional

Clifford algebra Cn. For the two-column irreps of U(n) this enabled us to rely only on

two-box irreps of U(2n). Providing an explicit representation of U(n) generators in

terms of those for U(2n), the evaluation of U(n) generator matrix elements becames a

trivial counting problem [32]. This procedure enables the use of an arbitrary coupling
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scheme, including non-orthogonal Weyl states or canonical Rumer states. In fact, it

makes it possible, if desired, to handle particle non-conserving processes by exploiting

the SO(m) generators.

In this paper we wish to explore the so-called Verma bases and their relationship

to the VB-type approaches. These bases have certain desirable properties both from

the viewpoint of the LA representation theory and their possible exploitation in the-

oretical chemistry, as will be pointed out in the following Sections. They represent

the so-called monomial bases defined by products of elementary lowering generators

acting on the highest weight vector or state (HWS) of a given irrep. The initial idea

stems from the work of Verma [121]. The first explicit formulation of such bases for

simple LAs of type An (n > 1), Bn and Cn (2 6 n 6 6), Dn (4 6 n 6 6), and G2 was

given by Patera [122] and Li et al. [123]. Those for the An ≡ sl(n+ 1,C), which are

of our concern here, were then reconsidered by Raghavan and Sankaran [124], focus-

ing on the proof of the linear independence of these basis sets. An entirely different

approach relying on a restriction of the Poincaré-Birkhoff-Witt (PBW) bases for uni-

versal enveloping algebras (UEAs) U(g) of a given LA g to the pertinent irreps of g

was employed by Littelmann [125]. The relationship of Littelmann’s formulation (us-

ing an alternative reverse ordering of generators) with that of Patera et al. [122,123],

while providing a simplified derivation of these bases, was recently given by Pošta

and Havĺıček [126].

We summarize the relevant results for the An ≡ sl(n + 1,C) LAs in the next

Sect. 2 and point out the usefulness of these basis sets for the VB-type approaches in

Sect. 3. We briefly discuss these results in Sect. 4 and draw the main conclusions in

Sec. 5. Some useful LA concepts that are used in the paper are summarized in the

Appendix.
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2. Verma bases

The Verma monomial basis sets for the An ≡ sl(n + 1,C), (n > 1) LA finite-

dimensional irreps are determined by a set of inequalities for parameters defining

ordered products of elementary lowering generators acting on the highest weight vec-

tor or HWS of a given irrep. These basis sets have a number of desirable properties,

namely: (i) Their basis vectors are eigenvectors of the Cartan subalgebra and thus

suitable for various modifications, since they are not related to any fixed subalgebra

– as is the case, for example, for the G-T bases that are adapted to the subgroup

chain (1) – and may thus be adapted to subalgebra(s) that are pertinent to a given

problem. (ii) They are labeled by the ‘additive quantum numbers’ representing com-

ponents of the weight of a given irrep (see [123]). (iii) The set of defining inequalities

(sometimes referred to as Verma inequalities [126]) applies to any finite-dimensional

irrep of a given LA and their number does not exceed the number of positive roots.

Unfortunately, no explicit expression for the evaluation of generator matrix elements

is available at present (see, however, [125]).

For the sake of simplicity we adhere to the usual abbreviation for the elementary

lowering generators Ei+1,i, designating them by fi, i.e., fi ≡ Ei+1,i. The Verma

monomials then have the following general form [122, 123] (referred to below as the

V-version)

(faN
1 f

aN−1

2 · · · faN−n+1
n )(f

aN−n

1 · · · faN−2n+2

n−1 ) · · · (fa3
1 fa2

2 )fa1
1 , (5)

where N = n(n+1)/2. The parentheses in (5) are inserted in order to emphasize the

structure of these monomials. The Verma inequalities for the irrep [λ1, λ2, · · · , λn] ≡

Λn of the LA An ≡ sl(n + 1,C), (n > 1) are given in Table 1 [123]. Note that the

same basis set applies to the u(n+1) or su(n+1) irrep ⟨m1,m2, · · · ,mn, 0⟩ when we

set λi = mi −mi+1, i = 1, · · · , n (see the Appendix).

An alternative formulation due to Littelmann [125] uses a reversed order of gen-
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erators (referred to in the following text as the L-version), namely

f
a11
1 (f

a22
2 f

a21
1 )(f

a33
3 f

a32
2 f

a31
1 ) · · · (fann

n f
ann−1

n−1 · · · fan2
2 f

an1
1 ) , (6)

where the double-indexed exponents ack enable a simpler formulation of Verma in-

equalities, i.e.,

0 6 ack 6 min{ack−1 + λn−c+k, a
c+1
k+1} , (7)

where

an+1
k = +∞, ak0 = 0, and ack 6 ack+1, ∀k . (8)

The relationship of both alternative formulations has been outlined by Pošta and

Havĺıček (in particular see Lemma 3.5 of [126]). We shall see that both formulations

lead to equivalent basis sets. We should also note that we could replace the elementary

lowering generators by the raising ones acting on the lowest weight state.

3. Simple applications

3.1 Four-electron singlet case

As a simple example we first construct the Verma basis for the four-electron singlet

N = n = 4. The SU(2) two-column irrep of the spin part is [22] and the corresponding

conjugated orbital U(4) irrep is also [22], i.e., it is characterized by the Young tableau

with two boxes in the first two rows and no boxes in the third and the fourth row.

The corresponding G-T U(4) irrep label (m1m2m3m4) is (2200) and the related A3 ≡

sl(4,C) irrep label ⟨λ1λ2λ3⟩ is ⟨020⟩, with λi = mi −mi+1 (see the Appendix). The

dimension of this irrep, according to Eq. (2) is 20. Since n = 4, there are only

three elementary lowering generators fi ≡ Ei+1,i, namely f1 ≡ E21, f2 ≡ E32, and

f3 ≡ E43. Using the formulation of Li et al. [123] (version V), Eq. (5) and Table 1, the

relevant monomials have a general form fa6
1 fa5

2 fa4
3 fa3

1 fa2
2 fa1

1 , and the corresponding
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inequalities of Table 1 become

0 6 a1 6 λ1

0 6 a2 6 λ2 + a1

0 6 a3 6 min{λ2, a2}

0 6 a4 6 λ3 + a2

0 6 a5 6 min{λ3 + a3, a4}

0 6 a6 6 min{λ3, a5} . (9)

For our irrep [020] we have λ1 = λ3 = 0 and λ2 = 2, so that the Verma inequalities

(25) become

a1 = a6 = 0

0 6 a2 6 2

0 6 a3 6 min{2, a2} = a2

0 6 a4 6 a2

0 6 a5 6 min{a3, a4} , (10)

and Verma monomials take the form fa5
2 fa4

3 fa3
1 fa2

2 .

The list of possible nonzero exponents ai, i = 2, · · · , 5 is shown in Fig. 1, indicating

their systematic generation together with a lexical labeling of the resulting CSFs given

in the bottom row. These exponents are then listed in the second column of Table 2.

What we may call total or CSF weights w, given by the sum of the exponents ai,

w =
∑

k ak, are given in the third column and the resulting monomials in the fourth

column of the same table. To generate the basis vectors or CSFs of our irrep we let

these monomials act on the HWS |HWS⟩ of our (2200) irrep, namely the state that

12



can be variously labeled as

|HWS⟩ =

∣∣∣∣∣∣∣∣
2 2 0 0

2 2 0
2 2

2

⟩

≡


2 0 2
2 0 1
2 0 0
1 0 0

 ≡


0 1
0 1
1 0
1 0

 ≡


0 0
0 0
1 1
1 1

 ≡


0
0
2
2


≡ 1 1

2 2
= |11̄22̄⟩ . (11)

Here in the first line there is the relevant G-T tableau, in the second row the ABC,

∆a∆c, ∆a∆c tableaux and the step number vector [di], Eq. (3), and in the last

row the Weyl tableau and |11̄22̄⟩ representing a CSF with doubly occupied first two

orbitals. Note that this HWS is the same in all basis sets, specifically in both the

G-T and Verma bases, which is not the case for some of the remaining basis vectors.

The resulting (unnormalized) Verma basis CSFs |vi⟩ ≡ |i⟩ are then listed in the

sixth column, while in the seventh column we indicate the ionicity I of the CSFs

interpreted as a VB wave functions. Another representation of the CSFs |i⟩ in the

form |i⟩ = fj|k⟩, implying their generic relationship, is listed in the fifth column.

The VB connection can be made even more apparent by considering a minimum

basis set (MBS) PPP model of cyclobutadiene, in which case we can represent the

basis states or CSFs |i⟩ by VB structures shown in Fig. 2(a), where they are arranged

according to their ionicity I, i.e., as the valence (I = 0), singly-ionic (I = 1), and

doubly-ionic (I = 2) structures. Of course, in view of the point group symmetry of

this model (C4 or D4h), the numbering of the atomic sites is irrelevant and the one

employed here is indicated in Fig. 2(b). Clearly, a renumbering of the atomic sites

will only permute the structures in the same row of Fig. 2(a).

In order to appreciate the structure of this basis set we display it in a diagrammatic

form in Fig. 3 by arranging the CSFs by their total weights w, (w =
∑

k ak) as

implied by their generic structure shown in the fifth column of Table 2. This graph is
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reminiscent of the so-called ‘harmonic level excitation diagram’ (HLED) of CAUGA

[32] and we shall employ the same term here unless a confusion could arise. Note that

the direction of the edges represents the relevant lowering generators fi ≡ Ei,i+1, (i =

1, 2, and 3) as shown on the left hand side of the figure. The path connecting a given

state |i⟩ with the HWS |1⟩ then implies the relevant generating Verma monomial,

while the individual edges encode the fj’s given by the generic form fj|k⟩ of Table 2.

