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One of the main problems in the manufacture of floor tiles is the dimensional variability of the 

ceramic product, which leads to the product having to be classified into different dimensional 

qualities with an increase in cost. In this paper we propose a novel way of modelling the 

dimensional variability of ceramic floor tiles by the adaptation of the Stream of Variation 

model. The proposed methodology and its potential applicability contributes to the integration 

of process knowledge in the ceramic tile industry and allow tile manufacturers have a new 

methodology for process improvement, variation reduction and dimensional control.
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1. Introduction

Companies dedicated to the manufacture of ceramic floor tiles classify the final product according 

to its size in order to avoid problems arising from a lack of dimensional uniformity when the 

customer is laying the tiles. The tiles are classified by establishing a series of sizes, usually called 

calibers, each of which has its own margin of variation or tolerance that depends on the quality 

standards set by the company. One of the most important problems for the ceramic floor tile 

manufacturing sector is the difficulty involved in achieving production batches with pieces of the 

same size or caliber (Mallol et al. 2012). In a recent survey (Bonavia and Marin 2006), it was 

shown that an average of 89% of the ceramic tile production is within a prime quality standard, 

whereas the rest of the tile production falls within secondary and tertiary quality levels, i.e. it has 

different calibers. This problem entails a rise in cost due to the increase in space required in the 

warehouse, the logistic complexity involved in managing stock separated into different calibers, the 

need to oversize manufacturing batches and, very often, complaints from customers about 



dimensional variations. Unlike other manufacturing industries, the inherent variability of the 

ceramic tile manufacturing process complicates an efficient dimensional quality control. 

Quality control was initiated in 1924 by W.A. Shewhart who suggested the use of control 

charts as a tool to monitor and control production processes with the objective of improving quality. 

The American statistician W.E. Deming promoted the application of quality control techniques in 

Japan after the Second World War which supposed a significant contribution to Japan’s reputation 

for innovative high-quality products and its emergence as an economic power. A step forward in 

quality control was defined as quality assurance, which was started to be adopted by advanced 

manufacturing companies in 1960. The purpose of quality assurance is the conformance of 

products, services and processes with given requirements and standards through systematic 

measurement, control and analysis of performance to detect special causes of variations and achieve 

process standardization (Jabnoun, 2002). In 1957 S.J. Morrison presented a method for variance 

transmission where each variable contribution to the product variability is estimated by applying an 

error transmission formula. This idea of variance transmission was an early exposition of design 

robustness and preceded the work that Genichi Taguchi conducted decades later. In the eighties, the 

development of the Theory of Constraints by E.M.Goldratt also dealt with the influence of variation 

in processing and material transfer times on throughput and inventory and proved the importance of 

considering every complex system, including manufacturing processes, as multiple linked activities, 

one of which acts as a constraint upon the entire system.

At the end of the nineties, a renew interest of the problem of variation and its propagation in 

manufacturing systems was arisen and a new approach called the Stream of Variation (SoV) model 

was developed. This model was firstly derived by Jin and Shi (1999) for dimensional control in 

multi-stage assembly processes using the state space modelling approach commonly applied in 

control systems. The model was adapted for multi-stage machining systems by Zhou et al. (2003) 

where sources of error such as those related to fixture, datums and machining were included and it 

was later expanded by Abellan-Nebot et al. (2012b) to include different machining errors. The 



applicability of the model has been successfully tested in many different fields such as fault 

diagnosis (Ding et al. 2002; Ding et al. 2003), manufacturing tolerance process allocation (Abellan-

Nebot et al 2013; Chen et al. 2006; Loose et al. 2010), dimensional control (Abellan-Nebot at al 

2012a) and process planning (Abellan-Nebot et al 2012c). However, despite the success of the SoV 

model, this approach has been mainly applied in discrete manufacturing systems where the 

relationships between dimensional deviations and sources of error can be derived by kinematic 

equations. 

In the ceramic tile industry, several studies have attempted to model the overall 

manufacturing process for the purpose of analysing the interrelation among the different variables 

throughout different stages and identifying the causes of dimensional variability. Among the most 

significant studies, De Noni et al. (2006) proposed a model based on a Taylor series expansion in 

order to determine the influence of the different process variables on the final dimensions of the 

tiles being fired. The variables considered in the model were the size distribution and moisture 

content of the spray-dried powder, compaction pressure, extraction time, mass of the tile and 

maximum firing temperature. The coefficients of the Taylor series were adjusted by means of 

polynomial regressions, and in a subsequent analysis it was shown that the variations in the mass of 

the tile, the maximum firing temperature and the moisture content of the spray-dried powder are, in 

that order, the main causes of dimensional variation in the process studied. Yet, the model does not 

take into account the possible correlation of the process variables and neither does it present a 

structure that defines the contribution of the variability in each stage with its interrelation with the 

ensuing stages, which makes it difficult to apply for process improvement. Similar studies were 

proposed in (Heredia and Gras 2011; Heredia and Gras 2010), where each stage is defined by a 

