

UNIVERSITAT JAUME I

ESCOLA SUPERIOR DE TECNOLOGIA I CIÈNCIES EXPERIMENTALS GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

PROYECTO DE INSTALACIÓN DOMÓTICA PARA UNA VIVIENDA RURAL

TRABAJO FIN DE GRADO

AUTOR/A

Javier Monserrat Castel

DIRECTOR/A

Roberto Sanchís

Castellón, 10 de Julio de 2017

AGRADECIMIENTOS

Son muchas horas las que he dedicado a este proyecto y son muchas

las personas que me han apoyado y ayudado.

Como se suele decir "soy de ciencias" y la redacción no es mi fuerte,

así que enumeraré a todos los que me gustaría agradecer su

aportación.

A mi madre y a mi tía Pili sin dudarlo las más insistentes.

- A mi familia, a mis padres en especial por apoyarme durante toda

la carrera y más si cabe ahora.

- A mi Abuela Concha, porque ya si, ya he acabado.

- A mis hermanos y sobrinos.

- A las chicas de Puerto Edén.

- A todo el equipo de SENSA, en especial a Jose Ramon Castillo

con tu ayuda todo ha sido más fácil.

- A mi tutor Roberto Sanchís.

- A mis amigos.

- Y finalmente uno no puede olvidarse de su pueblo, al pueblo de

La Mata.

Gracias a todos!!!

PD: Rafa y Pilar os debo una cena

ÍNDICE DE CONTENIDOS

I MEMORIA
II PLIEGO DE CONCIONES
III PRESUPUESTO
IV ANEXOS
V PLANOS

I MEMORIA

ÍNDICE DE LA MEMORIA

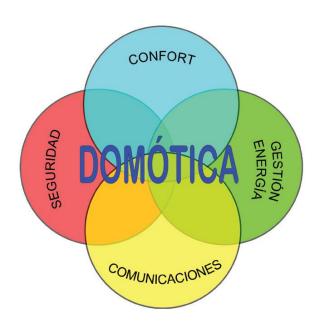
1	OBJETIVO DEL PROYECTO	5
2	ALCANCE	5
3	EMPLAZAMIENTO	6
4	ANTECEDENTES	9
4.1 SI	TUACIÓN ACTUAL DEL EDIFICIO	9
2.2 غ	QUÉ SE PRETENDE HACER?	10
5	REQUISITOS DE LA INSTALACIÓN	12
5.1 AE	BASTECIMIENTO DE ENERGÍA	12
5.2 DO	OMÓTICA	13
6	ALTERNATIVAS	13
6.1 AE	BASTECIMIENTO DE ENERGÍA ELECTRICA	13
6.1.1	OPCIÓN 1: Línea eléctrica aérea	14
6.1.2	OPCIÓN 2: Autoconsumo	15
6.2 DO	OMÓTICA	16
6.2.1	Sistemas cerrados o propietarios (OPCIÓN 1)	16
6.2.2	Sistemas abiertos	17
6.2.2.3 6.2.2.3	2 OPCIÓN 3: KNX/EIB	18
6.2.2.4	4 OPCIÓN 5: LonWorks	19
6.2.2.	'	
7	SOLUCIÓN ADOPTADA	20
7.1 AE	BASTECIMIENTO DE ENERGÍA ELÉCTRICA	20

7.1.1	Decisión de la alternativa	20
7.1.2	Definición de la alternativa escogida	21
7.1.2.1	1 Paneles Solares	22
7.1.2.2	2 Baterías	25
7.1.2.3	3 Regulador	27
7.1.2.4	4 Inversor	29
7.1.2.5	5 Aerogenerador	31
7.1.2.6	6 Grupo electrógeno	32
7.1.2.7	7 Planta de la instalación	33
7.1.2.8	8 Cableado del sistema	34
7.1.2.9	9 Definición de las conexiones por tramo	41
7.1.2.1	10 Soporte del sistema de captación solar	42
7.1.2.1	11 Diseño de la caseta de control	47
7.2 DC	DMÓTICA	48
7.2.1	Decisión de la alternativa	48
7.2.2	Definición de la alternativa escogida	49
7.2.2.1		
7.2.2.2	2 Modicon M340	50
7.2.	.2.2.1 Estructura del M340	51
7.2.2.3	3 Personalización del M340	57
7.2.	.2.3.1 Análisis de las entradas y salidas	57
7.2.	.2.3.2 Definición de los componentes del M340 elegidos	63
7.2.	.2.3.3 M340 para la instalación	72
7.2.2.4	4 Elementos de entrada	74
7.2.2.5	5 Elementos de Salida	85
7.2.2.6	6 Programación del PLC	91
7.2.	.2.6.1 Descripción del entorno de trabajo	91
7.2.	.2.6.2 Definición de variables	95
7.2.	.2.6.3 Definición de temporizadores	106
7.2.2.7	7 Programación de la pantalla Táctil	108
7.2.	.2.7.1 Definir proyecto y pantalla	108
7.2.	.2.7.2 Conexión del autómata y la pantalla	109
7.2.	.2.7.3 Definición de las variables	109
	.2.7.4 Definición de los paneles	111
7.2.	.2.7.5 Definición de los botones	113
7.2.	.2.7.6 Definición de alarmas	
7.2.	.2.7.7 Definición de usuario de seguridad	120
7.2.2.8	8 Configuración myScada en el Smarthphone	122

8	VIABILIDAD ECONÓMICA	124
8.1.1	Viabilidad económica del sistema de abastecimiento de energía	125
8.1.2	Viabilidad económica del sistema domótico	127
8.2 VI	ABILIDAD MEDIOAMBIENTAL	128
8.2.1	Viabilidad medioambiental del sistema de abastecimiento de energía	128
8.2.2	Viabilidad medioambiental del sistema domótico	128

1 OBJETIVO DEL PROYECTO

El objetivo de este proyecto será realizar el diseño domótico y del abastecimiento de energía eléctrica de la vivienda unifamiliar rural denominada como Masía Torre Algares.


El sistema domótico será diseñado para que realice las siguientes tareas básicas:

- Aumentar la seguridad de la vivienda, tanto intrusiones, como prevención de fugas de agua, fugas eléctricas, etc.
- Mejorar la calidad de vida de los que allí residan.
- Conseguir una máxima eficiencia en el consumo de los recursos básicos (electricidad, agua, calefacción).
- Deberemos de crear un programa modificable pensando en posibles ampliaciones que se puedan llevar a cabo en un futuro.

Diseñar el sistema de abastecimiento de energía eléctrica mediante el sistema que nos sea más económico.

2 ALCANCE

El alcance es el diseño y definición completa del sistema domótico, incluyendo la programación del sistema de control, y el diseño del sistema de abastecimiento de energía eléctrica.

3 **EMPLAZAMIENTO**

El proyecto se llevará a cabo en la masía Torre Algares, situada en el término municipal de Olocau del Rey, municipio del interior de la comunidad Valenciana situado al Nord-oeste de la provincia de Castellón.

Ilustración 1. Localización de Olocau del Rey en la Comunidad Valenciana

Ilustración 2. Localización Torre Algares en el término municipal de Olocau del Rey

La masía está situada a diez minutos del núcleo urbano de Olocau del rey, en la zona denominada como la riera. Linda por el sur con el Mas de Martín(Tronchón), por el este con el Masico Borraz(Olocau del Rey), por el Oeste con el Mas de Carrasco(Tronchón) y por el norte con el Mas de Francisco(Olocau del Rey).

La masía consta de dos edificios conectados por un patio interior. Solo se pretende proyectar uno de ellos. En la *Ilustración 3* se muestra en la parte más alejada. A este edificio se le denomina "tiñada".

Ilustración 3. Masía Torre Algares

A continuación se muestran los datos generales del edificio:

DATOS GENERALES DEL EDIFICIO

Denominación: Masía Torre Algares
Dirección: Polígono 8, Parcela 8
Ref. Catastral: 12083A008000080000BI
Coordenadas UTM: X:724.298 Y:4.499.195

Altitud 1100 msnm Superficie: 634 m2 Provincia: Castellón

Localidad: Olocau del Rey
Persona de Contacto: Domingo Monserrat

Tabla 1. Datos generales del edificio

4 ANTECEDENTES

La masía Torre Algares se conoce en Olocau del rey como la masía más antigua de la localidad, no está datada en ningún siglo aunque a juzgar por una aspillera situada en uno de los muros podríamos datarla en el siglo XIV o XV.

Estuvo habitada hasta la década de los setenta y actualmente se encuentra en un estado muy precario.

4.1 SITUACIÓN ACTUAL DEL EDIFICIO

La Masía Torre Algares se encontraba en estado ruinoso, desde hace un par de años se comenzó un proceso de restauración. Hoy en día se pueden observar ventanas nuevas, puerta nueva, los tres pisos han sido reforzados con forjado de acero recubierto de hormigón y en su interior se ha comenzado el entramado de tabiques.

También dispone de conexión a red de agua pública aunque debido a la distancia del pueblo 3km y las 4 explotaciones porcinas que preceden a la Torre Algares, en muchas ocasiones no se dispone de agua. Como solución a esto en la última reforma se construyó un depósito de agua en la parte alta de la masía.

El edificio no dispone de abastecimiento de energía eléctrica.

Ilustración 4. Era y fachada de la Masía Torre Algares (Edificio proyectado)

Por lo que respecta a la parte exterior del mas se puede observar una segunda edificación en la parte posterior de la primera, ambas están conectadas mediante un patio interior. Pegado a la pared del patio se observa una barbacoa, al parecer de nueva construcción. Al Oeste de las edificaciones tiene dos bancales a diferente altura cada uno de ellos, el más bajo yermo y en el otro se observan varios árboles plantados. En la parte sud se observa la era justo enfrente del edificio proyectado. En la parte más al norte se encuentra la balsa y a su lado el depósito.

Ilustración 5. Edificaciones de la masía, balsa y terreno

4.2 ¿QUÉ SE PRETENDE HACER?

Se trata de la reforma de la parte conocida como "tiñada" dentro de la masía Torre Algares, edificio de tres plantas y un sótano.

Sótano

En el sótano se encontrará la bodega, un cuarto multiusos y una pequeña cuadra.

Planta baja

En la parte oeste de la primera planta habrá dos habitaciones, dos cuartos de aseo, un baño y la entrada. En la parte este se encontrará la sala que hará los efectos de comedor, cocina y sala de estar.

Primera planta

En la parte oeste de la primera planta habrá dos habitaciones con un cuarto de aseo cada una y en la parte este una sala de estar.

Bohardilla

Habrá una única habitación, destinada a un estudio.

Ilustración 6. Recreación 3D del proyecto a realizar en la masía Torre Algares

Sala de calderas

Además de la tiñada se pretende reformar un pequeño corral situado en el patio interior para poner allí la sala de calderas.

Piscina

Se pretende construir una piscina en el bancal más bajo situado al oeste del edificio.

Porche multiusos

Se construirá un porche multiusos en el bancal más bajo situado al oeste del edificio, se colocará en la parte más alejada de las edificaciones.

Ilustración 7. Vista aérea de la masía. Se indican las partes principales de la reforma.

5 REQUISITOS DE LA INSTALACIÓN

En un primer lugar tras la entrevista con el cliente se definen, los servicios que desea sean implementados en la vivienda. Debemos tener en cuenta que se trata de una vivienda alejada de los núcleos urbanos (15min en coche hasta La Mata, 15 min en coche hasta Mirambel, 10 min en coche hasta Olocau del Rey), que no cuenta con abastecimiento de electricidad y dispone de un depósito de almacenamiento de agua (Alimentado solo cuando hay excedente desde el pueblo de Olocau del Rey).

Debido se diseñará tanto el sistema de abastecimiento de energía como la parte de domótica.

5.1 ABASTECIMIENTO DE ENERGÍA

Como ya se ha dicho anteriormente la vivienda no está conectada a la red eléctrica. Por lo tanto se debe de encontrar un sistema de abastecimiento que sea capaz de alimentar los siguientes consumos:

CONSUMOS TORRE ALGARES			
ILUMINACIÓN EXTERIOR	558 W		
ILUMINACIÓN INTERIOR	781 W		
ELECTRODOMESTICOS	5250 W		
OTROS	981 W		
TOTAL	7570 W		

Tabla 2. Datos del consumo eléctrico

5.2 DOMÓTICA

Con la domótica se pretende conseguir la máxima eficiencia energética de la vivienda, mejorar la calidad de vida del usuario, proporcionarle seguridad a la vivienda tanto para averías como para intrusiones. Para ello los puntos que se controlarán van a ser los siguientes:

- Control de iluminación.
- Alarma.
- Calefacción de toda la vivienda
- Control de riego.
- Control de la piscina.
- Control del sistema de abastecimiento eléctrico
- Prevención de averías.

Todo esto va a ser controlable mediante una pantalla ubicada en la vivienda y mediante una aplicación en el teléfono móvil del usuario.

6 ALTERNATIVAS

Se distinguen como anteriormente dos partes del proyecto y para cada una de ellas buscamos diferentes alternativas.

6.1 ABASTECIMIENTO DE ENERGÍA ELECTRICA

Como ya se ha citado anteriormente no se tiene conexión a la red eléctrica y es por esto que barajaremos dos posibilidades.

6.1.1 OPCIÓN 1: Línea eléctrica aérea

Esta opción consiste en conectarse a la red eléctrica mediante una línea eléctrica aérea que iría desde la Torre Algares hasta el punto más cercano en el que se pudiera conectar, en este caso se conectaría en el "Masico Agustín" (Situado a 1100m en línea recta). La línea estaría formada por 8 apoyos todos ellos amarres y finalizaría en un centro de transformación. El centro de transformación se colocaría a 100m de la Masía torre algares, siendo recorridos estos 100m mediante una línea subterránea.

Ventajas

- En el caso de hacer alguna variación en la vivienda que suponga un incremento en la potencia necesaria, podríamos solucionarlo con el simple hecho de revisar el contrato con la compañía.
- No requiere mantenimiento.

Inconvenientes

- Impacto visual.
- Impacto en el terreno (Construcción de pistas, talado de árboles).

- No se trata de una energía verde.
- Para un lugar de uso intermitente nos fijamos un pago permanente de por vida.

6.1.2 OPCIÓN 2: Autoconsumo

Otra opción sería colocar, algún sistema de generación de energía eléctrica que proporcione la suficiente energía eléctrica para abastecer la masía. Al tratarse de una zona con poco arbolado y mucho terreno disponible, se considera la opción de colocar paneles solares.

Por otro lado la masía torre Algares está situada en la base de una loma, a consecuencia de esto a escasos 50m de la masía se encuentra una zona bastante ventosa. Por lo tanto el colocar aerogeneradores será otra opción a tener bastante en cuenta. Aunque se trata de una fuente de energía bastante irregular debido a su dependencia a las condiciones climatológicas.

Después de ver estas dos opciones de autoconsumo surge una tercera opción de autoconsumo mucho más robusta. La cual sería combinar las dos anteriores, es decir, se colocarían placas solares y un aerogenerador.

Ventajas

- Energía verde.
- Independencia con respecto a las compañías eléctricas.
- Gasto inicial pero sin pagos mensuales
- Impacto visual bajo

Inconvenientes

- En el caso de necesitar más potencia, solución compleja
- Limitaciones en caso de colocar electrodomésticos
- Mantenimiento trimestral de las baterías

6.2 DOMÓTICA

La dómotica empezó aproximadamente en los años 80, principalmente en EEUU y Japón. Desde entonces han aparecido múltiples sistemas para automatizar las viviendas. A gran escala se dividen en dos grandes grupos, los sistemas propietarios y los sistemas abiertos.

6.2.1 Sistemas cerrados o propietarios (OPCIÓN 1)

Son sistemas domóticos que están desarrollados por fabricantes independientes con lenguajes de programación desarrollados en exclusiva para su producto, limitando en el futuro el mantenimiento de dicha instalación a esos fabricantes y corriendo un riesgo muy elevado a dejar sin servicio técnico si desaparece el fabricante. En este tipo de domótica podemos poner el ejemplo de fabricantes como:

- SIMON, con su domótica Sense.
- Ticino con My Home.
- Ingenium con Busing.
- Niessen (ABB) con su domótica FreeHome.

Cada fabricante diseña su propio protocolo y el sistema se entiende con él, usando un lenguaje propietario y por los tanto no es capaz de entenderse con otros sistemas que utilizan otros lenguajes.

Ventajas

• Más económicos, ya que no pagan canon por usar un lenguaje de programación externo i estandarizado.

Inconvenientes

- Dependencia total del fabricante con el riesgo al cierre del mismo.
- Obligación de comprar todos los componentes al mismo fabricante.

6.2.2 Sistemas abiertos

Están desarrollados por la unión de diferentes fabricantes que ponen en común sus conocimientos para desarrollar un sistema más estable con futuro y siempre a la vanguardia de las últimas tecnologías. Utilizan un lenguaje estandarizado y por lo tanto pueden entenderse con los demás sistemas que sean capaces de entender este lenguaje estándar.

6.2.2.1 OPCIÓN 2: X10

Protocolo de comunicaciones para el control remoto de dispositivos eléctricos, hace uso de los enchufes eléctricos, sin necesidad de nuevo cableado. Puede funcionar

correctamente para la mayoría de los usuarios domésticos. Es de código abierto y el más difundido en EE.UU.

Ventajas

• Económico y fácil instalación

Inconvenientes

- Poco fiable frente a ruidos eléctricos.
- Domótica muy básica

6.2.2.2 OPCIÓN 3: KNX/EIB

Actualmente es el más importante de los sistemas abiertos, se trata de un Bus de Instalación Europeo con más de veinte años y más de cien fabricantes de productos compatibles entre sí. Para instalarlo se tiene que tener una licencia denominada "KNX partner" y para esto se necesita pasar un examen y el pago de una cuota anual.

Ventajas

- La estabilidad de estos sistemas.
- Flexibilidad a la hora de elegir fabricantes.
- El poder mezclar fabricantes en la misma instalación.
- Gran gama de producto, acoplable a los sistemas abiertos.

Inconvenientes

- Costes de producto elevado, debido al canon por usar KNX.
- Necesidad de realizar la instalación por un instalador certificado.

6.2.2.3 OPCIÓN 4: ZigBee

Protocolo estándar, recogido en el IEEE 802.15.4, de comunicaciones inalámbrico, su objetivo son las aplicaciones que requieren comunicaciones seguras con baja tasa de envío de datos y maximización de la vida útil de sus baterías.

Muy poco utilizado porque no está muy estandarizado

6.2.2.4 OPCIÓN 5: LonWorks

Plataforma estandarizada para el control de edificios, viviendas, industria y transporte, sería como el equivalente al KNX Europeo aunque mucho más lento.

6.2.2.5 OPCIÓN 6: Sistemas de control de procesos industriales

Son sistemas de aplicación industrial que se aplican para el control de edificios, son generalmente abiertos desarrollados con lenguajes de programación normalizados (norma IEC 61131-3) y que permiten la utilización de producto de diferentes fabricantes.

Ventajas

- Integran sistemas de lógica muy avanzados permitiéndonos el control de cualquier elemento de la instalación de un edificio.
- Costes más bajos que KNX.
- Gran versatilidad del control.

Inconvenientes

• Parte negativa necesitas conocimientos de programación importantes.

Si no lo hacemos centralizado los costes se disparan.

7 SOLUCIÓN ADOPTADA

Después de conocer las diferentes alternativas se toma la decisión de cuál será la opción que se usará definitivamente para cada una de las dos partes de nuestro proyecto.

7.1 ABASTECIMIENTO DE ENERGÍA ELÉCTRICA

7.1.1 Decisión de la alternativa

Para decidir cuál de las dos alternativas se va a elegir se tendrán en cuenta los siguientes aspectos:

- Coste.
- Toneladas de CO2 emitidas a la atmósfera.
- Impacto en el entorno.
- Robustez

Coste y TEPs

Comparando los presupuestos de ambos proyectos. El valor del coste de la línea aérea ha sido proporcionado por la empresa Electricidad Domingo Monserrat S.L. empresa con más de 30 años de experiencia en el sector:

COMPARACIÓN DE ALTERNATIVAS			
Coste TEPs			
Línea Aérea de M.T.	30.000€	0,65102	
Paneles solares + aerogenerador	18.521,18€	0	

Tabla 3. Comparativa de alternativas, en base al Coste y a las TEPs

Como se puede observar en la tabla el sistema de placas solares tiene valores más bajos en ambos aspectos y le sitúan como el más favorable en ambos casos.

Impacto en el entorno

Por lo que respecta al impacto en el entorno de una forma se tienen 12 paneles solares sobre el techado de un cobertizo y por el otro lado 5 apoyos metálicos de 15m con su aéreo de cable de aluminio. Se considera menos impacto el que tendrían los paneles solares.

Robustez

Se considerará más robusto el sistema de abastecimiento mediante una línea aérea de media tensión, sus posibilidades de fallo son muy bajas y en caso de fallo tiene una empresa como es Electra del Maestrazgo S.A. para solucionarlo.

Una vez vistos todos estos aspectos se decide optar por la opción de paneles solares, complementados con un aerogenerador y con una alternativa de un generador eléctrico (Alimentado con Gasolina) para los casos de emergencia.

7.1.2 Definición de la alternativa escogida

Como se cita anteriormente la alternativa escogida será la de colocar paneles solares y un aerogenerador. Se colocará también un generador eléctrico que funcionará por combustión de gasolina. El esquema de la instalación quedará como se muestra a continuación.

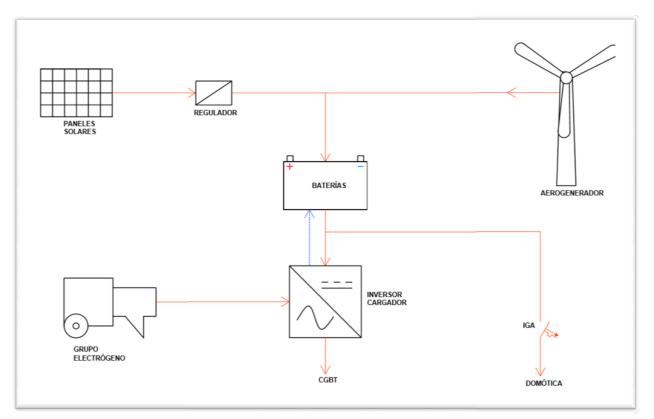


Ilustración 8. Esquema autoconsumo

7.1.2.1 Paneles Solares

Un panel solar se define como el dispositivo que aprovecha la energía de la radiación solar. El término comprende a los colectores solares utilizados para producir agua caliente mediante energía solar térmica y a los paneles fotovoltaicos utilizados para generar electricidad mediante energía solar fotovoltaica.

En este caso se trabajará con paneles solares fotovoltaicos, se estudiará el consumo que habrá en la Masía torre Algares en modo abierto y cerrado. Se diferencia entre estos dos modos porque al tratarse de una segunda vivienda, se apreciarán dos consumos medios muy diferenciados.

Modo abierto

Se trata de aquellos días en los que la Masía Torre Algares se encuentre habitada y por tanto, se considerará consumo medio en electrodomésticos, iluminación interior, iluminación exterior, equipo de presión, piscina...

CONSUMO DIARIO TOTAL EN MODO ABIERTO				
ELECTRODOMÉSTICOS IL. INTERIOR IL. EXTERIOR OTROS TOTAL				
5250 Wh	781 Wh	558 Wh	981 Wh	7570 Wh

Tabla 4. Consumos en Modo Abierto

• Modo Cerrado

En cuanto la masía se encuentre deshabitada, se necesita mantener unos consumos mínimos, el frigorífico, arcón congelador, autómata...

CONSUMO DIARIO EN MODO CERRADO			
CONS. PERMANENTES TOTAL			
2940 Wh 2940 Wh			

Tabla 5. Consumo en Modo Cerrado

Una vez conocidos los consumos diarios medios, teniendo en cuenta que el consumo en modo cerrado también estará presente en modo abierto, se puede afirmar que el consumo diario más desfavorable será de 7.570 Wh.

Horas de sol pico (HSP)

El rendimiento de las placas solares depende principalmente de las HSP (Hora solar pico), que es una unidad que mide la irradiación solar y se define como el tiempo en horas de una hipotética irradiación solar constante de 1000 W/m². Una hora solar pico equivale a 3,6 MJ/m² o, lo que es lo mismo, 1 kWh/m², tal y como se muestra en la siguiente conversión:

$$1HSP = \frac{1000W * 1h}{m^2}$$

1. Conversión de HSP a W/m2

A continuación se calculan las HSP de la zona.

HSP TORRE ALGARES			
MES	HSP	ÁNGULO	
Enero	3,29	50	
Febrero	4,59	40	
Marzo	5,28	35	
Abril	5,5	25	
Mayo	6,19	20	
Junio	6,37	20	
Julio	7,25	15	
Agosto	6,2	20	
Septiembre	5,67	35	
Octubre	5,27	40	
Noviembre	3,86	50	
Diciembre	3,24	55	
MEDIA ANUAL	5.23		

Tabla 6. HSP en la masía Torre Algares

Placas solares necesarias

Alto:

El número de placas solares necesarias se calculará en base al consumo diario, a las horas solares pico de la zona (HSP) y a la potencia de la placa elegida.

Para la instalación se elegirá un panel solar fotovoltaico de 200W de la marca Nousol. Las características del panel serán las siguientes:

Descripción: Panel solar policristalino Nousol
Potencia: 200W
Voltaje: 36V
Intensidad: 5,55A
Largo: 1320mm
Ancho: 992mm

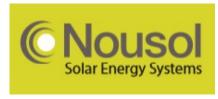


Ilustración 9. Panel solar fotovoltaico

A continuación se muestra la tabla utilizada para calcular el número de placas necesario para la instalación, además cabe recordar que los fabricantes aconsejan introducir un factor de corrección (F1) de 1.7 aproximadamente, debido al desgaste de las placas, que nunca funcionan a potencia ideal, etc.

$$\frac{CONSUMO\ DIARIO}{CARGA\ HORA} = CARGA\ NECESARIA\ POR\ HORA$$

CARGA NECESARIA POR HORA * F1= *CARGA NECESARIA POR HORA*

$$N\acute{\mathbf{U}}M.DE\ PLACAS = \frac{\text{*CARGA NECESARIA POR HORA*}}{\text{CARGA PLACA}}$$

NÚMERO DE PLACAS QUE VAMOS A NECESITAR							
CONSUMO DIARIO (Wh)	CARGA HORA(H)	CARGA NECESARIA POR HORA (W)	l F1	*CARGA NECESARIA POR HORA (W)*	CARGA PLACA (W)	NÚMERO PLACAS	DE
7570	5,23	1448,57	1,7	2462,57	200	12,31	

Tabla 7. Cálculo de placas necesarias

El número de placas necesarias será de 12 Placas.

7.1.2.2 Baterías

Para determinar las baterías necesarias, se requiere saber la cantidad de energía eléctrica que se pretende almacenar. Se considera que para una segunda vivienda será suficiente con una autonomía de cuatro días. Se considera que durante los supuestos cuatro días las baterías no cargan nada.

A continuación se muestra el cálculo de las baterías necesarias, para lo indicado anteriormente. Tener en cuenta que ahora ya no se aplica ningún factor de corrección.

DATOS	
Pot. Nec. Diaria	7570
Voltaje	24
Días de carga	4

$ENER.NEC.DIARIA \times AUTONOMÍA = CAPACIDAD TOTAL BATERÍAS$

ENER. NEC.	AUTONOMÍA	CAPACIDAD	TOTAL
DIA (Wh)	(D)	BATERÍAS(Wh)	
7570	4	37850	

La capacidad de las baterías vendrá definida en Amperios por lo tanto calcularemos

$$\frac{(Wh)}{(V)} = (Ah)$$

CAPACIDAD BATERÍAS					
ENER.NEC.	CARGA	NEC.	DIA	POR	_
DIA (Wh)	PLACA(Ah)			batería(Ah)	
7570	315,4167		1261,67		

La capacidad de las baterías debería de ser de 1261,67 A, se elige una batería de la marca Nousol con las siguientes características:

Nombre: Batería estacionaría OPzS 800

Voltaje: 2V

Capacidad: 1320Ah

Largo: 215mm Ancho:193mm Alto: 695mm

Ilustración 10. Batería Nousol OPzS 800

Se trata de una batería del tipo plomo ácido. Estás baterías deberán estar instaladas en una habitación ventilada, debido al hidrogeno que desprenden cuando están a punto de llegar al valor máximo de su carga nominal. El hidrógeno no es tóxico sin embargo una atmosfera con más de un 4% de hidrógeno es explosiva.

Estás baterías requieren de un mantenimiento anual que consiste en rellenar cada módulo con agua destilada.

A continuación se muestra cómo se van a conectar las baterías de la instalación.

3 ENTRADA MOLINO/PLACAS 2V 2V 2V 2V 1320Ah 1320Ah 1320Ah 1320Ah 1320Ah 1320Ah 12 7 2V 2V 2V 1320Ah 1320Ah 1320Ah 1320Ah 1320Ah 1320Ah **DIFERENCIA DE POTENCIAL (1-12) = 2 x 12 = 24 V**

CONEXIÓN BATERÍAS MASÍA TORRE ALGARES

Ilustración 11. Esquema conexión baterías

CARGA = 1320 Ah

El voltaje de las baterías es de 2V por unidad, por lo tanto lo que se va a hacer será conectar 12 baterías en serie para conseguir un voltaje de 24V.

7.1.2.3 Regulador

Se escoge un regulador MPTT. Debido a que con los reguladores MPPT se saca generalmente más rendimiento a los módulos fotovoltaicos, y permiten la utilización de paneles que no se pueden emplear con los reguladores PWM. También presenta otras ventajas como la posibilidad de añadir paneles en serie con un voltaje total

superior al del banco de baterías, gracias a ello también se evita en gran medida las típicas pérdidas por ir a bajo voltaje y mucha intensidad en corriente continua.

Ilustración 12 Regulador MPPT

El regulador será el que ajustará el voltaje que le tiene que entrar a las baterías en cada momento de su proceso de carga. Lo calcularemos en base al valor de voltaje en continua (24V).

 $CARGA POR PLACA \times NUMERO DE PLACAS = CARGA TOTAL$

$$\frac{CARGA\ TOTAL}{VOLTAJE} = AMPERAJE\ DEL\ REGULADOR$$

CARGA POR PLACA (W)	NUMERO DE PLACAS	CARGA TOTAL(W)		AMPERAJE DEL REGULADOR (A)
200	12	2400	24	100

El amperaje del regulador deberá de ser de 100 A. Aunque debido a que la carga de las baterías nunca será del 100% y que el proceso de carga de las baterías toma valores siempre mayores de 24V se elegirá un regulador de 80 A.

Las características del modelo elegido serán las siguientes:

NOMBRE:	Xantrex-MPPT HV
AMPERAJE:	80 A
VOLTAJE:	24 Vdc
V. MAX:	600Voc
DISPLAY:	Digital

7.1.2.4 *Inversor*

Por último se decidirá el inversor para la instalación. Para decidir el inversor que se va a colocar se realiza un listado de los consumos de la vivienda para conocer la simultaneidad de estos. Esto se hace porque el inversor se decide de la misma forma que se decidiría la potencia a contratar en una vivienda, a continuación se muestra una tabla con los elementos que influyen en el gasto de energía eléctrica que se separan en tres grupos de simultaneidad.