In fact, the HLED diagram also implies the relationship between various CSFs that

can be connected via additional f1, f2, and f3 edges. Thus, for example, we see that

acting with f1 on the 7th CSF will yield the 9th CSF, i.e., f1|7⟩ = |9⟩. Similarly,

f2|7⟩ = |8⟩, f2|4⟩ = |5⟩, f1|8⟩ = |10⟩, etc., but f2|8⟩ ̸= |15⟩. We do not indicate these

additional relationships in Fig. 3 lest its essential basic structure be obscured.

Turning now to an alternative (reverse) formulation of Littelmann [125] and Pošta

and Havĺıček [126] (version L), Eqs. (6 - 8), the relevant monomials have the form

f
a11
1 f

a22
2 f

a21
1 f

a33
3 f

a32
2 f

a31
1 and the exponent determining inequalities, Eqs. (7) and (8), be-

come

0 6 a31 6 min{a30 + λ1, a
4
2} = min{0,∞} = 0

0 6 a32 6 min{a31 + λ2, a
4
3} = min{a31 + 2,∞} = a31 + 2

0 6 a33 6 min{a32 + λ3, a
4
4} = min{a32,∞} = a32

0 6 a21 6 min{a20 + λ2, a
3
2} = min{2, a32}

0 6 a22 6 min{a21 + λ3, a
3
3} = min{a21, a33}

0 6 a11 6 min{a10 + λ3, a
2
2} = min{0, a22} = 0 , (12)

where on the rightmost side we have already used the fact that we consider the A3
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irrep Λ3 = [020]. Thus, finally, we have that

a11 = a31 = 0

0 6 a32 6 2

0 6 a33 6 a22

0 6 a21 6 min{2, a32} = a32

0 6 a22 6= min{a21, a33} , (13)

with the general monomial having the form f
a22
2 f

a21
1 f

a33
3 f

a32
2 .

We see that the inequalities (13) yield the exponents ack that have the same struc-

ture as those given by inequalities (10) for ai’s if we identify the exponents a32, a
3
3, a

2
1,

and a22 with a2, a3, a4, and a5, respectively, so that the scheme of Fig. 1 applies here

as well. The relevant monomials and the resulting CSFs are then listed in Table 3.

Moreover, in view of the fact that f1 and f3 commute, since [f1, f3] = [E21, E43] = 0,

the monomials resulting from the reversed generator order (6) are the same as those

resulting from the forward Verma scheme (5). Consequently, the use of the L-version

(6) leads only to a reordering of the CSF states as implied by the index shown in

the rightmost column of Tables 2 and 3 designated as i′. Likewise, the HLED graph

associated with the CSFs of Table 3 has the same structure as that in Fig. 3 with

labels i replaced by labels i′ given in the last column of Table 3, so that the only

effect is that the labels of Fig. 3 are symmetrically reflected about the vertical central

axis, for which i′ = i (i = 1, 2, 3, 9, 10, 15, 14, 16, 19, 20), while the remaining states

are symmetrically reflected, i.e., 4 ↔ 7, 5 ↔ 8, 6 ↔ 12, 11 ↔ 13, and 17 ↔ 18.

3.2 Four-electron triplet case

As another illustration let us consider the corresponding triplet case associated

with the U(4) irrep ⟨2110⟩ ≡ Γ(121) corresponding to the A3 irrep Λ3 = [101], so

that λ1 = λ3 = 1 and λ2 = 0. Clearly, in this case we have dimΓ(121) = 15. The

15



inequalities of Table 1 then yield

0 6 a1 6 1

0 6 a2 6 a1

0 6 a3 6 min{0, a2} = 0

0 6 a4 6 1 + a2

0 6 a5 6 min{1 + a3, a4}

0 6 a6 6 min{1, a5} . (14)

We thus see that in this case a3 = 0, so that finally

0 6 a1 6 1

0 6 a2 6 a1

a3 = 0

0 6 a4 6 1 + a2

0 6 a5 6 min{1, a4}

0 6 a6 6 min{1, a5} , (15)

and the relevant Verma monomials have the form fa6
1 fa5

2 fa4
3 fa2

2 fa1
1 .

Proceeding in the same way as in the singlet case we show the generation of

possible values of the exponents ai in Fig. 4 and present them in a lexical order in

the second column of Table 4 together with their total weights w. The recursive

generation is indicated in the fifth column of Table 4 and the corresponding HLED

diagram is shown in Fig. 5. The CSFs |i⟩ are then listed in the last column of Table 4

and the pertinent cyclobutadiene VB structures are shown in Fig. 6.

3.3 Ionic structures

Consider, next, a singly ionized doublet state as described by the U(4) irrep

⟨2100⟩ ≡ Γ(112) corresponding to the A3 irrep Λ3 = [110], so that λ1 = λ2 = 1

and λ3 = 0. Clearly, in this case we have dimΓ(112) = 20. Relying on the V-version
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of Table 1, we find the following inequalities for the exponents ai, (i = 1, · · · , 6)

0 6 a1 6 1

0 6 a2 6 1 + a1

0 6 a3 6 min{1, a2}

0 6 a4 6 a2

0 6 a5 6 min{a3, a4}

0 6 a6 6 0 , (16)

so that the pertinent Verma polynomials have the form fa5
2 fa4

3 fa3
1 fa2

2 fa1
1 since a6 = 0.

The nonvanishing exponents ai which generate the possible 20 states are found in

the same way as in Figs. 1 and 4, and are listed in the second column of Table 5

together with the corresponding weights, Verma monomials, and the resulting CSF’s.

The fifth column labeled by fj|k⟩ implies the recursive buildup of the Verma basis as

illustrated by the HLED diagram of Fig. 7(a).

Finally, let us consider a doubly-ionized singlet case or, correspondingly, a two-

electron ethylenic states as described by a four-orbital basis set, characterized by the

U(4) irrep ⟨2000⟩ ≡ Γ(103) corresponding to the A3 irrep Λ3 = [200], so that λ1 = 2

and λ2 = λ3 = 0. Clearly, in this case we have dimΓ(103) = 10. Relying again

on the V-version of Table 1 we find the following inequalities for the exponents ai,

(i = 1, · · · , 6)

0 6 a1 6 2

0 6 a2 6 a1

0 6 a3 6 0

0 6 a4 6 a2

0 6 a5 6 0

0 6 a6 6 0 , (17)

so that in this simplest case the Verma polynomials have the form fa4
3 fa2

2 fa1
1 , since
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a3 = a5 = a6 = 0. We thus easily find possible values for a1, a2 and a4 listed in the

second column of Table 6, having the same structure as Tables 4 and 5. The pertinent

HLED is shown in Fig. 7(b). We note that in this case we would obtain the same

result using the L-version in which case the exponents a1, a2, a4 would be replaced by

a31, a
3
2, a

3
3, since in this case a21 = a22 = a11 = 0, with pertinent polynomials having the

form f
a33
3 f

a32
2 f

a31
1 .

4. Discussion

4.1 Related basis sets

As already pointed out above, the Verma bases for the An irreps possess a number

of desirable properties. Although their basis vectors are not necessarily mutually

orthogonal, they are linearly independent and in the many-electron case are not tied

up with any particular spin-coupling scheme, as is the case for the electronic G-T

bases. Remarkably, however, they can be readily associated with the VB states which

have a well known chemical interpretation, particularly for the π-electron systems

with conjugated double bonds that play an important role in theoretical organic

chemistry. Let us first, however, discuss other related basis sets, namely the so-called

generator states of Matsen [9,114–116] and the CAUGA spinorial bases [32] that are

also produced via a sequence of lowering generators applied to the HWS.

The generator states of Matsen [9,114–116] are produced by the action of weight

lowering generators on the HWS of a given irrep. Matsen distinguishes the canon-

ical generator states that are produced by a sequence of not-necessarily elementary

lowering generators and the reduced generator states that are of the lowest degree in

the generators (i.e., including nonelementary ones). His generator state basis is then

represented by all reduced, canonical generator states. However, such a basis is not

only nonorthogonal (for states of the same degree), but it is also overcomplete (i.e.,

linearly dependent, so that strictly speaking it is a spanning set rather than a basis).

He thus invokes the Moshinsky-Nagel transformation [48,49] to convert his generator
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basis to the orthonormal G-T basis. The whole procedure has been only illustrated

on a couple of few-electron examples.

The CAUGA scheme [32,83,101,117,118], on the other hand, exploits the imbed-

ding of U(n) in a much larger group U(2n) via the special orthogonal group SO(m),

m = 2n or 2n + 1, and its covering group Spin(m). Again, one deals in reality with

the corresponding LAs and exploits the imbedding of so(m) in the 2n-dimensional

Clifford algebra Cn, relying on the CAUGA group chain (4). The U(2n) ⊃ SO(m)

chain was first elucidated by Nikam et al. [119, 120]. This approach works then with

two-box spinorial states and the SO(m) – or, in fact U(n) – generators expressed in

terms of the U(2n) generators, which enables a trivial evaluation of the corresponding

generator matrix elements. The CAUGA states may then be systematically gener-

ated by applying elementary lowering generators to the recursively generated states,

starting with the HWS, and may be arranged into an appropriate CAUGA HLED

diagram [32] (see also [127] for UGA HLED).