first-order autoregressive model that is adjusted by experimentation or using historical data. A 

subsequent analysis of variance makes it possible to quantify the influence of each of the process 

variables on the final propagation. Thus, in the case of the study presented, it was found that 42% of 

the dimensional variability was due to variations in the moisture content, 16% owing to the 



composition of the material and 16% as a result of the temperature gradients that existed in the 

firing kiln, among others. Santos Barbosa et al. (2013) also attempted to determine how the 

influence of the process variables at each stage is related to the intermediate and final dimensions of 

the tile. However, despite being the first clear attempt to identify the whole process as an 

interrelated multi-stage system, mathematically it does not define a global equation where the final 

dimension of the floor tile is related to all process variables and basically remains a single-stage 

model obtained in different stages of the process. Furthermore, these previous modelling 

approaches overlooked the potential applicability of a global model of the manufacturing process in 

terms of fault diagnosis, compensability (real time control of dimensional quality) and tolerance 

process allocation. 

This paper presents a novel way of modelling the dimensional variability of ceramic floor 

tiles by a new methodology based on the SoV model adapted to deal with a continuous production. 

To the best of our knowledge, this is the first attempt to model the floor tile manufacturing process 

using this multi-stage modelling approach for quality improvement. The potential applicability of 

this model, such as detection of critical stages that contributes the most to dimensional variability, 

feed-forward control for dimensional variation reduction and monitoring and fault detection, among 

others, are briefly described and illustrated by a case study. The paper is organised as follows. 

Section 2 gives a brief overview of the manufacturing process of ceramic floor tiles and the critical 

process variables that influence on dimensional variability. Section 3 presents the Stream of 

Variation approach and its adaptation, stage by stage, for modelling the manufacturing process of 

ceramic tiles. Section 4 shows the potential applicability of the model for quality improvement, 

feed-forward control, monitoring and fault detection. Finally, Section 5 illustrates a case study and 

Section 6 shows the conclusions of the research.

2. Floor tile manufacturing process and process variables

The floor tile manufacturing process starts with the mixing of a specific formulation of raw 

materials in a ball mill, which runs in continuous operation. The solids mixed with approximately 



35% water are introduced into one side of the mill together with a deflocculant additive 

(polyphosphates and others), which helps to keep them in suspension while also controlling the 

viscosity, and a charge of silex or alumina balls is used to grind the material. The ground product is 

obtained at the other end of the mill in the form of a suspension, usually known as slip or slurry. 

The slurry is injected at high pressure by hydraulic pumps into the spray dryer where the moisture 

contained in the slurry evaporates and granular powders are obtained with a suitable particle size. 

The granular material, with a moisture content of between 5% and 7%, is discharged onto a 

conveyor belt and taken to silos. The spray-dried powder is then poured into mould cavities with the 

proper floor tile format. The aim of this stage, called the pressing stage, is to press the powder in 

order to obtain the shape of the tile with the maximum raw apparent/bulk density (compaction) of 

the body that will allow optimal sintering. From the pressing stage, the tiles move on to the drying 

and decorating stages, where they are dried and glazed. The following stage is firing, where the tiles 

are introduced into kilns for sintering. After the firing cycle, the resulting tiles present mechanical, 

chemical and dimensional characteristics in accordance with the desired specifications, and a final 

stage of inspection and packaging ends the manufacturing process. The complete manufacturing 

process is illustrated in Figure 1.

DryingDecoratingFiringClassification

Figure 1. Stages in the process of manufacturing ceramic floor tiles.



The process of manufacturing ceramic floor tiles has been widely analysed in the literature 

and a large number of studies have experimentally investigated the process variables that affect 

each stage of the process, as well as those that are known to play a significant role in determining 

the final dimensional quality. In Escardino et al. (1981), the authors reported the importance of the 

mineral composition of the raw materials used in relation to the dimensional stability and the water 

absorption. Several combinations of raw materials with different percentages of feldspar, quartz and 

different types of clay were tested and a clear influence of composition on linear contraction and 

range of firing temperatures was observed. In porcelain floor tiles, where plastic ball clays, kaolin, 

feldspar-quartz raw materials and pure quartz sand are commonly used, the ball clays are known to 

be the raw material with the largest qualitative variability (Galos 2011, Andreola et al. 2009). 

Other research works were focused on the milling stage. In Blasco et al. (1982), the authors 

studied the optimum type and content of deflocculant to be added in order to minimise the apparent 

viscosity and obtain a more efficient process. A similar study was conducted by Barrachina et al. 

(2015), where it was analysed the effect of different deflocculants on the rheological properties of 

the ceramic slurry with special attention on the effect on viscosity. Mondragon et al. (2012) studied 

the influence of slurry characteristics, such as solid mass load, primary particle size, viscosity, 

flocculation state and surface tension, on the resulting morphology of the powder after spray drying. 