Lista de los Principales consumos							
Tipo	Consumo	Simultaneidad					
Lavadora	500	3					
Nevera	90	1					
Arcón congelador	120	1					
Ordenador	100	3					
TV	50	2,3					
Encimera	1500	2					
Microondas	1500	2					
Equipo de música	50	3					
Tostadora	500	4					
Lavavajillas	1000	3					
Extractor	1000	2					
Aspiradora	1000	3					
EQUIPO PRESIÓN	800	2,3					
ILUMINACIÓN INTERIOR	195,25	1					
ILUMINACIÓN EXTERIOR	139,5	1					

*SIMULTANEEDAD

- 1- Simultaneo con todos
- 2-Simultaneo con 2
- 3- Simultaneo con 3

Tabla 8. Consumos y simultaneidad

Con los consumos y la simultaneidad conocidos se procede a ver cuál de los tres grupos tendrá un consumo mayor.

Calculo de simultaneidad						
1	2	3				
544,75	5394,75	4044,75				

Tabla 9. Comparativa de grupos de simultaneidad

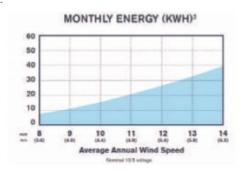
Por lo tanto el grupo de simultaneidad con consumo más alto es el número 2 con un consumo pico de **5394,75** W.

Se necesitará un inversor-cargador capaz de transformar la corriente continua a 24 V procedente de las baterías en corriente alterna a 220V para abastecer a la casa de energía eléctrica y capaz de hacer el proceso inverso, transformar la corriente alterna a 220V procedente del grupo electrógeno a corriente continua a 24 V para cargar las baterías.

Con estas prestaciones se escoge el inversor cargador Victron Multiplus C 5000 VA de la marca Nousol. Las características de este serán las siguientes:

MODELO: VICTRON MULTIPLUS C
POTENCIA: 5000 VA
VOLTAJE (dc): 24 V
VOLTAJE (ac): 230 V
CARGADOR: 120 A
TRANSFORMADOR: 50 A

Ilustración 13. Inversor cargador


7.1.2.5 Aerogenerador

Como se cita anteriormente se va incorporar también un aerogenerador, este aerogenerador será servirá de apoyo al sistema de placas solares. Por lo tanto significa que no es estrictamente necesario disponer de él pero en días nublados y de tiempo adverso sería la única fuente de abastecimiento de las baterías.

Se elige el aerogenerador **Air 30 24V 400W**. A continuación se muestra una imagen de este junto con sus características:

- * Diámetro del rotor: 1,17mts.
- * Comienza a funcionar a 3,6m/s.
- * 400W a 12.5m/s.
- * Incluye controlador de carga MPPT y de frenado. Se reduce la velocidad cuando las baterías están cargadas o con fuertes vientos.
- * Aspas de fibra de carbono, cuerpo de fundición de Aluminio y rotor con electroimanes de neodimio sin escobillas.
- * No incluye mástil (38mm de diámetro exterior).
- * Medidas (embalaje): 68x31x22 cm
- * Peso 6kg.

A continuación se muestran los datos de viento en la estación meteorológica de Cinctorres (ESPVA 120000012318B) situada a 10km en línea recta de la Masía Torre Algares. Esta es la estación meteorológica más cercana de la que disponemos datos, la otra estación cercana se haya a 15km en Villarruenglo.

	GICA DE	EN LA CINCTORRI	
MES	MAX (m/s)	MIN (m/s)	MEDIA (m/s)
ENERO	20	0	6
FEBRERO	22	0	8
MARZO	25	0	8,5
ABRIL	31	0	10
MAYO	27	0	9
JUNIO	22	0	8
JULIO	20	0	6
AGOSTO	22	0	5,5
SEPTIEMBRE	24	0	7
OCTUBRE	30	0	9,5
NOVIEMBRE	25	0	8,5
DICIEMBRE	27	0	7

Tabla 10. Datos mensuales del viento en la estación meteorológica de Cinctorres

Si se observa la media mensual se puede apreciar que en muchos momentos se encuentra cercana al punto máximo de funcionamiento del aerogenerador, además cabe recordar que la comarca de Els Ports es una de las comarcas de la Comunidad Valenciana por las que ha apostado una compañía eléctrica nacional para instalar aerogeneradores.

7.1.2.6 Grupo electrógeno

Cuando se realiza una instalación de autoconsumo fundamentada en energías verdes pero irregulares como son la energía solar y la eólica es muy recomendable instalar un dispositivo de emergencia de generación de energía. En nuestro caso vamos a instalar un grupo electrógeno que generará energía eléctrica mediante la combustión de diesel. Conociendo el consumo de la casa y considerando que si en algún momento fuera necesario poner en marcha el grupo electrógeno debería cubrir al 100% el máximo consumo de la vivienda. Se elige el generador eléctrico Inverter diesel monofásico serie súper silenciosa 72-75db de la marca Nousol, las características de este son las siguientes.

TIPO: Generador diesel
P.MAX: 5 kVA
ARRANQUE: Eléctrico
REFRIGERACIÓN: Agua
PESO: 168 Kg
LARGO: 870
ANCHO: 645
ALTO: 710

Ilustración 14. Grupo electrógeno supersilencioso

7.1.2.7 Planta de la instalación

En la siguiente imagen se muestra la planta de la masía torre algares, a su izquierda y en negro se muestra donde irá colocado el aerogenerador y las placas solares. En un color azul claro se muestra el recorrido de las zanjas que se realizarán para conectar tanto las placas solares como el aerogenerador con las baterías, situadas en la caseta de control (en rojo).

Ilustración 15. Planta del sistema de autoconsumo

7.1.2.8 Cableado del sistema

El cableado del sistema será bastante diverso debido a las variaciones en el amperaje. Se utilizará la siguiente tabla de secciones estandarizadas:

SECCIONES NORMALIZADAS (mm²)						
0,5	6	50	185			
0,75	10	70	240			
1	16	95	300			
1,5	25	120	400			
2,5	35	150	500			
4						

Tabla 11. Tabla secciones normalizadas.

Como marca el Reglamento Español de baja tensión para decidir el tipo de cable que se debe colocar, es necesario calcular la sección adecuada según criterio térmico y según la caída de tensión. Una vez calculadas las dos se decide la mayor de ellas.

Según criterio térmico.

Para saber la sección idónea según criterio térmico se necesita conocer la intensidad que pasará por el conductor esto se puede conseguir utilizando la siguiente fórmula:

$$I = \frac{P}{V}$$

Donde:

V → Tensión nominal de la línea (V)

I → Conductividad del conductor a la temperatura de servicio (m/Omh•mm2)

 $P \rightarrow Potencia(w)$

Una vez hecho esto se buscará la sección idónea según la colocación de los cables, el material del que este recubierto y la intensidad obtenida. Se obtendrá la sección de la siguiente tabla:

A		Conductores aislados en tubos empotrados en paredes aislantes		3x PVC	2x PVC		3x XLPE o EPR	2x XLPE o EPR					
A2		Cables multiconductores en tubos empotrados en paredes aislantes	3x PVC	2x PVC		3x XLPE o EPR	2x XLPE o EPR						
В		Conductores aislados en tubos ³ en montaje super- ficial o empotrados en obra				3x PVC	2x PVC			3x XLPE o EPR	2x XLPE o EPR		
B2		Cables multiconductores en tubos ² en montaje su- perficial o emprotrados en obra			3x PVC	2x PVC		3x XLPE o EPR		2x XLPE o EPR			
С	100	Cables multiconductores directamente sobre la pared ¹⁹					3x PVC	2x PVC		3x XLPE o EPR	2x XLPE o EPR		
E	(0)	Cables multiconductores al aire libre! Distancia a la pared no inferior a 0.3D%						3x PVC	,	2x PVC	3x XLPE o EPR	2x XLPE o EPR	
F	J.C.	Cables unipolares en contacto mutuo ⁶ : Distan- cia a la pared no inferior a D ⁶ 1							3x PVC			3x XLPE o EPR"	
G .	11 (m) (m) (m)	Cables unipolares sepa- rados minimo D ¹⁹									3x PVC**		3x XLPE o EPR
		mm ²	1	2	3	4	5	6	7	8	9	10	11
	Cobre	1,5 2,5 4 6 10 16 25 35 50 70 95 120 150 185 240	11 15 20 25 34 45 59	11,5 16 21 27 37 49 64 77 94	13 17,5 23 30 40 54 70 86 103	13,5 18,5 24 32 44 59 77 96 117 149 180 208 236 315 360	13 21 27 36 50 66 84 104 125 160 194 225 260 297 350 404	16 22 30 37 52 70 88 110 133 171 207 240 278 317 374 423	96 119 145 188 230 267 310 354 419 484	18 25 34 44 60 80 106 131 159 202 245 284 338 455 524	21 29 38 49 68 91 116 144 175 224 271 314 363 415 490 565	24 33 45 57 76 105 123 154 188 244 206 348 404 464 552 640	166 206 250 321 391 455 525 601 711 821

Tabla 12. Tabla del REBT. Intensidades admisibles (A) al aire 40°C. N° de conductores con carga y naturaleza del aislamiento

Una vez calculado la sección necesaria y la intensidad que soportará el cable habrá que tener en cuenta si este se encuentra agrupado con otros, en el caso que así sea se aplicará la siguiente fórmula:

$$I_Z = I_{Cable} \times f$$

 $I_{Cable}
ightarrow ext{Intensidad admisible del cable elegido}$

 $f \rightarrow$ Factor de corrección según la agrupación del cable.

 I_Z \rightarrow Valor real de corriente que soportará el cable agrupado.

El valor de f viene definido en el REBT y depende del agrupamiento de cables de la instalación, a continuación se muestra la tabla que define este valor:

Dunto	Diamonialia	Número de circuitos o cables multiconductores								
Punto	Disposición	1	2	3	4	6	9	12	16	20
1	Empotrados, embutidos, enterrados	1,0	0,80	0,70	0,70	0,55	0,50	0,45	0,40	0,40
2	Capa única sobre los muros o los suelos o bandejas no perforadas	1,00	0,85	0,80	0,75	0,70	0,70	0,70	0,70	0,70
3	Capa única en el techo	0,95	0,80	0,70	0,70	0,65	0,60	0,60	0,60	0,60
4	Capa única sobre bandejas perforadas horizontales o verticales	1,0	0,90	0,80	0,75	0,75	0,70	0,70	0,70	0,70
5	Capa única sobre escaleras de cables, abrazaderas, etc.	1,0	0,85	0,80	0,80	0,80	0,80	0,80	0,80	0,80

TABLA A. 52-3: FACTORES DE CORRECCIÓN POR AGRUPAMIENTO

Tabla 13. Tabla del REBT (factores de corrección por agrupamiento)

Todos los cables utilizados van a ser de cobre recubierto en PVC.

> Según la caída de tensión

Para calcular la sección del cable según el criterio de caída de tensión se utiliza la fórmula que viene definida según el REBT para corriente continua, se considerará una caída de tensión máxima del 3%:

$$S = \frac{2 \times I \times L}{e \times C}$$

$$e = \varepsilon \times U$$

Donde:

- S → Sección calculada (mm2)
- C → Conductividad del conductor a la temperatura de servicio (m/Omh•mm2)
- P → Potencia activa (w)
- L → Longitud de la línea (m)
- e → Caída de tensión máxima admisible (V)
- U → Tensión nominal de la línea (V)
- \mathcal{E} Tanto por ciento de caída de tensión admisible. (%)

En nuestro sistema de autoconsumo tendremos diferentes secciones hasta llegar a la vivienda, se distinguirán 10 secciones diferentes:

- Conexión entre Placas.
- Conexión entre las placas y el cuadro de control de la energía solar.
- Conexión entre el cuadro de conexión de la energía solar y el regulador.
- Conexión entre el regulador y las baterías.
- Conexión entre el molino y las baterías.
- Conexión entre el grupo electrógeno y el inversor.
- Conexión entre las baterías y el autómata.
- Conexión entre el inversor y las baterías.
- Conexión entre las baterías y el inversor.
- Conexión entre el inversor y la vivienda.

A continuación se decidirá la sección idónea para cada tramo calculada según el criterio térmico y según la caída de tensión.

Cálculo de sección según criterio térmico

Primero se calculará el valor de la Intensidad que pasará por el cable para cada tramo:

Tramo	Tensión (V)	Potencia (W)	Intensidad (A)
Placa 1 - Placa 2	36	200	5,56
Placa 2 - Placa 3	72	400	5,56
Grupo 3 placas - Control Placas	108	600	5,56
Control placas - Regulador	108	2400	22,22
Regulador - Baterías	24	2400	100,00
Molino - Baterías	24	400	16,67
Baterías - Inversor	24	5000	208,33
Generador - Inversor	220	5000	22,73
Baterías - Autómata	24	5	0,21
Inversor - Vivienda	220	5000	22,73

Tabla 14. Intensidades del sistema según tramo.

Una vez conocidas las intensidades que transcurrirán por cada tramo calcularemos la sección apropiada según lo que indique la tabla 8.

	SECCIÓN SEGÚN CRITERIO TÉRMICO										
Tramo	Categoría en tabla	I _{adm} (A)	Cabe agrupado	Factor Corrección	I _{adm} Corregida(A)	SECCIÓN (mm²)					
Placa 1 - Placa 2	(B) 2 x PVC	15	2 entubados	1	15	1,5					
Placa 2 - Placa 3	(B) 2 x PVC	15	2 entubados	0,8	12	1,5					
3 placas - Control Placas	(B) 2 x PVC	15	No	1	15	1,5					
Control placas - Regulador	(B) 2 x PVC	36	2 enterrados	0,8	28,8	6					
Regulador - Baterías	(B) 2 x PVC	104	No	1	104	35					
Molino - Baterías	(B) 2 x PVC	21	2 enterrados	0,8	16,8	2,5					
Baterías - Inversor	(B) 2 x PVC	225	No	1	225	120					
Generador - Inversor	(B) 2 x PVC	27	No	1	27	4					
Baterías - Autómata	(B) 2 x PVC	0.21	No	1	15	1,5					
Inversor - Vivienda	(B) 2 x PVC	27	No	1	27	4					

Tabla 15. Cálculo de la sección idónea según criterio térmico.

Conocido ya el valor de las secciones según el criterio térmico se calcularán las secciones según caída de tensión.

Cálculo de sección según caída de tensión

Se calculará según lo indicado anteriormente, a continuación se muestra una tabla donde aparecen las secciones ideales según una caída de tensión nunca mayor del 3%.

SECCIÓN SEGÚN CAÍDA DE TENSIÓN										
Tramo	<i>I</i> (A)	U (V)	P (W)	Caída de tensión 3% (V)	Longitud (m)	Conductividad $(m/\Omega \times mm^2)$	SECCIÓN (mm²)			
Placa 1 - Placa 2	5,56	36	200	1,08	1	56	0,18			
Placa 2 - Placa 3	5,56	72	400	2,16	1	56	0,09			
3 Placas - Control Placas	5,56	108	600	3,24	2	56	0,12			
Control placas - Regulador	22,22	108	2400	3,24	60,23	56	14,75			
Regulador - Baterías	100,00	24	2400	0,72	2	56	9,92			
Molino - Baterías	16,67	24	400	0,72	111.62	56	92,28			
Baterías - Inversor	208,33	24	5000	0,72	2	56	20,67			
Generador - Inversor	22,73	220	5000	6,6	4	56	0,49			
Baterías - Autómata	0.21	24	5	0,72	15	56	0,16			
Inversor - Vivienda	22,73	220	5000	6,6	10	56	1,23			

Tabla 16. Cálculo de la sección idónea según la caída de tensión

Las secciones obtenidas anteriormente no están estandarizadas por lo tanto siguiendo la tabla 8 se escogerá la sección estandarizada idónea para cada tramo. Para ello se escogerá la sección normalizada inmediatamente superior a la obtenida en la tabla 13.

Según CDT						
Sección (mm²)	Sección Normalizada (mm²)					
0,18	0,5					
0,09	0,5					
0,12	0,5					
15,92	16					
9,92	10					
82,67	95					
20,67	25					
0,49	5					
20,67	25					
0.16	0.5					
1,23	1,5					

Tabla 17. Elección de la sección normalizada

Comparativa y decisión de las secciones de cable

Para decidir la sección del cable se comparará la sección obtenida según criterio térmico y la obtenida según caída de tensión. Se escogerá la más desfavorable, es decir, la más grande. A continuación se muestra una tabla comparativa.

	SEGÚN CDT	SEGÚN CT
Tramo	Sección Normalizada (mm²)	Sección Normalizada (mm²)
Placa 1 - Placa 2	0,5	<mark>1,5*</mark>
Placa 2 - Placa 3	0,5	1,5*
Grupo 3 placas - Control Placas	0,5	1,5*
Control placas - Regulador	<mark>16</mark>	4
Regulador - Baterías	10	<mark>35</mark>
Molino - Baterías	<mark>95</mark>	2,5
Baterías - Inversor	25	<mark>120</mark>
Generador - Inversor	5	4
Baterías - Autómata	0.5	<mark>1,5</mark>
Inversor - Vivienda	1,5	4

Tabla 18. Comparativa secciones

Cabe remarcar que los valores marcados con (*), se trata de las secciones de los cables que conectan las placas entre sí y con el cuadro de control de generación solar, se colocarán de una sección de 4mm² debido a que irán unidos mediante conectores del tipo MC4 y estos son para secciones a partir de 4mm².

Ilustración 16. Conector MC4

Por lo tanto el cableado que se colocará en el sistema de abastecimiento de energía será el siguiente.

CABLEAI	DO DEL SISTEMA DE A	BASTECIM	IENTO DE E	NERGIA	
Tramo	Sección Normalizada (mm²)	Longitud (m)	Función	Modelo	Color
Placa 1 - Placa 2	4	1	Positivo	H07VK4 R	ROJO
PidCd I - PidCd Z	4	1	Negativo	H07VK4 N	NEGRO
Placa 2 - Placa 3	4	1	Positivo	H07VK4 R	ROJO
Placa 2 - Placa 3	4	1	Negativo	H07VK4 N	NEGRO
3 Placas - Control Placas	4	2	Positivo	H07VK4 R	ROJO
5 Flacas - Collition Flacas	4	2	Negativo	H07VK4 N	NEGRO
Control placas -	16	60,23	Positivo	RVK 1X16	NEGRO
Regulador	16	60,23	Negativo	RVK 1X16	NEGRO
Pogulador Patorías	35	2	Positivo	RVK 1X35	NEGRO
Regulador - Baterías	35	2	Negativo	RVK 1X35	NEGRO
Molino - Baterías	95	111,62	Positivo	RVK 1X95	NEGRO
IVIOIIIIO - Baterias	95	111,62	Negativo	RVK 1X95	NEGRO
Baterías - Inversor	120	2	Positivo	RVK 1X120	NEGRO
Baterias - inversor	120	2	Negativo	RVK 1X120	NEGRO
Generador - Inversor	4	4	Línea	H07VK4 M	MARRÓN
Generador - Inversor	4	4	Neutro	H07VK4 A	AZUL
Baterías - Autómata	1,5	15	Positivo	H07VK1,5 R	ROJO
Daterias - Automata	1,5	15	Negativo	H07VK1,5 N	NEGRO
Inversor Vivienda	4	15	Línea	H07VK4 M	GRIS
Inversor - Vivienda	4	15	Neutro	H07VK4 A	AZUL

Tabla 19. Características del cable necesario por tramos.

7.1.2.9 Definición de las conexiones por tramo

Una vez conocidas las secciones y el tipo de cables que se utilizará, quedará totalmente definido el esquema de conexión del sistema. A continuación, se muestra un esquema del sistema de captación de energía con el cableado por tramo definido.

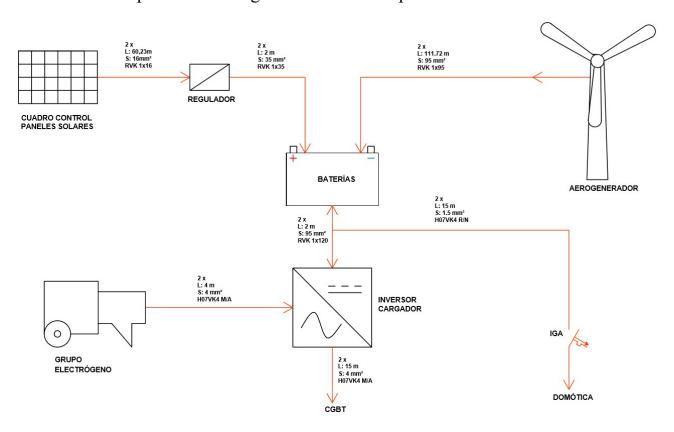


Ilustración 17. Esquema sistema de abastecimiento de energía con información del cableado

Faltará definir las conexiones en la zona de captación solar, para ello debemos saber que las placas tienen una caída de tensión a máximo rendimiento de 36 V con un amperaje de 5.5 A. Se conectará en serie tres placas para conseguir un voltaje de 108 V a 5.5 A, al tener 12 placas quedarán cuatro grupos de tres placas. El positivo de cada uno de estos cuatro grupos se conectará a un fusible seccionador de 6A que servirá para controlar cada grupo. Finalmente estos grupos se conectaran en paralelo en un fusible seccionador (uno para cada polo), estos fusibles controlarán la zona de abastecimiento por paneles solares. A continuación se muestra un esquema de lo explicado anteriormente.

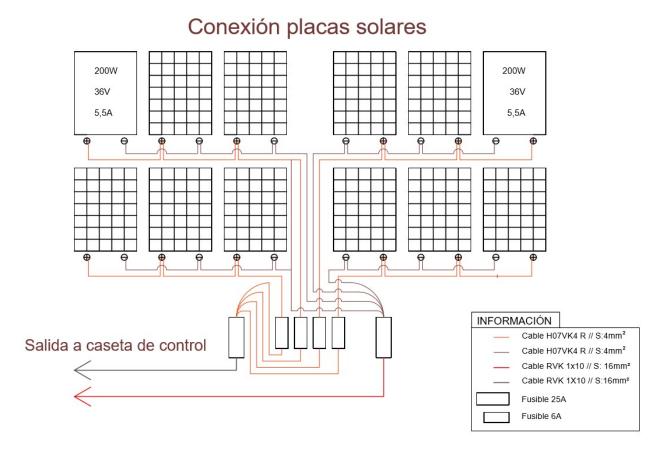


Ilustración 18. Esquema conexión placas.

7.1.2.10 Soporte del sistema de captación solar

El soporte de los captadores solares hará también las funciones de parking y pequeño almacén. Se diseñará un soporte telescópico capaz de trabajar en cuatro posiciones diferentes:

- 22° → Posición invernal. (Junio, Julio, Agosto).
- 35° → Posición primavera-otoño (Febrero, Octubre).
- 45° → Posición primavera-otoño (Septiembre, Marzo).
- 57° → Posición invierno (Noviembre, Diciembre, enero).

Soporte de Verano a 22º

A continuación, se muestra la perspectiva de la caseta diseñada como almacén/parking que servida de anclaje para el soporte de los paneles solares. Los paneles se encuentran en posición de verano.

Placas posición verano 22º

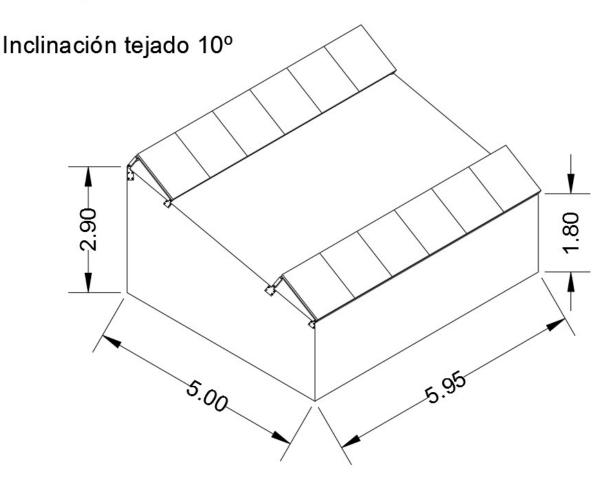


Ilustración 19. Porche multiusos con paneles solares en el tejado. Posición verano.

Para la colocación de las placas se diseñará un soporte telescópico. Como particularidades destaca la posibilidad de rotación en todos sus anclajes con la estructura. Se ve el detalle a continuación.

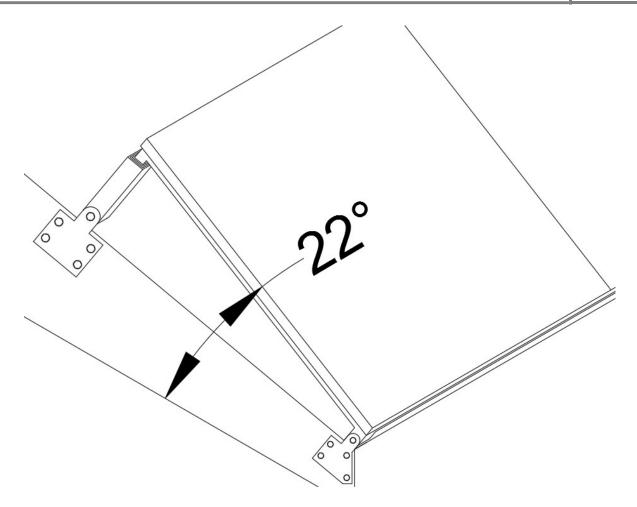


Ilustración 20. Soporte telescópico de los paneles solares en la posición de verano.

Se observa que el soporte está anclado con dos pletinas totalmente diferentes diseñadas según las limitaciones de la estructura. En esta imagen se muestran las pletinas de la parte baja del tejado.

Soporte de invierno a 57º

A continuación, se muestra la perspectiva de la caseta diseñada como almacén/parking que servida de anclaje para el soporte de los paneles solares. Los paneles se encuentran en posición invernal.

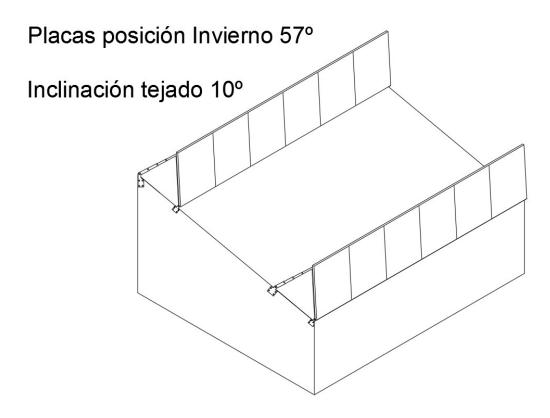


Ilustración 21. Porche multiusos con paneles solares en el tejado. Posición Invierno

El viento podría ser un inconveniente para nuestro soporte en su posición invernal pero gracias al cerro que hay ubicado en la parte Nord-oeste de la torre algares. Hace que los vientos fuertes de la zona sean siempre el Levante y el Ostro que no pondrán en peligro nuestro soporte.

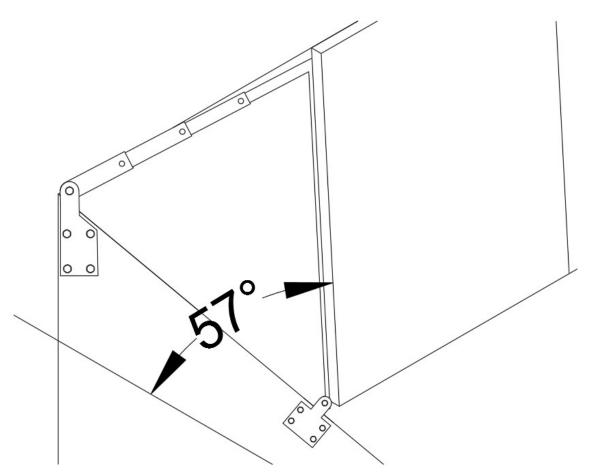


Ilustración 22. Soporte telescópico de los paneles solares en la posición de invierno.

Se observa que el soporte está anclado con dos pletinas totalmente diferentes diseñadas según las limitaciones de la estructura. Además también se observa el soporte con la barra telescópica totalmente desplegada. En esta imagen se muestran las pletinas de la parte alta del tejado.

7.1.2.11 Diseño de la caseta de control

La caseta de control situada en el interior del patio entre las dos masías requerirá una modificación para ser capaz de albergar todos los elementos que se requieren en la vivienda. El ancho interior de la misma se mantendrá en 3.60m y el largo interior se ampliará de 4,60m a 7.30m. A continuación se muestra la planta de la caseta donde se muestra su distribución interior.

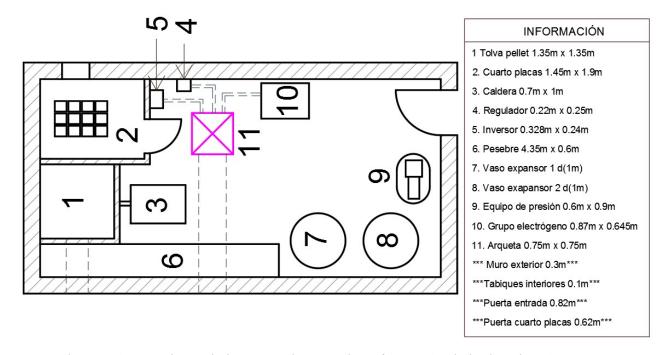


Ilustración 23. Planta de la caseta de control e información de la distribución interna.

Se observa que las baterías se encuentran ubicadas en una sala a parte, esto es debido a la necesidad de ventilación, la sala se ventilará mediante la ventana que se observa en la figura. Esto se hará debido a que las baterías desprenderán hidrógeno en el proceso de carga. El hidrógeno es explosivo cuando su concentración en el aire supera el 4%.

7.2 DOMÓTICA

7.2.1 Decisión de la alternativa

Para decidir cuál de las dos alternativas vamos a elegir se tendrán en cuenta los siguientes aspectos:

- Coste.
- Flexibilidad en los componentes.
- Fiabilidad frente a ruidos eléctricos
- Nivel de la lógica integrada
- Versatilidad del control

La alternativa se escogerá mediante un cuadro de decisiones, las valoraciones irán del 1 al 4, siendo uno el más desfavorable y 4 el más favorable.

	COSTE	FLEXIBILIDAD EN LOS COMPONENTES	FIABILIDAD FRENTE A RUIDOS	NIVEL DE LA LÓGICA INTEGRADA	VERSATILIDAD DEL CONTROL
SISTEMA PROPIETARIO	3	1	3	2	1
X10	4	3	1	1	2
KNX	1	4	3	2	3
AUTÓMATA INDUSTRIAL	2	3	4	4	4

Tabla 20. Cuadro para la toma de decisiones

Ahora se sumarán todos los valores asignados y la alternativa que obtenga el valor más alto será la más indicada según las condiciones impuestas.