It is thus informative to compare the CAUGA HLED for the ⟨2110⟩ irrep of U(4)

in Fig. 6 of Ref. [32] with the present V-version in Fig. 5, as well as with UGA HLED

in Fig. 5 of Ref. [32]. In particular, it should be noted that the states associated

with the level w = 3 in Fig. 5, that are associated with the nonorthogonal Kekulé-

type structures (cf. the first row in Fig. 6), correspond to the nonorthogonal two-

box CAUGA states, in which case only the one associated with the leftmost path

corresponds to a G-T state. The Schmidt orthogonalization of the remaining two

states then yields the other G-T states as indicated in the HLED in Fig. 6 of [32]. In

fact, this is the case in general: Clearly, the highest and the lowest weight states are

the same as in the G-T case. Also, states associated with distinct levels of the HLED

diagram (i.e., having a different weight w) are mutually orthogonal. However, those

having the same weight are not necessarily orthogonal but, when suitably Schmidt

orthogonalized, become equivalent to G-T states. See also the following Section and

Fig. 9 for the benzene example.
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4.2 Covalent states

Let us recall that the VB approach is particularly useful for the description of

planar π-electron systems with conjugated double bonds. Here the dominant role is

played by non-ionic covalent structures, the most important ones being those of the

Kekulé type followed by the Dewar-type structures. The same holds when using the

VB-type formalism in CI calculations when one invariably has to truncate the FCI

problem whose dimension rapidly increases with the size of the system. When han-

dling ground states of closed-shell systems, the covalent structures play the dominant

role. When a greater accuracy is required, one should also include ionic structures,

in particular the mono-ionic (dipolar) ones. The states of higher ionicity than the

dipolar ones are seldom required. For this very reason it would be useful to first

identify the covalent states, followed eventually by the ionic ones. This selection can

be best illustrated by considering simple π-electron model systems.

Consider, first, the singlet case of the ⟨2200⟩ U(4) irrep involving 20 CSFs listed in

Tables 2 and 3. The corresponding VB structures – regarding the latter as the CSFs

describing the π-electron model of cyclobutadiene – are shown in Fig. 2. Clearly, in

this simple case only Kekulé-type covalent structures can arise. The HLED scheme

of Fig. 3 then implies that the canonical Kekulé structures, that are associated with

the states |10⟩ and |15⟩, occur at the weight level w = 4. In contrast, the G-T

basis would involve only one of those structures, the other one being a non-canonical

one shown in Fig. 8(c), representing a linear combination of canonical structures.

Indeed, the linear dependence of the canonical and non-canonical covalent structures

is symbolically represented by the relationship of Fig. 8 (up to the phase). Similarly, in

the six-electron case, represented by the π-electron model of benzene (see below), all

G-T covalent states except the one correspond to non-canonical structures as shown

in Fig. 9 (cf. also Table III and Fig. 1 of Ref. [32]).

In view of the importance of covalent VB structures let us now turn our attention

to finding a procedure of identifying these structures a priory, which can be useful
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when we wish to create a truncated basis set that is relevant from a chemical view-

point. Of course, one can always write a simple code generating the entire Verma

basis and then identify and select these structures. It is, however, instructive to

see how we can find these states directly, at least in the case of simple π-electron

model systems. We recall that the weight w of a given state or CSF, which in turn

defines the HLED level, is defined as the sum of the the exponents ai or ack, i.e.,

w =
∑

i ai =
∑

c,k a
c
k. This number also indicates the number of elementary lowering

generators or elementary steps that are required to reach a given state starting from

the HWS.

As an example consider a singlet ground state of a π-electron model of planar

systems with conjugated double bonds having n sites occupied by N = n electrons

or, correspondingly, ab initio models described by a minimum basis set (MBS). The

relevant U(n) irreps are Γ(a, b, c) ≡ ⟨2a1b0c⟩, where b = 0, n = a + c, and N =

2a, so that c = a. The HWS |1⟩ then involves doubly-occupied sites, i.e., |1⟩ =

|11̄22̄ · · · aā⟩. The action of the elementary lowering generators fi = Ei+1,i may then

be conveniently represented graphically, as illustrated in Fig. 10 for the three states of

the cyclobutadiene model (Table 2) and, similarly, in Fig. 11 for the benzene covalent

structures.

Since the covalent structures do not involve doubly-occupied sites, the required

number of elementary lowering generators that are required to reach covalent states

can be shown to be given by wcov = a2, a = N/2 = n/2. This is most easily seen

starting with the HWS of a cyclic polynomial CNHN with the first a doubly occupied

sites and counting the number of required elementary translations along the N -gon

to reach what will be called the highest covalent state (HCS) with singly occupied

sites (as in the examples shown in Figs. 10 and 11). Counting then the number of

required elementary steps or shifts we find that

wcov = a+ 2
a−1∑
i=1

i = a2 . (18)
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In the case of ions, when we have more sites than electrons, this parameter provides

only a lower bound for the number of elementary steps leading to covalent-type struc-

tures. Thus, the ionic covalent structures are no longer characterized by a single value

of wcov.

To start with, let us describe how to generate what we have called above the

HCS. As can be seen from Figs. 3, 5, 7 and 10, 11, we can reach covalent states via

distinct routes starting with the HWS and applying appropriate strings of elementary

lowering generators. One of these routes leads to the HCS |i⟩ with the highest label

i, and is generally given by the string

a(a+1) · · · (2a−1); (a−1)a(a+1) · · · (2a−2); (a−2)(a−1)a · · · (2a−3); · · · ; 12 · · · (a−1)a ,

(19)

where each integer i, (i = 1, 2, · · · , n− 1), represents a generator fi. The semicolons

then distinguish appropriate sequences of increasing integers [they are analogous to

the parentheses in expressions (5) and (6)]. Thus, in the case of our four-electron

example that is associated with the U(4) irrep ⟨2200⟩ ≡ ⟨2202⟩ ≡ Γ(202), we have

a = 2 and the string (19) becomes 2312, i.e., f2f3f1f2, corresponding to the state

|15⟩ characterized by the exponents ai = 1, i = 2, 3, 4, 5 (see Tables 2 and 3 and

Figs. 1–3). In the case of the benzene model that is associated with the U(6) irrep

⟨2303⟩ ≡ Γ(303), we have a = 3 and the corresponding string generating the HCS is

345;234;123. In the general case, we can prove (19) by induction.

Now, since in the covalent states each site is occupied by a single electron, the

only difference between the HCS and the other covalent states is the order of ele-

mentary generators constituting the generating string (19) for the HCS. We can thus

generate the remaining covalent structures by moving the leftmost generator to the

corresponding rightmost one thus raising its power. For example, in the cyclobuta-

diene case the HCS generating string 2312 becomes 3122, yielding the state |10⟩ (cf.

Fig. 9). Similarly, in the benzene case the HCS generating string 345234123 becomes

452341232. Here, however, we can continue this process since in this case there are
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five covalent states, namely two Kekulé and three Dewar structures. Continuing the

process we see that the rightmost generator to the left of the squared generator 32

is 2 which, however, does not match the leftmost one which is 4. In such a case we

must generate two new states obtained by a translation of both generators, one by

moving 2 resulting in the string 453412232 and another one by moving 4 and yielding

523421232. In the latter string there is no pair of identical generators to the left of

the squared one, but in the first one we can again move 4 yielding 534212232, thus

obtaining all five covalent structures. The entire process is illustrated in Fig. 12. A

larger example is displayed in Fig. 13.

In closing, we must note that is some cases the above outlined procedure may

yield a seemingly overcomplete set of covalent states. This is not, however, the case

because the superfluous string(s) will yield a vanishing result when acting on the

HWS. As an example, consider the π-electron model of naphthalene (10 sites and 10

electrons, N = n = 10, so that a = 5), where we arrive to a covalent state associated

with the string 8956784567223456212324252. Following the above outlined procedure

we can move 6 yielding 8957845627223456212324252. However, this string will yield a

vanishing result when applied to the HWS. Pictorially one finds that after applying

part of the above indicated string, namely 7223456212324252, to the HWS, one obtains

a structure with a singly occupied site 6 (using the standard site labeling this VB

structure has doubly occupied sites 4, 5, and 8 and bonds 1–2 and 3–6), so that

applying 62 ≡ E2
7,6 to that structure gives a vanishing result.

4.3 Extended basis sets

So far we have considered classical VB structures with a single (orthogonal or non-

orthogonal) AO per site involving the same number of electrons as sites or less in case

of ions. In the MO context this would correspond to the use of a MBS, the smallest

basis set possible. For a more accurate description one employs extended AO basis

sets. In the MO context this generates a correspondingly larger set of virtual MOs
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(usually of the Hartree-Fock or Brueckner type). The reference state or the ground

state CSF is then given by the HWS of a pertinent UGA irrep, and the remaining

CSFs represent singly, doubly, etc. excited configurations relative to the HWS. There

is no principal difficulty here except a rapid growth of the dimensionality of the FCI,

requiring an inevitable truncation of the number of considered CSFs. One way to

achieve this is to rely on the HLED scheme with a focus on its upper part.

In contrast, in VB approaches the most important CSFs are represented by cova-

lent structures that appear in the middle of the Verma basis HLED. Consequently,

a possible use of the extended basis sets in VB approaches is not straightforward

and goes beyond the scope of this paper. Here, we will only point out one possible

approach to this problem that is based on the shell-model partitioning of the AO

basis set. For this purpose we exploit a linear span of an extended basis set having

a subspace that is spanned by the lowest lying valence AOs on each site which is

isomorphic with that spanned by the MBS. Such an extended basis set then involves

additional AOs on each center and the corresponding VB approach will likely produce

more accurate energies and wave functions, while still enabling a transparent, physi-

cally and chemically meaningful, interpretation. Of course, once we involve more than

one AO per site we lose the correspondence between the singlet coupled AO pairs ϕi,

ϕj and the i − j bonds, so that the bonds in what we referred to as the ‘covalent

structures’ may no longer represent covalent bonds in the standard chemical sense

and the developments in Sect. 4.2 may not apply.