In their findings, the most significant effects that influence porosity and thus, the dimensional 

contraction after firing, were the primary particle size of the composition, the initial solid mass load 

and the flocculation state from milling. In Da Silva et al. (2008), the authors also studied the 

influence of the use of recycling water from the manufacturing process on the ceramic suspension 

viscosity under different percentages of deflocculants.

At the spray drying stage, variations in the resulting grain size distribution, grain shapes and 

moisture content generate different levels of compaction after tile pressing, which will produce 

dimensional variations at the firing stage. As reported in Negre and Sánchez (1996), the moisture of 



the particles depends on different parameters such as the outlet temperature, the inlet temperature, 

the feed viscosity, the pressure of the production system, the amount of chemicals used and also the 

solid content of the slurry in the spray drying process. The importance of controlling variations in 

the spray drying operation was analysed by Negre et al. (1994), who reported moisture variations as 

a key factor for floor tile dimensional control. Other factors, such as the shape and size of the grains 

previously obtained from the milling stage, were also reported as important factors in the 

performance of subsequent stages such as pressing and firing.

Some researchers have focused their attention on the pressing stage in order to understand 

its influence on the dimensional variability of ceramic floor tiles. Poyatos et al. (2010) argued that 

the key parameter in the variability of the pieces after firing is the variability of the bulk/apparent 

density following pressing. In order to control this variability, they developed an integral control 

system for the pressing operation, whereby the pressure exerted by the press and the filling of each 

of the cavities are regulated according to the moisture content of the spray-dried powder that enters 

the press. 

In the firing stage, Jarque et al. (2002) studied the influence of the operating conditions of 

the roller kiln on the curvature of ceramic floor tiles. In that study it was shown that the curvature of 

the tiles was directly related to changes in the set-point temperature of the thermocouples and the 

existence of gaps between pieces throughout the kiln. Furthermore, it was observed that the control 

parameters in all the gas valves, set by default by the manufacturer of the kiln, gave rise to a 

continuous oscillation of the temperature that had a negative impact on the curvature of the tiles. In 

Ferrer et al. (1994), the temperature gradients between the middle region and the walls of the kiln 

were measured using specially designed rollers with sensors fitted transversally inside the kiln. The 

importance of this gradient temperature was reported as critical in Heredia and Gras (2011), 

explaining 16% of the final dimensional variations of floor tiles. 

From the literature it is clearly shown that process variables at each stage have an important 

impact on the performance of downstream stages in the manufacturing process of ceramic floor 



tiles. As a result, the final product quality should be considered as a complex function of all the 

process variables, including the interrelation among the different variables in the different stages of 

the process.

3. Derivation of the Stream of Variation Model

The multi-stage modelling approach called the Stream of Variation (SoV) model is adapted 

here to model the propagation of errors throughout the process of manufacturing ceramic floor tiles 

and their influence on dimensional variability. For modelling purposes, we define the 

manufacturing process variables as controllable variables, manipulated variables and disturbance 

variables. Controllable variables refer to those variables that have to be controlled at each stage, 

e.g., the moisture content at the spray drying stage; manipulated variables are those variables that 

have an influence on the controllable variables and can be manipulated to modify process 

performance; and disturbance variables refer to those variables that may change continuously and 

are not controlled during the process. 

In multi-stage processes, the SoV model defines the product quality throughout the multiple 

manufacturing stages by the equation (Zhou et al. 2003):

where the vector xk contains the controllable variables in stage k, Ak-1 is a matrix that relates the 

variables to be controlled in stage k with those in stage k-1; uk is a vector with the manipulated 

variables in stage k; Bk is a matrix that shows this relationship; and wk indicates the modelling error.

Moreover, the measurements after stage k are defined with the vector yk, and the 

measurement errors are represented by vk. Thus, the relationship between the real value xk and the 

measured value at stage k, yk, is:



Since single models applied at each stage are non-linear, these models have to be linearised 

around a functioning point in order to build the SoV model. Therefore, the variables presented in 

the SoV model will refer to deviations with respect to a functioning point.

For the manufacturing process of ceramic tiles, the multi-stage process is defined by 4 

stages: milling, spray drying, pressing and firing. A first stage related to the raw material 

formulation and the variations in chemical composition is not considered in this paper, and the 

drying and decoration stages are not included since they have no influence on the appearance of 

calibers and their influence is more related with defects in the tiles (e.g. pinholes, crazing and 

peeling). In the following subsections it is shown the main process variables and a linearization 

model for each stage. Note that the final SoV model is the result of the stacked models at each 

single stage as it is shown in Section 3.5. 