VALORACIÓN FINAL	
SISTEMA PROPIETARIO	11
X10	11
KNX	15
AUTÓMATA INDUSTRIAL	18

Tabla 21. Comparación de alternativas

Por lo tanto, se escoge la opción de usar un autómata industrial para controlar los componentes domóticos que se instalarán en la masía Torre Algares.

7.2.2 Definición de la alternativa escogida

Como se cita anteriormente se decide instalar un autómata programable para dirigir los componentes domóticos de la masía Torre Algares. Se decide utilizar un autómata de la gran variedad que ofrece la marca Schneider Electric.

7.2.2.1 Autómatas programables Schneider Electric

Schneider Electric ofrece una gran variedad de autómatas programables, aunque cada uno de ellos está ideado para realizar una serie de tareas. En base a se elegirá el que más se acople en el caso de la masía Torre Algares. Existen cuatro familias de autómatas en Schneider:

- Gama básica. Los M221, M241 y M251, son los más baratos de la marca y sus aplicaciones no van más lejos que controlar una máquina.
- De alta velocidad de lectura. El M258, es un autómata con una alta velocidad de lectura y transmisión de datos ideal para situaciones en las que se necesita controlar diferentes servos, analizar los datos recibidos y dar respuestas en unos tiempos mínimos.
- De control de procesos. El M340 y el M580. El primero más básico que el segundo. Estos autómatas no tienen tanta velocidad como el descrito anteriormente pero son ideales para controlar plantas y procesos.
- Autómatas de gama alta. Se trata de los Quantum y los Premium que son autómatas con prestaciones muy altas, para procesos industriales muy complejos, con un precio acorde con sus posibilidades.

En el caso de la masía Torre Algares se busca domotizar una vivienda rural autosuficiente y para ello se necesita un autómata de proceso en el que no será imprescindible una gran velocidad del PLC, tampoco necesitaremos un autómata ideado para procesos muy complejos, ya que no se trata de automatizar una fábrica sino de domotizar una vivienda. Por lo tanto se elige el M340, que se detallará a continuación.

7.2.2.2 Modicon M340

Se trata de un autómata extremadamente compacto, incluye toda la flexibilidad y los servicios de un autómata de gama alta. En el centro de la aplicación, ofrece soluciones integradas de Plug&Work con otros dispositivos Telemecanique. Directamente sobre su escritorio, la gran capacidad de la oferta Unity facilita y reduce el tiempo de programación.

Ilustración 24. Modicon M340

Las características de este autómata son:

- AVANZADO: 7 K instrucciones / ms; 4 Mb de memoria de programa; 256 Kb de datos.
- COMPACIDAD: 3 puertos de comunicación integrados en el procesador; 100 mm alto, 32 mm ancho y 93 mm profundidad; Módulos de entradas/salidas digitales de alta densidad de 64 vías en 32 mm de anchura.
- COMUNICACIÓN, CON SUS PUERTOS INTEGRADOS: Bus de máquina e instalación CANopen; red Ethernet TCP / IP - Transparent Ready; enlace serie

Modbus o modo de caracteres; acceso remoto a través de RTC, GSM, Radio o ADSL.

- ESPECIALIZACIÓN: Módulos de contaje con funciones listas para su utilización; biblioteca de bloques de funciones dedicada con control de movimiento. MFB y (Motion Function Blocks) en el estándar PLCopen; biblioteca de bloques de regulación avanzada orientada al control de máquinas.
- INNOVACIÓN: Puerto USB como estándar; servidor web integrado; gestión de fichero de recetas a través del protocolo FTP; tarjeta de memoria SD Card "Plug and Load"; no requiere pila.
- SOLIDEZ: Arquitectura en rack que permite la conexión y la desconexión de los módulos en tensión y en funcionamiento (Hot-Swap); excede sobradamente los estándares relativos a choques, vibraciones, temperatura, altitud y resistencia a las perturbaciones eléctricas; modicon M340 dispone, como estándar, de servicios exclusivos habitualmente reservados a los autómatas de categoría superior.

7.2.2.2.1 Estructura del M340

El Modicon M340 estará compuesto por uno (configuración monorack) o varios racks (configuración multirack), una fuente de alimentación (por rack), un procesador y varios modulos de entradas, salidas digitales y analógicas. Tanto el tipo de configuración que utilizaremos, como el numero de módulos que se van a colocar dependerá de las necesidades que nos pida cubrir el cliente. Para empezar vamos a mostrar los diferentes tipos de Racks, procesadores, modulos de entradas, módulos de salidas, etc. Que se le pueden acoplar al M340.

Rack

El rack es un soporte metálico que permite fijar los diferentes módulos de nuestro autómata, este a su vez se fija al armario mediante un carril DIN. Los racks integran un Bus X que nos sirve tanto para la alimentación de los módulos como para la distribución de las señales de control y de datos para el conjunto del autómata.

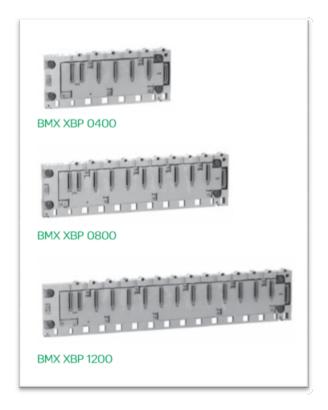


Ilustración 25. Racks disponibles para el Modicon M340

Como hemos dicho antes existe la configuración monorack y la configuración multirack (conecta 2 o 4 racks mediante un bus X). En nuestro caso usaremos la configuración monorack.

Existirá una configuración que siempre se respetará en los Racks, las posiciones de este se ocuparán como se muestra a continuación.

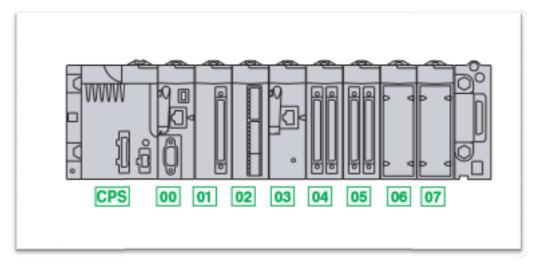


Ilustración 26. Posiciones de un rack de 8 módulos.

Fuente de alimentación

Los módulos de alimentación están destinados a la alimentación de cada rack y sus módulos instalados. Están disponibles dos tipos de módulos de alimentación:

- Módulos de alimentación para red de corriente alterna a 220V.
- Módulos de alimentación para red de corriente continua 24V o 48V.

Elegiremos uno u otro según la red de alimentación o la potencia necesaria.

Irá fijado en la posición CPS del rack, más abajo se muestra una imagen de las fuentes de alimentación para el Modicon M340.

Ilustración 27. Fuentes de alimentación para el Modicon M340.

Nuestra fuente de alimentación tendrá en la parte frontal:

- Un LED que indicará (en verde) que hay tensión, en el Rack.
- Un pulsador de RESET en forma de punta de lápiz.
- Bornero de conexión a la red.
- Bornero para la conexión del relé de alarma.

Procesador

El procesador será el cerebro de nuestro autómata. El trabajo de nuestro procesador consistirá en llevar a cabo el ciclo de scan, que consistirá en primer lugar en la lectura de las entradas, acto seguido leerá el programa que le hemos insertado y finalmente activará las salidas pertinentes según la lectura.

Los módulos de procesadores Modicon M340 se suministrarán con la tarjeta de memoria Flash BMX RMS 008MP. Esta tarjeta garantiza lo siguiente de manera transparente:

- La copia de seguridad de la aplicación (programa, símbolos y constantes) soportada en memoria RAM interna volátil del procesador.
- La activación del servidor Web, clase B10 Transparent Ready (con procesadores avanzados BMX P34 2020 / 2030). Esta tarjeta se puede sustituir por otra que garantice además el almacenamiento de archivos

Irá situado en la posición 00 del rack, en la siguiente imagen se muestran los procesadores que disponemos para el Modicon M340.

Ilustración 28. Diferentes procesadores para el Modicon 340.

En la parte frontal del procesador podremos encontrar:

- Conector USB mini para conectar al PC y intercambiar datos
- Conector Ethernet (1 o 2).
- Conector CanOpen (BMX 2010/2030).

Modulo de entradas digitales

Son los módulos que recibirán las señales de la bornera de relés de entrada mediante un cable BMX FCC 103 usando un bornero desenchufable de alta densidad. Tendremos módulos que admitirán 32 entradas y otros que admitirán 64.

A continuación en la imagen se mostrarán varios de los modulos de entradas de los que disponemos para nuestro autómata, en ella se mostrarán algunas de sus características

Ilustración 29. Módulos de entradas de alta densidad para el Modicon M340.

En la zona superior de la parte frontal aparecerán 32 o 64 LEDs que nos indicarán (con luz verde) que la entrada esta activa.

Módulos de salidas digitales

Son los módulos que darán las salidas según las ordenes del procesador y las enviarán a la bornera de relés de salidas mediante un cable BMX FCC 103 usando un bornero desenchufable de alta densidad. Tendremos módulos que sacarán 32 salidas y otros de 64.

En la imagen que se muestra a continuación aparecen varios de los módulos de entradas de los que disponemos para nuestro autómata, en ella se mostrarán también algunas de sus características.

BMX DDO 16•2 BMX DRA 0805/1605

BMX DDO 3202K BMX DDO 6402K

Tipo de corriente	Tensión de entrada	Conexión mediante (1)	Conformidad IEC 1131-2	Modularidad (n.º de vías)	Referencia	Peso kg
 estática	24 V / 0,5 A (lógica positiva)	Bornero desenchufable de 20 contactos con tornillo o con resorte	Sí	16 salidas protegidas	BMX DDO 1602	0,120
	24 V/0,5 A (lógica negativa)	Bornero desenchufable de 20 contactos con tornillo o con resorte	No IEC	16 salidas protegidas	BMX DDO 1612	0,120
	24 V/0,1 A (lógica positiva)	1 conector de 40 contactos	Sí	32 salidas protegidas	BMX DDO 3202K	0,110
		2 conectores de 40 contactos	Sí	64 salidas protegidas	BMX DDO 6402K	0,150
\sim triacs	100240	Bornero desenchufable de 20 contactos con tornillo o con resorte	-	16 salidas	BMX DAO 1605	0,140
 o ∼ relé	== 1224 V/3 A, ∼ 24240 V/3 A	Bornero desenchufable de 20 contactos con tornillo o con resorte	SI	8 salidas sin proteger	BMX DRA 0805	0,145
	24 V/2 A, ∼ 240 V/2 A	Bornero desenchufable de 20 contactos con tornillo o con resorte	Sí	16 salidas sin proteger	BMX DRA 1605	0,150

⁽¹⁾ Mediante conector, módulo suministrado con tapa(s).

Ilustración 30. Módulos de Salidas de alta densidad para el Modicon M340

En la zona superior de la parte frontal aparecerán 32 o 64 LEDs que nos indicarán (con luz verde) que la salida esta activa.

7.2.2.3 Personalización del M340

Para diseñar el Modicon M340 en base a las necesidades demandadas en la masía torre algares se requerirá conocer a fondo todas las necesidades que se automatizarán. Estas necesidades van a definir todas las entradas y salidas que serán necesarias. Con esta información se elegirá el rack, el procesador y los módulos de entradas y salidas idóneos.

7.2.2.3.1 Análisis de las entradas y salidas

Para llevar a cabo el cálculo de las entradas y salidas del autómata, se analizará cada uno de los puntos que se quiera domotizar y según la forma en la que se decida que actúe se calculan las entradas y salidas que necesitará.

Puerta automática

La puerta automática estará situada en la pista que llega a la masía. Se abrirá y cerrará mediante la aplicación del teléfono móvil o desde el mando. Se dispondrá de timbre también.

	PUERTA AUTOMÁTICA					
	Entradas		Salidas			
	MANDO CONTROL REMOTO	1	MOTOR PUERTA	1		
	PULSADOR TIMBRE	1	TIMBRE	1		
TOTAL		2		2		

Iluminación exterior

La iluminación exterior que se desea controlar constará de dos farolas en la era, una farola en el parking, 2 en la zona de la barbacoa y dos farolas en el patío. Estás se podrán programar (Hora de arranque y hora de paro) para disponer de una iluminación exterior cuando la vivienda se encuentre habitada. Además todas ellas se podrán poner en marcha tanto desde un pulsador como desde la aplicación móvil.

	ILUMINACIÓN EXTERIOR					
	Entradas	Salidas				
	PULSADOR ERA	1	LUZ ERA	1		
	PULSADOR PARKING	1	LUZ PARKING	1		
	PULSADOR BBQ	1	LUZ BBQ	1		
	PULSADOR PATÍO	1	LUZ PATÍO	1		
TOTAL		4		4		

Iluminación Interior

Se refiere a todos los puntos de luz que desearemos controlar en el interior de la casa. Controlaremos el encendido y apagado de las luces del Salón, sala cristalera, habitación principal, baño de la habitación principal y estudio. Además de la iluminación de estas zonas también se controlará la iluminación de las zonas comunes (Entrada, escalera pb/p1, pasillo y escalera p1/p2) que se pondrán en marcha desde la pantalla/smarthphone o desde los detectores de presencia situados en dichos lugares. Cabe destacar que el tiempo de encendido de las luces en las zonas comunes cuando se enciendan por detección de presencia vendrán regulados por temporizadores, los tiempos de los cuales se podrán modificar desde la pantalla/smarthphone.

La iluminación del estudio será regulable (Entrada analógica) y se estudiará más adelante.

	ILUMINACIÓN INTERIOR						
	Entradas	Salidas					
	DETECTOR ENTRADA	1	LUZ ENTRADA	1			
	DETECTOR ESCALERA PB/P1	1	LUZ ESCALERA	1			
	DETECTOR PASILLO P1	1	LUZ PASILLO	1			
	DETECTOR ESCALERA P1/P2	1	LUZ ESCALERA	1			
	PULSADOR SALA CRISTALERA	1	LUZ SALA CRISTALERA	1			
	PULSADOR SALÓN	1	LUZ SALA DE ESTAR	1			
	PULSADOR WC PPAL	1	LUZ BAÑO	1			
	PULSADOR HAB PPAL	1	LUZ HAB. PPAL	1			
TOTAL		8		8			

Seguridad

En seguridad se controlará tanto la intrusión como la prevención de inundación, reventón de tuberías... Se distinguirá entre alarma y prevención.

• Alarma

La alarma será el sistema de protección que se usará para evitar intrusiones en la casa. Se conectará al salir del modo abierto en el sistema, esto se hará desde nuestra pantalla o Smartphone. También se controlará el posible robo de las placas solares que estarán unidas entre sí mediante fibra óptica. En el caso de abrirse cualquier ventana, puerta, que algún detector del interior de la casa detectará presencia, que

se detecte un corte en la fibra óptica, o que se abra la puerta automática de la pista se avisará en la pantalla/smarthphone avisando del incidente. Para conseguir esto serán necesarias las siguientes entradas y salidas.

	SEGURIDAD. ALAR	MA		SEGURIDAD. ALARMA					
	Entradas		Salidas						
	FIBRA ÓPTICA PLACAS	1							
	DETECTOR IMAN PUERTA PPAL	1							
	DETECTOR IMAN CORRAL	1							
	DETECTOR IMAN S.V1	1							
	DETECTOR IMÁN S.V2	1							
	DETECTOR IMAN PB.V1	1							
	DETECTOR IMÁN PB.V2	1							
	DETECTOR IMAN PB.V3	1							
	DETECTOR IMÁN PB.V4	1							
	DETECTOR IMAN PB.V5	1							
	DETECTOR IMÁN PB.V6	1							
	DETECTOR IMAN PB.V7	1							
	DETECTOR IMÁN PB.V8	1							
	DETECTOR IMAN P1.V1	1							
	DETECTOR IMÁN P1.V2	1							
	DETECTOR IMAN P1.V3	1							
	DETECTOR IMÁN P1.V4	1							
	DETECTOR IMAN P1.V5	1							
	DETECTOR S.CRISTAL	1							
	DETECTOR S.CRISTAL 2	1							
	DETECTOR IMAN T.V1	1							
	DETECTOR IMÁN T.V2	1							
	DETECTOR IMÁN T.V3	1							
	FINAL DE CARRERA PUERTA EXT.	1							
TOTAL		24		0					

• Prevención

El sistema de prevención será el encargado de dar el aviso en caso de haber alguna fuga de agua, avisará si el nivel del depósito de abastecimiento de agua, el nivel de la tolva de pellet o el nivel de las baterías es demasiado bajo. En el caso de que la temperatura baje de los 2 grados vaciará todo el sistema de tuberías de la vivienda, se pretende también que en el caso de abandonar la vivienda solo se queden en activas las tomas de fuerza que alimentan a los consumos activos en modo cerrado y que se corte la entrada de agua en la vivienda. El sistema de prevención también

avisará en caso de detectar que la persiana de la piscina se encuentra abierta en modo cerrado. Todo esto se conseguirá mediante las siguientes entradas y salidas.

El control del nivel del depósito, la tolva de pellet, la carga de las baterías y la sonda de temperatura son cuatro entradas analógicas que se estudiarán más adelante.

	SEGURIDAD. PREVENCIÓN						
	Entradas		Salidas				
	DETEC. INUND. COCINA	1	EVALVULA ENTRADA	1			
	DETECTOR INUN. WC PB.1	1	CONTACTOR MODO ABIERTO	1			
	DETECTOR INUND. WC PB.2	1	EVALVULA VACIADO	1			
	DETECTOR INUND. WC P1.1	1					
	DETECTOR INUN. WC P1.2	1					
	DETECTOR INUND. BODEGA	1					
	FINAL DE CARRERA PERS. PISC.	1					
TOTAL		7		3			

Piscina

La piscina, situada frente al parking, dispondrá de una iluminación tanto interior como exterior, una persiana que cerrará mediante un motor accionado mediante un pulsador o desde el Smartphone. También dispondrá de un sistema de depurado de agua basado en la electrólisis. Según estas necesidades se definen las siguientes entradas y salidas.

	PISCINA						
	Entradas		Salidas				
	PULS. INT. PISCINA	1	ILUM. INT. PISCINA	1			
	PULS. EXT. PISCINA	1	ILUM. EXT. PISCINA	1			
	PULS. PERS. CUBREPISC.	1	MOTOR PERS. CUBREPISC.	1			
			MARCHA ELECTRÓLISIS	1			
TOTAL		3		4			

Debido a la distancia entre el autómata y la piscina, las entradas y salidas no irán directas al autómata si no que se comunicará su información mediante Ethernet usando un cable RJ45.

Control del consumo

Para controlar el consumo de la vivienda se colocarán en la acometida de entrada un amperímetro y un voltímetro que mediante señal analógica comunicarán al autómata el consumo de la vivienda en cada momento.

Esto se conseguirá mediante dos entradas analógicas que se estudiarán más abajo

Control del consumo				
Entradas			Salidas	
	-	-	-	-
TOTAL		-		-

Climatización

Para la climatización se tendrá en cuenta que se trata de una vivienda rural de montaña situada a 1100m de asnm, debido a esto no se valora la refrigeración de la casa y solo dispondremos de una caldera de pellet para la calefacción. Desde la pantalla o smarthphone se controlará la puesta en marcha de la caldera y se podrá también seleccionar las zonas que deseamos climatizar. Se colocarán además termostatos que actuarán directamente sobre la electroválvula sin pasar por el autómata. A continuación se muestran las entradas y salidas necesarias para el control de la climatización.

	CLIMATIZACIÓN		
	Entradas	Salidas	
		MARCHA CALDERA	
		EV HAB.1	1
		EV. HAB. 2	1
		EV HAB. 3	1
		EV SALA C	1
		EV ESTUDIO	1
TOTAL			5

Riego

Se distinguirán 4 zonas en el riego. Se distinguen 4 zonas debido a que el riego se llevará a cabo a la presión de salida del depósito, se reúnen en cada zona los árboles que se sitúan a la misma altura y se quieren regar. Se distinguen 4 alturas diferentes que serán las que marcarán las 4 zonas. El recuento de entradas y salidas quedará así:

	RIEGO			
	Entradas		Salidas	
	PULSADOR BALSA	1	EV_BALSA	1
	PULSADOR MASIA VIEJA	1	EV_MASÍA VIEJA	1
	PULSADOR ERA	1	EV_ERA	1
	PULSADOR PISCINA	1	EV_PISCINA	1
TOTAL		4		4

Corral

Además de lo expuesto anteriormente también se deseará tener un control del corral, donde se pretenderá que siempre haya pienso en el comedero y que nos avise en caso de falta de pienso en la tolva.

OTROS					
	Entradas		Salidas		
	DETECTOR CAP. TOLVA PIENSO	1	ABERTURA EV. TOLVA PIENSO	1	
	DETECTOR CAP. COMEDERO	1			
	DETECTOR CAP. COMEDERO	1			
TOTAL		3		1	

Entradas / Salidas analógicas

Una vez analizadas todas las entradas y salidas digitales, hablaremos de las entradas y salidas analógicas. Todas las entradas nos darán una señal de 4 a 20mA, que el autómata será capaz de leer y proporcionarnos una dato proporcional según la entrada que esté recibiendo. Como se cita anteriormente la sonda de temperatura nos permitirá tener control de la temperatura externa, abriendo la electroválvula cuando esta descienda de los 2°C. El voltímetro y amperímetro nos darán la información necesaria para conocer el consumo instantáneo de la vivienda. Los sensores ultrasonidos proporcionarán el nivel de la tolva de pellet y depósito de agua. El voltímetro situado en las baterías nos proporcionará el valor de carga de las mismas. Por último el sensor de luminosidad de la calle nos dará un valor de los luxes del estudio y junto con la bombilla regulable serán capaces de proporcionar los luxes óptimos en el estudio.

	ENTRADAS Y SALIDAS ANALÓGICAS				
	Entradas		Salidas		
	TEMPERATURA CALLE	1	BOMBILLA REGULABLE ESTUDIO	1	
	VOLTÍMETRO	1			
	AMPERÍMETRO	1			
	CONTROL INTENSIDAD LUZ ESTUDIO	1			
	NIVEL DEPÓSITO	1			
	NIVEL TOLVA PELLET	1			
	VOLTAJE BATERÍAS	1			
TOTAL		7		1	

7.2.2.3.2 Definición de los componentes del M340 elegidos

Una vez conocido el número de entradas y salidas analógicas y digitales del autómata se le dará forma al mismo.

Fuente de alimentación

El módulo BMX CPS 2010 es un módulo de alimentación de corriente continua.

Ilustración 31. Módulo de alimentación BMX CPS 2010

A continuación se muestra la tabla proporcionada por Schneider donde aparecen las características de la fuente de alimentación.

Características del	Tensión nominal	24 VCC aislada		
bloque primario	Tensión límite Irms de corriente nominal absorbida		18 - 31,2 V	
			1 A a 24 V	
	Conexión inicial a 25 °C (1)	Corriente de señalización I	30 A a 24 V	
		l ² t En el bloqueo	⊴0,6 A ² s a 24 V	
		It En el bloqueo	⊴0,15 As a 24 V	
	Duración aceptada de los microcortes		≤1 ms	
	Protección integrada en la fase	En la interna, fusible sin acceso		
Características del	Alimentación total utilizable	•	17 W	
bloque secundario	Salida 3V3_BAC	Tensión nominal	3,3 V	
		Corriente nominal	2,5 A	
		Potencia (típica)	8,3 W	
	Salida 24V BAC	Tensión nominal	24 VCC	
		Corriente nominal	0,7 A	
		Potencia (típica)	16,5 W	
	Protección de las salidas 3V3_BAC y 24V BAC	Contra las sobrecargas, cortocircuitos y sobretensiones		
Máxima alimentación di	sipada	50	8,5 W	
Características de las funciones auxiliares	Relé de alarma	Contacto de cierre sin potencial en el bloque d terminales		
	Visualización	Indicador LED del panel frontal		
	Sostén de batería	No		
	Resistencia dieléctrica a 50 Hz- 1mn y altitud en el rango 0 –	(24V_BAC/3V3_BAC) primaria/secundaria	1.500 Vrms	
	4.000 m(32 - 7.232 pies)	Primaria/tierra	1.500 Vrms	
	Resistencia de aislamiento	Primaria/secundaria	≥ 10 MΩ	
		Primaria/tierra	≥ 10 MΩ	

Tabla 22. Características del módulo de alimentación BMX CPS 2010

Procesador

Se escogerá uno de los procesadores más básicos del M340 ya que para la domotización de una vivienda no se requieren grandes requisitos en este aspecto.

Ilustración 32. Procesador BMX P34 2030

A continuación se muestra la tabla con las características, obtenida del catálogo del M340 de Schneider, del procesador BMX P34 2030.

Característica	Disponible		
Funciones	Número máximo de	Entradas/salidas binarias del bastidor	1.024
		Entradas/salidas analógicas del bastidor	256
		Canales expertos	36
		Canales Ethernet	3
		Bus de campo AS-i	BMX P34 2030: 0
			BMX P34 20302: 4
		Comunicación simultánea EF	16
	Cantidad	USB	1
	máxima de módulos	Puerto de enlace Modbus serie incorporado	-
		Puerto maestro CANopen incorporado	1
		Puerto Ethernet incorporado	1
	Reloj de tien	npo real que puede guardarse	Sí
Capacidad de me guardarse	emoria de los d	atos de aplicación que puede	256 Kb
Estructura de la	Tarea MAST	1	
aplicación	Tarea FAST	1	
	Procesamier	64	
Velocidad de	RAM interna	100% booleano	8,1 Kins/ms (1)
ejecución del código de aplicación		65% booleano + 35% digital	6,4 Kins/ms (1)
Tiempo de	Una instrucc	0,12 μs	
ejecución	Una instrucc	0,17 μs	
	Una instrucc	1,16 μs	

Tabla 23. Características del procesador BMX P34 2030

Módulo de entradas digitales

Tenemos 55 entradas digitales por lo tanto se requerirá un módulo de entradas digitales de 64. Este modelo además permite visualizar las entradas activas mediante LED's numerados en la parte superior del módulo. El modelo elegido será el BMX DDI 6402 K.

Ilustración 33. Módulo de entradas digitales BMX DDI 6402 K

A continuación se muestran las características principales de este módulo.

CARACTERÍSTICAS	
Marca	SCHNEIDER
Modelo	BMX DDI6402 K
Alimentación	24V
Número de entradas	64
Tipo	Digital
Tiempo de gestión de entrada	87μs
Tiempo de gestión de salida	63 μs
Tiempo de gestión total	150 μs
En la salida 3,3V_BAC	200
En la salida 24V_SENSORS	110

Tabla 24. Características técnicas del modulo BMX DDI 6402 K

Este modulo irá conectado a las bases de relés de salida mediante cables BMX FCC 103 y conectores de alta densidad.

Módulo de salidas digitales

Tenemos 31 entradas digitales por lo tanto se requerirá un módulo de entradas digitales de 32. Debido a que va un poco justo de cara a modificaciones futuras o de última hora se escogerá el módulo de 64 salidas digitales. Este modelo además permite visualizar las entradas activas mediante LED's numerados en la parte superior del módulo. El modelo elegido será el BMX DDO 6402 K.

Ilustración 34. Módulo de salidas digitales BMX DDO 6402K

A continuación se muestran las características del mismo.

CARACTERÍSTICAS	
Marca	SCHNEIDER
Modelo	BMX DDO 6402 K
Alimentación	24V
Número de salidas	64
Tipo	Digital
	0,1 A Binarias
Tiempo de gestión de entrada	87 μs
Tiempo de gestión de salida	59 μs
Tiempo de gestión total	127 μs
En la salida 3,3V_BAC	240

Tabla 25. Características técnicas del BMX DDO 6402 K

Este modulo irá conectado a las bases de relés de salida mediante cables BMX FCC 103 y conectores de alta densidad.

Módulo de entradas analógicas

Se necesitan 6 entradas analógicas y una salida analógica. Por lo tanto escogeremos un módulo de 4 entradas analógicas y otro módulo de 4 entradas y 2 salidas analógicas. En este apartado se muestra el módulo de 4 entradas analógicas BMX AMI 0410.

Ilustración 35. Módulo de entradas analógicas BMX AMI 0410

A continuación se muestran las características del mismo.

CARACTERÍSTICAS		
Marca	SCHNEIDER	
Modelo	BMX AMI 0410	
Alimentación	24V	
Número de salidas	4	
Tipo	Analógico	
	Alta velocidad con separación de potencial	
Tiempo de gestión de entrada	103 μs	
Tiempo de gestión de salida	69 μs	
Tiempo de gestión total	172 μs	
En la salida 3,3V_BAC	150	
En la salida 24VR_BAC	45	

Tabla 26. Características del módulo de salidas analógicas BMX AMI 0410

Módulo mixto de entradas/salidas analógicas

Se necesitan 6 entradas analógicas y una salida analógica. Por lo tanto escogeremos un módulo de 4 entradas analógicas y otro módulo de 4 entradas y 2 salidas analógicas. En este apartado se muestra el módulo de 4 entradas y 2 salidas analógicas BMX AMM 0600.

Ilustración 36. Modulo mixto analógico BMX AMM 0600

A continuación se muestran las características del mismo.

CARACTERÍSTICAS	
Marca	SCHNEIDER
Modelo	BMX AMI 0600
Alimentación	24V
Número de entradas	4
Número de salidas	2
Tipo	Analógico
	Entradas analógicas de cuatro canales
Tiempo de gestión de entrada	115 μs
Tiempo de gestión de salida	88 µs
Tiempo de gestión total	203 μs
En la salida 3,3V_BAC	240
En la salida 24V_SENSORS	120

Tabla 27. Características del módulo mixto analógico BMX AMM 0600

Rack

Debido al número de módulos que se usarán (5) será necesario un rack de 6 ranuras. El rack de 6 ranuras para el autómata M340 es el BMX XBP 0600.

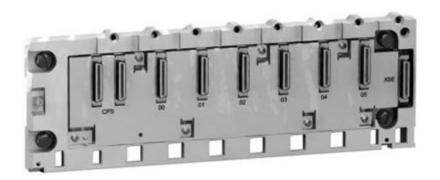
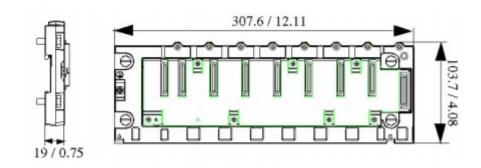



Ilustración 37. Rack de 6 ranuras para el Modicon M340, BMX XBP 0600.

A continuación se muestra una tabla con las principales características:

CARACTERÍSTICAS	
Marca	SCHNEIDER
Modelo	BMX XBP 0600
Numero de ranuras	6
Dirección del módulo	0 - 5
Amarre	Carril DIN
Medidas	
Largo	307,6 mm
Alto	103,7 mm
Ancho	19 mm

Tabla 28. Características del rack BMX XBP 0600

Base de relés de entrada

La base escogida es una base de 16 relés de entrada que se conectara con el módulo de entradas digitales (BMX DDI 6402 K) mediante el cable BMX FCC 103. Se escogerá el modelo ABE7 H16 C11. Se necesitarán 4 bases de relés para abarcar las 64 entradas digitales del autómata.