As a simple example, let us briefly consider one possible approach to the problem

of extended basis sets using a triple-zeta (TZ) AO basis for a description of the

ground state of the π-electron model of ethylene. We will thus employ the following

shell-model labeling of a TZ basis, namely {ϕ1 = 2pA, ϕ2 = 2pB}, {ϕ3 = 2p′A,

ϕ4 = 2p′B}, and {ϕ5 = 2p′′A, and ϕ6 = 2p′′B}, representing the first, the second, and

the third shells, respectively. The relevant unitary group is U(6) or SU(6) and the

singlet ground state irrep is ⟨20̇⟩ ≡ [2] of dimension 21 (the symbol 0̇ indicates an

24



appropriate number of zeroes which we drop for the sake of simplicity and indicate

by using the square brackets). If desired, we could also think of a TZ model of the

hydrogen molecule using the 1s, 2s, and 3s AO basis.

Clearly, it will be useful to consider subspaces spanned by CSFs that relate to the

bonding of ethylenic orbitals which can be based on the following group chain

U(6) ⊃ U(4)⊗ U(2) ⊃ U(2)⊗ U(2)⊗ U(2) . (20)

The overall U(6) irrep [2] may then be subduced with respect to the subgroups of

this chain, obtaining

[2] ↓ U(4)⊗ U(2) = [2]⊗ [0] + [1]⊗ [1] + [0]⊗ [2] , (21)

with corresponding dimensions

21 = 10× 1 + 4× 2 + 1× 3 , (22)

since U(4) dimensions are dim[2] = 10, dim[1] = 4, and dim[0] = 1, while those of

U(2) are dim[2] = 3, dim[1] = 2, and dim[0] = 1. Similarly, using the most relevant

subgroup involving U(2) irreps gives

[2] ↓ U(2)⊗ U(2)⊗ U(2) = ( [2]⊗ [0] + [1]⊗ [1] + [0]⊗ [2] )⊗ [0]

+ ( [1]⊗ [0] + [0]⊗ [1] )⊗ [1]

+ [0]⊗ [0]⊗ [2] , (23)

the corresponding dimensions being

21 = (3× 1 + 2× 2 + 1× 3)× 1 + (2× 1 + 1× 2)× 2 + 1× 1× 3 . (24)

Let us point out here a formal similarity with the system partitioning within the UGA

formalism [65,81–86].

The defining inequalities for the exponents ai, i = 1, · · · , 15, defining Verma mono-
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mials (V-version) (fa15
1 fa14

2 fa13
3 fa12

4 fa11
5 )(fa10

1 fa9
2 fa8

3 fa7
4 )(fa6

1 fa5
2 fa4

3 )(fa3
1 fa2

2 )fa1
1 , are

0 6 a1 6 2

0 6 a2 6 a1

0 6 a4 6 a2

0 6 a7 6 a4

0 6 a11 6 a7 , (25)

with the remaining ai’s being equal to zero. Thus, the relevant Verma monomials

have a simple form fa11
5 fa7

4 fa4
3 fa2

2 fa1
1 . The list of possible nonvanishing exponents

a11a7a4a2a1 in a lexical order is given in the second column of Table 7 together with

the corresponding weights wi in the third column. The fourth column then lists

the Verma monomials and the generic build-up of the basis is indicated in the fifth

column. The unnormalized basis vectors |vi⟩ (up to a phase) are then listed in the

rightmost column.

The corresponding HLED (where we simultaneously display the relevant VB-like

structures), arranged in a way to reflect the above given subduction (20), is shown in

Fig. 14. The dashed rectangles, labeled by the capital letters A through D at the top

left-hand-side corner, correspond to subspaces spanned by the enclosed states. The A,

B, and C blocks, each involving three structures, correspond to the irreps [2]⊗[0]⊗[0],

[0]⊗ [2]⊗ [0], and [0]⊗ [0]⊗ [2] of dimension 3, while those involving four structures,

labeled by D, E, and F, correspond to irreps irreps [1] ⊗ [1] ⊗ [0], [1] ⊗ [0] ⊗ [1],

and [0]⊗ [1]⊗ [1], respectively. This also implies that in the U(4)⊗U(2) subduction

(21), the irrep [2]⊗ [0] is associated with the 10 states constituting the blocks A, B,

and D, the irrep [1] ⊗ [1] with the blocks E and F, and the irrep [0] ⊗ [2] with the

block C. Note that the block A represents the FCI within the MBS involving ϕ1 and

ϕ2 with one covalent structure of the Heitler-London type and the two doubly-ionic

structures. Similarly, B and C blocks are associated with the second and the third

shells, respectively. The blocks D, E, and F then represent the inter-shell interactions.
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Clearly, the block F associated with the interaction between the second and the third

shell will be of a secondary importance, as will likely be also the block E and the

ionic structures in the second and third shell (blocks B and C). Note also that we

can identify the HWS for each block. Thus, e.g., the HWS that is associated with

the irrep [2] ⊗ [0] ⊗ [0] is associated with the rightmost structure in the block A of

Fig. 14 involving ϕ1 and ϕ2, i.e., the state |11̄⟩. In this way one can identify the role of

individual VB structures and exploit this information for a physically and chemically

meaningful truncation of the CI problem..

Conclusions

Thanks to the pioneering work of Heitler and London [128] and subsequent devel-

opments due to Pauling’s school [129], the VB theory stood at the cradle of quantum

chemistry. It rationalized for the first time the nature of chemical bonding on the basis

of quantum mechanics and its qualitative version in the form of the so-called resonance

theory, as advanced by Wheland [130,131] in the West and Syrkin and Djatkina [132]

in the East, was enthusiastically embraced especially by organic chemists, thanks to

its intuitive appeal enabling a description of the molecular structure and reaction

pathways. Nonetheless, it was later eclipsed by the MO theory and formalism due to

a number of its difficulties, such as the neglect of overlap integrals, the ‘nightmare’

of the inner shells and, especially, the so-called N! catastrophe. Yet, it has not lost

its appeal and potential usefulness. We thus find it quite remarkable that the VB

structures naturally arise when one employs the so-called Verma bases for the U(n)

or a corresponding sl(n-1,C) irreps when relying on the UGA formalism.

Of course, the current exploitations of UGA always rely on the MO formalism,

be it within the CI or the CC context, and exploit a formalism that is based on

the G-T subgroup chain (1). The resulting spin-free CSFs are then related with the

Yamanouchi-Kotani coupling scheme. In contrast, the Verma bases – which are of a

much recent date than the G-T ones – are independent of any a priori coupling scheme
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or subgroup chain. As pointed out in Sect. 2, the Verma bases possess a number of

desirable properties, being eigenvectors of the Cartan subalgebra and thus indepen-

dent of any fixed subalgebra or subgroup chain, thus being free to adaptation with

respect to physically relevant subgroups as, for example, demonstrated in Sect. 4.3.

The main drawback of Verma bases is the fact that, so far, no explicit formulas are

available for the evaluation of matrix elements of U(n) generators. Although this

difficulty can be overcome in various ways, such as by relying on a connection with

the permutation group Sn or even with the G-T states via orthogonalization, this

is definitely a disadvantage when compared with the efficient algorithms developed

in UGA for the relevant two-column U(n) irreps via the segmentation or within the

CAUGA, where the matrix element evaluation is trivial. Yet the Verma bases could

be beneficial thanks to their relationship with the VB structures by generating the

relevant covalent states in various VB schemes. It would also be of interest to explore

their deeper relationship with the G-T and CAUGA states.

Appendix

We briefly recall a few basic facts concerning the structure of Lie algebras (LAs)

and point out some relevant concepts concerning their representations. In general,

an n-dimensional LA g is an n-dimensional vector space equipped with a Lie product

[ ·, · ] : g × g → g, which is anti-commutative and satisfies the Jacobi identity. A

general linear algebra g ≡ gl(V) of an n-dimensional vector space V over R or

C is then an algebra of endomorphisms of V , End V = {X |X : V → V , X linear},

dim(EndV) = n2, equipped with a Lie product or a bracket [X, Y ] = XY −Y X. The

matrix form of gl(V) results when we fix a basis for V , in which case we can identify

gl(V) with a set of n×n real or complex matrices, and we denote this LA as gl(n,R)

or gl(n,C), respectively. A standard basis is then given by matric units Eij, often

referred to as generators,

Eij = ∥ekl∥, ekl = δkiδlj . (26)
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Since EijEkl = δjkEil, the Lie product for generators becomes

[Eij, Ekl] = δjkEil − δliEkj . (27)

Here δij designates the Kronecker delta. Introducing a standard basis {ei} in V ,

ei = (· · · , 1, · · · )t with one in the i-th position and zeroes elsewhere, the superscript

t indicating a transposition, we have that Eijek = δjkei.

A non-abelian LA ([g, g] ̸= 0) is called simple if it does not contain any non-

trivial ideals and all complex semi-simple LAs are direct sums of simple LAs. There

are four infinite families of semi-simple LAs (An, Bn, Cn, and Dn) and five exceptional

ones. We are particularly interested in special linear LAs sl(n,C) of traceless n×n

matrices over C, and related unitary and special unitary LAs u(n) and su(n) of

skew-Hermitian and traceless skew-Hermitian matrices, respectively, namely

sl(n,C) = {X ∈ gl(n,C) |TrX = 0} ,

u(n) = {X ∈ gl(n,C) |X +X† = 0} ,

su(n) = {X ∈ gl(n,C) |X +X† = 0 and TrX = 0} , (28)

the dagger indicating a Hermitian conjugate. Note that u(n) and su(n) are real

LAs and sl(n,C) represents a complexification of su(n), i.e., sl(n,C) = [su(n)]C.