3.1. Milling

The variables that should be controlled at this stage are density of the slurry (), viscosity () 

and grain size (κ) of the slurry particles. To control these variables, the manipulated variables are 

the flow rates of the solid (flowsolid), water (flowwater) and deflocculant (flowdefloc). In the process, the 

state of the balls (wear balls) used for grinding may be considered as a disturbance variable. Thus, the 

following equations can be defined:

  ; ;  

where f(·), g(·), and h(·) are non-linear functions, and the variables are  and . Assuming that the 

process behaves linearly when there are small variations around the working conditions {d0, e0}, 

these functions can be linearised through Taylor series expansion as: 

Thus, the deviation from the working conditions is:

By linearisation, the resulting equations can be derived in a matrix form:



Considering disturbances and modelling errors all together since they are unknown

Denoting z1 = [∆, ∆, ∆κ]T, t1 = [∆flowsolid, ∆flowwater, ∆flowdefloc]T, l1 = [,,]T, and the Jacobian matrix as 

J1, the above equation is rewritten as:

At this stage, the density (), viscosity () and grain size () of the slurry particles are measured 

to control the process. Thus, the following equation is defined:

where m1 = [, , ]T, G1 = I (I is the identity matrix), and the measurement errors of the sensors 

applied are denoted as s1 = [,,]T. Note that G1 is the identity matrix if the three variables are 

measured. Otherwise, G1 should be modified to indicate which variables are being measured.

3.2. Spray drying

The controllable variables at this stage are the moisture content of the spray-dried powder 

(h) and its grain size (β). The manipulated variables are: the temperature of the air stream (Ta), the 

flow rate of incoming and outgoing dry air (flowin, flowout), the depression in the evaporation tower 

(d), the input pressure of the slurry (pslurry) and the slurry flow rate (flowslurry). Additionally, the 

outside temperature (Tout) may also be considered as a disturbance variable. From the previous 

stage, the density (∆), viscosity (∆) and grain size of the slurry (∆κ) will also influence the spray 

drying stage.

Following the same procedure as shown above, after linearisation the following matrix 

expression is defined:

where z2 = [∆h, ∆β]T, t2 = [∆Ta, ∆flowin, ∆flowout, ∆d, ∆pslurry, ∆flowslurry]T, l2 = [lh, lβ]T, and K11 and J2 

are the corresponding Jacobian matrices. 

At this stage, the moisture (m∆h) and grain size after drying (m∆β) have to be measured to 

control the process. Then, the following equation is defined:



where m2 = [m∆h, m∆β]T, G2 = I, s2 = [sh, sβ]T.

3.3. Pressing

The controllable variables at this stage are the bulk/apparent density () and the thickness of 

the tile (). The manipulated variables are the maximum pressure (pmax) and the height of the load 

within the mould cavity (). A common disturbance at this stage is the difference in pressure between 

mould cavities (pcav). After linearisation, the following equations are defined:

where z3 = [∆, ∆]T, t3 = [∆pmax, ∆]T, l3 = [,]T, and K21, K22 and J3 are the corresponding Jacobian 

matrices. 

At this stage, the bulk/apparent density () and the thickness of the tile () are measured to 

control the process. Then, the following equation is defined:

where m3 = [, ]T, G3 = I, s3 = [, ]T.

3.4. Firing

The controllable variables at this stage are the resulting dimensions of the floor tiles (dim). 

The manipulated variables are the maximum temperature (Tmax), the time kept at that maximum 

temperature (time), the heating/cooling rates (rateheat, ratecool), the pressure (pkiln) and the oxygen-

enriched atmosphere (Okiln) inside the kiln. A common disturbance at this stage is the cross-sectional 

temperature profile (Ttrans).

For this stage, the linearisation process defines the following expression:

where z4 = [∆dim]T, t4 = [∆Tmax, ∆time, ∆rateheat, ∆ratecool, ∆pkiln, ∆Okiln]T, l4 = [ldim], and K31, K32, K33 and 

J4 are the corresponding Jacobian matrices. 

Following the same procedure, the measurements conducted at this stage are defined as:



where the dimensional measurement is m4 = [m∆dim], the dimensional error of the measurement 

sensor is s4 = [sdim] and G4 = 1.

3.5. Resulting SoV model

The models presented above for each stage can be expressed in the SoV model form as: 

(1)

(2)

where the vectors and matrices are defined as:

Note that p is the number of controllable variables and q1, q2,.., are the manipulated variables 

at stages 1, 2, …. The SoV model can be rewritten in its input-output form in order to clearly define 

the relationship between controllable variables and manipulated variables throughout the 

manufacturing process. The input-output form is defined as:

(3)

where the matrices , , ,  are derived from the SoV model as (Zhou et al. 2003):

; ;;

;    ;     



4. Applicability of the SoV model in the ceramic tile industry

The integration of the process knowledge at each stage by a unique multi-stage model based on the 

SoV approach can lead researchers to implement a series of process improvements which could not 

be applied otherwise. Some of these process improvements include, but are not limited to: detection 

of critical stages, feed-forward control process, monitoring and fault detection. A brief explanation 

of each potential application is shown below and a case study is presented in Section 5 to illustrate 

the implementation.