Ilustración 38. Base relés de entrada ABE7 H16 C11

A continuación se muestran las características principales de la base de relés mostrada anteriormente.

CARACTERÍSTICAS	
Marca	SCHNEIDER
Modelo	ABE 7H16 C11
Numero de vías	16
LED por vía	Sí
Numero de bornas por vía	1
Numero de bornas en número de nivel	1
Distribución de las polaridades	No
Peso	0,16 kg

Tabla 29. Características de la. base de relés de entrada ABE 7H16 C11.

Base de relés de salida

La base escogida es una base de 16 relés de entrada que se conectara con el módulo de salidas digitales (BMX DDO 6402 K) mediante el cable BMX FCC 103. Se escogerá el modelo ABE 7R16 T330. Se necesitarán 2 bases de relés para abarcar las 31 entradas digitales del módulo de salidas digitales.

Ilustración 39. Base de relés de salida ABE 7R16 T330

Se puede observar en la parte izquierda la conexión para la toma de alta densidad del cable ABE 7R16 T330. A continuación se muestran las principales características de este módulo.

CARACTERÍSTICAS	
Marca	SCHNEIDER
Modelo	ABE 7H16 C11
Numero de vías	16
LED por vía	Sí
Anchura de los relés	12mm
Tipo de relés admitidos	ABR 7S33
Número y tipo de contactos	1*NANC*
Distribución de las polaridades	Libre de potencial

Tabla 30. Características base relés de salida, ABE 7R16T330

7.2.2.3.3 M340 para la instalación

Una vez definidos todos los componentes del Modicon M340, se podrá definir la forma final del mismo. Se montará un cuadro domótico donde estarán implementados todos los elementos definidos anteriormente, en la primera línea del cuadro dómotico se encontrará el rack con todos los módulos definidos.

Ilustración 40. Estructura del M340 para el sistema domótico estudiado

Como se menciona anteriormente los módulos de entradas y salidas digitales se conectarán a bases de relés de entradas y salidas respectivamente. Las bases de relés se colocarán de la forma que se visualiza a continuación.

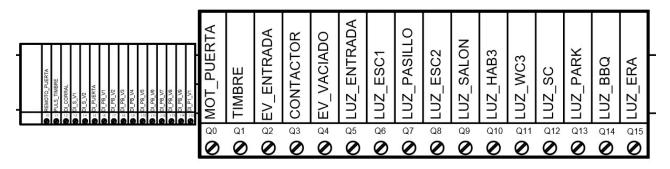


Ilustración 41. A la izquierda base de relés de entrada a la derecha base de relés de salida

Finalmente se podrá definir la estructura del cuadro domótico que quedará de la siguiente forma. Se observará que se colocan 2 bases de relés de salida sin ninguna salida analógica, estas bases se encuentran simplemente para visualizar cual sería la forma del cuadro en el caso que se quisiera sacar el máximo rendimiento al autómata

ya que el módulo de salidas digitales tiene 64 salidas. Debido al gran incremento de precio que suponen ambas bases, se dejará el hueco para una posible ampliación. Como se puede apreciar se tratará de una instalación de tipo centralizado, todos los elementos domóticos pasarán por el punto donde se ubicará el cuadro domótico.

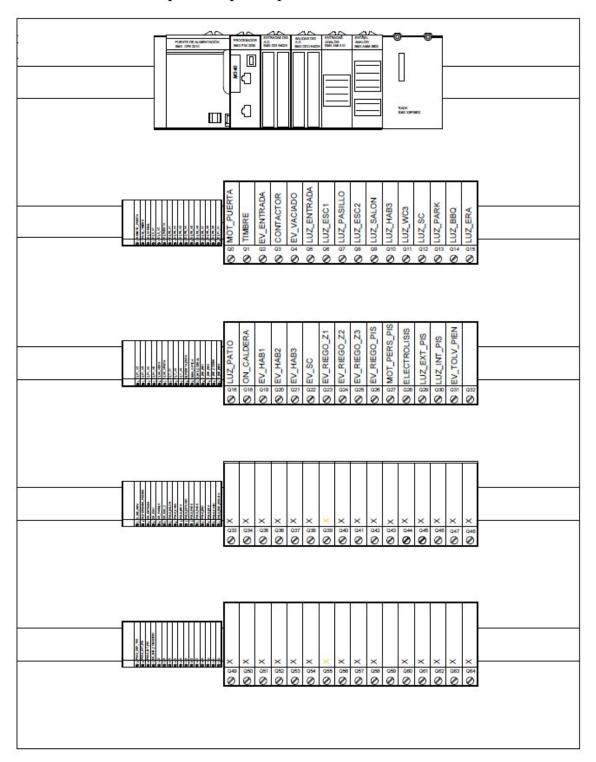


Ilustración 42. Cuadro domótico para el sistema proyectado

7.2.2.4 Elementos de entrada

Detector imán

En la instalación se tendrán 22 detectores imán colocados en todas las puertas y ventanas. El modelo escogido será el RCM5GR de RODMAN.

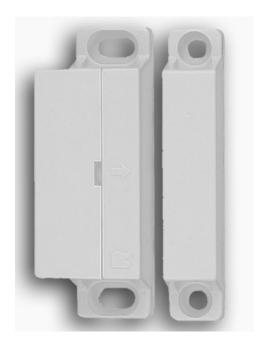


Ilustración 43. Detector magnético RCM5GR de RODMAN

A continuación se muestran sus características.

CARACTERÍSTICAS	
Marca	RODMAN
Modelo	RCM5GR
Tipo	Conmutador magnético
Salida	Digital PNP
Medidas imán	64 x 12 x 14,5mm
Medidas Mecanismo	64 x 17 x 14,5mm
Tensión Máxima AC	250 V
Tensión Máxima DC	60 V
Tipo de instalación	Superficie

Tabla 31. Características del detector magnético RCM5GR

Detectores de presencia

Se encontrarán en las zonas comunes y serán los encargados tanto de poner en marcha las luces de dichas zonas como de dar señal de alarma en caso de detectar intrusión en modo cerrado. En total habrá cuatro en toda la casa.

Ilustración 44. Detector presencia 180º GOTESA

A continuación se muestran las características principales del detector de presencia en cuestión.

CARACTERÍSTICAS	
Marca	GOTESA
Modelo	PIRM180
Salida	Digital PNP
Angulo de visión	1809
Tipo de instalación	Superficie
Tipo de instalación	Sobre pared (no en techos)
Alimentación	220 V

Ilustración 45. Características del detector de movimiento GOTESA 180°

Pulsadores

Los pulsadores se encontrarán repartidos por toda la vivienda, servirán para activar las salidas manualmente desde el punto donde se encuentren ubicados. Serán entradas directas al autómata, se tendrán 16 repartidos por toda la vivienda.

Ilustración 46. Pulsador Simon 27

A continuación en la tabla aparecen las principales características de los pulsadores citados anteriormente.

CARACTERÍSTICAS	
Marca	SIMON
Serie	27
Modelo	151-65
Salida	Digital
Tipo de salida	PNP
Tipo de instalación	Empotrado

Tabla 32. Características del pulsador SIMON 27

Detectores capacitivos

Los detectores capacitivos que se colocarán en la instalación estarán en la zona del corral controlando los niveles máximo y mínimo del comedero y la tolva de pienso. El modelo elegido es el XT112S1PAL2 de la marca Schneider.

Ilustración 47. Sensor capacitivo XT11251PAL2

A continuación se muestra una tabla con las principales características del sensor capacitivo nombrado anteriormente.

	CARACTERÍCTICAS
CARACTERÍSTICAS	
Marca	SCHNEIDER
Modelo	XT11251PAL2
Tipo	Cilíndrico
Salida	Digital
Tipo	PNP
Distancia nominal del sensor	0.08 in (2mm)
Voltaje	24 V
Largo	50mm
Material	Acero inoxidable

Tabla 33. Características principales del sensor capacitivo XT11251PAL2

Fotocélula

En la instalación habrá una fotocélula que colocada en el exterior marcará el momento de encendido del alumbrado exterior. Para esta función se ha escogido la fotocélula de ORBIS OB131712.

Ilustración 48. Fotocélula OB131712

A continuación se muestra una tabla con las principales características de la fotocélula nombrado anteriormente.

	CARACTERÍSTICAS
CARACTERISTICAS	
Marca	ORBIS
Modelo	OB131712
Tipo	Empotrable pared
	Exterior
Salida	Digital
Tipo	PNP
Sensibilidad	5 – 300 lux
Voltaje	230 V ac
Retardo	60 s
Temperatura de funcionamiento	-30ºC hasta 50ºC

Tabla 34. Características fotocélula Orbis OB131712

Fibra óptica

La fibra óptica se colocará atando las placas solares, para así en caso de robo de las placas esta fibra se rompería y el sistema enviaría un aviso a la pantalla o Smarthphone del usuario.

Ilustración 49. Fibra óptica Grealtec

A continuación se muestra una tabla con las principales características del sistema de seguridad basado en fibra óptica nombrado anteriormente.

CARACTERÍSTICAS		
Marca	GREALTEC	
Modelo	FOB25-32	
Características mecánicas	Alta flexibilidad	
	Antihumedad	
	Anti rayos UV	
Salida	Digital	
Tipo	PNP	
Longitud	25 m	
Voltaje	230 V ac	

Tabla 35. Características de la fibra óptica GREALTEC

Final de carrera

Se dispondrá de dos finales de carrera, uno de ellos situado en la puerta automática y el otro situado en la persiana que cubrirá la piscina. El modelo elegido ha sido el XCKN2118G11 de la marca Schneider.

Ilustración 50. Final de carrera XCKN2118G11

A continuación se muestra una tabla con las principales características del final de carrera nombrado anteriormente.

CARACTERÍSTICAS		
Marca	SCHNEIDER	
Modelo	XCKN2118G11	
Salida	Digital	
Tipo	PNP	
Tipo de contactos	Normalmente abierto, normalmente cerrado	
Instalación	Exterior/interior	
Temperaturas de uso	-25ºC hasta 70ºC	
Altura	108 mm	
Profundidad	44.5 mm	

Tabla 36. Características principales del final de carrera XCKN2118G11

Sonda de temperatura

La sonda de temperatura se colocará en el exterior para conocer la temperatura exterior de la masía en todo momento. En el momento que esta temperatura baje de los 2°C será la electroválvula de vaciado vaciará el sistema evitando roturas de tuberías por congelación.

Ilustración 51. Sonda temperatura Herten PT100

Para la instalación de está sonda se necesitará un conversor que pase de PT100 a 4 - 20 mA de esta forma se consigue que la entrada que llegará al modulo analógico del M340 sea la idónea. A continuación se muestran las características principales.

CARACTERÍSTICAS		
Marca	HERTEN	
Modelo	PT100	
Salida	Analógica	
Tipo	PT100	
Material	Acero inoxidable	
Instalación	Exterior/interior	
Rango de medición	-50ºC hasta 160ºC	
Diámetro	6 mm	
Longitud	50 mm	

Tabla 37. Características principales de la sonda PT100

Sensor de ultrasonidos

Se colocarán dos sensores ultrasonidos en la instalación uno para medir el nivel de pellet que habrá en la tolva y el otro para medir la altura del depósito de agua. El sensor de ultrasonidos elegido es el XX930A3A2M12 de la marca Schneider.

Ilustración 52. Sensor de ultrasonidos XX930A3A2M12

A continuación se muestra una tabla con las principales características del sensor de infrarrojos nombrado anteriormente.

CARACTERÍSTICAS		
Marca	SCHNEIDER	
Modelo	XX930A3A2M12	
Salida	Analógica	
Tipo	4 – 20 mA	
Material	Estaño	
Temperatura de funcionamiento	-20ºC a 60ºC	
Ángulo de haz total	169	
Distancia de funcionamiento	Ajustable (0 – 8 m)	
Tamaño mínimo y máximo de detección	50.8 mm y 4732 mm	

Tabla 38. Características técnicas del sensor de ultrasonidos XX930A3A2M12

Amperímetro

El amperímetro se trata de una entrada analógica y se utilizará para que junto con el voltímetro ser capaces de visualizar cual es el consumo instantáneo de la vivienda. Será de la marca CIRCUTOR y sus características serán las siguientes.

CARACTERÍSTICAS		
Marca	CIRCUTOR	
Modelo	M72131	
Salida	Analógica	
Tipo	4 – 20 mA	
Rango de medición	0 - 50 A	

Tabla 39 Características principales del Amperímetro M72131

Voltímetro

Habrá dos de ellos. Ambos se tratan de entradas analógicas. Uno de ellos se utilizará para que junto con el amperímetro ser capaces de visualizar cual es el consumo instantáneo de la vivienda. Será de la marca CIRCUTOR y sus características serán las siguientes.

CARACTERÍSTICAS		
Marca	CIRCUTOR	
Modelo	M25052	
Salida	Analógica	
Tipo	4 – 20 mA	
Rango de medición	0 - 690 V	

Tabla 40. Características principales del Voltímetro M25052

Sensor de luminosidad

Entrada analógica encargada en todo momento de informar al sistema la cantidad de luxes que habrán en la zona del estudio. Se complementará con la bombilla regulable para proporcionar una iluminación idónea al estudio.

Ilustración 53. Sensor luminosidad Arika

A continuación se muestran las características técnicas del mismo.

CARACTERÍSTICAS		
Marca	ARIKA	
Modelo	LX20-D	
Montaje	Superficial, IP65	
Voltaje	24V	
Salida	0-10V 4-20mA	
Rango	0-2.000 Lux o 0-20.000 Lux	

Tabla 41. Características técnicas del sensor de luminosidad ARIKA LX20-D

7.2.2.5 Elementos de Salida

Electroválvula Riego ¾"

Electroválvula de ¾" de la marca Rain Bird modelo 075-DV. Encargadas de abrir y cerrar cada zona, según se programe el riego.

Ilustración 54. Electroválvula de 3/4" Rain Bird-075

A continuación se muestran las características técnicas de la misma.

CARACTERÍSTICAS		
Marca	Rain Bird	
Modelo	075-DV	
Medida	3/4	
Voltaje	24V	
Color	Gris	
Тара	Atornillada	
Caudal	0,05 a 5 m3/h	

Tabla 42. Características electroválvula Rain Bird 075-DV

Electroválvula Calefacción ¾"

Encargadas de abrir y cerrar las zonas donde se desee controlar el encendido y apagado de la calefacción.

Ilustración 55. Válvula de zona CABEL de 2 vías.

A continuación se muestran las características técnicas de la misma:

Válvula de zona de 2 vías:

- Apertura TODO NADA
- Contactoauxiliar (unipolar inversor SPDT)
- Cuerpo de latón
- Conexión rosca hembra
- T^a 5 -88°C.
- Tensión: 230V/50Hz.
- Absorción 4VA
- · Presión máx. 20 bar
- Conexiones hidraulicas: 3/4" 1"
- Normalmente cerrada

Tabla 43. Características de la electroválvula de 2 vías CABEL

Electroválvula entrada vivienda y vaciado

Una de ellas se encargará de abrir y cerrar el abastecimiento de agua la otra de vaciar el sistema en caso de temperaturas bajas.

Ilustración 56. Electroválvula VA20 RESOL

A continuación se muestran las especificaciones técnicas de la electroválvula VA20 RESOL:

Datos técnicos del mando electrotérmico:

Suministro: 230 V~, 50 - 60 Hz Potencia absorbida: máximo 2,5 W Corriente máxima: 150 mA

Temperatura ambiente: máximo 50 °C

Fuerza elástica: 125 N Carrera del émbolo: 4,5 mm

Protección:

montaje horizontal: IP 42

montaje vertical (válvula hacia arriba): IP 44

Tipo de proteción: II

Tiempo de ajuste: aproximadamante 3 minutos

Grado de contaminación: 2

Ajuste de fábrica: cerrado sin corriente

Datos técnicos de la válvula:

Rango de temperatura: hasta 120 °C, por poco tiempo hasta 140 °C

Material:

Válvula: de bronce rojo inoxidable

Piezas interiores: de latón y acero inoxidable

Juntas: EPDM

Presión máxima de funcionamiento: 10 bares

Empalmes de rosca suministrables: VA20: 1/2", 3/4", 1" y 11/4"

Tabla 44. Características técnicas de la electroválvula VA20 RESOL

Kit motor puerta automática

Actuará también como entrada y recibirá la orden de puesta en marcha desde la pantalla/smarthphone o desde el mando de control remoto.

Ilustración 57. Elementos que componen el Kit de la puerta automática.

A continuación se muestra una tabla con las características del mismo.

CARACTERISTICAS		
Marca Nice		
Modelo	WINGO3524	
Motor	Motor-reductor Abatible electromecánico	
	WG3524	
	24Vdc	
	Sistema final de carrera	
Alimentación del cuadro	220V	

Tabla 45. Características técnicas del Kit puerta automática

Además el kit incluirá:

- 1 Mando a distancia rolling-code FLO2RE
- 1 Cuadro de maniobras MC424
- 1 Receptor enchufable NICE

Kit motor persiana piscina

Ilustración 58. Kit persiana automática que se va a colocar.

A continuación se muestra una tabla con las características del mismo.

CARACTERISTICAS		
Marca Eca		
Modelo	Neo	
Motor	Motor-reductor tubular	
	Sistema final de carrera	
	24V	
	150Nm	
Alimentación de	اذ	
cuadro	220V	

Tabla 46. Características técnicas kit persiana automática.

El kit también incluirá:

- 2 soportes de aluminio lacado equipados con tapas termoformadas en ABS blancas.
- 1 Eje de enrollamiento de las lamas
- 1 Interruptor de llave 3 posiciones, ubicado en el pie del motor.
- 1 Cuadro eléctrico de alimentación 220 V.

Bombilla regulable

Se tratará de la luz del estudio, la iluminación idónea para un estudio es de 350 lux, es por eso que se busca unas luminarias capaces de llegar a este nivel de lux. Para ello consideramos que la mejor opción será poner 4 pantallas LED de 20W en el tejado.



Ilustración 59. Pantalla LED SECOM 42120184

A continuación se muestra una tabla con las características de la misma.

CARACTERÍSTICAS		
Marca	SECOM	
Modelo	42120184	
Lúmenes	0 – 2000 lum	
Lux a 1.5m	100lux	
Voltaje	220 Vac	
Amperaje	0.1 A	
Potencia	20 W	

Tabla 47. Tabla características pantalla LED.

Debido a que una pantalla nos da tan solo 100 lux se deberá colocar 4 pantallas y además se deberá colocar un driver regulable (1-10V) para poder ejercer el control desde el autómata.

7.2.2.6 Programación del PLC

Se realizará el programa mediante la aplicación de Schneider para la programación de autómatas (Unity Pro).

7.2.2.6.1 Descripción del entorno de trabajo

Para empezar la programación se deberá dar forma al autómata que se define anteriormente. Esto se hará desde el explorador de proyectos entrando en el apartado de configuración.

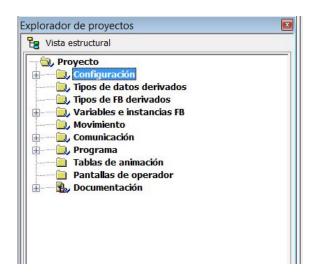


Ilustración 60. Imagen del menú del explorador de proyectos en Unity

Se elige el autómata M340, si se despliega la opción de Modicon 340 aparecen todos las partes que componen el autómata (Alimentación, bastidor, analógico...) desplegando estas pestañas aparecerán todos los módulos disponibles para el Modicon M340 de cada tipo.

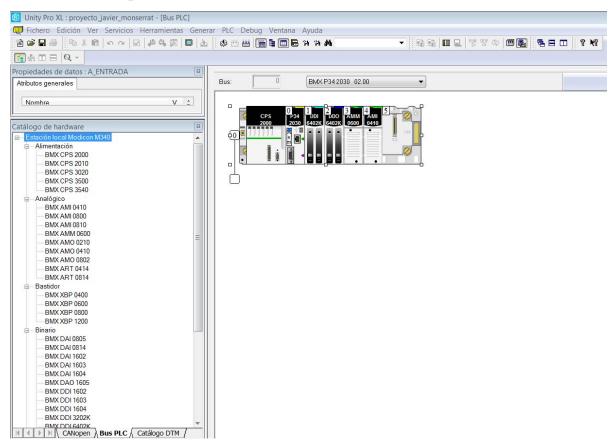


Ilustración 61. Definición de la estructura del autómata en Unity.

Una vez definida la estructura del autómata, se volverá a la pestaña explorador de proyectos y se desplegará la carpeta "programa", aparecerá la carpeta "tareas", dentro de esta aparecerá la carpeta "MAST" y finalmente se visualizará la carpeta secciones. Se procederá a crear las secciones que exceptuando algunas secciones, creadas para automatizar algunas acciones de la pantalla (pantalla_activa, aviso_alarma) y para hacer más fácil la lectura de esta (reloj), se tratará de las mismas secciones explicadas anteriormente (puerta_automática, iluminación_interior, iluminación_exterior, climatización...)

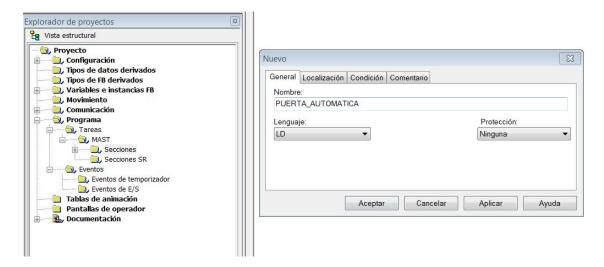


Ilustración 62. Crear nueva sección

Se crearán las secciones citadas anteriormente, el lenguaje de programación que se utilizará será el lenguaje tipo LADDER. La lista de secciones quedará como se muestra a continuación.

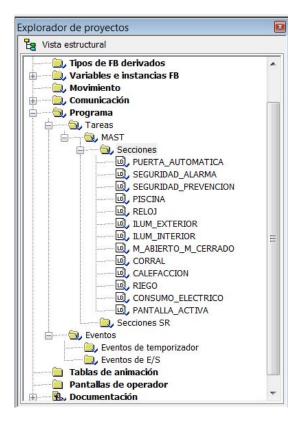


Ilustración 63. Lista de secciones dentro de la tarea MAST

Una vez creadas las secciones se podrá comenzar a programar, en la siguiente imagen se aprecia cual va a ser el entorno de trabajo de Unity.

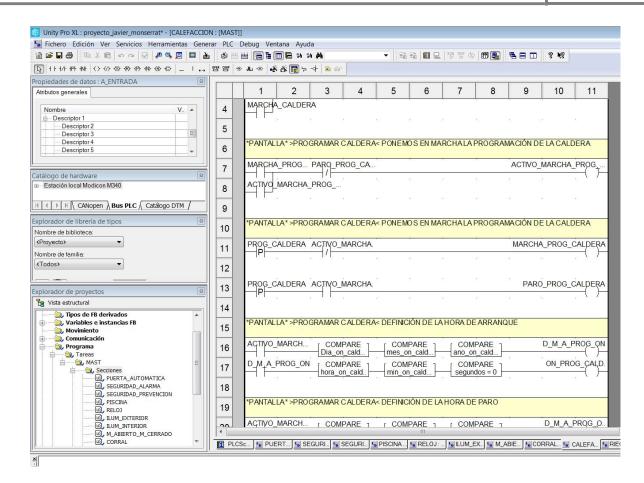


Ilustración 64. Entorno de trabajo de Unity

Como se puede observar en la ilustración 66 en la parte central derecha aparece la programación, en esta ventana se aprecian contactos (Abiertos y cerrados), pulsos, bobinas de salida y bloques de comparación todos ellos definidos por variables. Por otro lado en la barra de herramientas superior se aprecian tanto los diferentes elementos que se pueden colocarse en la ventana de programación, como los botones de abrir, guardar y analizar el programa. Por la parte izquierda del entorno la ventana más significativa será la del explorador de datos, donde se encuentran las secciones, variables...

7.2.2.6.2 Definición de variables

En la programación del sistema se utilizarán variables elementales del tipo booleano (BOOL, EBOOL), entero (INT), tiempo (TIME), reales (REAL) y binario (BCD).

- BOOL. Variable que contiene únicamente el valor FALSE (=0) o TRUE (=1).
- EBOOL. Variable que contiene el valor FALSE (=0) o TRUE (=1), pero también incluye información relativa a la gestión de los flancos ascendentes o descendentes y al forzado.
- INT. Tipo de variable con signo y formato de 16 bits. En base decimal tomará valores desde -32768 a 32767.
- REAL. Comúnmente conocido como "coma flotante" o "float" es una variable que se codifica en formato de 32 bits, su principal característica es que pueden tomar valores con decimales. De estos 32 bits, uno se ocupa del signo (0 positivo, 1 negativo), 8 bits se ocupan de la parte entera y 23 bits se ocupan de la parte decimal.
- TIME. La variable TIME se representa mediante un tipo entero doble sin signo (UDINT). Indica una duración en milisegundos que, aproximadamente, representa una duración máxima de 49 días.
- BCD. Variable que se representa mediante un entero con formato Binario Codificado Decimal.

Las variables en el Unity se encontrarán en el Explorador de proyectos.

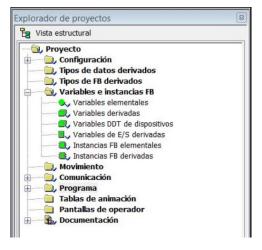


Ilustración 65. Variables en el explorador de proyectos

A continuación se muestra toda la lista de las variables elementales que se utilizan en el programa.

Tipo	▼ Dirección ▼
REAL	%MW620
EBOOL	%M1300
EBOOL	%M1301
EBOOL	%M1302
EBOOL	%M1303
EBOOL	%M1304
EBOOL	%M1305
EBOOL	%M1306
EBOOL	%M1307
EBOOL	%M1308
EBOOL	%M1309
EBOOL	%M1310
EBOOL	%M1311
EBOOL	%M1312
EBOOL	%M1313
EBOOL	%M1314
EBOOL	%M1315
EBOOL	%M1316
EBOOL	%M1317
EBOOL	%M1318
EBOOL	%M1319
	%M1320
EBOOL	%M1321
EBOOL	%M1322
EBOOL	%M1322
EBOOL	%M1323
	%M1324
EBOOL	%M1325
EBOOL	%M1326
EBOOL	%M1327
EBOOL	%M1328
	%M1329
	%M1330
	%M1331
EBOOL	%M1332
EBOOL	%M1050
	%M1051
EBOOL	%M1052
EBOOL	%M1053
	REAL EBOOL

Nombre	▼ , Tipo	▼ Dirección ▼
ALARMA_DP_PASILLO	EBOOL	%M1054
ALARMA_FIBRA_OPTICA	EBOOL	%M1055
ALARMA_PUERTA	EBOOL	%M1056
ALARMA_SI_PEXTERIOR	EBOOL	%M1057
ALARMA_VP1_HAB2	EBOOL	%M1058
ALARMA_VP1_HAB3	EBOOL	%M1059
ALARMA_VP1_PASILLO	EBOOL	%M1060
ALARMA_VP1_WC2	EBOOL	%M1061
ALARMA_VP1_WC3	EBOOL	%M1062
ALARMA_VPB_BBQ	EBOOL	%M1063
ALARMA_VPB_ERA1	EBOOL	%M1064
ALARMA_VPB_ERA2	EBOOL	%M1065
ALARMA_VPB_ERA3	EBOOL	%M1066
ALARMA_VPB_ERA4	EBOOL	%M1067
ALARMA_VPB_PATIO	EBOOL	%M1068
ALARMA_VPB_PISCINA	EBOOL	%M1069
ALARMA_VPB_PISTA1	EBOOL	%M1070
ALARMA_VPB_PISTA2	EBOOL	%M1071
- ALARMA_VS_ERA	EBOOL	%M1072
ALARMA_VS_PISTA	EBOOL	%M1073
ALARMA_VSC_ERA	EBOOL	%M1074
ALARMA_VSC_PISTA	EBOOL	%M1075
ALARMA_VT_ERA	EBOOL	%M1076
ALARMA_VT_PATIO	EBOOL	%M1077
ALARMA_VT_PISTA	EBOOL	%M1078
ALTURA_DEPOSITO	REAL	%MW202
ALTURA_TOLVA_PELLET	REAL	%MW201
AMPERIMETRO	INT	%IW0.4.1
	REAL	
ano_off_caldera	INT	%MW700
ano_on_caldera	INT	%MW701
— ● anyo	INT	%MW405
	EBOOL	
	EBOOL	11100
CONTACTOR_CONS_VARIABLES		%Q0.2.3
D_IND_COCINA	EBOOL	%10.1.30
D_IND_CORRAL	EBOOL	%10.1.27
D_IND_WC1	EBOOL	%10.1.28
	EBOOL	

Nombre	Tipo	▼ Dirección ▼
D_IND_WC3	EBOOL	%10.1.31
◆ D_IND_WC4	EBOOL	%10.1.32
D_M_A_PROG_OFF	EBOOL	
D_M_A_PROG_ON	EBOOL	
DC_MAX_COMEDERO	EBOOL	%10.1.52
DC_MIN_COMEDERO	EBOOL	%10.1.51
DC_TOLVA_PIENSO	EBOOL	%10.1.53
DI_CORRAL	EBOOL	%10.1.2
DI_CORRAL_0	EBOOL	%10.1.2
♦ DI_P1_V1	EBOOL	%10.1.15
♦ DI_P1_V2	EBOOL	%10.1.16
• DI_P1_V3	EBOOL	%10.1.17
• DI_P1_V4	EBOOL	%10.1.18
	EBOOL	%10.1.19
DI_PB_V1	EBOOL	%10.1.6
• DI_PB_V2	EBOOL	%10.1.7
◆ DI_PB_V3	EBOOL	%10.1.8
◆ DI_PB_V4	EBOOL	%10.1.9
• DI_PB_V5	EBOOL	%10.1.10
◆ DI_PB_V6	EBOOL	%10.1.11
	EBOOL	%10.1.12
• DI_PB_V8	EBOOL	%10.1.13
— ◆ DI_PB_V9	EBOOL	%10.1.14
DI_PUERTA	EBOOL	%10.1.5
• DI_S_V1	EBOOL	%10.1.3
• DI_S_V2	EBOOL	%10.1.4
◆ DI_SC_VERA	EB00L	%10.1.20
- DI_SC_VPISTA	EB00L	%10.1.21
● DI_T_V1	EBOOL	%10.1.22
D I_T_V2	EBOOL	%10.1.23
● DI_T_V3	EB00L	%10.1.24
Dia_del_mes	INT	%MW404