Consequently, there is a close relationship between their representations.

Of special interest for us are the An or sl(n,C) LAs, i.e.,

An ≡ sl(n+ 1,C), dimAn = n(n+ 2) , (29)

with a standard basis given by n(n + 1) off-diagonal Eij, (1 ≤ i, j ≤ (n + 1), i ̸= j)

and n diagonal Hi = Eii − Ei+1,i+1, (1 ≤ i ≤ n) generators. The latter span the

corresponding Cartan subalgebra h of all diagonal matrices H in g ≡ sl(n,C), i.e.,

H ∈ h, H = ∥hiδij∥ =
∑n

j=1 hjEjj, Tr(H) =
∑n

i=1 hi = 0. The dimension of the

Cartan subalgebra dim h is called the rank of the LA. Clearly, h is abelian and thus

nilpotent, and its dual h∗ is given by a span of linear functionals Li on h such that

Li(H) = Li

n∑
j=1

hjEjj = hi, H ∈ h . (30)
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The trace condition implies that
∑n

i=1 Li = 0. Note that the individual Eii /∈ h in

view of the trace condition.

Recall that a representation (rep) π of a LA g on a vector space V is a LA

homomorphism π : g → gl(V), i.e., a linear transformation of LAs preserving the Lie

product π([A, B]) = [π(A), π(B)] = π(A)π(B)− π(B)π(A). As above, gl(V) denotes

the space of endomorphisms of V , EndV , i.e., the space of all linear maps ϕ : V → V ,

with a Lie product defined by a commutator [X, Y ] := XY − Y X. By abuse of

terminology, one often refers to V itself as a rep. More appropriately, however, the

vector space V together with the rep π constitute a g-module, i.e., a vector space

together with a bilinear map g×V → V defined by [X, Y ] · v = X(Y · v)− Y (X · v).

Thus, g ≡ gl(n,C) may be regarded as a representation of gl(V) on a vector

space V of n × n matrices or, equivalently, as a g-module. It is usually referred to

as a standard representation. Let us note here that in physics one often does not

distinguish between groups and corresponding algebras and talks about a represen-

tation of a group (e.g., as in the unitary group approach [1–22]) while relying on the

corresponding LA.

Another useful concept is that of the adjoint representation ad,

ad : g → Der g : A 7→ adA , (31)

where adA acts as

adA (B) = [A, B] . (32)

Derivation of g, Der g, is a set of linear maps ϕ satisfying the usual product rule

ϕ(AB) = Aϕ(B) + ϕ(A)B. Clearly, ad is a derivation in view of the Jacobi identity,

is linear, and preserves the bracket, i.e., [adA, adB](C) = ad [A, B](C).

Now, for semi-simple LAs all finite-dimensional reps are reducible. The constitut-

ing irreducible reps (irreps) may then be classified by their weights λ, representing

the elements of h∗ resulting from a diagonalization of the h-action

H v = λ(H) v, v ∈ Vλ ⊂ V , H ∈ h . (33)
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Here we recall that any set of commuting operators or linear transformations on V

can be simultaneously diagonalized. The spaces Vλ,

Vλ := {v ∈ V |H · v = λ(H) v, ∀H ∈ h} , (34)

are called weight spaces and their non-zero elements are referred to as weight

vectors. The linear functional λ(H) on h associated with a non-zero weight space

is then called a weight of the rep V . Thus, if {H1, H2, · · · , Hn} is a basis for h, a

weight of a rep (π,V) of g is a set of simultaneous eigenvalues {λ1, λ2, · · · , λn} for

commuting operators π(H1), π(H2), · · · , π(Hn).

Any rep V may then be expressed as a direct sum of weight spaces V =
⊕

λ∈h∗ Vλ.

Moreover, one can introduce a partial order on the set of weights that is based on such

a partial ordering (see, e.g., [133]). With the highest weight λ is then associated

the highest weight space Vλ spanned by vectors v ∈ V that are annihilated by

raising generators Eij, i < j. By considering the real form h0 of h, one can show

that every weight on h0 is real and, in fact, algebraically integral. The highest weights

then uniquely label finite-dimensional irreps.

The weights of the adjoint rep are called roots. We find that the generators Eij

are eigenvectors for the adjoint action of H ∈ h, i.e.,

ad(H)Eij = [H, Eij] = (hi − hj)Eij = (Li − Lj)(H)Eij , (35)

yielding the roots

λij = Li − Lj, i ̸= j , (36)

and the one-dimensional root spaces gλij
= CEij. The set of roots R spans a lattice

called the root lattice Λ. We distinguish positive roots λij ∈ R+ when i < j,

i.e., R+ = {λij = Li − Lj | i < j} and negative roots belonging to R− = {λij | i >

j}. The former ones are associated with raising generators Eij, (i < j), spanning

the nilpotent subalgebra of upper triangular matrices g+ and the latter ones with

lowering generators (i > j) spanning the subalgebra of lower-triangular matrices
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g−. This yields a Cartan decomposition

g = h
⊕

λ∈R⊆h∗

gλ = h⊕ g+ ⊕ g− , (37)

where, in general,

gλ = {X ∈ g | adH(X) = λ(H)X;∀H ∈ h} , (38)

and, for semi-simple algebras, dim gλ = 1. Generators involving neighboring indices,

i.e., Ei,i+1 and Ei+1,i, are referred to as the elementary raising and lowering

generators, respectively.

Now, if X ∈ gλ, then ad(X) maps gµ into gλ+µ since

adHadX(Y ) = adXadH(Y ) + ad[H, X](Y )

= [µ(H) + λ(H)]adX(Y ) , X ∈ gλ, Y ∈ gµ . (39)

Note that if µ = −λ, then [gλ, g−λ] ⊂ h and we can identify a subalgebra

sλ = gλ ⊕ g−λ ⊕ [gλ, g−λ] , (40)

which is isomorphic with sl(2,C). Thus, g is spanned by imbedded copies of sl(2,C)

LAs.

Specifically for sl(n,C) the eigenvectors of ad(h) are the generators Eij with eigen-

values (Li − Lj) as implied by Eq. (35) and we have a decomposition

sl(n,C) = h
⊕
i̸=j

CEij . (41)

Similarly to Eq. (40) we now have that sLi−Lj
= C⟨Eij, Eji, Hi − Hj⟩ ∼= sl(2,C) for

distinct (Hi −Hj). The weight lattice is Z⟨L1, L2, · · · , Ln⟩ and the root lattice is

the sublattice spanned by λij = (Li − Lj). As pointed out above one can introduce

an ordering of positive roots R+ and in view of the fact that g is spanned by sl(2,C)

subalgebras it is intuitively not surprising that these weights are integral. Roots

associated with elementary generators Ei,i±1, i = 1, 2, · · · , n− 1 are then referred to
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as simple roots. In general, a simple root is a positive root that cannot be written as

a sum of positive roots; e.g., λ13 of sl(3,C) is not simple, since λ13 = λ12 + λ23. Since∑n
i=1 Li = 0, one also introduces the so-called fundamental dominant weights

ωi =
i∑

j=1

Lj, i = 1, 2, · · · , n− 1 , (42)

representing the edges of the Weyl chamber W . Note that since
∑n

i=1 Li = 0, we have

that ωn−1 = −Ln.

We thus see that general semi-simple LAs consist of sl(2,C) subalgebras. We

recall here that for A1 ≡ sl(2,C) we can choose a basis

x ≡ E12 =

(
0 1
0 0

)
, y ≡ E21 =

(
0 0
1 0

)
, and h ≡ E11−E22 =

(
1 0
0 −1

)
, (43)

yielding the commutation relations

[h, x] = 2x, [h, y] = −2y, and [x, y] = h . (44)

The linear functional λ on h = {h} is in this case completely determined by its value

λ(h) = λ at the basis vector h.

Now, for v ∈ Vλ we find that x · v ∈ Vλ+2 and y · v ∈ Vλ−2 since

h · (x · v) = [h, x] · v + x · h · v = 2x ·+λx · v = (λ+ 2)x · v , (45)

and similarly for y · v. It may be shown that λ is integral and with a suitable

normalization we find that for an irreducible module V for g = sl(2,C) we have that

V =
⊕

λ Vλ, λ = m, (m− 2), · · · ,−(m− 2),−m, with dimVλ = 1 for all λ such that

Vλ ̸= 0, so that dim(V) = m + 1. One can work out explicit formulas for the action

of x, y and h once we choose a suitable basis for V , as is well known from the second

quantization approach to a harmonic oscillator. An equivalent development can be

made for su(2) using Pauli matrices as a basis.