4.1. Detection of critical stages

The SoV model presented above can be used to perform an analysis of the dimensional variability 

of ceramic floor tiles in order to identify the critical stages that influence the most in the 

dimensional quality of the floor tiles. Let us denote a manipulated variable as bi, i=1,…, 

q1+q2+q3+q4, where U=[uT
1,uT

2,uT
3,uT

4]T = [b1,b2,…,bq1+q2+q3+q4 ]T. Let us also assume that, under normal 

conditions, these variables follow a multivariate normal distribution as N(0, ΣU), where ΣU = 

diag{…,σ2
bi, …}, and σ2

bi is the variance of the variable bi, which can be estimated from shop-floor 

data. Additionally, assume that the measurement and modelling error follows a multivariate normal 

distribution as N(0, Σψ), where the covariance matrix Σψ can be obtained from the modelling error 

in the linearisation procedure together with the accuracy of the measuring sensors. Please, note that 

previous normality assumptions in the multi-stage manufacturing process of floor tiles are 

reasonable as it was discussed in Heredia and Gras (2011), where a similar variation propagation 

scheme is validated in an industrial environment. Thus, given the SoV model from Equation (3), the 

final variability of the measured variables is defined as: 

(4)

where that the component (p,p) in the matrix , defined as  , indicates the variability of the tile 

dimensions as a function of the variations in the manipulated variables, measuring sensors and 

modelling uncertainty. 

Given Equation (4), the percentage of variability explained () by the model is defined as



(5)

A similar expression but considering only the modelling uncertainty Σψ at each stage can be 

applied to find out at which stage the modelling error contributes the most to the final dimension 

variability. For instance, the contribution of the modelling error (and, thus, not explained by the 

current model) at the milling stage on the dimensional variability is defined as:

(6)

where  in order to refer the stage 1, i.e., the milling stage. In Equation (6), refers to at the stage k 

assuming that the modelling errors at any other stage are 0. 

Applying the SoV model, an analysis of the variability of tile dimensions can be performed 

at the end of the production line to find out which part of this variability is due to a specific stage or 

manipulated variable. This information may help engineers to devise process improvement actions 

at critical stages. For this purpose, the following indices are defined:

 Variability contribution indices by stages. 

(7)

Index defines the percentage of the dimensional variability of the tile that is generated at stage k.

 Variability contribution indices by manipulated variables

(8)

Index defines the percentage of the dimensional variability of the tile that is generated due to the 

variations of the manipulated variable bi. 

In Equations (7-8),  refers to the covariance matrix of the variables U in stage k, while the variables 

U in other stages are 0; and  refers to the covariance matrix U, where only the variable bi is taken 

into account. Computing these indices for all stages and variables will show the main critical stages 

and manipulated variables that should be analysed in detail in order to reduce dimensional 



variability.

4.2. Feed-forward control process 

One of the main benefits of modelling a multi-stage manufacturing process is the ability to predict 

in advance the performance of downstream stages according to the performance of upstream stages. 

This prediction capability can lead engineers to fine-tune process parameters at downstream stages 

in order to maximise the final product quality. For instance, consider a manufacturing process of 

ceramic floor tiles where, after some measurements, it is known that the density of the slurry is 

slightly higher than it should be at the milling stage. With this information, the final spray-dried 

powder can be expected to present a slight higher percentage of moisture, which in turn will 

produce tiles with a lower apparent density after pressing and a higher dimensional contraction after 

firing. This problem could be minimised if, at the milling stage, this error propagation scheme is 

estimated by the use of the SoV model. In this case, the manipulated variables at spray drying, 

pressing and firing could be fine-tuned to compensate for the expected deviation of the tile 

dimension. This proposed control process scheme is called feed-forward control process, and it is 

described in Figure 2.
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Figure 2. Feed-forward control scheme applied to the floor tile manufacturing process.

Under the feed-forward control strategy, the action that the controller should carry out can be 

derived from the SoV model as follows. Let us consider that at stage k, a measurement is conducted 

and thus yk is known. The variables to be controlled from previous stages, xk, can be estimated with 

yk given as:



By estimating the current variables, , the expected values of the variables to be controlled at the 

stage k+1 can be estimated in advance as:

At stage k+1, the manipulated variables uk+1 can be divided into two groups, those that can be easily 

modified (e.g. the flow rate of slurry at the spray dryer), and those that are preferably kept constant 

during production (e.g. the depression in the evaporation tower at the spray dryer). Denoting these 

manipulated variables as  and , respectively, the previous equation is rewritten as: 

where  and  are the corresponding matrices from  that apply to  and  , respectively.

In order to avoid any possible deviation from nominal values, the variables that can be modified at 

stage k+1, will be set up to ensure that the expectation of  is 0, which means that the deviation due 

to upstream stages is being compensated by acting upon the current stage appropriately. Thus, the 

controller action is: 

Therefore, applying this control strategy to all stages will ensure that the dimensional deviation of 

the tiles is minimum at the end of line.