Nombre	Tipo	▼ Dirección ▼
Dia_off_caldera	INT	%MW702
Dia_on_caldera	INT	%MW703
Dia_on_pis	INT	%MW800
Dia_on_rz1	INT	%MW801
Dia_on_rz2	INT	%MW802
Dia_on_rz3	INT	%MW803
Dia_semana	INT	%MW403
DP_ENTRADA	EBOOL	%10.1.34
DP_ESC1	EBOOL	%10.1.35
DP_ESC2	EBOOL	%10.1.37
DP_PASILLO	EBOOL	%10.1.36
ELECTROLISIS	EBOOL	%Q0.2.28
EV_ENTRADA	EBOOL	%Q0.2.2
● EV_ESTUDIO	EBOOL	%Q0.2.22
● EV_HAB1	EBOOL	%Q0.2.18
EV_HAB2	EBOOL	%Q0.2.19
● EV_HAB3	EBOOL	%Q0.2.20
EV_RIEGO_PIS	EBOOL	%Q0.2.26
● EV_RIEGO_Z1	EBOOL	%Q0.2.23
● EV_RIEGO_Z2	EBOOL	%Q0.2.24
● EV_RIEGO_Z3	EBOOL	%Q0.2.25
● EV_SC	EBOOL	%Q0.2.21
EV_TOLVA_PIENSO	EBOOL	%Q0.2.31
EV_VACIADO_FRIO	EBOOL	%Q0.2.4
FIBRA OPTICA	EBOOL	%10.1.26
• FOCOS	EBOOL	%Q0.2.32
→ FOTOCELULA	EBOOL	%10.1.54
hora_off_alumbrado	INT	%MW101
hora_off_caldera	INT	%MW704
hora_on_caldera	INT	%MW705
hora_on_pis	INT	%MW804
hora_on_rz1	INT	%MW805
hora_on_rz2	INT	%MW806
hora_on_rz3	INT	%MW807
• horas	INT	%MW402
• invierno_verano	EBOOL	
→ LITROS_DEPOSITO	REAL	%MW203
→ LUX_BOMBILLA	REAL	%MW901
→ LUX_ESTUDIO	REAL	%MW902

Nombre	Tipo	· .	Dirección 🔻	Valor
LUX_ESTUDIO_REAL	REAL			
LUX_MAN_PANTALLA	REAL		%MW900	
● LUZ_BBQ	EBOOL		%Q0.2.14	1
◆ LUZ_ENTRADA	EBOOL		%Q0.2.5	
◆ LUZ_ERA	EBOOL		%Q0.2.15	1
● LUZ_ESC1	EBOOL		%Q0.2.6	
● LUZ_ESC2	EBOOL		%Q0.2.8	
◆ LUZ_ESTUDIO	EBOOL			
LUZ_EXT_PIS	EBOOL		%Q0.2.18	1
◆ LUZ_HAB3	EBOOL		%Q0.2.29	
UZ_INT_PIS	EBOOL		%Q0.2.30	1
LUZ_PARK	EBOOL		%Q0.2.13	
LUZ_PASILLO	EBOOL		%Q0.2.7	
LUZ_PATIO	EBOOL		%Q0.2.16	
LUZ_REG_ESTUDIO	INT		%QW0.3.4	1
LUZ_REGULABLE_REAL	REAL			
LUZ_SALON	EB00L		%Q0.2.9	
◆ LUZ_SC	EBOOL		%Q0.2.12	
◆ LUZ_WC3	EBOOL		%Q0.2.11	1
MAN_ACT_MODO_ABIERTO	EBOOL		%m1000	
MAN_AUTO_LUX_ESTUDIO	EBOOL		%M1031	
MAN_BBQ	EBOOL		%m1001	
MAN_CALDERA	EBOOL		%m1002	1
MAN_DEP_PIS	EBOOL		%m1003	
MAN_DESACT_MODO_ABIERTO	EBOOL		%m1004	
MAN_ENTRADA	EBOOL		%m1005	
MAN_ERA	EBOOL		%m1006	
MAN_ESC1	EBOOL		%m1007	
MAN_ESC2	EBOOL		%m1008	[
MAN_ESTUDIO	EBOOL		%m1009	
MAN_EV_ESTUDIO	EBOOL		%m1010	3
MAN_EV_HAB1	EBOOL		%m1011	
MAN_EV_HAB2	EBOOL		%m1012	
MAN_EV_HAB3	EBOOL		%m1013	
MAN_EV_SC	EBOOL		%m1014	3
MAN_EXT_PIS	EBOOL		%m1015	
MAN_EXTERIOR	EBOOL		%m1016	
MAN_HAB3	EBOOL		%m1017	
MAN_INT_PIS	EBOOL		%m1018	

Nombre	Tipo	▼ Dirección	•
MAN_PARK	EBOOL	%m1019	
MAN_PASILLO	EBOOL	%m1020	
MAN_PATIO	EBOOL	%m1021	
MAN_PISCINA	EBOOL	%m1022	
MAN_PUERTA	EBOOL	%m1023	
MAN_RIEGO_PIS	EBOOL	%m1024	
MAN_RIEGO_Z1	EBOOL	%m1025	
MAN_RIEGO_Z2	EBOOL	%m1026	
MAN_RIEGO_Z3	EBOOL	%m1027	
MAN_SALON	EBOOL	%m1028	
MAN_SC	EBOOL	%m1029	
MAN_WC3	EBOOL	%m1030	
MARCHA_CALDERA	EBOOL	%Q0.2.17	
MARCHA_PROG_CALDERA	EBOOL		
MARCHA_PROG_RIEGO_PIS	EBOOL		
MARCHA_PROG_RIEGO_Z1	EBOOL	1.0	
MARCHA PROG RIEGO Z2	EBOOL		
MARCHA_PROG_RIEGO_Z3	EBOOL		
MARCHA_PROG_RIEGO_Z4	EBOOL	100	
• mes	INT	%MW400	
mes_off_caldera	INT	%MW706	
mes_on_caldera	INT	%MW707	
min_off_caldera	INT	%MW708	
min_on_caldera	INT	%MW709	
min_on_pis	INT	%MW808	
min_on_rz1	INT	%MW809	
min_on_rz2	INT	%MW810	
min_on_rz3	INT	%MW811	
minutos	INT	%MW401	
minutos_off_alumbrado	INT	%mW102	
MODO_ABIERTO	EBOOL	%M1100	
MOT_PERS_PIS	EBOOL	%Q0.2.27	
MOT_PUERTA	EBOOL	%Q0.2.0	
NIVEL_DEPOSITO	INT	%IW0.3.1	
NIVEL_DEPOSITO_MINIMO	EBOOL	%M1451	
● NIVEL_DEPOSITO_REAL	REAL		
● NIVEL_PELLET_REAL	REAL		
NIVEL_REAL_PELLET	REAL		
NIVEL_TOLVA_PELLET	INT	%IW0.3.2	

Nombre -	Tipo ▼	Dirección ▼
OFF_PROG_RIEGO_PIS	EBOOL	
OFF_PROG_RIEGO_Z1	EBOOL	
OFF_PROG_RIEGO_Z2	EBOOL	
OFF_PROG_RIEGO_Z3	EBOOL	
OFF_PULS_BBQ	EBOOL	
OFF_PULS_DEP_PIS	EBOOL	
OFF_PULS_ERA	EBOOL	
OFF_PULS_ESTUDIO	EBOOL	
OFF_PULS_EXT_PIS	EBOOL	
OFF_PULS_HAB3	EBOOL	
OFF_PULS_INT_PIS	EBOOL	
OFF_PULS_PARK	EBOOL	
• OFF_PULS_PATIO	EBOOL	
OFF_PULS_SALON	BOOL	
OFF_PULS_SC	BOOL	-7
OFF_PULS_WC3	BOOL	
OFF_SI_PUERTA	EBOOL	
ON_ALUMBRADO_COCHE	EBOOL	
ON_DP_ENTRADA	BOOL	
ON_DP_ESC1	BOOL	
ON_DP_ESC2	EBOOL	
ON_DP_PASILLO	BOOL	
ON_DP_SALON	EBOOL	
ON_EV_ESTUDIO	EBOOL	
ON_EV_HAB1	EBOOL	
ON_EV_HAB2	EBOOL	
ON_EV_HAB3	EBOOL	
ON_EV_SC	EBOOL	
ON_EV_VACIADO_FRIO	EBOOL	
ON_FOTO_EXT	EBOOL	
ON_FOTO_EXTERIOR	BOOL	-7
ON_MAN_BBQ	BOOL	
ON_MAN_CALDERA	EBOOL	
ON_MAN_COMUNES	BOOL	
ON_MAN_DEP_PIS	EBOOL	
ON_MAN_ENTRADA	BOOL	
ON_MAN_ERA	BOOL	
ON_MAN_ESC1	EBOOL	
ON_MAN_ESC2	EBOOL	2

Nombre	Tipo	▼ Dirección ▼
ON_MAN_ESTUDIO	BOOL	
ON_MAN_EXT_PIS	EBOOL	
ON_MAN_EXT_PISC	EBOOL	
ON_MAN_EXTERIOR	BOOL	
ON_MAN_HAB3	BOOL	
ON_MAN_INT_PIS	EBOOL	
ON_MAN_PARK	BOOL	
ON_MAN_PASILLO	EBOOL	
ON_MAN_PATIO	EBOOL	
ON_MAN_RIEGO_PIS	EBOOL	
ON_MAN_RIEGO_Z1	EBOOL	
ON_MAN_RIEGO_Z2	EBOOL	
ON_MAN_RIEGO_Z3	EBOOL	
ON_MAN_SALON	EBOOL	
ON_MAN_SC	BOOL	
ON_MAN_WC3	BOOL	
ON_PROG_CALDERA	EBOOL	
ON_PROG_RIEGO_PIS	EBOOL	
ON_PROG_RIEGO_Z1	EBOOL	
ON_PROG_RIEGO_Z2	EBOOL	
ON_PROG_RIEGO_Z3	EBOOL	
ON PULS BBQ	EBOOL	
ON PULS DEP_PIS	EBOOL	
ON_PULS_ERA	BOOL	
ON_PULS_ESTUDIO	BOOL	
ON_PULS_EXT_PIS	EBOOL	
ON_PULS_HAB3	BOOL	
ON_PULS_INT_PIS	EBOOL	
ON PULS PARK	EBOOL	
ON PULS PATIO	EBOOL	
ON PULS SALON	EBOOL	
ON_PULS_SC	EBOOL	
ON_PULS_WC3	EBOOL	
ON_SI_PUERTA	EBOOL	
P_ENTRADA	REAL	%MW610
• PANEL	INT	
• PANELR	INT	%MW1800
• PANELW	INT	%MW1801
PANTALLA ACTIV	EBOOL	

Nombre	Tipo	¥	Dirección ▼
PARO_PROG_CALDERA	EBOOL		
◆ PARO_PROG_RIEGO_PIS	EBOOL		
PARO_PROG_RIEGO_Z1	EBOOL		
PARO_PROG_RIEGO_Z2	EBOOL		
PARO_PROG_RIEGO_Z3	EBOOL		9
PREVENCION_EV_VACIADO	EBOOL		%M1207
PREVENCION_IND_COCINA	EBOOL		%M1200
PREVENCION_IND_CORRAL	EBOOL		%M1201
PREVENCION_IND_WC1	EBOOL		%M1202
PREVENCION_IND_WC2	EBOOL		%M1203
PREVENCION_IND_WC3	EBOOL		%M1204
PREVENCION_IND_WC4	EBOOL		%M1205
PREVENCION_SI_PERSIANA	EBOOL		%M1206
PROG_CALDERA	EBOOL		%m1400
PROG_RIEGO_PIS	EBOOL		%M1401
PROG_RIEGO_Z1	EBOOL		%M1402
PROG_RIEGO_Z2	EBOOL		%M1403
PROG_RIEGO_Z3	EBOOL		%M1404
PULS_BBQ	EBOOL		%10.1.44
PULS_DEP_PIS	EBOOL		%10.1.48
PULS_ERA	EBOOL		%10.1.45
PULS_ESTUDIO	EBOOL		%10.1.42
PULS_EXT_PIS	EBOOL		%10.1.49
PULS_HAB3	EBOOL		%10.1.39
PULS_INT_PIS	EBOOL		%10.1.50
PULS_PARK	EBOOL		%10.1.43
PULS_PATIO	EBOOL		%10.1.46
PULS_PERS_PIS	EBOOL		%10.1.44
PULS_PISCINA	EBOOL		%10.1.47
PULS_SALON	EBOOL		%10.1.38
PULS_SC	EBOOL		%10.1.41
PULS_WC3	EBOOL		%10.1.40
RELLENAR_PIENSO	EBOOL		
REMOTO_PUERTA	EBOOL		%10.1.0
RESET_MAN_ALARMA	EBOOL		%M1350
RESET_MAN_PREVENCION	EBOOL		%M1351
segundos segundos	INT		%MW406
SENSOR_LUMINOSIDAD_ESTUDIO	INT		%IW0.3.3
SENSOR LUMINOSIDAD REAL	REAL		

Nombre	Tipo ▼	Dirección ▼
SI_PERSIANA_PISCINA	EBOOL	%10.1.33
SI_PUERTA_EXTERIOR	EBOOL	%10.1.25
TA_AGUA	EBOOL	%10.1.45
TEMP_EXT	REAL	%MW200
TEMPERATURA_EXT	INT	%IW0.3.0
TEMPERATURA EXTERIOR	REAL	
TIEMPO_ALUMBRADO_COCHE	INT	%MW500
TIEMPO_DP_ENTRADA	INT	%MW501
TIEMPO_DP_ESC	INT	%MW502
TIEMPO DP PASILLO	INT	%MW503
TIEMPO_RETARDO_ALUM_COCHE	INT	%MW504
TIEMPO_RETARDO_CERRAR	INT	%MW505
TIEMPO_RETARDO_FIBRA	INT	%MW506
TIEMPO_RETARDO_IMAN	INT	%MW507
TIEMPO_RETARDO_IND	INT	%MW508
TIEMPO_RETARDO_ON_NOCHE	INT	%MW509
TIEMPO_RETARDO_PERSIANA	INT	%MW510
● TIEMPO_RETARDO_PEXT	INT	%MW511
TIEMPO_RIEGO_PIS	INT	%MW512
TIEMPO_RIEGO_Z1	INT	%MW513
TIEMPO_RIEGO_Z2	INT	%MW514
TIEMPO_RIEGO_Z3	INT	%MW515
TIM_CERRAR_PREVENCION	TIME	7010107515
TIM_ENCENDIDO_NOCHE	TIME	
TIM_ENTRAR	TIME	
TIM_ENTRAR TIM_FIBRA_ALARMA	TIME	
TIM_FILTRO_ALUM_COCHE	TIME	-
TIM_IMAN_ALARMA	TIME	
TIM_IND_ALARMA	TIME	3
TIM_IND_PREVENCION	TIME	
TIM_MARCHA_ALUM_COCHE	TIME	
TIM_MARCHA_ALOM_COCHE TIM_PANTALLA	TIME	
	7.02	3
TIM_PERSIANA_PREVENCION	TIME	
TIM_PEXT_ALARMA	TIME	
TIM_RIEGO_PIS	TIME	
TIM_RIEGO_Z1	TIME	3
TIM_RIEGO_Z2	TIME	
TIM_RIEGO_Z3		
→ TIM_SENSOR_DP_ENTRADA	TIME	
TIM_SENSOR_DP_ESC	TIME	+
TIM_SENSOR_DP_ESC	TIME	
• TIMBRE	EBOOL	%10.1.1
TIMBRE SONORO	EBOOL	%Q0.2.1
V_ENTRADA	REAL	%MW600
• VALV_ENT	EBOOL	%Q0.2.15
VALV_VACIADO	EBOOL	%Q0.2.16
• verano_invierno	EBOOL	
● VOLTIMETRO	INT	%IW0.4.0
VOLTIMETRO2	INT	%IW0.4.2
VOLTIMETRO2_REAL	REAL	
◆ VOLTIMETRO_REAL	REAL	

Tabla 48 Lista de variables del programa.

Como se ve en la tabla en el apartado ubicación las variables que se utilizan son:

- $\%I \rightarrow$ Entradas digitales de tipo byte (0, 1)
- $\%Q \rightarrow \text{Salidas digitales de tipo byte } (0,1)$
- %IW → Entradas analógicas de tipo palabra (16bit)
- %QW → Salidas analógicas de tipo palabra (16 bit)
- $\%M \rightarrow Marca interna tipo byte(0,1)$
- %MW → Marca interna tipo palabra (16bit)

7.2.2.6.3Definición de temporizadores

En la realización de la programación se han utilizado también temporizadores del tipo TON y TOF.

• TON. Es un tipo de temporizador que cuando recibe la entrada espera a que esta esté activa durante un tiempo, definido en el programa, para que una vez pasado este tiempo si la entrada sigue activa se dará la salida. En el caso de que la entrada no aguante activa todo el tiempo establecido el temporizador se reiniciará.

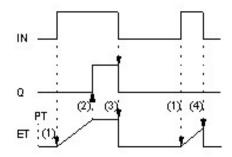


Ilustración 66. Temporizador TON

• TOF. Temporizador de retardo de desconexión. En el momento que se activa la entrada se activará la salida, en el momento que se desactive la entrada la salida se mantendrá activa el tiempo definido para el temporizador.

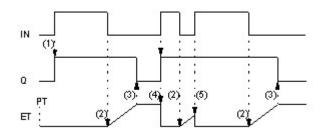


Ilustración 67. Temporizador TOF

Los temporizadores se encontrarán ubicados en la carpeta de "Variables e instancias FB" en el grupo de "Instancias FB elementales".

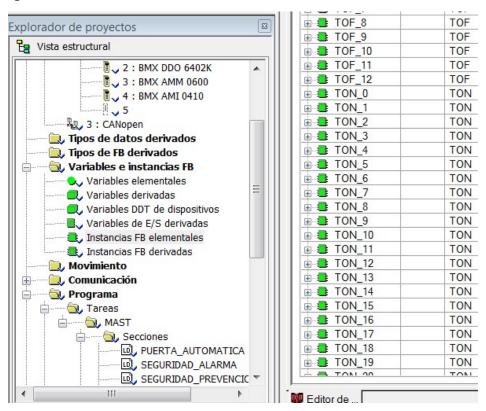


Ilustración 68. Temporizadores del programa

7.2.2.7 Programación de la pantalla Táctil

La programación de la pantalla táctil se lleva a cabo mediante el software de Schneider para programación pantallas táctiles Vijeo designer.

7.2.2.7.1 Definir proyecto y pantalla

Primero se abrirá el programa, se creará un nuevo proyecto y se elegirá la pantalla a conectar.

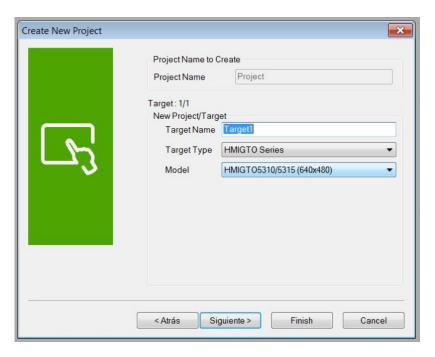


Ilustración 69. Crear proyecto y definir pantalla

7.2.2.7.2 Conexión del autómata y la pantalla

Una vez hecho esto, se buscara la opción IO manager que aparece en la ventana llamada "Navigator" situada a la izquierda en el entorno de trabajo principal de Vijeo designer. Se desplegará la opción IO manager y aparecerá ModbusTCPIP01 desde ahí se configurará la conexión de la pantalla y el autómata.

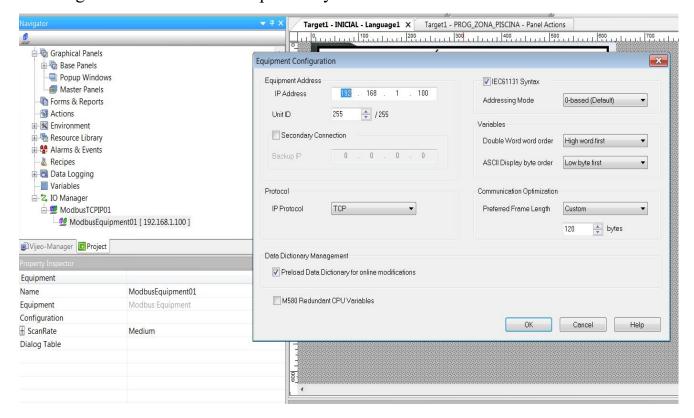


Ilustración 70. Definición de la conexión autómata pantalla

Se va a conectar vía ethernet y para ello se debe introducir la IP del autómata.

7.2.2.7.3Definición de las variables

Una vez hecho esto, se procederá a crear las variables para poder dar uso a las futuras pantallas. Se deberá crear en el Vijeo todas las variables del programa realizado con Unity que queramos que de una forma u otra puedan ser controlables desde la pantalla.

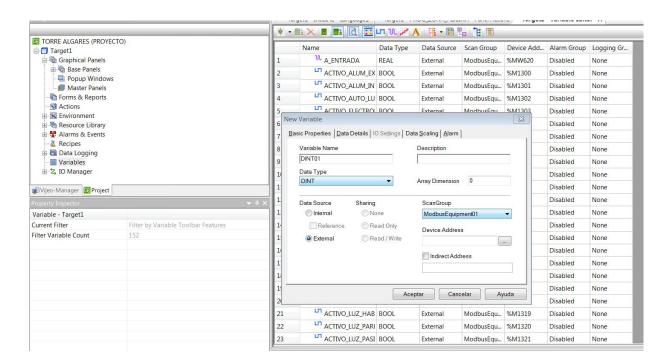


Ilustración 71. Creación de una nueva variable

Las variables se crearán como variables de tipo interno y se deberá introducir la ubicación definida anteriormente en Unity para cada variable.

- Las variables que allí se han definido como %M servirán para controlar acciones de marcha paro.
- Por otro lado las variables que allí se han definido como %MW servirán para introducir leer datos del autómata o leer datos del autómata en la pantalla.

Desde el Vijeo se introducirán dos variables para que el autómata pueda conocer y controlar en que panel se haya la pantalla en todo momento. PANELR y PANELW.

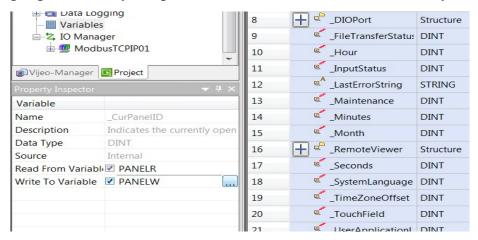


Ilustración 72. Definición de las variables para que interactúen autómata y pantalla

Estas variables deberán de ser definidas y asignada una ubicación, tanto en la pantalla como en el autómata.

7.2.2.7.4 Definición de los paneles

Dentro de la ventana izquierda en el punto denominado como "base panel" haciendo click derecho sobre este se crearán los nuevos paneles.

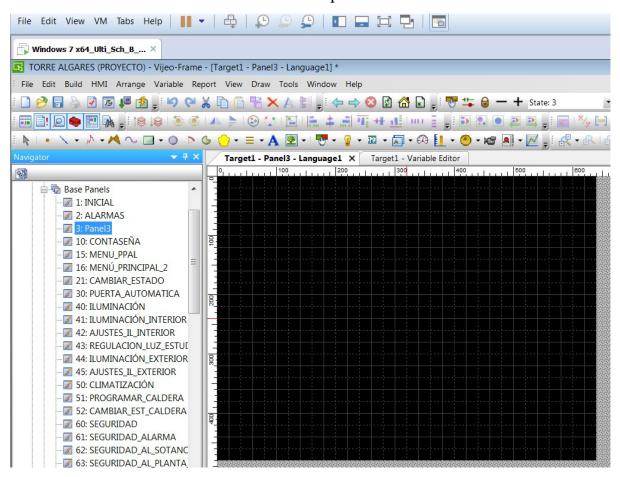


Ilustración 73. Nuevo panel y entorno de trabajo del Vijeo Designer

Como se aprecia en la ilustración 74 en la parte izquierda del panel se observa una lista junto con todos los paneles creados, en la parte superior la barra de herramientas donde podemos escoger los botones, texto, avisos luminosos... que se introducen en el panel que se observa en la ventana más grande en el centro-derecha.

A continuación se muestra y define un panel estándar del proyecto.

Ilustración 74. Panel estándar del proyecto

En la parte superior izquierda aparece la fecha y en la parte superior derecha se aprecia la hora. Justo debajo de la fecha y la hora se haya el título del panel en este caso Climatización. Debajo del título se haya el panel de operaciones donde los testigos luminosos aparecen todos en rojo, para cambiar esto se debería pulsar los botones contiguos. Por último en la parte inferior izquierda aparece el botón volver que nos devolverá a la pantalla anterior.

7.2.2.7.5 Definición de los botones

Para hacer más fácil la comprensión y el uso de la pantalla, se ha utilizado un código de colores según la función que tenga cada botón. El código se definirá a continuación.

• BOTÓN AZUL. Servirá para cambiar de panel. A continuación se muestra su programación.

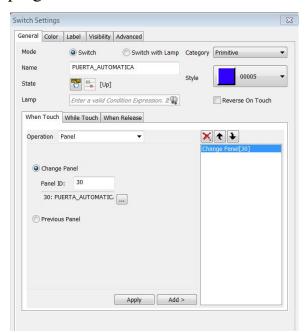


Ilustración 75. Ejemplo y programación del botón azul

• BOTÓN GRIS. Con el texto ajustes como etiqueta, al pulsarlo se dirigirá a un panel de gestión de tiempos de temporizadores. Se muestra a continuación.

• BOTÓN VERDE. Con el texto "volver" como etiqueta al pulsarlo nos enviará a la pantalla anterior.

• BOTÓN NARANJA. Activará o parará una salida. A continuación se muestra su programación.

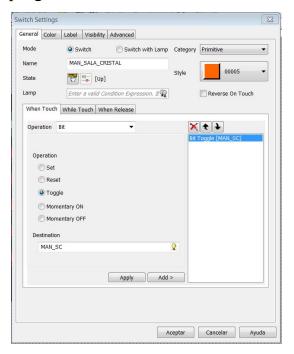


Ilustración 76. Ejemplo y programación del botón naranja

• BOTÓN MARRÓN. Con el texto registrarse servirá para poder entrar en el sistema. Una vez pulsado nos exigirá introducir nuestra contraseña para el login.

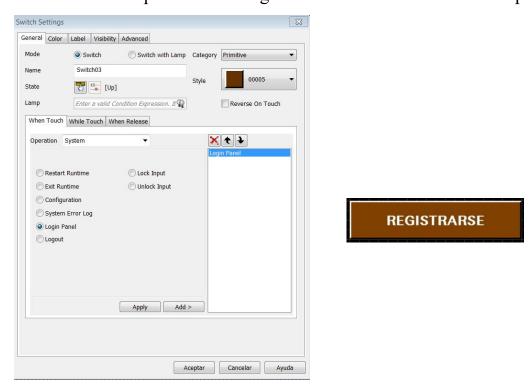


Ilustración 77. Ejemplo y programación del botón naranja

• BOTÓN MENU PRINCIPAL. Se tratará de un botón especial porque únicamente su pulsación estará activa en el caso de haber introducido la contraseña. En la pestaña "General" se definirá como un botón normal de cambio de panel, se cambiará la configuración en "Advanced".

Ilustración 78. Ejemplo y programación del botón MENÚ PRINCIPAL.

• CUADROS DE TEXTO. Serán de diferentes colores y se distinguirán del resto por no tener relieve.

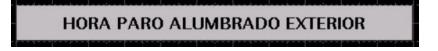


Ilustración 79. Cuadro de texto

 BOMBILLA EN ROJO. Representarán las salidas del autómata y se mostrarán en verde solo cuando estén activas. Normalmente se encontrarán acompañadas de un botón naranja.

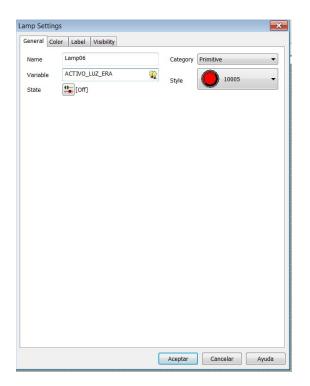


Ilustración 80. Ejemplo y programación del aviso luminoso BOMBILLA EN ROJO

 BOMBILLA EN VERDE. Representarán las alarmas del autómata y se mostrarán en rojo solo cuando esa alarma esté activa. Normalmente se encontrarán acompañadas de un cuadro de texto.

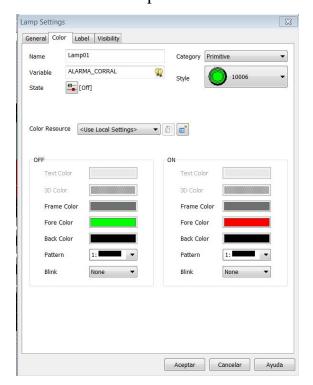


Ilustración 81. Ejemplo y programación del aviso luminoso BOMBILLA EN ROJO

• FRAME AZUL. Sirven para introducir valores de temporizadores.



Ilustración 82. Ejemplo y programación del frame para introducción de datos azul

• FRAME AMARILLO. Sirven para definir, horarios de puestas en marcha y número de lux deseado en el estudio.

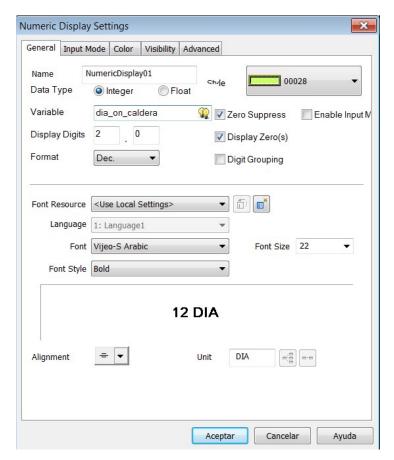


Ilustración 83. Ejemplo y programación del frame para introducción de datos amarillo

• BOTÓN RESET. Reseteará las alarmas y avisos del sistema.

Ilustración 84. Botón reset

7.2.2.7.6 Definición de alarmas

Para que la pantalla registre las alarmas se deberá crear un grupo de alarmas, en este caso se llamará "alarmgroup01". Se creará desde la opción ubicada en la ventana "Navigator" llamada "Alarms&Events".

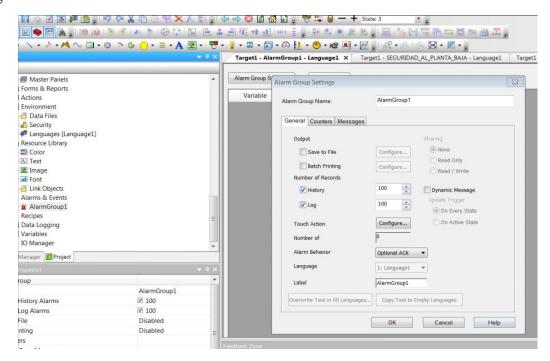


Ilustración 85. Definición del grupo de alarmas.

Una vez hecho esto se agregará todas las alarmas que se pretenda registrar.