Recall that when dealing with the u(n) or gl(n,C) irreps, the relevant Cartan

subalgebra h is spanned by the diagonal Eii generators, h = {E11, E22, · · · , Enn},
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often referred to in this context as weight generators. A given irrep π(λ) then

contains a unique (up to a scalar multiple) vector ξ ̸= 0, referred to as the high-

est weight vector or state, such that Eiiξ = λiξ, i = 1, · · · , n and Eijξ = 0

for all 1 6 i < j 6 n. The u(n) irreps are then in a one-to-one correspondence

with n-tuples λ = (λ1, λ2, · · · , λn) such that λi − λi+1 ∈ Z+, i = 1, · · · , n − 1,

and Z+ = {i ∈ Z | i > 0}, while in general λi ∈ C. Note that for the purposes of

G-T basis labeling the highest weight λ’s are usually designated by mn, so that

π(λ) ≡ Γ(mn) and λ = (λ1, λ2, · · · , λn) ≡ (m1n,m2n, · · · ,mnn) ≡ mn. Now con-

sidering an automorphism Eij → Eij + aδij, a ∈ C which preserves the u(n) or

gl(n,C) commutation relations (i.e., the structure constants), we see that the irreps

Γ(mn) and Γ(m′
n), labeled by the highest weights mn = (m1n,m2n, · · · ,mnn) and

m′
n = (m′

1n,m
′
2n, · · · ,m′

nn), where m
′
in = min+a, are simply related (see, e.g., p. 154

and Appendix A of [3]), while for the corresponding irreps of sl(n,C) or su(n) are

equivalent, i.e., Γ{mn} ∼= Γ{m′
n} (in fact, they are identical). Thus, without re-

stricting generality, we can always choose a = −mnn, so that the last component of

the weight vector mn will vanish, providing a unique labeling for these irreps, i.e.,

mn = (m1n −mnn,m2n −mnn, · · · ,mn−1,n −mnn, 0).

Now the unique rep of sl(n,C) with weight

n∑
i=1

biλi, bi ≥ bi+1, i = 1, 2, · · · , n− 1 , (46)

may be rewritten in terms of fundamental weights {ωi}, Eq. (42), as
∑n−1

i=1 aiωi and

designated as Λn−1 ≡ [a1, a2, · · · , an−1]. Comparing the latter form with that of

Eq. (46), we require that
∑n−1

j=i aj = bi − bn, (i = 1, 2, · · · , n − 1), yielding the

rep Λn−1 ≡ [a1, a2, · · · , an−1] with ai = bi − bi+1, (i = 1, 2, · · · , n − 1). In this

notation, the u(n) irrep ⟨µ1, µ2, · · · , µn−1, µn⟩ can be considered as the sl(n,C) irrep

[µ1 − µ2, µ2 − µ3, · · · , µn−1 − µn], resulting in a standard notation for the An LAs.
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Table 1. Defining inequalities for the exponents aj of the Verma monomials (V-

version) [123] of an irreducible Ai ≡ sl(i + 1,C) or su(i + 1) representation with the

highest weight [λ1, λ2, · · · , λi], (i = 1, 2, · · · , n). The dotted line indicates the last

inequality for a given Ai.

(faN
1 f

aN−1

2 · · · faN−n+1
n )(f

aN−n

1 · · · faN−2n+2

n−1 ) · · · (fa3
1 fa2

2 )fa1
1

N = n(n+ 1)/2

A1 . . . . . . . . . 0 ≤ a1 ≤ λ1

0 ≤ a2 ≤ λ2 + a1
A2 . . . . . . . . . 0 ≤ a3 ≤ min{λ2, a2}

0 ≤ a4 ≤ λ3 + a2
0 ≤ a5 ≤ min{λ3 + a3, a4}

A3 . . . . . . . . . 0 ≤ a6 ≤ min{λ3, a5}
0 ≤ a7 ≤ λ4 + a4
0 ≤ a8 ≤ min{λ4 + a5, a7}
0 ≤ a9 ≤ min{λ4 + a6, a8}

A4 . . . . . . . . . 0 ≤ a10 ≤ min{λ4, a9}
...

An−1 . . . . . . . . . 0 ≤ aN−n ≤ min{λn−1, an(n−1)/2−1}
0 ≤ aN−n+1 ≤ λn + aN−2n+2

0 ≤ aN−n+2 ≤ min{λn + aN−2n+3, aN−n+1}
0 ≤ aN−n+3 ≤ min{λn + aN−2n+4, aN−n+2}

...
0 ≤ aN−1 ≤ min{λn + aN−n, aN−2}

An . . . . . . . . . 0 ≤ aN ≤ min{λn, aN−1}
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Table 2. The V-version of the Verma basis for the ⟨2 2 0 0⟩ ≡ Γ(202) irrep of U(4)

or Λ3 = [0 2 0] irrep of A3 ≡ sl(4,C). The sequential numbering i of basis vectors

|vi⟩ corresponds to the scheme of Fig. 1 with the exponents a5a4a3a2 listed in the

second column. Note that a1 = a6 = 0. The third column labeled wi gives the

level weight, wi =
∑

aj, of the un-normalized basis vector |vi⟩ ≡ |i⟩ as given by the

generator sequence F (aj) ≡ fa5
2 fa4

3 fa3
1 fa2

2 , shown in the fourth column, acting on the

HWS |1⟩ ≡ |v1⟩ = |11̄22̄⟩, i.e., |vi⟩ = F (aj)|v1⟩. An alternative representation of |vi⟩

indicating a generic buildup of the Verma basis is given in the fifth column labeled

by fj|k⟩. The explicit form of the un-normalized basis vectors |vi⟩ ≡ |i⟩ as CSFs

(up to a phase) is listed in the sixth column and the next seventh column indicates

the ionicity I of that state. The rightmost column labeled i′ provides the number

of an equivalent state obtained via the L-scheme of Table 3. The corresponding VB

structures are shown in Fig. 2(a) (see the text for details).

i a5a4a3a2 wi F (aj) fj|k⟩ |vi⟩ ≡ |i⟩ I i′

1 0 0 0 0 0 1 |1⟩ |11̄22̄⟩ 2 1
2 0 0 0 1 1 f2 f2|1⟩ |11̄23̄⟩ − |11̄2̄3⟩ 1 2
3 0 0 0 2 2 f 2

2 f2|2⟩ |11̄33̄⟩ 2 3
4 0 0 1 1 2 f1f2 f1|2⟩ |122̄3̄⟩ − |1̄22̄3⟩ 1 7
5 0 0 1 2 3 f1f

2
2 f1|3⟩ |12̄33̄⟩ − |1̄233̄⟩ 1 8

6 0 0 2 2 4 f 2
1 f

2
2 f1|5⟩ |22̄33̄⟩ 2 12

7 0 1 0 1 2 f3f2 f3|2⟩ |11̄24̄⟩ − |11̄2̄4⟩ 1 4
8 0 1 0 2 3 f3f

2
2 f3|3⟩ |11̄34̄⟩ − |11̄3̄4⟩ 1 5

9 0 1 1 1 3 f3f1f2 f3|4⟩ |122̄4̄⟩ − |1̄22̄4⟩ 1 9
10 0 1 1 2 4 f3f1f

2
2 f3|5⟩ |12̄34̄⟩ − |12̄3̄4⟩ − |1̄234̄⟩+ |1̄23̄4⟩ 0 10

11 0 1 2 2 5 f3f
2
1 f

2
2 f3|6⟩ |22̄34̄⟩ − |22̄3̄4⟩ 1 13

12 0 2 0 2 4 f 2
3 f

2
2 f3|8⟩ |11̄44̄⟩ 2 6

13 0 2 1 2 5 f 2
3 f1f

2
2 f3|10⟩ |12̄44̄⟩ − |1̄244̄⟩ 1 11

14 0 2 2 2 6 f 2
3 f

2
1 f

2
2 f3|11⟩ |22̄44̄⟩ 2 14

15 1 1 1 1 4 f2f3f1f2 f2|9⟩ |123̄4̄⟩ − |12̄34̄⟩ − |1̄23̄4⟩+ |1̄2̄34⟩ 0 15
16 1 1 1 2 5 f2f3f1f

2
2 f2|10⟩ |133̄4̄⟩ − |1̄33̄4⟩ 1 16

17 1 1 2 2 6 f2f3f
2
1 f

2
2 f2|11⟩ |233̄4̄⟩ − |2̄33̄4⟩ 1 18

18 1 2 1 2 6 f2f
2
3 f1f

2
2 f2|13⟩ |13̄44̄⟩ − |1̄344̄⟩ 1 17

19 1 2 2 2 7 f2f
2
3 f

2
1 f

2
2 f2|14⟩ |23̄44̄⟩ − |2̄344̄⟩ 1 19

20 2 2 2 2 8 f 2
2 f

2
3 f

2
1 f

2
2 f2|19⟩ |33̄44̄⟩ 2 20
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Table 3. The L-version of the Verma basis for the ⟨2 2 0 0⟩ ≡ Γ(202) irrep of U(4) or

Λ3 = [0 2 0] irrep of A3 ≡ sl(4,C). The sequential numbering i of basis vectors |vi⟩

corresponds to the scheme of Fig. 1 with a2, a3, a4, and a5 replaced by a32, a
3
3, a

2
1, and

a22 (listed in the second column), respectively, as in Table 2. Note that a11 = a31 = 0.