4.3. Monitoring and fault detection

In order to detect out-of-control occurrences in multi-stage processes, one may monitor quality 

measurements of the product on the final stage using Statistical Process Control (SPC) techniques 

(Montgomery 2007), such as the Shewhart, the cumulative sum and the Exponentially Weighted 

Moving Average (EWMA) control charts for univariate quality measurement, and Hotelling’s T2 

charts for multivariate cases. However, these univariate and multivariate tools are designed for a 

single-stage process, and cannot effectively identify an out-of-control stage in a multi-stage process 

(Xiang and Tsung 2008). Alternatively, one may also monitor quality measurements on individual 

stages by charting them separately. However, this approach ignores the fact that quality 

measurements on a certain stage are affected by the output quality from the preceding stages.



For this reason, the application of variation propagation models in control charting has recently 

received great attention (Liu 2010). The variation propagation modelling capability provided by the 

engineering models (a model based on engineering knowledge that describes the physical 

relationships between controllable, manipulated and disturbance variables throughout the 

manufacturing process), especially the SoV models, significantly improves the SPC for multi-stage 

manufacturing processes. For instance, Xiang and Tsung (2008) designed a group EWMA 

(GEWMA) chart of One-Step ahead Forecast Error (OSFE) based on the Stream-of-Variation 

model and compared its performance with three alternative charts for multi-stage process 

monitoring: a group Shewhart charts of OSFE, individual EWMA charts and a Shewhart chart for 

the observations at the final stage. The study showed that the proposed chart was superior to the 

alternatives in detecting most shifts and, in comparison to group Shewhart charts, their approach 

was more sensitive to small and moderate shifts. In Zou and Tsung (2008) a directional multivariate 

GEWMA monitoring scheme was proposed where an engineering model was used to incorporate 

directional information about possible process shifts. Although the approach is similar to Zou and 

Tsung (2008), this a priori shift direction information is a particular characteristic in monitoring and 

diagnosing multi-stage processes and its used was proved to enhance the control chart performance.

In this paper and for the sake of simplicity, we propose the approach presented in Xiang and Tsung 

(2008) for monitoring and detecting faulty stages based on the derived SoV model for the ceramic 

tile manufacturing process. To illustrate the procedure, let us rewrite the SoV model defined by 

Equations (1-2) in the form:

(9)

(10)

where 



since, for statistical monitoring, it is reasonable to assume that under in-control process the 

deviation of manipulated variables are normal distributed.

Then, consider  as the measurement vector observed from the jth sample on the kth stage in the 

process described by the SoV model in Equations (9-10). Given the measurement vectors from 

previous stages, , the standardized OSFE vector of , denoted as , can be defined with the following 

recursive formulations (see Xiang and Tsung 2008):

for . Based on the standardized OSFEs,  for  and , the multivariate EWMA statistic is constructed as

where  is a smoothing constant satisfying . Note that  is a vector where  refers to the number of 

controllable variables at stage k. Then, Xiang and Tsung (2008) proposed the use of a GEWMA 

chart based on the statistic 

where 

and

Therefore, when  exceeds the Upper Control Limit (UCL) of the chart, the GEWMA signals to 

indicate that the process is out of control. The faulty stage, denoted as , can be also identified by 

tracing the largest value of the GEWMA statistic as shows Equation (11)

(11)

The proposed approach for monitoring and fault detection in the multi-stage manufacturing process 

of ceramic floor tiles is illustrated in Figure 3 and a case study is shown in Section 5.
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Figure 3. Monitoring and fault detection strategy by a GEWMA chart and the SoV model. 

5. Case Study

The proposed methodology is applied in a simplified floor tile manufacturing process which 

is based on experimental data reported in previous research works. The use of data from different 

research papers and, thus, different equipment, operators, raw materials and so on, let us validate 

the linearisation models required for the SoV model and, furthermore, let us define a SoV model 

structure that describes the ceramic floor manufacturing process in a generic form. This 

experimental data is presented in the Appendix and it is used to define the single-stage behaviour of 

the spray drier, the press and the kiln.  

5.1. Assumptions

The SoV model derived in this case study is based on the following assumptions:

- At the milling stage, only the density of the slurry is considered as the controllable 

variable and the flow rate of water is considered as the manipulated variable. The flow 

rate of solids and deflocculant are considered to be constant. Thus, the equation that 

describes the system behaviour at this stage is , where  is assumed to be ±0.08 g/cm3. 

- The errors in measuring the density of the slurry, moisture content of the spray-dried 

powder, bulk/apparent density and linear contraction are: s1 = ±0.05 g/cm3, s2 = ±0.05%, 

s3 = ±0.05 g/cm3 and s4 = ±0.05%, respectively, according to industrial practices.

5.2. Resulting SoV model



The linearisation of the models, assuming normal conditions, is conducted around the 

following functioning points:   . 