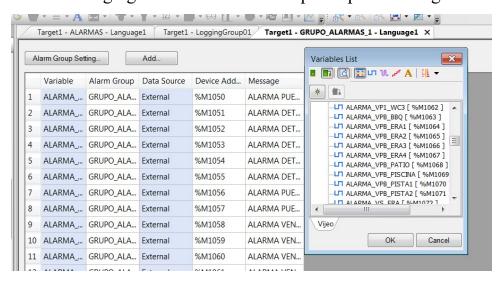


Ilustración 86. Agregar alarmas al grupo

Finalmente se creará un panel de avisos de alarma.

Ilustración 87. Panel histórico de alarmas

7.2.2.7.7 Definición de usuario de seguridad

Desde la opción "Enviroment" → "Security" del panel "Navigator" se podrán generar los usuarios de seguridad.

Se creará un grupo de seguridad al que se le dará autoridad para leer/escribir/borrar dentro del sistema domótico. Dentro de este grupo se definirán los usuarios con su pertinente contraseña.

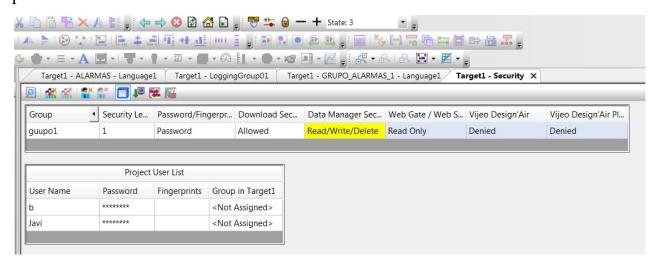


Ilustración 88. Crear grupo y usuario de seguridad.

Por último se definirá un tiempo de "logout". Es decir pasado cierto tiempo (3min) después de introducir el usuario y contraseña (login), se desconectará. Esto no querrá decir que no se pueda seguir usando el programa pero si se sale a la pantalla de inicio se tendrá que volver a introducir usuario y contraseña.

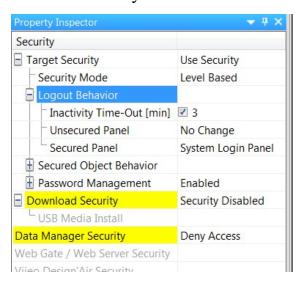


Ilustración 89. Definición tiempo "logout"

7.2.2.8 Configuración myScada en el Smarthphone

Se deberá descargar la aplicación myScada en el Smarthphone. MyScada Mobile conecta directamente con el PLC. Todos los drivers de comunicación necesarios estarán en el PLC.

Ilustración 90. Imagen comercial de la app mySCADA

La aplicación mySCADA se encuentra para IOS y Android, se podrá localizar en el AppStore y PlayStore respectivamente. Se deberá descargar la app y seguir los siguientes pasos.

- 1. Descargar en nuestro PC myPOJECT designer desde la web <u>www.myscada.org</u>.
- 2. Diseñar nuestro proyecto desde New Project Tutorial.
- 3. Conectar el smarthphone a la misma red que el PC. Se pondrá en marcha la app desde el smarthphone y automáticamente el programa myPROJECT designer encontrará el smarthphone.
- 4. Una vez hecho esto descargaremos el programa del PC al teléfono seleccionando el proyecto y haciendo click en el botón "Download"

En el smarthphone aparecerá exactamente lo mismo que se defina en la pantalla. Para que esto sea así se deberá crear una conexión local vía wifi y una conexión remota conectando el sistema a internet.

Local Control WiFi Router

Ilustración 91. Configuración de red local

EtherNet/IP

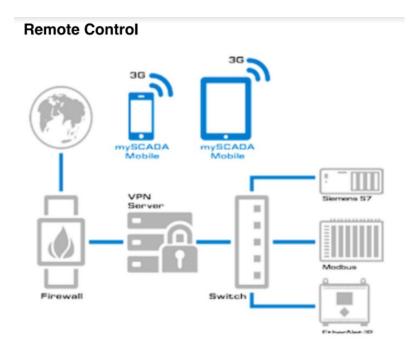


Ilustración 92. Configuración de red externa

Al tratarse de un sistema domótico de Schneider utilizaremos la conexión ethernet para conectar el sistema con el switch. Se deberá disponer de una IP interna para controlarlo desde la red local y una IP externa para poderlo manejar con conexión de datos.

8 Viabilidad Técnica

Se dividirá la viabilidad técnica en dos partes. Como se viene haciendo a lo largo del proyecto se distinguirá entre la viabilidad técnica del sistema de abastecimiento de energía y la viabilidad técnica de la parte domótica.

8.1.1 Viabilidad técnica del sistema de abastecimiento de energía

Para llevar a cabo el sistema de abastecimiento de energía se necesitará realizar una caseta y un porche, un soporte metálico para la sujeción de las placas solares, un entramado de zanjas para el paso del cableado, realización de las conexiones del cableado. Para lo expuesto anteriormente se necesitará:

- Un técnico en construcción para realizar las obras pertinentes.
- Un técnico herrero soldador para realizar el soporte de los paneles solares.
- Un técnico en excavaciones y sondeos para la realización de las zanjas.
- Un técnico en instalaciones eléctricas para el montaje y conexión del sistema de abastecimiento de energía.

Para realizar el montaje se necesita disponer de estos técnicos. Que dispondrán tanto de la maquinaria como del material necesario para realizar las instalaciones.

Todos los elementos que se van a colocar, placas, inversor, baterías, aerogenerador... han seleccionado han sido escogidos del catálogo del fabricante, los cuales se encuentran disponibles en el mercado. Por lo tanto no hay ninguna dificultad técnica de disponer de dichos elementos con las características definidas.

8.1.2 Viabilidad técnica del sistema domótico

Para llevar a cabo el desarrollo del proyecto son necesarios los elementos para la programación del autómata, la pantalla táctil, los cuales son:

- Ordenador MSI GP62 2QE LEOPARD PRO o compatible con un procesador core
 i5 o i7 con los siguientes requisitos mínimos:
 - ✓ 4 GB de memoria RAM.

- ✓ Un disco duro de 500GB y si es posible un disco SSD de 128GB.
- ✓ Puerto USB.
- ✓ Puerto Ethernet.
- Unity Pro 11 de Schneider, para el programa del autómata.
- Vijeo Designer de Schneider, para el programa de la pantalla.
- Cable USB a USB mini para la comunicación del autómata.
- Cable RJ45 para la conexión del escada
- PAINT de Windows para la creación de imágenes en la pantalla táctil.
- Autocad de autodesk para la realización de los esquemas.

Para la realizar el programa y diseño de los diferentes programas, pantallas y manejar el software necesario serán imprescindibles unos conocimientos técnicos previos. El técnico competente encargado de la realización del proyecto dispone de los conocimientos requeridos para ello.

Todos los elementos que se van a colocar, sensores, detectores... que se han seleccionado han sido escogidos del catálogo del fabricante. Por lo tanto no hay ninguna dificultad técnica en disponer del material necesario para implementar el sistema de control.

Por todo lo expuesto en el punto 8.1.1 y 8.1.2 se concluye que el proyecto es técnicamente correcto.

8.2 VIABILIDAD ECONÓMICA

Como en el apartado anterior se dividirá la viabilidad técnica en dos partes. se distinguirá entre la viabilidad económica del sistema de abastecimiento de energía y la viabilidad económica de la parte domótica.

8.2.1 Viabilidad económica del sistema de abastecimiento de energía

Para analizar la viabilidad económica del sistema de abastecimiento energía se debe tener en cuenta que actualmente la Masía Torre Algares no dispone de ninguna fuente de abastecimiento de energía y por lo tanto no genera gastos en ese aspecto. Tampoco se trata de un lugar que se pretenda utilizar para dar un beneficio económico, sino que es un lugar orientado al lucro y descanso del propietario. Sabiendo esto el sistema de abastecimiento de energía no tendrá posibilidades de amortizarse nunca. Para demostrar que el sistema que se va a instalar es viable económicamente se comparará el coste de este, con el coste de haber realizado una línea eléctrica aérea.

En la memoria se muestra el coste de realizar la instalación de una línea eléctrica aérea frente a la instalación del sistema de abastecimiento por placas solares y aerogenerador.

A continuación se hará una comparativa de costes a 10 años ya que cada 10 años deberemos cambiar las baterías en el caso de la captación solar más aerogenerador.

- Coste de la instalación de la línea aérea → 30.000€
- Coste aproximado de la factura anual → 504,93€
- Coste de la instalación de las placas solares y aerogenerador →18.521€
- Años a los que se realizará el estudio → 10 años

*Se considerará un termino de energía fijo de 0,117044 €/KWh y un consumo medio de 5000 KWh al año.

$$0,117044 \frac{€}{KWh} \times \frac{7,5KWh}{día} \times 365 días = \frac{320.132€}{año} + 21\%(IVA) = 387.36€/día$$

*Se considerará una potencia contratada de 5.75 kW a un precio medio de 0,115187 €/KW día.

$$\frac{0.115187€}{\text{KW} * \text{día}} \times 365 \text{ días} \times 5.75 \text{KW} = \frac{241.74€}{\text{año}} + 21\% (IVA) = 292.5€/año$$

Por lo tanto en 10 años el coste de la instalación de una línea eléctrica saldría por un valor de:

Coste de la línea (coste único) + factura eléctrica(costes fijos) = coste conexión compañia

Coste conexión compañia =
$$30.000$$
€ + $\frac{679.86$ € \times $10a$ ños = 36798.6 €

Por otro lado en 10 años el coste de la instalación de una instalación solar y aerogenerador saldría por un valor de:

Coste instalación placas solares + aerogenerador (coste único) = 18.521 €

La comparación de los 10 primeros años es favorable a la opción de escoger el sistema de abastecimiento de energía eléctrica por medio de placas solares y aerogenerador. Ya que la opción de la línea eléctrica aérea supone un coste de casi el doble.

Deberíamos de tener en cuenta los costes fijos de ambas instalaciones en el modelo de línea eléctrica aérea es la factura eléctrica y en el caso del sistema de abastecimiento de energía eléctrica por medio de placas solares y aerogenerador se debe cambiar las baterías cada 10 años. Por lo tanto los costes de la segunda decena de vida de la instalación serían:

Factura eléctrica = 6.798,6 €

Cambio de baterías = 3.807,6 €

En este aspecto se refleja la opción del sistema de abastecimiento de energía eléctrica por medio de placas solares y aerogenerador como la opción más económica.

En definitiva sabiendo que hoy por hoy no se encuentra ningún sistema de abastecimiento de energía instalado en la masía Torre Algares y que no se busca conseguir ningún beneficio económico de esta instalación se puede concluir que la opción del del sistema de abastecimiento de energía eléctrica por medio de placas solares y aerogenerador será la más viable de las opciones que se disponen.

8.2.2 Viabilidad económica del sistema domótico

Como en el caso anterior no se puede demostrar numéricamente la viabilidad económica de el proyecto domótico de nuestra vivienda debido a que no se dispone de datos anteriores ya que la masía Torre Algares es una vivienda reformada en la que anteriormente no existía ningún tipo de gasto económico debido al gasto energético.

Una de las principales características de las instalaciones domóticas es que ayudan a las viviendas a ser más eficientes, sistemas como la regulación de la luz de las bombillas dependiendo de los lúmenes que entran desde la calle, control del tiempo de encendido de la iluminación exterior (apagándola en las horas en las que no va a ser aprovechada) o el control de la climatización de la vivienda cerrando o abriendo zonas dependiendo de su ocupación; son sistemas que suponen un ahorro de casi el 26% de energía.

8.3 VIABILIDAD MEDIOAMBIENTAL

8.3.1 Viabilidad medioambiental del sistema de abastecimiento de energía

Se considera un proyecto viable medioambientalmente hablando por dos razones:

- Evidentemente supondrá un cambio en el entorno medioambiental, pero será de una magnitud muy pequeña comparado con otros sistemas de abastecimiento de energía. No se van a colocar torres eléctricas en medio del entorno. Únicamente se colocará un pequeño aerogenerador y una caseta multiusos donde su tejado hará de soporte para el sistema de placas solares.
- El proyecto plantea el abastecimiento de energía a base de energía solar y energía eólica, dos de las energías renovables. Con una emisión nula de CO_2 a la atmósfera.

8.3.2 Viabilidad medioambiental del sistema domótico

El sistema domótico se considerará viable medioambientalmente debido a que no supondrá ningún cambio en el entorno ni producirá ningún tipo de contaminación.

II PLIEGO DE CONDICIONES

ÍNDICE DEL PLIEGO DE CONDICIONES

	1	PLIEGO DE CONDICIONES	3
1.1	Es	PECIFICACIONES DE LOS MATERIALES Y EQUIPOS DEL SISTEMA DE ABASTECIMIENTO ENERGÉTICO	3
1.2	Es	PECIFICACIONES DE LOS MATERIALES Y EQUIPOS DEL SISTEMA DOMÓTICO	5

1 PLIEGO DE CONDICIONES

En el pliego de condiciones se recogerán las especificaciones de los materiales y equipos que forman nuestro proyecto, para ello como se viene haciendo hasta ahora de distinguirá entre la parte de abastecimiento de energía y la parte del sistema domótico.

1.1 <u>Especificaciones de los materiales y equipos del sistema de abastecimiento energético</u>

A continuación se indican las prescripciones técnicas particulares de los elementos que forman nuestro sistema de abastecimiento de energía:

- Placas Solares
 - o Panel Solar Nousol Policristalino 200W
 - Caída de tensión 36V
 - o Amperaje 5,5 A
 - o Medidas 1320mm x 992mm x 35 mm
- Aerogenerador
 - o Aerogenerador Air30
 - o 400W a 12,5 m/s
 - o Controlador MPPT
 - o 1,15mts
- Regulador
 - Xantrex XW-MPPT
 - o 80A
 - o 24V
 - \circ Max $600V_{oc}$
 - Display digital
- Inversor
 - o Inversor cargador 5000VA
 - \circ 24 V_{DC} 230 V_{AC}
 - o Cargador 120ª

- o Relé transf. 50A
- Cableado
 - o H07 VK1,5 R
 - o H07 VK1,5 N
 - H07 VK4 R
 - o H07 VK4 N
 - o H07 VK4 M
 - o H07 VK4 A
 - o H07 VK4 G
 - o RVK 1x16
 - o RVK 1x35
 - o RVK 1x95
 - o RVK 1X120

Baterías

- Batería estacionaria OPzS 800
- o 2V
- o 1320Ah
- o C120
- o 215mm x 193mm x 695mm
- o 60 Kg
- Grupo electrógeno
 - Generador diesel
 - Pot. Máx 5kVA
 - o Arranque eléctrico
 - o Adaptado energía solar
 - o Refrigeración por agua
 - o 168 kg

1.2 Especificaciones de los materiales y equipos del sistema domótico

A continuación se indican las prescripciones técnicas particulares de los elementos que forman nuestro sistema domótico:

- Detectores de presencia
 - o 180 º de visión
 - o Superficie
 - o Tres hilos
 - o Salida digital PNP
 - o 24V
- Detectores de Imán
 - o Conmutador magnético
 - o Superficie
 - Tres hilos
 - o Salida digital PNP
 - o 24V
- Pulsadores
 - \circ Empotrable
 - o Tres hilos
 - o Salida digital PNP
 - o Interior/exterior
 - o 24V
- Finales de carrera
 - Tres hilos
 - o Salida digital PNP
 - o 24V
 - o Interior/exterior
- Sonda de temperatura

- o Sensor PT100
- Tres hilos
- Salida analógica 4 20 mA
- Exterior
- Electroválvulas
 - o Diámetro ¾"
 - o Diámetro 1"
 - o Tensión 230V o 24V NPN
- Bombillas
 - o 220 Vac
 - Con driver regulable 4 20 mA
 - o LED 20W
 - o 2000 lúmenes
- Sensor ultrasonidos
 - o Salida analógica
 - \circ 4 20 mA
 - o Detección ajustable (0-8m)
- Amperimetro
 - o Salida analógica
 - \circ 4 20 mA
 - Rango de medición ajustable (0 50A)
- Voltímetro
 - o Salida analógica
 - \circ 4 20 mA
 - \circ Rango de medición ajustable (0-690V)
- Sensor de luminosidad
 - o Salida analógica
 - \circ 4 20 mA

- o 24V
- \circ Rango ajustable (0 1000 lux)
- Fibra óptica
 - Salida digital
 - o PNP
- Fotocélula
 - Exterior
 - o Tensión 230 V
 - o Empotrable

PLC

- Rack BMX XBP0600. Rack para 6 módulos.
- o Fuente de alimentación BMX CPS 2010. Fuente de alimentación a 24V.
- Procesador BMX P34 2030.
- Módulo de entradas digitales BMX DDI 6402K. Módulo de 64 entradas digitales.
- Módulo de salidas digitales BMX DDO 6402K. Módulo de 64 salidas digitales.
- Módulo de entradas analógicas BMX AMI 410. Módulo de 4 entradas analógicas.
- Módulo de entradas/salidas analógicas BMX AMM 0600. Módulo mixto de 4 entradas analógicas y 2 salidas digitales.
- o Cable conexión BMX FCC 103. Cable con conectores de alta densidad.
- O Base de relés de entrada ABE 7H16C11. Base de 16 relés de entrada.
- O Base de relés de salida ABE 7R16T330. Base de 16 relés de salida.
- o Armario Prisma G 08104. Medidas 1025 x 810 (en mm).

III PRESUPUESTO

ÍNDICE DEL PRESUPUESTO

1	PRESUPUESTO	. 3
1.1 PR	ESUPUESTO DEL SISTEMA DE ABASTECIMIENTO DE ENERGÍA	. 3
1.1.1	Placas solares	. 3
1.1.2	Aerogenerador	4
1.1.3	Regulador	4
1.1.4	Inversor	. 5
1.1.5	Baterías	6
1.1.6	Grupo electrógeno	. 7
1.1.7	Zanjas	. 7
1.1.8	Cableado	. 8
1.1.9	Coste final sistema de abastecimiento de energía eléctrica	8
1.2 Pr	ESUPUESTO DE LA INSTALACIÓN DOMÓTICA	.9
1.2.1	Autómata	9
1.2.2	Elementos de entrada	10
1.2.3	Elementos de salida	10
1.2.4	Coste de la instalación domótica	l 1
1.3 Cc	OSTE TOTAL DEL PROYECTO	11

1 PRESUPUESTO

Para calcular el presupuesto exacto del proyecto se dividirá el presupuesto en dos partes:

- Presupuesto del sistema de abastecimiento de energía
- Presupuesto del sistema domótico

Se calcularán ambas partes por separado para finalmente sumarlas y obtener el valor del coste final:

1.1 Presupuesto del sistema de abastecimiento de energía

Dentro del sistema de abastecimiento de energía se tendrá en cuenta el coste de los siguientes elementos:

- Placas Solares
- Aerogenerador
- Regulador
- Inversor
- Baterías
- Grupo electrógeno
- Zanjas
- Cableado

1.1.1 Placas solares

Se extraen los precios del catálogo de Nousol, a continuación se adjunta lista de precios junto con panel escogido.

PANELES AISLADA NOUSOL POLICRISTALINOS

11000001	Panel Solar Policristalino 5W 17,6V 0,58A 200x290x18mm 1 kg	17,40
11000002	Panel Solar Policristalino 10W 17,4V 0,58A 417x264x30mm 1,2kg	24,15
11000003	Panel Solar Policristalino 15W 17,4V 0,86A 372x372x30mm 1,6kg	34,36
11000004	Panel Solar Policristalino 25W 17,4V 1,44A 520x446x30mm 2,4kg	51,32
11000007	Panel Solar Policristalino 60W 18V 3,33A 675x630x35mm 6kg - NUEVO	84,92
11000010	Panel Solar Policristalino 100W 18 V 5,56A 1015x675x35mm 9kg - NUEVO	116,42
11000011	Panel Solar Policristalino 150W 18V 8,33A 1485x675x35mm 13kg - NUEVO	148,90
11000051	Panel Solar Policristalino 200W 18V 11,11A 1320x992x35mm 16kg - NUEVO	176,47
11000055	Panel Solar Policristalino 200W 36V 5,55A 1320x992x35mm 16kg - NUEVO	176,47

El panel escogido será:

Coste de los paneles solares					
Ref. escogida	Fuente	Precio unitario	Cantidad	Precio Total	
11000055	Catálogo Nousol	176,47 €	12	2.117,64 €	

1.1.2 Aerogenerador

Se extraen los precios del catálogo de Nousol, a continuación se adjunta lista de precios junto con el aerogenerador escogido.

AIR30/40/BREEZE (200-400W) 31108031 Aerogenerador Air40 12Vdc 200W a 12,5m/s | Controlador MPPT | 1,17mts 866,16 31108032 Aerogenerador Air40 24Vdc 200W a 12,5m/s | Controlador MPPT | 1,17mts 866,16 31108033 Aerogenerador Air40 48Vdc 200W a 12,5m/s | Controlador MPPT | 1,17mts 866,16 31108034 Aerogenerador Air30 12Vdc 400W a 12,5m/s | Controlador MPPT | 1,15mts 866,16 31108035 Aerogenerador Air30 24Vdc 400W a 12,5m/s | Controlador MPPT | 1,15mts 866,16 31108036 Aerogenerador Air30 48Vdc 400W a 12,5m/s | Controlador MPPT | 1,15mts 866,16 31108010 Aerogenerador Air Breeze Marine 12Vdc 200W a 12,5m/s | Controlador MPPT | 1,17mts 1224,75 31108011 Aerogenerador Air Breeze Marine 24Vdc 200W a 12,5m/s | Controlador MPPT | 1,17mts 1224,75 31108012 Aerogenerador Air Breeze Marine 48Vdc 200W a 12,5m/s | Controlador MPPT | 1,17mts 1224,75

El aerogenerador escogido será:

Coste de los paneles solares					
Ref. escogida	Fuente	Precio unitario	Cantidad	Precio Total	
31108035	Catálogo Nousol	866,16 €	1	866,16 €	

1.1.3 Regulador

Se extraen los precios del catálogo de Nousol, a continuación se adjunta lista de precios junto con el regulador escogido.

REGULADORES SCHNEIDER-XANTREX

13206701	Xantrex XW-MPPT de 60A 12,24,36,48,60Vdc max. 150Voc Display Digital	483,68
13206702	Xantrex XW-MPPT HV de 80A 24,48Vdc max. 600Voc Display Digital	986,76

El regulador escogido será:

Coste del regulador					
Ref. escogida	Fuente	Precio unitario	Cantidad	Precio Total	
13206702	Catálogo Nousol	986,76€	1	986,76 €	

1.1.4 Inversor

Se extraen los precios del catálogo de Nousol, a continuación se adjunta lista de precios junto con el inversor escogido.

INVERSORES-CARGADORES VICTRON MULTIPLUS C

15103425	Inversor Cargador 500VA 12Vdc-230Vac Cargador 20A Relé transf. 16A	395,29
15103401	Inversor Cargador 800VA 12Vdc-230Vac Cargador 35A Relé transf. 16A	606,12
15103402	Inversor Cargador 1200VA 12Vdc-230Vac Cargador 50A Relé transf. 16A	758,47
15103403	Inversor Cargador 1600VA 12Vdc-230Vac Cargador 70A Relé transf. 16A	775,77
15103404	Inversor Cargador 2000VA 12Vdc-230Vac Cargador 80A Relé transf. 30A	969,30
15103405	Inversor Cargador 3000VA 12Vdc-230Vac Cargador 120A Relé transf. 16A	1197,41
15103420	Inversor Cargador 3000VA 12Vdc-230Vac Cargador 120A Relé transf. 50A	1292,94
15103421	Inversor Cargador 3000VA Quattro 12Vdc-230Vac Cargador 120A Relé transf. 30A	1820,00
15103422	Inversor Cargador 5000VA Quattro 12Vdc-230Vac Cargador 220A Relé transf. 100A	2834,59
15103426	Inversor Cargador 500VA 24Vdc-230Vac Cargador 16A Relé transf. 16A	395,29
15103408	Inversor Cargador 800VA 24Vdc-230Vac Cargador 16A Relé transf. 16A	606,12
15103409	Inversor Cargador 1200VA 24Vdc-230Vac Cargador 25A Relé transf. 16A	758,47
15103410	Inversor Cargador 1600VA 24Vdc-230Vac Cargador 40A Relé transf. 16A	775,77
15103411	Inversor Cargador 2000VA 24Vdc-230Vac Cargador 50A Relé transf. 30A	969,30
15103412	Inversor Cargador 3000VA 24Vdc-230Vac Cargador 70A Relé transf. 16A	1197,41
15103423	Inversor Cargador 3000VA 24Vdc-230Vac Cargador 70A Relé transf. 50A	1292,94
15103406	Inversor Cargador 5000VA 24Vdc-230Vac Cargador 120A Relé transf. 50A	1915,53
15103419	Inversor Cargador 3000VA Quattro 24Vdc-230Vac 2xACin Cargador 70A	1729,42
15103407	Inversor Cargador 5000VA Quattro 24Vdc-230Vac 2xACin Cargador 120A	2370,12
15103424	Inversor Cargador 8000VA Quattro 24Vdc-230Vac 2xACin Cargador 200A	2991,06
15103427	Inversor Cargador 500VA 48Vdc-230Vac Cargador 6A Relé transf. 16A	395,29
15103417	Inversor Cargador 3000VA 48Vdc-230Vac Cargador 35A Relé transf. 16A	1197,41
15103418	Inversor Cargador 3000VA 48Vdc-230Vac Cargador 35A Relé transf. 50A	1292,94
15103413	Inversor Cargador 5000VA 48Vdc-230Vac Cargador 70A Relé transf. 50A	1915,53

El inversor escogido será:

Coste del inversor					
Ref. escogida	Fuente	Precio unitario	Cantidad	Precio Total	
15103406	Catálogo Nousol	1.915,53 €	1	1.915,53€	

1.1.5 Baterías

Se extraen los precios del catálogo de Nousol, a continuación se adjunta lista de precios junto con las baterías escogidas.

BATERÍAS ESTACIONARIAS OPZS EXIDE 14103402 Batería Estacionaria 2V y 245Ah C120 | OPzS 150 | 105x208x405mm | 15kg 114,48 14103403 Batería Estacionaria 2V y 305Ah C120 | OPzS 200 | 103x206x405mm | 16kg 129,35 14103404 Batería Estacionaria 2V y 380Ah C120 | OPzS 250 | 126x208x405mm | 22kg 144,23 14103405 Batería Estacionaria 2V y 450Ah C120 | OPzS 300 | 147x208x405mm | 23kg 162,70 14103406 Batería Estacionaria 2V y 550Ah C120 | OPzS 350 | 126x208x520mm | 26kg 165,41 14103407 Batería Estacionaria 2V y 660Ah C120 | OPzS 420 | 147x208x520mm | 31kg 187,04 14103408 Batería Estacionaria 2V y 765Ah C120 | OPzS 490 | 168x208x520mm | 35kg 206,42 14103409 Batería Estacionaria 2V y 985Ah C120 | OPzS 600 | 147x208x695mm | 44kg 233,92 14103417 Batería Estacionaria 2V y 1080Ah C120 | OPzS 700 | 147x208x695mm | 47kg 271,32 14103418 Batería Estacionaria 2V y 1320Ah C120 | OPzS 800 | 215x193x695mm | 60kg 317,30 14103410 Batería Estacionaria 2V y 1410Ah C120 | OPzS 900 | 215x193x695mm | 63kg 343,89 378,14 14103411 Batería Estacionaria 2V y 1650Ah C120 | OPzS 1000 | 215x235x695mm | 73kg 14103412 Batería Estacionaria 2V y 1990Ah C120 | OPzS 1200 | 215x277x695mm | 86kg 430,42 14103413 Batería Estacionaria 2V y 2350Ah C120 | OPzS 1500 | 215x277x845mm | 108kg 585,92 14103419 Batería Estacionaria 2V y 2500Ah C120 | OPzS 1625 | 215x277x845mm | 114kg 658,03 14103414 Batería Estacionaria 2V y 3100Ah C120 | OPzS 2500 | 215x400x815mm | 151kg 770,70 14103420 Batería Estacionaria 2V y 3350Ah C120 | OPzS 2125 | 215x400x815mm | 158kg 856,34 14103415 Batería Estacionaria 2V y 3850Ah C120 | OPzS 2500 | 215x490x815mm | 184kg 982,54 14103421 Batería Estacionaria 2V y 4100Ah C120 | OPzS 2750 | 215x490x815mm | 191kg 1059,15 14103416 Batería Estacionaria 2V y 4600Ah C120 | OPzS 3000 | 215x580x815mm | 217kg 1122,25 14103422 Batería Estacionaria 6V y 294Ah C120 | 4 OPzS 200 LA | 273x208x385mm | 41kg 307,38 14103423 Batería Estacionaria 6V y 364Ah C120 | 5 OPzS 250 LA | 381x208x385mm | 53kg 366,87 14103424 Batería Estacionaria 6V y 417Ah C120 | 6 OPzS 300 LA | 381x208x385mm | 68kg 401,13

La batería escogida será:

Coste de las baterías					
Ref. bat. escogida	Fuente	Precio unitario	Cantidad	Precio Total	
14103418	Catálogo Nousol	317,30 €	12	3.807,60€	

1.1.6 Grupo electrógeno

Se extraen los precios del catálogo de Nousol, a continuación se adjunta lista de precios junto con el grupo electrógeno escogido.