The third column gives level weight wi, wi =
∑

ack, of the un-normalized basis vector

|vi⟩ ≡ |i⟩ given by the generator sequence F (ack) ≡ f
a22
2 f

a21
1 f

a33
3 f

a32
2 (shown in the fourth

column) acting on the HWS |v1⟩ = |11̄22̄⟩, i.e., |vi⟩ = F (ack)|v1⟩. An alternative

representation of |vi⟩ indicating the generic buildup of the Verma basis is given in the

fifth column labeled by fj|k⟩. The explicit form of the un-normalized basis vectors

|vi⟩ ≡ |i⟩ as CSFs (up to a phase) is listed in the sixth column and the next seventh

column indicates the ionicity I of that state. In the rightmost column labeled i′ we

provide the number of an equivalent state from Table 2.

i a22 a
2
1 a

3
3 a

3
2 wi F (ack) fj|k⟩ |vi⟩ ≡ |i⟩ I i′

1 0 0 0 0 0 1 |1⟩ |11̄22̄⟩ 2 1
2 0 0 0 1 1 f2 f2|1⟩ |11̄23̄⟩ − |11̄2̄3⟩ 1 2
3 0 0 0 2 2 f 2

2 f2|2⟩ |11̄33̄⟩ 2 3
4 0 0 1 1 2 f3f2 f3|2⟩ |11̄24̄⟩ − |11̄2̄4⟩ 1 7
5 0 0 1 2 3 f3f

2
2 f3|3⟩ |11̄34̄⟩ − |11̄3̄4⟩ 1 8

6 0 0 2 2 4 f 2
3 f

2
2 f3|5⟩ |11̄44̄⟩ 2 12

7 0 1 0 1 2 f1f2 f1|2⟩ |122̄3̄⟩ − |1̄22̄3⟩ 2 4
8 0 1 0 2 3 f1f

2
2 f1|3⟩ |12̄33̄⟩ − |1̄233̄⟩ 1 5

9 0 1 1 1 3 f1f3f2 f1|4⟩ |122̄4̄⟩ − |1̄22̄4⟩ 1 9
10 0 1 1 2 4 f1f3f

2
2 f1|5⟩ |12̄34̄⟩ − |12̄3̄4⟩ − |1̄234̄⟩+ |1̄23̄4⟩ 0 10

11 0 1 2 2 5 f1f
2
3 f

2
2 f1|6⟩ |12̄44̄⟩ − |1̄244̄⟩ 1 13

12 0 2 0 2 4 f 2
1 f

2
2 f1|8⟩ |22̄33̄⟩ 2 6

13 0 2 1 2 5 f 2
1 f3f

2
2 f1|10⟩ |22̄34̄⟩ − |22̄3̄4⟩ 1 11

14 0 2 2 2 6 f 2
1 f

2
3 f

2
2 f1|11⟩ |22̄44̄⟩ 2 14

15 1 1 1 1 4 f2f1f3f2 f2|9⟩ |123̄4̄⟩ − |12̄34̄⟩ − |1̄23̄4⟩+ |1̄2̄34⟩ 0 15
16 1 1 1 2 5 f2f1f3f

2
2 f2|10⟩ |133̄4̄⟩ − |1̄33̄4⟩ 1 16

17 1 1 2 2 6 f2f1f
2
3 f

2
2 f2|11⟩ |13̄44̄⟩ − |1̄344̄⟩ 1 18

18 1 2 1 2 6 f2f
2
1 f3f

2
2 f2|13⟩ |233̄4̄⟩ − |2̄33̄4⟩ 1 17

19 1 2 2 2 7 f2f
2
1 f

2
3 f

2
2 f2|14⟩ |23̄44̄⟩ − |2̄344̄⟩ 1 19

20 2 2 2 2 8 f 2
2 f

2
1 f

2
3 f

2
2 f2|19⟩ |33̄44̄⟩ 2 20
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Table 4. The V-version of the Verma basis for the ⟨2 1 1 0⟩ ≡ Γ(121) irrep of U(4)

or Λ3 = [1 0 1] irrep of A3 ≡ sl(4,C). The sequential numbering i of basis vectors

|vi⟩ corresponds to the scheme of Fig. 4 with the exponents a6a5a4a2a1 listed in the

second column. Note that a3 = 0. The level weight wi, wi =
∑

ack (shown in the

third column) of the un-normalized basis vectors |vi⟩ (up to a phase) as given by the

generator sequence F (aj) ≡ fa6
1 fa5

2 fa4
3 fa2

2 fa1
1 (shown in the fourth column) acting on

the HWS |v1⟩ = |11̄23⟩, i.e., |vi⟩ = F (aj)|v1⟩, are listed in the rightmost column. An

alternative representation of |vi⟩ indicating the generic buildup of the Verma basis

is given in the fifth column labeled by fj|k⟩. The corresponding VB structures are

shown in Fig. 6 (see the text for details).

i a6a5a4a2a1 wi F (aj) fj|k⟩ |vi⟩ = |i⟩
1 0 0 0 0 0 0 1 |1⟩ |11̄23⟩
2 0 0 0 0 1 1 f1 f1|1⟩ |122̄3⟩
3 0 0 0 1 1 2 f2f1 f2|2⟩ |1233̄⟩
4 0 0 1 0 0 1 f3 f3|1⟩ |11̄24⟩
5 0 0 1 0 1 2 f3f1 f3|2⟩ |122̄4⟩
6 0 0 1 1 1 3 f3f2f1 f3|3⟩ |1234̄⟩ − |123̄4⟩
7 0 0 2 1 1 4 f 2

3 f2f1 f3|6⟩ |1244̄⟩
8 0 1 1 0 0 2 f2f3 f2|4⟩ |11̄34⟩
9 0 1 1 0 1 3 f2f3f1 f2|5⟩ |123̄4⟩ − |12̄34⟩
10 0 1 1 1 1 4 f2f3f2f1 f2|6⟩ |133̄4⟩
11 0 1 2 1 1 5 f2f

2
3 f2f1 f2|7⟩ |1344̄⟩

12 1 1 1 0 0 3 f1f2f3 f1|8⟩ |12̄34⟩ − |1̄234⟩
13 1 1 1 0 1 4 f1f2f3f1 f1|9⟩ |22̄34⟩
14 1 1 1 1 1 5 f1f2f3f2f1 f1|10⟩ |233̄4⟩
15 1 1 2 1 1 6 f1f2f

2
3 f2f1 f1|11⟩ |2344̄⟩
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Table 5. The V-version of the Verma basis for the ⟨2 1 0 0⟩ ≡ Γ(112) irrep of U(4)

or Λ3 = [1 1 0] irrep of A3 ≡ sl(4,C). The sequential numbering i of basis vectors

|vi⟩ corresponds to the lexical order of exponents ai, (i = 1, · · · , 5) listed in the

second column and obtained in a similar way as shown in Fig. 1 for the [020] irrep.

Note that a6 = 0. The level weight wi, wi =
∑

aj are listed in the third column

and the un-normalized basis vectors |vi⟩ (up to a phase) as given by the generator

sequence F (aj) ≡ fa5
2 fa4

3 fa3
1 fa2

2 fa1
1 (shown in the fourth column) acting on the HWS

|v1⟩ = |11̄2⟩, i.e., |vi⟩ = F (aj)|v1⟩, are listed in the rightmost column. An alternative

representation of |vi⟩ indicating the generic buildup of the Verma basis is given in the

fifth column labeled by fj|k⟩.

i a5 a4 a3 a2 a1 wi F (ai) fj|k⟩ |vi⟩ ≡ |i⟩
1 0 0 0 0 0 0 1 |1⟩ |11̄2⟩
2 0 0 0 0 1 1 f1 f1|1⟩ |122̄⟩
3 0 0 0 1 0 1 f2 f2|1⟩ |11̄3⟩
4 0 0 0 1 1 2 f2f1 f2|2⟩ |123̄⟩ − |12̄3⟩
5 0 0 0 2 1 3 f 2

2 f1 f2|4⟩ |133̄⟩
6 0 0 1 1 0 2 f1f2 f1|3⟩ |12̄3⟩ − |1̄23⟩
7 0 0 1 1 1 3 f1f2f1 f1|4⟩ |22̄3⟩
8 0 0 1 2 1 4 f1f

2
2 f1 f1|5⟩ |233̄⟩

9 0 1 0 1 0 2 f3f2 f3|3⟩ |11̄4⟩
10 0 1 0 1 1 3 f3f2f1 f3|4⟩ |124̄⟩ − |12̄4⟩
11 0 1 0 2 1 4 f3f

2
2 f1 f3|5⟩ |134̄⟩ − |13̄4⟩

12 0 1 1 1 0 3 f3f1f2 f3|6⟩ |12̄4⟩ − |1̄24⟩
13 0 1 1 1 1 4 f3f1f2f1 f3|7⟩ |22̄4⟩
14 0 1 1 2 1 5 f3f1f

2
2 f1 f3|8⟩ |234̄⟩ − |23̄4⟩

15 0 2 0 2 1 5 f 2
3 f

2
2 f1 f3|11⟩ |144̄⟩

16 0 2 1 2 1 6 f 2
3 f1f

2
2 f1 f3|14⟩ |244̄⟩

17 1 1 1 1 0 4 f2f3f1f2 f2|12⟩ |13̄4⟩ − |1̄34⟩
18 1 1 1 1 1 5 f2f3f1f2f1 f2|13⟩ |23̄4⟩ − |2̄34⟩
19 1 1 1 2 1 6 f2f3f1f

2
2 f1 f2|14⟩ |33̄4⟩

20 1 2 1 2 1 7 f2f
2
3 f1f

2
2 f1 f2|16⟩ |344̄⟩
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Table 6. The V-version of the Verma basis for the ⟨2 0 0 0⟩ ≡ Γ(103) irrep of U(4)

or Λ3 = [2 0 0] irrep of A3 ≡ sl(4,C). The sequential numbering i of basis vectors

|vi⟩ corresponds to the lexical order of exponents a4, a2 and a1, listed in the second

column. Note that a3 = a5 = a6 = 0. The level weight wi, wi =
∑

aj (shown in

the third column) of the un-normalized basis vectors |vi⟩ (up to a phase), as given

by the generator sequence F (aj) ≡ fa4
3 fa2

2 fa1
1 (shown in the fourth column) acting on

the HWS |v1⟩ = |11̄⟩, i.e., |vi⟩ = F (aj)|v1⟩, are listed in the rightmost column. An

alternative representation of |vi⟩ indicating the generic buildup of the Verma basis is

given in the fifth column labeled by fj|k⟩.