The matrices/vectors obtained from the linearisation are (see Appendix for details):

 Stage 1: Milling

 Stage 2: Drying

 Stage 3: Pressing

 Stage 4: Firing

Following the proposed methodology, the resulting SoV model that explains the behaviour 

of this multi-stage manufacturing process in its input-output form is defined as:

where   is a vector defined by ; and  and  are defined as

;   

5.3. Application of SoV model

Given the SoV model defined above, the potential application of the model is studied in the 

following subsections.

5.3.1. Detection of critical stages

Firstly, the SoV model is applied to identify the critical stages or variables that have the greatest 

impact on the dimensional variability of the manufactured floor tiles. For this case study, it is 

assumed that, under normal operation, the manipulated variables present the inherent range of 

variability shown in Table 1, based on common industrial practices. Therefore, the percentage of 



variability explained by the SoV model and the modelling errors, the critical stages and process 

variables are identified by computing Equations (5-8). 

From Equation (5), the percentage of dimensional variability that is explained by the derived SoV 

model is 65% as it is shown in Figure 4a). Among the modelling errors (Equation (6)), the ones at 

the firing stage are the most relevant (20%) which means that the model at this stage could be 

improved.

On the other hand, Equations (7-8) are computed to analyse critical stages and critical variables of 

the process. According to the results shown in Figure 4b) and 4c), the stage in which the ceramic 

tile is fired is the one that has the greatest influence on the final dimensional variability, accounting 

for 62% of the final variability of the floor tile. Therefore, it seems that an in-depth analysis of kiln 

performance should be conducted. The spray drying and pressing stages are also important for 

dimensional error propagation, with an impact of 20% and 16%, respectively. Milling does not 

seem to be important in this analysis (its influence is around 1% in the dimensional variability of 

the floor tiles), while the critical variables of the process are the maximum firing temperature, the 

flow rate of the slurry injected in the spray drying stage and the pressure in the pressing stage, in 

this order.

Table 1. Variability of the parameters defined in U.

Variable Variability 
Range Variable Variability 

Range Variable Variability 
Range

∆flowwater ±0.311 m3/h ∆Ta ±22ºC ∆flowslurry ±0.6 m3/h
∆pmax ±40 Kg/cm2 ∆Tmax ±5ºC

a)



b) c)

Figure 4. a) Dimensional variability of ceramic tiles explained by the SoV model and the modelling 

errors at each stage; b) contribution to the total percentage of dimensional variability of ceramic 

tiles by each stage and c) by each process variable.

5.3.2. Feed-forward control process

Secondly, the SoV model is applied to control the dimensional variability through implementing a 

feed-forward control scheme. To illustrate the capability of the controlling scheme, the final 

dimensional deviation of the tile is studied under three different approaches: i) without using a 

controller; ii) with a controller at the pressing stage; and iii) with a controller at the firing stage. The 

controller at the pressing stage modifies the maximum pressure to be exerted at the press according 

to the measurement of grain moisture previously conducted at the end of the spray drying stage and 

the expected apparent density of the tile estimated by the SoV model. Similarly, the controller at the 

firing stage modifies the maximum firing temperature of the kiln according to the measurement of 

the apparent density of the tile previously measured at the end of the pressing stage and the 

expected dimensional deviation of the tile estimated by the SoV model. Please, note that a 

controller at milling stage is not considered since the impact of this stage on dimensional quality is 

minor. These three approaches are compared by conducting 200 simulations using the process 

behaviour shown in Figure 5 which represents common production data from a tile industry in 

milling, spray drying, pressing and firing stages. For this case study, 0.5% dimensional deviation is 

the maximum deviation to classify the product as prime quality.



Figure 6 shows the results of the final dimensional deviation of the floor tiles for each controlling 

strategy. The results show that the use of a feed-forward control approach improves the final quality 

of the floor tiles and prevents the production of calibers whereas the normal production generates 

8.5% of parts as non-prime quality. The implementation of a controller at the pressing stage reduces 

the mean deviation of the tiles in 45% and the range of variation (six sigma range) in 44%; the 

controller at the firing stage reduces them in 67% and 65%, respectively. It is observed that the use 

of the feed-forward controller in the last stage (firing stage) outperforms the controller at the 

pressing stage due to the use of more information through the measurement at a later stage.

Figure 5. Process behaviour to evaluate the performance of different control strategies.



Figure 6. Dimensional deviation of floor tiles under 3 different control approaches: i) without using 

a controller; ii) with a controller at the pressing stage; and iii) with a controller at the firing stage.

5.3.3. Monitoring and fault detection

Finally, the SoV model is applied for monitoring and fault detection. For this purpose, it is assumed 

that the measurements are conducted at all stages, i.e, the slurry density at milling stage, the powder 

moisture at spray drying stage, the apparent density at pressing stage and dimensional deviation 

after the firing stage. The GEWMA chart previously discussed based on the proposed SoV model is 

used under the assumption that the process is in-control with the data shown in Table 1. As 

suggested in Xiang and Tsung (2008), the chart design parameters for a multi-stage manufacturing 

process with 4 stages and an ARL0 of 370 are set to and UCL = 3.306. 