GRUPOS	ELECTRÓGENOS	
INVERTER	GASOLINA MONOFÁSICO	
71008901	Generador Gasolina Potencia máx. 0,77kVA Arranque manual Peso 10,5 kg	347,43
71008902	Generador Gasolina Potencia máx. 1,05kVA Arranque manual Peso 14 kg	475,28
71008903	Generador Gasolina Potencia máx. 2kVA Arranque manual Peso 22 kg	704,12
71008904	Generador Gasolina Potencia máx. 2,6kVA Arranque manual Peso 29 kg	1042,28
71008905	Generador Gasolina Potencia máx. 3kVA Arranque eléctrico Peso 57 kg	1348,0
INVERTER	DIESEL MONOFÁSICO	
72008901	Generador Diesel Potencia máx. 2kVA Arranque eléctrico Peso 50 kg	1148,8
72008902	Generador Diesel Potencia máx. 3,2kVA Arranque eléctrico Peso 70 kg	1292,43
72008903	Generador Diesel Potencia máx. 5kVA Arranque eléctrico Peso 100 kg	1528,68
72008904	Generador Diesel Potencia máx. 9,5kVA Arranque eléctrico adaptado para energía solar Peso 100 kg	3421,40
INVERTER	DIESEL MONOFÁSICO, SERIE SUPER SILENCIOSA 72-75db	
73008901	Generador Diesel Potencia máx. 3,2kVA Arranque eléctrico Peso 140 kg	1663,94
73008902	Generador Diesel Potencia máx. 5kVA A. eléctrico Adaptado energía solar Aire Peso 170 kg	2121,6
73008903	Generador Diesel Potencia máx. 5kVA A. eléctrico Adaptado energía solar Agua Peso 168 kg	2269,8
73008904	Generador Diesel Potencia máx. 9,5kVA A. eléctrico Adaptado energía solar Agua Peso 310 kg	4082,0

El grupo electrógeno escogido será:

Coste del grupo electrógeno					
Ref. escogida	Fuente	Precio unitario	Cantidad	Precio Total	
73008903	Catálogo Nousol	2.269,85 €	1	2.269,85 €	

1.1.7 Zanjas

Se realizarán 118.5m de zanja de 80cm de profundidad y 40cm de ancho, según los precios por metro cúbico proporcionados por la empresa Querol Guardiola S.L. se tiene que cada metro cubico de zanja tendrá un valor de 27.67€/m³

Por lo tanto las zanjas tendrán un coste:

Coste de la Zanja					
Metros de zanja Profundidad(cm) Ancho (cm) Precio (€/m³) Precio Total					
118,46	0,8	0,4	27,67	1.048,89€	

1.1.8 Cableado

Respecto los tramos citados en la memoria, siguiendo el coste por metro proporcionado por el fabricante (En este caso General Cable) se calculará el presupuesto del cableado:

CABLEADO DEL SISTEMA DE ABASTECIMIENTO DE ENERGÍA					
Modelo	Precio (€/m)	Longitud (m)	Coste total		
H07VK4 R	1,22	6	7,32 €		
H07VK4 N	1,22	6	7,32 €		
RVK 1X16	3,86	60,23	232,49 €		
RVK 1X16	3,86	60,23	232,49 €		
RVK 1X35	8,23	2	16,46€		
RVK 1X35	8,23	2	16,46€		
RVK 1X95	21,62	111,62	2.413,22€		
RVK 1X95	21,62	111,62	2.413,22€		
RVK 1X120	26,95	2	53,90€		
RVK 1X120	26,95	2	53,90€		
H07VK4 M	1,22	4	4,88 €		
H07VK4 A	1,22	4	4,88 €		
H07VK1,5 R	0,52	15	7,80 €		
H07VK1,5 N	0,52	15	7,80 €		
H07VK4 M	1,22	15	18,30€		
H07VK4 A	1,22	15	18,30€		
		TOTAL	5.508,74 €		

1.1.9 Coste final sistema de abastecimiento de energía eléctrica

En la siguiente tabla se muestra el coste final de la instalación para el sistema de abastecimiento eléctrico.

COSTE ABASTECIMIENTO			
Paneles	2.117,64€		
Aerogenerador	866,16€		
Regulador	986,76€		
Inversor	1.915,53€		
Baterías	3.807,60€		
Grupo	2.269,85€		
Zanjas	1.048,89€		
Cableado	5508,74		
TOTAL	18.521,18 €		

1.2 Presupuesto de la instalación domótica

Dentro del sistema de abastecimiento de energía se tendrá en cuenta el coste de los siguientes elementos:

- Autómata.
- Elementos de entrada.
- Elementos de salida.

1.2.1 Autómata

El autómata M340 citado en la memoria estará formado por los componentes que allí se explican. Todos los componentes de este serán de la marca Schneider. Sus costes serán los siguientes:

DOMOTICA : AUTÓMATA 340						
				Precio		
Parte	Modelo	Cantidad	Precio unitario	Total		
Rack	BMX XBP0600	1	122,52€	122,52€		
Fuente de alimentación	BMX CPS 2010	1	239,52€	239,52€		
Procesador	BMX P34 2030	1	1.500,00€	1.500,00€		
Módulo de entradas digitales	BMX DDI 6402K	1	513,25€	513,25€		
Módulo de salidas digitales	BMX DDO 6402K	1	619,20€	619,20€		
Módulo de entradas analógicas	BMX AMI 410	1	362,04€	362,04 €		
Módulo de entradas/salidas analógicas	BMX AMM 0600	1	311,25€	311,25 €		
Cable conexión	BMX FCC 103	8	57,97 €	463,76 €		
Base de relés de entrada	ABE 7H16C11	4	85,68€	342,72 €		
Base de relés de salida	ABE 7R16T330	2	283,08€	566,16 €		
Armario domótico	PRISMA G 08104	2	618,58€	1.237,16 €		
Pantalla	HMIGTO2310	1	795,00€	795,00€		
			TOTAL	7.072,58€		

1.2.2 Elementos de entrada

Los elementos de entrada explicados en la memoria se citan a continuación acompañados de sus cantidades y precios. Todos los precios se expresan en su P.V.P.

DOMOTICA : ELEMENTOS DE ENTRADA						
Parte	Modelo	Cantidad	Precio unitario	Precio Total		
Detector imán	RODMAN RCM5GR	22	9,00€	198,00€		
Sonda inundación	FERMAX 1245	5	25,00€	125,00€		
Detectores de presencia	GOTESA PIRM180	4	17,25 €	69,00€		
Pulsadores	SIMON 27151-65	1	5,11 €	5,11 €		
Detectores capacitivos	XT112S1PAL2	1	127,17€	127,17 €		
Fotocélula	OB131712	1	76,80 €	76,80€		
Fibra óptica	GREALTEC	1	200,00€	200,00€		
Final de carrera	XCKN2118G11	2	13,17 €	26,34 €		
Sonda de temperatura	HERTEN PT100	1	17,60 €	17,60€		
Conversor PT100 a 4-20mA	HERTEN	1	32,00€	32,00€		
Sensor de ultrasonidos	XX930A3A2M12	2	666,90€	1.333,80€		
Amperímetro	CIRCUTOR M72131	1	161,55€	161,55€		
Voltímetro	CIRCUTOR M25052	1	277,81€	277,81 €		
Sensor de luminosidad	ARIKA	1	152,73 €	152,73 €		
			TOTAL	2.802,91€		

1.2.3 Elementos de salida

Los elementos de salida también se nombran en la memoria, a continuación aparecen acompañados de su P.V.P. y su cantidad.

DOMOTICA : ELEMENTOS DE SALIDA					
			Precio		
Parte	Modelo	Cantidad	unitario	Precio Total	
Timbre	TIBI2.000	1	9,00€	9,00€	
EV. RIEGO 3/4"	Rain Bird 075-DV	4	23,40€	93,60€	
EV. CALEFACIÓN	FontGas 32700200	5	93,71€	468,55€	
EV. Entrada vivienda	Resol VA-20 1"	1	68,51€	68,51€	
EV. Vaciado	Resol VA-20 1"	1	68,51€	68,51€	
KIT motor puerta automática	NICE WINGO3524	1	289,00€	289,00€	
KIT motor persiana piscina		1	3.169,00€	3.169,00 €	
Bombilla regulable	SECOM 42120184	4	156,80€	627,20€	
Driver regulable	SECOM	4	49,40 €	197,60€	
			TOTAL	4.990,97 €	

1.2.4 Coste de la instalación domótica

Después de haber separado todos los costes de la parte domótica, se procede a calcular el coste total de la instalación domótica.

TOTAL PRESUPUESTO DOMÓTICA					
M340	M340 ELEMENTOS DE ENTRADA ELEMENTOS DE SALIDA TOTAL				
7.072,58 €	4.710,46 €	4.990,97 €	16.774,01€		

1.3 Coste total del proyecto

Una vez conocidos los costes del sistema de abastecimiento de energía y del sistema dómotico se calculará el coste total del proyecto realizado.

COSTE TOTAL				
ABASTECIMIENTO DE ENERGÍA SISTEMA DOMÓTICO TOTAL				
18.521,18 €	16.774,01€	35.295,19€		

IV ANEXOS

ANEXO I → Consumo

ANEXO II → Programación

ANEXO III → Pantalla

ANEXO I CONSUMOS

1 Consumos diarios de la vivienda en modo abierto

ILUMINACIÓN INTERIOR						
LOCAL	Nº PUNTOS DE LUZ	POTENCIA	HORAS DE USO	CONSUMO POR DIA		
Estudio	2	20	4	80		
Trastero 2	1	10	0,1	1		
Habitación 3	3	30	3	90		
Habitación 2	3	30	2	60		
Habitación 1	3	30	2	60		
Pasillo planta primera	2	20	1	20		
WC1	2	20	1	20		
WC2	2	20	1	20		
WC3	2	20	1	20		
WC4	2	20	0,2	4		
Sala Cristalera	2	20	4	80		
Terraza	1	10	0,5	5		
Comedor	2	20	5	100		
Cocina	2	20	2	40		
Sala de estar	2	20	8	160		
Entrada	1	10	0,5	5		
Escalera	2	20	0,5	10		
Bodega	2	20	0,1	2		
Trastero 1	1	10	0,1	1		
Cuadra	1	10	0,1	1		
Pasillo planta baja	2	20	0,1	2		
TOTAL	40	400	36,2	781 W		

ILUMINACIÓN EXTERIOR						
ZONA	Nº PUNTOS DE LUZ	POTENCIA	HORAS DE USO	CONSUMO POR DIA		
ERA	2	90 W	2	180 Wh		
BARBACOA	2	90 W	2	180 Wh		
ERA MASÍA	1	45 W	1	45 Wh		
PATIO	1	45 W	1	45 Wh		
PARQUING	1	45 W	0,1	4,5 Wh		
PISCINA	2	90 W	1	90 Wh		
ZONA FRONTAL	2	90 W	0,1	9 Wh		
FUENTE	1	45 W	0,1	4,5 Wh		
TOTAL	12	540 W		558 Wh		

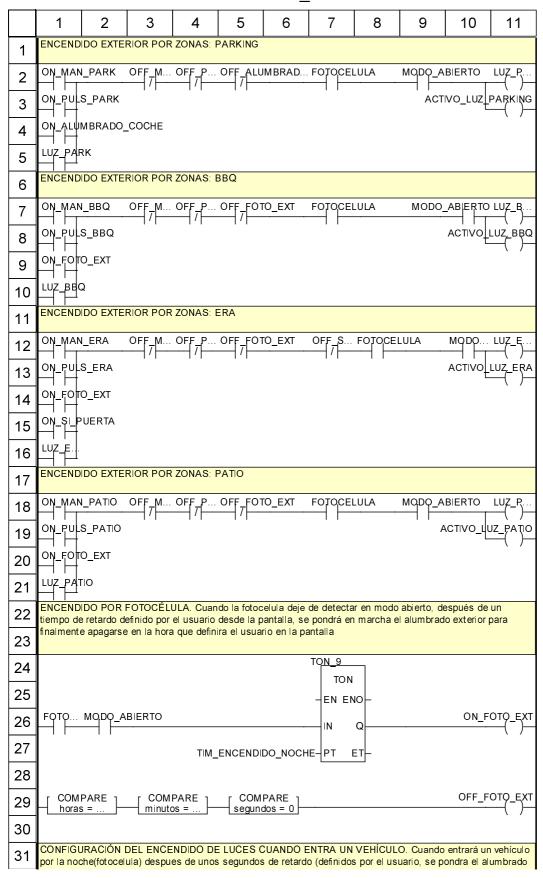
	ELECTR	ODOMESTICOS		
TIPO	POTENCIA	HORAS DE USO	CONSUMO POR DIA	
Lavadora	500	1	500	
Nevera	90	10	900	
Arcón congelador	120	10	1200	
Ordenador	100	5	500	
TV	50	5	250	
Encimera	1500	0,2	300	
Microondas	1500	0,2	300	
Equipo de música	50	1	50	
Tostadora	500	0,1	50	
Lavavajillas	1000	1	1000	
Extractor	1000	0,1	100	
Aspiradora	1000	0,1	100	
TOTAL	7410		5250 Wh	

OTROS										
TIPO	POTENCIA	HORAS DE USO	CONSUMO POR DIA							
EQUIPO PRESIÓN	800	0,4	320							
AUTÓMATA	25	24	600							
MOTOR PUERTA AUTOMÁTICA	350	0,1	35							
MOTOR SALA CRISTALERA	250	0,1	25							
CAMARA GRABACIÓN	10	0,1	1							
TOTAL	1435		981 Wh							

	CONSUMO DIARIO TO	TAL EN MODO ABIER	ТО	
ELECTRODOMÉSTICOS	IL. INTERIOR	IL. EXTERIOR	OTROS	TOTAL
5250 Wh	781 Wh	558 Wh	981 Wh	7570 Wh

2 Consumos diarios de la vivienda en modo cerrado

CONSUMOS PERMANENTES										
TIPO POTENCIA HORAS DE USO CONSUMO POR DIA										
NEVERA	90	10	900							
ARCÓN CONGELADOR	120	10	1200							
AUTÓMATA	25	24	600							
CALDERA	10	24	240							
TOTAL	245	68	2940 Wh							


CONSUMO DIARIO EN MODO CERRADO									
CONS. PERMANENTES	TOTAL								
2940 W	2940 Wh								

ANEXO II PROGRAMACIÓN

PUERTA_AUTOMATICA

	1	2	3	4	5	6	7	8	9	10	11	
1	*ABRIR O CERRAR PUERTA* MEDIANTE EL MANDO O MEDIANTE PANTALLA											
2	MAN_PUERTA MOT_PUERTA											
3	РЕМОТС	_PUERTA	٨									
4	TIMBRE	_								AVISO	D_TIMBRE	
5										TIMBRE	SONORC	
6												
7	SI_PUER	TA_EXTE	RIOR						ACTIV	/O_PEXT_	ABIERTA	
8												
9	AVISO_T	MBRE								RATE _W:=91;		

ILUM EXTERIOR

ILUM_EXTERIOR

	1	2	3	4	5	6	7	8	9	10	11	
32	del parkin	ig en mai	cha durante	los minut	os definido	s por el us	uario en p	antalla.	'	'		
33					TON_10 TON							
34					- EN EI							
35	SI_PUER	RTA_EX	FOTOCE	ULA	N	Q				ON_SI	_PUERTA	
36	TIM_FILTRO_ALUM_COCHE-PT ET-											
37												
38				OFF ALL		,			ON_AL	UMBRADO 	COCHE)	
39	ON_ALW	MBRADO	O_COCHE		TOF_12 TOF							
40					- EN EI	NO -						
41	ON_ALUI	MBRADO)_COCHE		— N	Q			OFF_AL	UMBRADO	COCHE	
42		TIM_M	ARCHA_ALU	JM_COCH	IE-PT	ET-						
43												
44	*DANTAL											
45			ende manua		iluminacio	n la luz del	parking		0.1			
46	MAN_PA	ARK	LUZ_PAR ————————————————————————————————————	<u>к</u> 						N_MAN_PA	ARK	
47		DI		1.5					0.5	- 	4 D.K	
48	P P		LUZ_PAR	<u> </u>						F_MAN_P	AKK	
49	*D	LΔ* Enci	ende manua	lmente la	iluminació	n la luz de	la bha					
50					IIdillillacio	II la luz de	та выч			NI MANI D	DO.	
51	MAN_BB									N_MAN_B		
52	MAN BB	:O	IIIZ BBO	1					OF	E MAN B	·BO	
53	P P		LUZ_BBQ							F_MAN_E	-	
54	*PANTAL	LA* Enci	ende manua	lmente la	iluminació	n la luz de	la era					
55	MĄN_ER								0	N_MAN_E	RA	
56	P 	-	LUZ_ERA							(")=		
57	MĄN ₊ ER	2A	LUZ ERA						OI	FF_MAN_E	ERA	
58	P		LUZ_ERA							<u>-(` ')-</u>		
59	*PANTAL	LA* Enci	ende manua	lmente la	iluminació	n la luz del	patío					
60			LUZ PAT						40	I_MAN_PA	ATIO	
61	MAN_PA		 7							- () -		
62	l											

ILUM_EXTERIOR

	1	2	3	4	5	6	7	8	9	10	11
63	MAN PA	TIO	LUZ_PA1	10	<u>'</u>				OF	F_MAN_P	ATIO
64	' '		1 1							()	
65	*PULSAD	OOR* End	iende man	ualmente la	a iluminacio	ón la luz de	el parking				
66	PULS_P	ARK	LUZ PAF	RK					ON	PULS P	ARK
67										()	
68	PULS_P	ARK	LUZ_PAF	RK					OFI	F_PULS_F	ARK
69											
70	*PULSAD	OR* End	ciende man	ualmente la	a iluminacio	ón la luz de	e la bbq				
71	PULS_BI	BQ	LUZ_BB0	2						ON_P	ULS_BBQ
72											
73	PULS_BI	BQ	LUZ_BB(<u> </u>						OFF_P	ULS_BBQ
74											
75	*PULSAD	OOR* End	ciende manı	ualmente la	a iluminacio	ón la luz de	e la era				
76	PULS_EI	RA 	LUZ_ERA	<u> </u>						ON_P	ULS_ERA
77											
78	PULS_EI	RA 	LUZ_ER/	<u> </u>						OFF_P	ULS_ERA
79											
80			ciende man		a iluminacio	ón la luz de	el patio				
81	PULS_P	ATIO 	7	10						ON_PUI	S_PATIO
82											
83	PULS_P				ATENIE A C	DE OBE 1	DANITALI	4 DE EN	FEDOO 4		S_PATIO
84		S DE DE	S VARIABL E MILISEGI Outos)								
85	aram coo	511 11111	iatosj								
86								TIM_I		RATE — DO_NOCH	E:=
87									6 -		
88								TIM_F		RATE UM_COCI	HE:=
89									0==	DATE	
90							•	TIMM		RATE COC	CHE:=

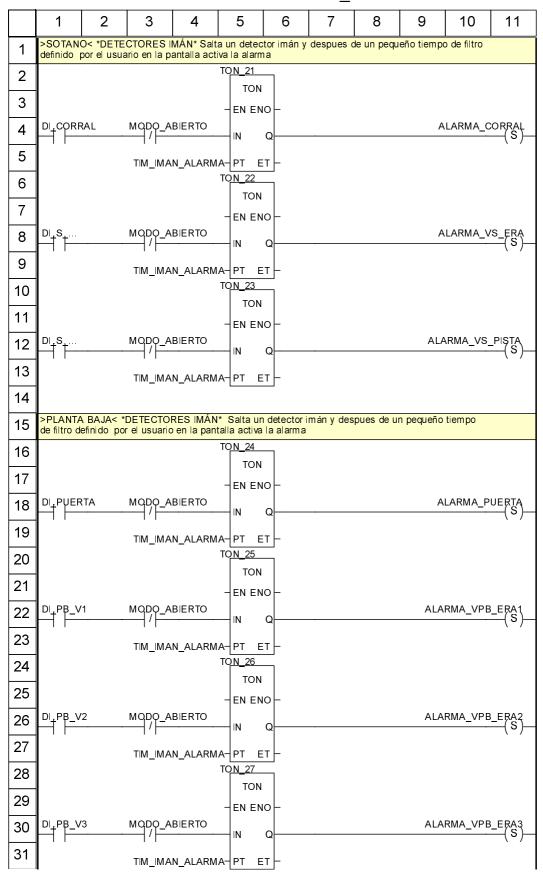
	1 2 3 4 5 6 7 8 9 10	11
1	*COMUNES* LUZ DE LA ENTRADA	
2	ON_MAN_ENTR OFF_MAN_ENTR OFF_DP_ENTRADAMODO_ABIERTO LUZ	_ENTRADA
3	ON_DP_ENTRADA ACTIVO_LUZ	ENTRADA
4	LUZ_ENTRADA	()
5		
6	*COMUNES* LUZ DE LA ESCALERA PB/P1	
7	ON_MAN_ESC1 OFF_MAN_ESC1 OFF_DP_ESC1 MODO_ABIERTO	LUZ_ESC1
8	ON_DP_ESC1 ACTIVO	_UZ_ESC1
9	LUZ_ENTRADA	()
10		
11	*COMUNES* LUZ DEL PASILLO	
12	ON_MAN_PASILLCOFF_MAN_PASI OFF_DP_PASILLO MODO_ABIERTO LU	Z_PASILLO
13	ON_DP_PASILLO ACTIVO_LL	Z_PASILLO
14	LUZ PASILLO	()
15		
16	*COMUNES* LUZ DEL ESCALERA P1/P2	
17	ON_MAN_ESC2 OFF_MAN_ESC2 OFF_DP_ESC2 MQDO_ABIERTO	LUZ_ESC2
18	ON_DP_ESC2 ACTIVO	_UZ_ESC2
19	LUZ_ESC2	
20		
21	LUZ DEL SALON	
22	╟┤╴├──┤┌───┤	UZ_SALON
23	ON_DP_SALON ACTIVO_L	.\UZ_SALON
24	LUZ_SALON	
25		
26	LUZ DE LA HABITACION 3	
27	ON_MAN_HAB3 OFF_MAN_HAB3 OFF_PULS_HAB3 MODO_ABIERTO	LUZ_HAB3
28	ON_PULS_HAB3 ACTIVO	LUZ_HAB3
29	LUZ_HAB3	
30		
31	LUZ DEL WC3	

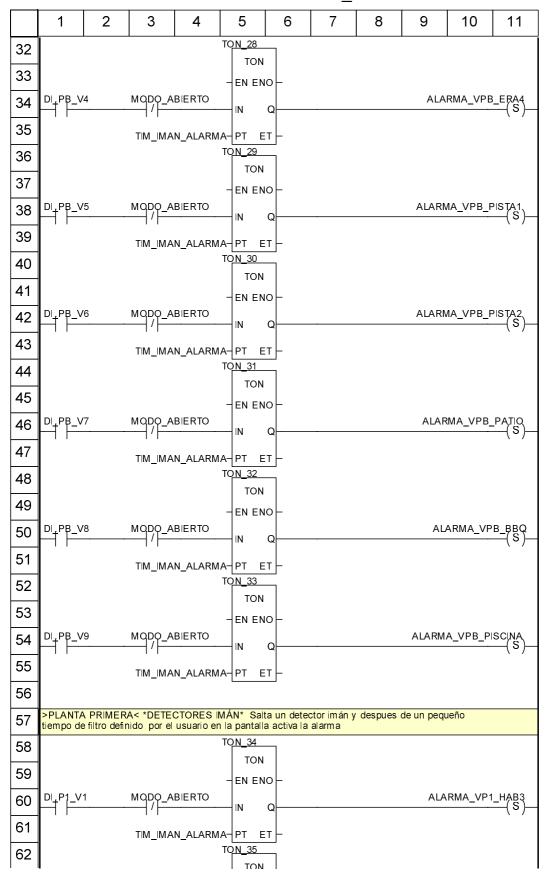
```
2
                        3
                                         5
                                                  6
                                                          7
                                                                   8
                                                                           9
                                                                                   10
                                                                                           11
        1
                                 4
                                      OFF
     Οη_MAN_WC3
                     OFF MAN WC3
                                           PULS WC3
                                                                                        LUZ, W.C3
                                                       MQDQ
                                                             ABIERTO
32
     ON_PULS_WC3
                                                                                ACTIVO
33
34
35
     LUZ DE LA SALA CRISTALERA
36
                                           PULS SC
     Οη_MAN_SC
                     OFF MAN SC
                                                       MQDQ ABIERTO
37
     οη_puls_sc
                                                                                  ACTIVE
38
39
40
     *DETECTORES DE PRESENCIA* Enciende durante un tiempo las luces de la entrada (durante un tiempo
41
     definido por el usuario desde la pantalla)
     DP_ENTRADA
                              OFF_DP_ENTRADA
                                                                                ON_DP_ENTRADA
42
     ON_DP_ENTRADA
43
                              TOF 4
44
                                  TOF
45
                                EN ENO
                                                                                OFF_DP_ENTRADA
     ON_DP_ENTRADA
46
                                IN
                                      Q
47
      TIM_SENSOR_DP_ENTRADA-PT
                                     ΕT
48
     *DETECTORES DE PRESENCIA* Enciende durante un tiempo las luces de la escalera PB_P1(durante un
49
     tiempo definido por el usuario desde la pantalla)
                                  _PP_ESC1
     DP_ESC1
                                                                                    ON_DP_ESC1
                              OFF
50
     ON_PP_ESC1
51
                              TOF 5
52
                                  TOF
53
                                EN ENO
     ON_DP_ESC1
                                                                                   OFF_DP
54
                                IN
                                      Q
55
           TIM_SENSOR_DP_ESC-PT
                                     ET
56
     *DETECTORES DE PRESENCIA* Enciende durante un tiempo las luces del pasillo(durante un tiempo definido
57
     por el usuario desde la pantalla)
     DP_PASILLO
                                  _PP_PASILLO
                                                                                 ON_DP_PASILLO
58
     ON_DP_PASILLO
59
                              TOF 6
60
                                  TOF
61
                                EN ENO
        _PP_PASILLO
                                                                                OFF_DP_PA$ILLO
                                IN
                                      Q
```

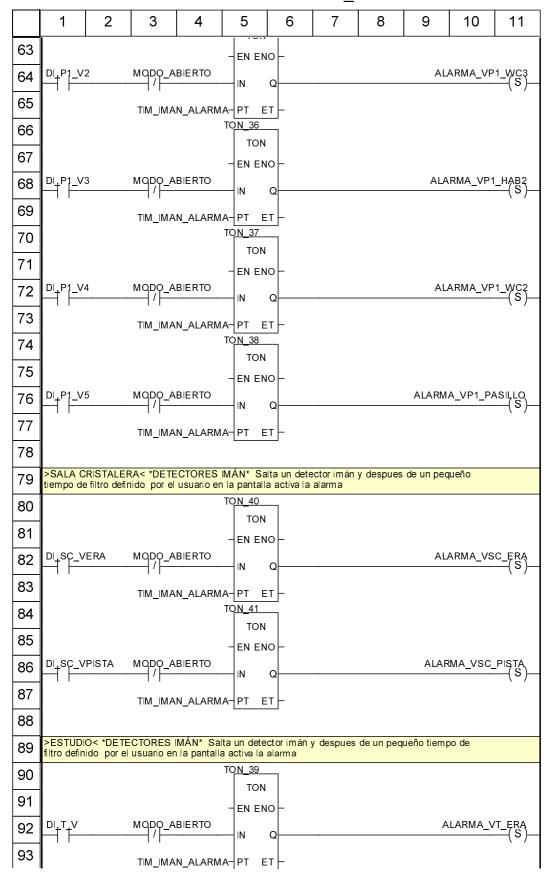
	1	2	3	4	5	6	7	8	9	10	11
63	TIM_SI	ENSOR_I	DP_PASIL	LO-PT	ET-	•	· ·	•	•		
64											
65											
66			E PRESEN r el usuario			nte un tien	npo las luce	es de la esc	calera P1_	P2(durante	un
67	DP_ESC	2		OFF PF	P_ESC2					ON_I	DP_ESC2
68	ON_DP	ESC2									
69				TOF_7 TO	F						
70				EN E	ino-						
71	ON_DP_	ESC2		— IN	Q					OFF_I	DP_ESC2
72	TII	M_SENS	OR_DP_E	SC-PT	ET-						
73	*DANTAL				.,						
74					a iluminaci	on la luz d	e la entrada	1			
75	P P	ITRADA	7	TRADA						N_MAN_E	NTRADA
76	MAN EN	ITD 4 D 4	1117 EN	TD 4 D 4					0.1		
77	P	TRADA	LUZ_EN	TRADA					O	FF_MAN_E	NIRADA ()
78	*PANTAI	LA* Encid	ende manı	ıalmente l:	a iluminaci	ón la luz d	e la escaler	a P1/P2			
79						511 10 10Z 0	c la escalei	41 1/12		ON MA	AN ESC1
80			LUZ_ES								AN_ESC1
81	MAN ES	SC1	IUZ ES	C1						OFF_M	AN ESC1
82	P		LUZ_ES								
83	*PANTAL	LA* Encie	ende manı	ıalmente la	a iluminaci	ón la luz d	el pasillo				
84										ON_MAN_	PAȘILLO
86	MAN_PA	-								-	_()_
87	MĄŊĻ₽A	SILLO	LUZ_PA	SILLO					C	FF_MAN_	PASILĻO
88	P 	•								•	
89	*PANTAL	LA* Enci	ende manı	ialmente la	a iluminaci	ón la luz d	e la escaler	a P1/P2			
90	MAN ES	C2	LUZ_ES	C2						ON_M	AN_ESC2
91		•	 /								
92	MAN ES	C2	LUZ_ES	02						OFF_M	AN_ESC2
93			7 🕝								
1	l										I

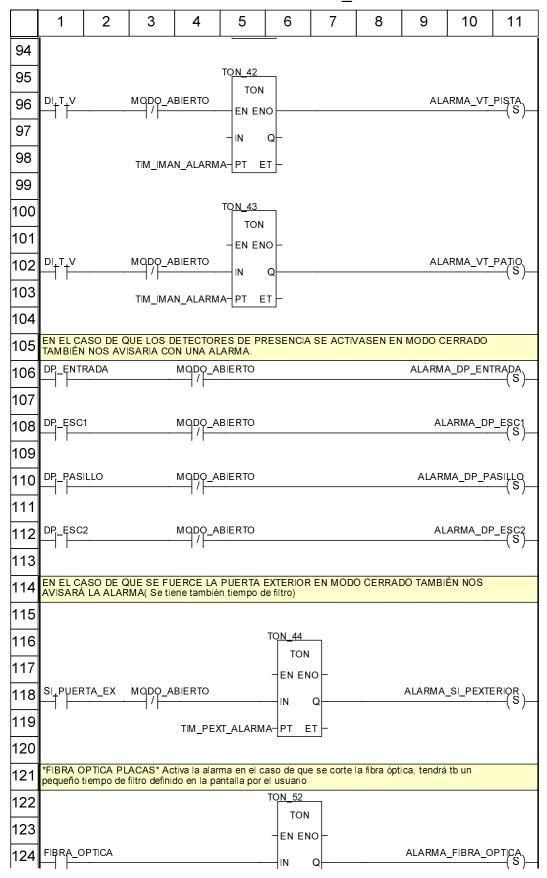
	1	2	3	4	5	6	7	8	9	10	11
94	*PANTAL	LA* Encie	nde manua	ilmente la	iluminació	n la luz del	salon				
95	MAN SA	LON	LUZ_SAL	ON						ON_MAN	I_SALON
96	1.1		1.1								()
97	MAN SA	LON	LUZ_SAL	ON						OFF_MAN	I_SALON
98	1.1		1 1								(/
99	*PANTALLA* Enciende manualmente la iluminación la luz del habitación 3										
100	MAN HA	.B3	LUZ_HAB	3						ON_M	N_HAB3
101			1 (()
102	MAN_HA	.B3	LUZ_HAB	3						OFF_M	N_HAB3
103	' '										()
104	*PANTAL	LA* Encie	ende manua	ilmente la	iluminació	n la luz del	WC3				
105	MAN WO	23	LUZ_WC3	3						ON_M	AN_WC3
106											, ,
107	MAN WO	C3	LUZ_WC3	3						OFF_M	AN_WC3
108											, ,
109	*PULSAD	OR* Enci	ende manu	almente la	iluminacio	ón la luz de	elsalon				
110	PULS_S	ALON	LUZ_SAL	ON						ON_PULS	S_SALON
111											
112	PULS_S	ALON	LUZ_SAL	ON					(OFF_PULS	S_SALON
113											
114	*PULSAD	OR* Enci	ende manu	almente la	iluminacio	ón la luz de	e la habitad	ción 3			
115	PULS_H	AB3	LUZ_HAB 	3						ON_PU	LS_HAB3
116											
117	PULS_H	AB3	LUZ_HAB	3						OFF_PU	LS_HAB3
118											
119	*PULSAD	OR* Enci	ende manu	almente la	iluminacio	ón la luz de	el WC3				
120	PULS_W	C3	LUZ_WC3	3						ON_PL	ILS_WC3
121											
122	PULS_W	C3	LUZ_WC3	3						OFF_PU	ILS_WC3
123											
124	*PULSAD	OR* Enci	ende manu	almente la	lluminacio	on la luz de	e la sala cr	istalera			