i a4 a2 a1 wi F (ai) fj|k⟩ |vi⟩ ≡ |i⟩
1 0 0 0 0 1 |1⟩ |11̄⟩
2 0 0 1 1 f1 f1|1⟩ |12̄⟩ − |1̄2⟩
3 0 0 2 2 f 2

1 f1|2⟩ |22̄⟩
4 0 1 1 2 f2f1 f2|2⟩ |13̄⟩ − |1̄3⟩
5 0 1 2 3 f2f

2
1 f2|3⟩ |23̄⟩ − |2̄3⟩

6 0 2 2 4 f 2
2 f

2
1 f2|5⟩ |33̄⟩

7 1 1 1 3 f3f2f1 f3|4⟩ |14̄⟩ − |1̄4⟩
8 1 1 2 4 f2f2f

2
1 f3|5⟩ |24̄⟩ − |2̄4⟩

9 1 2 2 5 f3f
2
2 f

2
1 f3|6⟩ |34̄⟩ − |3̄4⟩

10 2 2 2 6 f 2
3 f

2
2 f

2
1 f3|9⟩ |44̄⟩
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Table 7. The V-version of the Verma basis for the ⟨2 0 0 0 0 0⟩ ≡ ⟨2 0̇⟩ ≡ Γ(105) irrep

of U(6) or Λ5 = [2 0̇] ≡ [2] irrep of A5 ≡ sl(5,C). The sequential numbering i of basis

vectors |vi⟩ corresponds to the lexical order of exponents a11, a7, a4, a2 and a1, listed

in the second column. Note that ai = 0, for i = 3, 5, 6, 8 − 10, 12 − 15. The level

weight wi, wi =
∑

aj (shown in the third column) of the un-normalized basis vectors

|vi⟩ (up to a phase), as given by the generator sequence F (aj) ≡ fa11
5 fa7

4 fa4
3 fa2

2 fa1
1

(shown in the fourth column) acting on the HWS |v1⟩ = |11̄⟩, i.e., |vi⟩ = F (aj)|v1⟩,

are listed in the rightmost column. An alternative representation of |vi⟩ indicating

the generic buildup of the Verma basis is given in the fifth column labeled by fj|k⟩.

i a11a7a4a2a1 wi F (aj) fj|k⟩ |vi⟩ ≡ |i⟩
1 0 0 0 0 0 0 1 |1⟩ |11̄⟩
2 0 0 0 0 1 1 f1 f1|1⟩ |12̄⟩ − |1̄2⟩
3 0 0 0 0 2 2 f 2

1 f1|2⟩ |22̄⟩
4 0 0 0 1 1 2 f2f1 f2|2⟩ |13̄⟩ − |1̄3⟩
5 0 0 0 1 2 3 f2f

2
1 f2|3⟩ |23̄⟩ − |2̄3⟩

6 0 0 0 2 2 4 f 2
2 f

2
1 f2|5⟩ |33̄⟩

7 0 0 1 1 1 3 f3f2f1 f3|4⟩ |14̄⟩ − |1̄4⟩
8 0 0 1 1 2 4 f3f2f

2
1 f3|5⟩ |24̄⟩ − |2̄4⟩

9 0 0 1 2 2 5 f3f
2
2 f

2
1 f3|6⟩ |34̄⟩ − |3̄4⟩

10 0 0 2 2 2 6 f 2
3 f

2
2 f

2
1 f3|9⟩ |44̄⟩

11 0 1 1 1 1 4 f4f3f2f1 f4|7⟩ |15̄⟩ − |1̄5⟩
12 0 1 1 1 2 5 f4f3f2f

2
1 f4|8⟩ |25̄⟩ − |2̄5⟩

13 0 1 1 2 2 6 f4f3f
2
2 f

2
1 f4|9⟩ |35̄⟩ − |3̄5⟩

14 0 1 2 2 2 7 f4f
2
3 f

2
2 f

2
1 f4|10⟩ |45̄⟩ − |4̄5⟩

15 0 2 2 2 2 8 f 2
4 f

2
3 f

2
2 f

2
1 f4|14⟩ |55̄⟩

16 1 1 1 1 1 5 f5f4f3f2f1 f5|11⟩ |16̄⟩ − |1̄6⟩
17 1 1 1 1 2 6 f5f4f3f2f

2
1 f5|12⟩ |26̄⟩ − |2̄6⟩

18 1 1 1 2 2 7 f5f4f3f
2
2 f

2
1 f5|13⟩ |36̄⟩ − |3̄6⟩

19 1 1 2 2 2 8 f5f4f
2
3 f

2
2 f

2
1 f5|14⟩ |46̄⟩ − |4̄6⟩

20 1 2 2 2 2 9 f5f
2
4 f

2
3 f

2
2 f

2
1 f5|15⟩ |56̄⟩ − |5̄6⟩

21 2 2 2 2 2 10 f 2
5 f

2
4 f

2
3 f

2
2 f

2
1 f5|20⟩ |66̄⟩
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Fig. 1 List of non-vanishing exponents ai, i = 2, · · · , 5 generating Verma monomials

fa5
2 fa4

3 fa3
1 fa2

2 for the A3 irrep Λ3 = [0 2 0], arranged in a natural generating order. The

implied lexical numbering of CSFs |i⟩ ≡ |vi⟩, i = 1, · · · , 20 is given in the bottom

row. The same diagram applies to the irrep Λ3 = [1 0 1] when we replace exponents

a2a3a4a5 by a32a
3
3a

2
1a

2
2 and fa5

2 fa4
3 fa3

1 fa2
2 by f

a22
2 f

a21
1 f

a33
3 f

a32
2 , respectively.
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Fig. 2 (a) Valence bond structures representing the Verma basis vectors (or CSFs)

for the u(4) irrep ⟨2 2 0 0⟩ ≡ Γ(202) or A3 irrep Λ3 = [0 2 0] listed in the last column

of Table 2, applied to the MBS PPP model of cyclobutadiene. The two valence

structures are in the 1st row, the 12 singly-ionic structure are in the next two rows

and the six doubly-ionic structures are in the bottom row. The ionicity I, I = 0, 1, 2,

is given by the number of dots indicating a double occupancy of the site. (b) The

numbering of the atomic sites used in part (a).
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Fig. 3 The HLED diagram for the Verma basis of the U(4) irrep ⟨2 2 0 0⟩ ≡ Γ(202)

or A3 ≡ sl(4,C) irrep Λ3 = [0 2 0] of Table 2 (V-version) and Table 3 (L-version).

The level weight wi ≡ w is indicated on the right hand side.
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Fig. 4 List of non-vanishing exponents ai, i = 1, 2, 4, 5 and 6, generating Verma

monomials fa6
1 fa5

2 fa4
3 fa2

2 fa1
1 for the A3 irrep Λ3 = [1 0 1], arranged in a natural gener-

ating order. The implied lexical numbering of CSFs |i⟩ ≡ |vi⟩, i = 1, · · · , 15 is given

in the bottom row.
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Fig. 5 The HLED diagram for the Verma basis of the U(4) irrep ⟨2 1 1 0⟩ ≡ Γ(121)

or A3 ≡ sl(4,C) irrep Λ3 = [1 0 1] of Table 4 (V-version). The level weight wi ≡ w is

indicated on the right hand side.
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Fig. 6 VB structures representing Verma basis vectors (or CSFs) for the u(4) irrep

⟨2 1 1 0⟩ ≡ Γ(121) or A3 irrep Λ3 = [1 0 1] listed in the last column of Table 4, applied

to the MBS PPP model of cyclobutadiene. The three valence structures are in the

1st row, the remaining rows listing singly ionic structures. No doubly-ionic structures

can arise in this case. Singly occupied sites are represented by open circles and the

doubly occupied ones by full circles. The numbering of the atomic sites is the same

as in Fig. 2(b).
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Fig. 7 The HLED diagrams for the Verma basis of the U(4) irreps (a) ⟨2 1 0 0⟩ ≡

Γ(112) and (b) ⟨2 0 0 0⟩ ≡ Γ(103) or the A3 ≡ sl(4,C) irreps (a) Λ3 = [1 1 0] of Table 5

(V-version) and (b) Λ3 = [2 0 0] of Table 6. The level weight wi ≡ w is indicated on

the right hand side.
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Fig. 8 A symbolic representation of the linear dependence of the canonical and

non-canonical VB structures for the model of cyclobutadiene.
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Fig. 9 The VB structures (or Rumer patterns) that are associated with the or-

thonormal electronic G-T states for a singlet six-electron system (e.g., the π-electron

model of the benzene molecule) corresponding to the well-known classical Kekule and

Dewar structures (see also Fig. 1 and Table III of [32]). The corresponding G-T states

are defined by the step-numbers di given in the top row and by the Weyl tableaux in

the bottom row.
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Fig. 10 Three examples of a buildup of cyclobutadiene structures for states |5⟩,

|10⟩, and |15⟩ following the relevant Verma monomials (cf. Tables 2 and 3) or the

appropriate path in the HLED diagram in Fig. 3.
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Fig. 11 A buildup of Kekulé-type covalent VB structures for the benzene model

(cf. Fig. 10 for cyclobutadiene).
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Fig. 12 An example of a generation of benzene covalent VB structures starting

with the HCS (see the text for details).
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Fig. 13 An example of a generation of covalent VB structures for a 8-electron

case (see the text for details).
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Fig. 14 HLED structure for a TZ shell-model of the ethylene or hydrogen

molecules. See the text for details.
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