To illustrate the effectiveness of the SoV model and its integration in a GEWMA control chart, 100 

samples data are simulated. From sample 50 onwards, a shift in the resulting moisture content after 

the spray drying stage is added in order to simulate a faulty condition at this stage. The shift is 1.75 

times the standard deviation from in-control. Figure 7 shows the measured values after each stage 

according to the simulated data and Figure 8 shows the values of the GEWMA control chart. As it 

can be seen, the chart detects the faulty condition after sample 57, and it points out that the faulty 

station is number 2, which refers to the spray drying stage. 



Figure 7. Values measured at each stage (simulated data). From top to bottom: slurry density (; 

moisture content of the spray-dried powder (h); the apparent density of the tile after pressing; and 

the deviation of the linear contraction after firing. At sample 50, a shift of size 1.75 times the 

standard deviation is added at the moisture content after spray drying. 

Figure 8. GEWMA chart for monitoring the multi-stage manufacturing process of ceramic floor 

tiles. The chart detects the faulty process at sample 57, and identifies the stage 2 as the faulty stage 

which means the spray drying process. 

6. Conclusions

One of the main problems in the manufacture of floor tiles in the ceramic industry is the 

dimensional variability that may show up after firing the product, which leads to the product being 

classified in different calibers or dimensional qualities. Despite the extensive knowledge existing on 

the process of manufacturing ceramic floor tiles, few studies have sought to analyse the interactions 

among the different stages of the process in order to estimate the final dimensional variation of the 

product. 

In this paper a novel way of modelling the dimensional variability of ceramic floor tiles by 

the adaptation of the Stream of Variation (SoV) model has been proposed. The SoV model is 

obtained by using single-stage empirical models that are widely known in the literature, and which 

describe the relationships among the critical variables in each of the stages of the process.  By 

integrating the single-stage models throughout the multi-stage process, the derived SoV model can 



be used in a large number of applications related to manufacturing improvement, such as detection 

of critical manufacturing stages, control and assurance of product quality through feed-forward 

control strategies, and monitoring and fast fault detection during production. A case study is 

presented to illustrate both the modelling methodology and its application. In this case study, the 

derived model is able to explain around 70% of dimensional variability of floor tiles and the 

application of the model by a feed-forward control scheme is able to reduce the dimensional 

variation up to 65%, preventing the production of calibers. The case study also demonstrates the use 

of the model for monitoring and fault detection which let manufacturers have a better understanding 

of the process increasing the dimensional control of ceramic floor tiles.
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Appendix 

In order to define a generic SoV model for the ceramic floor tile manufacturing process, this 

Appendix gathers experimental data from different research works related to the operation of the 

spray dryer, the press and the kiln. Figure 9 (solid lines) shows the behaviour of the spray dryer 

reported in Negre et al. (1994) where it is observed the linearity of the moisture content of the 

resulting ceramic powder and the temperature of the air stream for a given slurry flow rate. Similar 

behaviour was identified in a local ceramic floor tile manufacturer as it is shown in Figure 9 

(dashed line). Note that the different linear relationship is due to changes in the spray drier 

equipment, slurry formulation, number of spray nozzles, and flow rates of incoming and outgoing 

dry air. Therefore, the spray dryer can be defined by a generic linear equation in the form



In the case study presented in this paper, we assumed that the spray drier behaves according 

to the experimental data in Negre et al. (1994), thus, .
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Figure 9. Relationship of ceramic powder moisture and process variables at the spray drying stage. 

Solid lines refer to experimental data extracted from Negre et al. (1994); Dashed line refers to 

experimental data from a local floor tile manufacturer. 

At the pressing stage, different studies have shown the impact of compaction pressure and moisture 

content of ceramic powder on the resulting apparent density after pressing. Figure 10 shows the data 

from four previous research works at different compaction pressures. All experimental data has a 

similar trend and a generic equation well accepted by practitioners is (Mallol et al. 2010, Amorós et 

al. 1983):

For the case study presented in this paper, we assume that the pressing stage behaves 

according to the experimental data in Amorós et al (1983) since this data is also presented in widely 

used technical manuals for manufacturing ceramic floor tiles (SACMI 2002). Thus, the coefficients 

are  .
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Figure 10. Relationship of the apparent density and process variables at the pressing stage reported 

in different research works. 

Finally, the kiln operation determines the vitrification of the composition of the floor tile and, thus, 

the linear contraction and the final dimensions. Figure 11 shows the experimental data reported in 

different research works where a relationship between apparent density, firing temperature and 

linear contraction can be found. Note that the differences are mainly due to the different 

composition of the floor tiles at each research, which produces different vitrification diagrams. 

Since the firing temperature is usually set up within a small range, a generic linear equation can be 

defined in the form

In the case study presented in this paper, we assumed that, for a given tile composition, the 

firing stage behaves according to the experimental data in SACMI (2002), thus, .
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Figure 11. Relationship of the linear contraction of tiles at firing stage reported in different research 

works. 
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