	1	2	3	4	5	6	7	8	9	10	11				
125	PULS_S	2	LUZ_SC							ON_F	PULS_SC				
126											,				
127	PULS_S	2	LUZ_SC						OFF_PULS_SC						
128											,				
129			ESTUDIO, IDRÁ SIEM					ACIÓN DE	LUX AUTO	MÁTICO D	EL				
130				SENS	OPERATE SENSOR_LUMINOSIDAD_REAL										
131	ACTIVO_	AUTO LU	X_ESTU			RATE — UDIO :=									
132															
133	-			LUZ_	OPE REGULAE	RATE — BLE_REAL	:=								
134	ACTIVO_	AUTO LU	X_ESTU		OPE	RATE — BILLA:=									
135			X_ESTU					LUX	OPE BOMBILL)				
136															
137	MAN AU	TO_LUX_	ESTUDIO	ACTIVO_	AUTO_L				ACTIVO_	AUTO_LUX	(_ESTU —(S)—				
138			ESTUDIO						ACTIVO_	AUTO_LUX	(_ESTU —(R)—				
139			(ES UNA I												
140	ON_M	OFF_M	OFF_P	MODO_A	BIERTO					LUZ_	ESTUDIO				
141	ON_PUL	S_ESTUD	OIO												
142	\dashv	UDIO													
143	LUZ_ES1	UDIO	ACTIVO_/	AUTO_L						RATE — UDIO :=					
144															
145	*PULSAD	OR* Enci	ende manu	almente la	iluminacio	on la luz d	eL estudio	o 							
146	PULS_E	STUDIO			COM LUX_E	PARE STUD			C	N_PULS_	ESTUDIO —()—				
147									_						
148	PULS_E	STUDIO			UX_E	PARE STUD]			OF	FF_PULS_	ESTUDIO ()				
149	*DANTAL	I A + E '-		l		-1-1 -1									
150			ende manua	imente la			eL estudio								
151	MAN_ES	TUDIO		_	COM LUX_E	PARE STUD	_		-	ON_MAN_	ESTUDIO				
152									_		-0				
153	MAN ES	TUDIO			LUX_E	PARE STUD]			0	FF_MAN_	ESTUDIO				
154	TDANCE		N DE LOC	TIEMPOO	INTROP	ICIDOS E	N DANTA	II A COMAC	ENTERO	ENITIES.	BO V				
155	PASO DE	E MIN/SEC	G A MILISE	GUNDOS	MIKODU	CIDO2 EI	NEANIA	LLA COMO	ENTERUS	DEN HEIVI	FUT				

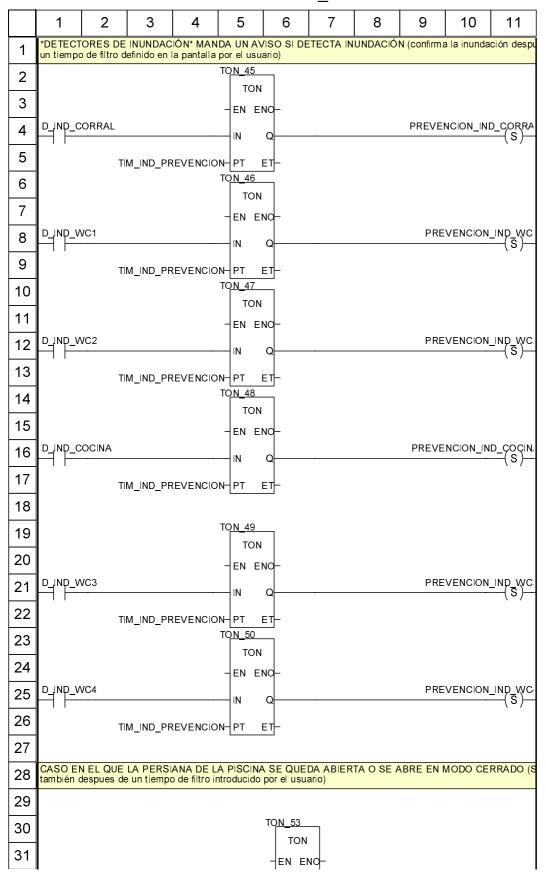

	1	2	3	4	5	6	7	8	9	10	11				
156								TIM_S	OPERATE TIM_SENSOR_DP_ENTRADA:=						
157															
158	-							ТІМ		RATE — _DP_ESC	:=]-				
159															
160	<u> </u>							TIM_S		RATE — P_PASILL	.O:=				

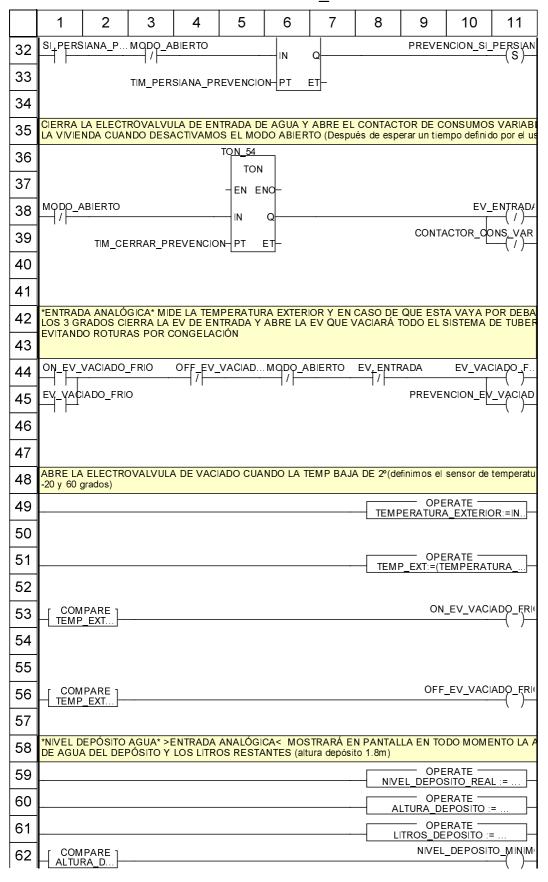

CALEFACCION


	1	2	3	4	5	6	7	8	9	10	11
1	PONER E	EN MARCH	HA LA CAL	ECFACIÓ	N					<u>'</u>	
2	ON_MAN_CALD OFF_MAN_CALD OFF_PROG_CAL MARCHA_CALDERA										
3	ON_PROG_CALDERA ACTIVO_MARCHA_CALDE										
4	MARCHA_CALDERA										
5											
6	*PANTAL	LA* >PRO	GRAMAR	CALDERA	< PONEM	IOS EN M	ARCHA LA	A PROGRA	AMACIÓN	DE LA CA	LDERA
7	MARCHA	_PROG	PARO_PF	ROG_C					ACTIVO	_MARCHA	A_PROG
8		MARCHA_									()
9											
10	*PANTAL	LA* >PRO	GRAMAR	CALDERA	< PONEM	IOS EN M.	ARCHA LA	A PROGRA	AMACIÓN	DE LA CA	LDERA
11	PROG_C	ALDERA	ACTIVO_I	// ARCH					MARCHA	A_PROG_0	CALDERA
12											` ,
13	PROG_C	ALDERA	ACTIVO_I	//ARCH					PARC	D_PROG_0	CALDERA
14											, ,
15		LA* >PRO nuto desde	GRAMAR e pantalla	CALDERA	A< DEFINIO	CIÓN DE L	A HORA [E ARRAN	IQUE. De	finiendo añ	o, mes,dia
16	ACTIVO_	MARCH	COMI	PARE		PARE on_ca		PARE n_cal]—		D_M_A_P	ROG_ON
17	D_M ,A_I	PROG_ON	COMI	PARE]—		PARE]— n_cal	COM segun	PARE dos = 0		ON_PRO	OG_CAL
18											
19		LA* >PRO esde panta	GRAMAR IIa	CALDERA	A< DEFINIC	CIÓN DE L	A HORA [DE PARO.	Definiendo	año, mes	, dia, hora y
20	ACTIVO_	MARCH		PARE		PARE]—	COM ano_of	PARE] f_cald		D_M_A_	PROG
21	D_M_A_I	PROG		PARE ff_ca		PARE f_cald		PARE] dos = 0			OG_CA
22											
23	*ABRIR C	CERRAR									
24	ON_EV_		OFF_EV_	HAB1							EV_HAB1
25	EV_HAB	1								ACTIVO L	EV_HAB1
26	ON_EV_	HAB2	OFF_EV_	HAB2						1	EV_HAB2
27	EY_HAB	2								ACTIVO L	EV_HAB2
28	ON_EV_I		OFF_EV_	HAB3							EV_HAB3
29	EV_HAB									ACTIVO L	EV_HAB3
30	ON_EV_	SC	OFF_EV_	SC							EV_SC
31	EV_Sd									ACTIV	D_EV_\$C


CALEFACCION

	1	2	3	4	5	6	7	8	9	10	11		
32	ON_EV_	ESTUDIO	OFF_EV_	ESTUDIO						EV_	ESTUDIO		
33	EV_EST	EV_ESTUDIO ACTIVO_EV_ESTUDIO											
34	ABRIR Y	ABRIR Y CERRAR ZONAS DESDE LA PANTALLA											
35	MAN_EV	'_HAB1	EV, HAB1							ON_I	EV_HAB1		
36	MAN EV	_HAB1	EV HAB1							OFF_I	EV_HAB1		
37													
38	MAN_EV	_HAB2	EV, HAB2	!						ON_I	EV_HAB2		
39	MAN_EV	_HAB2	EV HAB2	!						OFF_I	EV_HAB2		
40											, ,		
41	MAN_EV	_HAB3	EV_HAB3							ON_I	EV_HAB3		
42	MAN EV	_HAB3	EV HAB3							OFF_I	EV_HAB3		
43													
44	MAN_EV	_sc	EV_SC							10	N_EV_SC		
45	MAN EV	_sc	EV_SC							OFI	E_EV_SC		
46													
47	MAN_EV	_ESTUDIO	EV, ESTU	DIO						ON_EV_	ESTUDIO		
48	MAN EV	_ESTUDIO	EV ESTU	DIO						OFF_EV_	ESTUDIO		

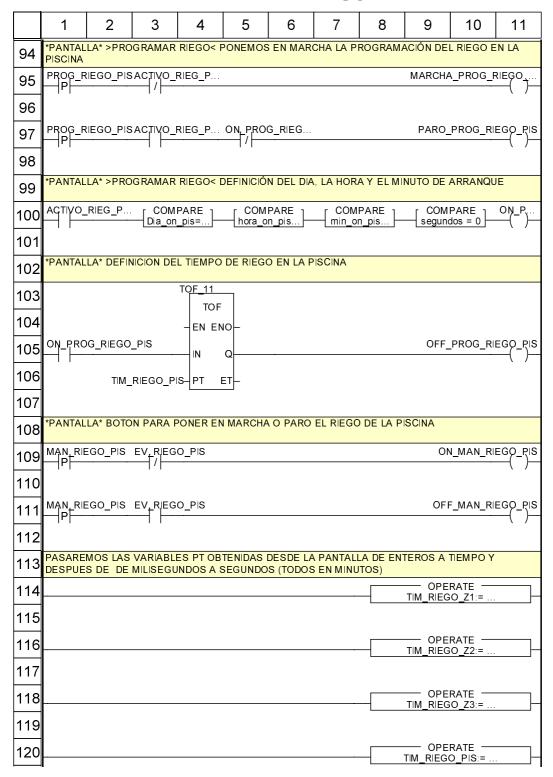



	1	2	3	4	5	6	7	8	9	10	11
125		<u> </u>	1	TIM FIRE	L A_ALARW	I IA DT T	 ET -	1		l	` /
126			VARIABLI E MILISEO	ES PT OB	TENIDAS	DESDE LA		LA DE EN	TEROS A	TIEMPO	
127								TIN	OPEF	RATE	
128											
129								ТІМ	OPEF		
130											
131	-							TIM	OPEF		
132											
133	*PANTAL	.LA* RESE	TEO DE A	ALARMAS	DESDE P	ANTALLA					
134											
135	RESET_	MAN_ALA	RMA						A	LARMA_C	orral —(R)—
136									А	LARMA_V	s_era —(R)—
137										ARMA_V\$_	PISTA (R)—
138										LARMA_P	UERTA —(R)—
139										RMA_VPB	_ERA1 (R)
140										RMA_VPB	-(R)
141										RMA_VPB	-(R)
142										RMA_VPB	—(R)—
143										MA_VPB_F MA_VPB_F	` /
144										MA_VPB_	-(R)
145										ARMA_VP	-(R)
146 147										A_VPB_PI	—(R)—
148										 RMA_VP1	—(R)—
149										ARMA_VP	—(R)—
150										RMA_VP1	—(R)— _HAB2
151									AL	ARMA_VP	(K) 1_WC2
152									ALARM	 A_VP1_P	
153									AL	ARMA_VS	C_ERA -(R)
154									ALAF	RMA_VSQ_	\ /
155									А	LARMA_V	T_ERA
1 l	I									<u> </u>	¬ \

	1	2	3	4	5	6	7	8	9	10	11				
156									ALA	ARMA_VT	PISTA (R)				
157									ALA	ARMA_VT	PATIO —(R)—				
158								ALARMA_DP_ENTRADA (R)							
159	ALARMA_DP_ESC1														
160										MA_DP_P					
161		ALARMA_DP_ESC2 (R)									P_ESC2 —(R)—				
162										_SI_PEXTE					
163									ALARMA	_FIBRA_C	PTICA (R)—				

SEGURIDAD PREVENCION

SEGURIDAD_PREVENCION


SEGURIDAD_PREVENCION

	1	2	3	4	5	6	7	8	9	10	11				
63															
64	*NIVEL T tolva 2m)		_LET* > EN	TRADA A	NALÓGICA	A< AVISA	RÁ EN EL	CASO DE	QUE EL I	NIVEL SEA	OMINÌM A				
65								- NI		RATE — ET_REAL	:=				
66	-							ALT		RATE — VA_PELLE	T :=				
67															
68		IPARE] RA_TO.]—							NIVEL_	TOLVA_PI	ELLET M.				
69		EGUNDO:	VARIABL S A SEGU												
70	Willington	OPERATE													
71		OPERATE TIM_IND_PREVENCION:=													
72		IIM_IND_PREVENCION:=													
73								TIM		RATE — A_PREVEN	ICION				
74															
75								TIM		RATE PREVENC	ION:=				
76	*55057	DE 100 A	\ (10.00 PE	D.D.E.V.E.N.	O Ó NE										
77			VISOS DE		CION*										
78	RESET_	MAN_PRE	VENCION							NCION_INI	- (R)-				
79										VENCION	IND_WC (R)—				
80		PREVENCION_IND_WC:													
81	PREVENCION_IND_COCIN.														
82										VENCION	_IND_WC (R)				
83									PREVE	ncion_s[PERSIAN (R)				

	1	2	3	4	5	6	7	8	9	10	11
1	PONER E	N MARCH	HA EL RIE	GO EN LA	ZONA 1						
2	ON_MAN	_RIEGO	OFF_MAN	N_RIEG	OFF_PRO	OG_RIE				EV_F	RIEGO_Z1
3		G_RIEGO			1.1				AC	TIVO_EV_	_RIEG_Z1
4	EV_RIEG	O_Z1									()
5											
6			GRAMAR VERIFICA					ROGRAMA	ACIÓN DEI	RIEGO E	N ZONA
7	МАКСНА		PARO_PF						ACTIV	O_RIEG_F	PROG_Z1
8		RIEG_PR									()
9											
10	*PANTAL ZONA 1	LA* >PRO	GRAMAR	RIEGO< F	ONEMOS	EN MAR	CHA LA PI	ROGRAMA	ACIÓN DEI	RIEGO E	N LA
11		IEGO_Z1	ACTIVO_F	RIEG_P					MARCHA	_PROG_F	RIEGO_Z1
12			1 1								\ /
13	PROG_R	IEGO_Z1	ACTIVO_I	RIEG_P	ON PRO	G_RIEG			PARO	_PROG_F	RIEGO_Z1
14			1 1		1 1						` '
15	*PANTAL	LA* >PRO	GRAMAR	RIEGO< [EFINICIÓ	N DEL DIA	, LA HORA	AYELMII	NUTO DE A	ARRANQL	JE
16	ACTIVO_	RIEG_P	COMI	PARE rz1		PARE 1	COMI	PARE n_rz1	COM	PARE 1	ON_P
17											` ,
18	*PANTAL	LA* DEFIN	NICION DE	L TIEMPO	DE RIEGO	D EN LA Z	ONA 1				
19				TOF_8 TOF							
20				EN EN	10-						
21	ON_PRO	G_RIEGO	_Z1	N	Q				OFF	_PROG_F	RIEGO_Z1
22		TIM	_RIEGO_Z	.1- PT - E	_ ≣T -						. ,
23	*PANTAL	LA* BOTO	N PARA F	ONEREN	MARCHA	O PARO	EL RIEGO	DE LA ZO	DNA 1		
24	MAN RIE	GO_Z1	EV, RIEG	O_Z1					0	N_MAN_F	RIEGO_Z1
25											
26	MAN RIE	GO_Z1	EV, RIEG	O_Z1					OF	F_MAN_F	RIEGO_Z1
27											
28	PONER E	EN MARCH	HA EL RIE	GO EN LA	ZONA 2						
29	ON_MAN	RIEGO.	OFF_MAN	N_RIEG	OFF PRO	OG_RIE				EV_F	RIEGO_Z2
30		G_RIEGO			-				AC	TIVO_EV_	RIEG_Z2
31	EV_RIEG	6O_Z2									

	1	2	3	4	5	6	7	8	9	10	11		
32													
33			GRAMAR VERIFICA					ROGRAMA	ACIÓN DEI	L RIEGO E	EN ZONA		
34	MARCHA	A_PROG_F	RIEGO_Z2	PARO_PI	ROG_R				ACTIV	O_RIEG_F	PROG_Z2		
35	1 '' 1	RIEG_PR		, ,							()		
36													
37	*PANTAL ZONA 2	LA* >PRC	GRAMAR	RIEGO< F	PONEMOS	EN MAR	CHA LA PI	ROGRAMA	ACIÓN DEI	L RIEGO E	EN LA		
38	PROG_R	RIEGO_Z2	ACTIVO_I	RIEG_P					MARCHA	_PROG_F	RIEGO_Z2		
39											()		
40	PROG_R	RIEGO_Z2	ACTIVO_I	RIEG_P	ON_PRO	G_RIEG			PARO	_PROG_F	RIEGO_Z2		
41											,		
42													
43	*PANTAL	LA* >PRC	GRAMAR	RIEGO< [DEFINICIÓ	N DEL DIA	, LA HOR	A Y EL MII	NUTO DE A	ARRANQU	JE		
44	ACTIVO_	RIEG_P	COM Dia_on	PARE		PARE n_rz2		PARE]		PARE]	ON_P		
45		Dia_on_rz2 hora_on_rz2 min_on_rz2 segundos = 0 — ()—											
46	*PANTAL	LA* DEFIN	NICION DE	L TIEMPO	DE RIEGO	O EN LA Z	ONA 2						
47				TOF_9 TOF									
48				EN EN									
49	ON_PRO	G_RIEGO	_Z2	IN	Q	_			OFF	PROG_F	RIEGO_Z2		
50		TIM	_RIEGO_Z	2- PT I	≣T-								
51													
52	*PANTAL	LA* BOTC	N PARA F	ONER EN	I MARCHA	O PARO	EL RIEGO	DE LA ZO	DNA 2				
53	MAN RIE	EGO_Z2	EV, RIEG	O_Z2					0	N_MAN_F	RIEGO_Z2		
54													
55	MAN RIE	EGO_Z2	EV, RIEG	O_Z2					OF	F_MAN_F	RIEGO_Z2		
56													
57	PONER I	EN MARCH	HA EL RIE	GO EN LA	ZONA 3								
58	ON_MAN	I_RIEGO	OFF MAI	N_RIEG	OFF PRO	OG_RIE				EV_F	RIEGO_Z3		
59	ON_PRO	G_RIEGO	_Z3						AC	TIVO_EV_	_RIEG_Z3		
60	EV_RIEG	GO_Z3											
61													
62			GRAMAR VERIFICA					ROGRAMA	ACIÓN DEI	L RIEGO E	N ZONA		

	1	2	3	4	5	6	7	8	9	10	11
63	MARCHA	PROG_F	RIEGO_Z3	PARO_PI	ROG_R				ACTIV	O_RIEG_F	PROG_Z3
64	астіуд_	_RIEG_PR	OG_Z3	1 1							()
65											
66	*PANTAL ZONA 3	.LA* >PRC	GRAMAR	RIEGO< I	PONEMOS	EN MAR	CHA LA PI	ROGRAMA	ACIÓN DEI	L RIEGO E	N LA
67	PROG_R	RIEGO_Z3	ACTIVO_I	RIEG_P					MARCHA	_PROG_R	EGO_Z3
68											` '
69	PROG_R	RIEGO_Z3	ACTIVO_I	RIEG_P	ON PRO	G_RIEG			PARO	_PROG_R	EGO_Z3
70											` '
71	*PANTAL	.LA* >PRC	GRAMAR	RIEGO< [DEFINICIÓ	N DEL DIA	, LA HOR	A Y EL MI	NUTO DE A	ARRANQU	E
72	ACTIVO_	RIEG_P	COM Dia_on	PARE		PARE n_rz3		PARE 1_rz3		PARE dos = 0	ON_P
73											
74	*PANTAL	.LA* DEFIN	NICION DE	L TIEMPO	DE RIEGO	O EN LA Z	ONA 3				
75				TOF_10 TOF	\neg						
76				-EN EN							
77	ON_PRC	G_RIEGO	_Z3	N	Q				OFF	_PROG_R	EGO_Z3
78		TIM	_RIEGO_Z	:3PT	≣T-						
79											
80	*PANTAL	.LA* BOTC	N PARA F	ONER EN	I MARCHA	O PARO	EL RIEGO	DE LA Z	ONA 3		
81	MAN_RIE	EGO_Z3	EV, RIEG	O_Z3					0	N_MAN_F	EGO_Z3
82											
83	MAN_RIE	EGO_Z3	EV, RIEG	O_Z3					OF	F_MAN_F	EGO_Z3
84											
85			HA EL RIE				NA				
86	ON_MAN	I_RIEGO	OFF MAI	N_RIEG	OFF PRO	DG_RIE				EV_RII	EGO_PIS
87		G_RIEGO	_PIS						AC1	ΠVO_EV <u>†</u>	RIEG_PIS
88	EV_RIEG	SO_PIS									
89									,		
90			GRAMAR PARA VE					ROGRAMA	ACION DEI	L RIEGO E	N LA
91	MARCHA	A_PROG_F	RIEGO	PARO_PI	ROG_R				ACTIVO	D_RIEG_PI	ROG_PIS
92	ACTIVO_	_RIEG_PR	OG_PIS								
93											

PISCINA

	1	2	3	4	5	6	7	8	9	10	11
1	ABRIR/CI	ERRAR P	ERSIANA F	PISCINA				<u> </u>		<u>'</u>	
2	MAN PIS	SCINA								MOT_F	ERS_PIS
3	PULS_P	SCINA									
4	PROCES	O DE ELI	ECTROLISI	S							
5	ON_MAN	I_DEP_PI	S	OFF_	MAN DEF	P_PIS	OFF_PUL	S_DEP		ELEC.	TROLISIS
6	ON_PUL	S_DEP_P	PIS						ACT	AO_ETE¢	TROLISIS
7	ELECTR	OLISIS									
8											
9	ILUMINA	CIÓN DE I	LA PISCINA	A EXTERIO)R						
10	ON_MAN	I_EXT_P	OFF_MAN	N_EXT	OFF_P	MODO_A	BIERTO	FOTOCEI	_ULA	LUZ_	EXT_PIS
11	ON_PUL	S_EXT_P	IS						ACTIV	VO_ALUN	EXT_PIS
12	LUZ_EXT	_PIS									
13		,									
14			LA PISCINA								
15			OFF_MAI	N_INT_PIS	OFF_P	MODO_A	BIERTO	FOTOCEI			_INT_PIS
16		S_INT_PIS	S						ACT	IVO_ALU	I_INT_PIS
17		_PIS									
18											
19			CHA PARC		O DE ELE	CTROLISI	S				
20	MAN_DE		ELECTRO							ON_MAN_	_()_
21	MAN_DE	P_PIS	ELECTRO	LISIS					C	DFF_MAN_	DEP_PIS
22	*DI !! C : =	00+1::-	20114 5 : 5	2 2222	20 55 5	EOTES:					
23			RCHA PAR		SO DE EL	ECTROUS	IS				
24	PULS_DI		ELECTRO	LISIS						ON_PULS_	_()_
25	PULS_DI	EP_PIS	ELECTRO	LISIS					OI	FF_PULS_	DEP_PIS
26											
27			INACIÓN D		INA EXIE	RIOR MAI	NUAL				
28	MAN_EX		LUZ_EXT_	-						ON_MAN	_()_
29	MAN_EX	T_PIS	LUZ_EXT_	_PIS					(OFF_MAN	_EXT_PIS
30											

PISCINA

	1	2	3	4	5	6	7	8	9	10	11
31	*PULSAD	OR* ILUM	INACIÓN I	DE LA PIS	CINA EXTI	ERIOR MA	NUAL PO	R PULSAC	OR		
32	PULS_E	XT_PIS	LUZ_EXT_	PIS					(ON_PULS	EXT_PIS
33	PULS_E	XT_PIS	LUZ_EXT_	PIS					0	FF_PULS_	EXT_PIS
34											
35	*PANTAL	LA* LUM	NACIÓN D	E LA PISC	INA INTEI	RIOR MAN	UAL				
36	MAN_INT	T_PIS	LUZ_INT_	PIS						ON_MAN	I_INT_PIS
37	MAN INT	T_PIS	LUZ_INT_	PIS						OFF_MAN	I_INT_PIS
38											
39	*PULSAD	OR* ILUM	INACIÓN [DE LA PIS	CINA INTE	RIOR PUL	SADORES	6			
40	PULS_IN	T_PIS	LUZ_INT_	PIS						ON_PULS	_INT_PIS
41	PULS_IN	T_PIS	LUZ_INT_	PIS					C	FF_PULS	_INT_PIS

CORRAL

	1	2	3	4	5	6	7	8	9	10	11			
1		DEL CO		DEL CORF	RAL EN EI	CASO DE	QUE SE	LLEGARÁ	AL NIVE	L MÍNIMO	DE			
2	DC_MIN_	COMEDE	RO	DC_M/	X_COME	DERO			E/	/_TOLVA_ T	PIENSO			
3	EV_TOL	/A_PIENS	0						AC'	TIVO_EV	PIENSO			
4		NIIVEL MINIMO TOLVA DIENSO* SCODDALZ AVISADÁ EN EL CASO DE QUE EL NIIVEL SEA MÍNIMO												
5	*NIVEL N	NIVEL MINIMO TOLVA PIENSO* > CORRAL< AVISARÁ EN EL CASO DE QUE EL NIVEL SEA MÍNIMO												
6	DC_TOLV	/A_PIENS	0						RE	ELLENAR_	PIENSO (S)			
7														
8														
9	DG_TOLV	G_TOLVA_PIENSO RELLENAR_PIENSO R												

CONSUMO_ELECTRICO

	1	2	3	4	5	6	7	8	9	10	11			
1	VOLTÍME	TRO. Cold	ocado a la	entrada de	corriente	de la vivien	da nos mid	de la Tensi	ón instanta	ánea				
2								VC	OPE	RATE — D_REAL :=				
3										RATE — ADA :=				
4									_					
5	AMPERIN	METRO. C	olocado a l	a entrada	de corrient	e eléctrica	de la vivie	nda nos m	ide el amp	eraje insta	ntáneo			
6								АМІ	OPE	RATE	.=			
7		OPERATE												
8														
9			ITANEA. M ida instant		valor del a	ım per ím etr	oyelvalo	r del voltím	etro obten	iendo así e	l valor de			
10									OPE P_ENTR	RATE — ADA :=				
11														
12														
13	VOLTÍMETRO BATERÍAS. En horas de carga nos dará el valor al que están cargando las baterías, en horas en las que no están cargando se podrá saber la carga de las baterías aproximadamente.													
14	-	OPERATE VOLTIMETRO2 REAL :=												
15										RATE — ADA :=				

M_ABIERTO_M_CERRADO

	1	2	3	4	5	6	7	8	9	10	11
1	*PANTAL	LA* ACTIV	'AR O DES	SACTIVAR	EL MODO	ABIERTO	MEDIAN	TE UN BO	TON EN L	A PANTAL	LA
2											
3	MAN_AC	T_MODO_	ABIERTO	MO	DO ABIEI	RTO				MODO_	ABIERTO (S)
4											
5											
6											
7											
8	MAN DE	SACT_MC	DO_AB	МО	DO ABIEI	RTO				MODO_	ABIERTO (R)

PANTALLA_ACTIVA

	1	2	3	4	5	6	7	8	9	10	11			
1	POR EL I	USUARIO.	PASADO	ESE TIEM	IPO SI NO	HAY ACT	IVIDAD V			EMPO DEF ALLA DE				
2	TENDRE	MOS QUE	VOLVER	A INTROD	UCIR LA C	CONTRASE	ENA							
3							TON_55							
4							-EN EN							
5		PARE LR<> 1		CAMBIO_	PANEL		N	Q		PANTALL	A_ACTIV			
6		PANELR<> 1 N Q												
7		TIM_PANTALLA-(PT ET)-												
8	- COMI PANEI	PARE L <>								CAMBIC	D_PANEL			
9	COMPAR	RACIÓN DE	PANEL<	>PANELR	YA QUE					JES DE LA LO DE SC				
10	PARA FU	INCIONAR	CORREC	TAMENTE										
11										RATE — PANELR:				
12	PANTALI	LA_ACTIV					-			RATE — LW:=1;				

AVISO_DE_ALARMAS_EN_PANTALLA

	1	2	3	4	 5	6	7	8	9	10	11
1	SI SALTA	A ALGUNA	ALARMA	APAREC	ERÁ EL P	ANEL DE A	ALARMA E	EN LA PA	NTALLA		
2	ALARM <i>A</i>	A_CORRAL	-							RATE — LW:=2;	
3		A_VS_ERA	١								
4		A_VS_PIST	ГА								
5		A_PUERTA	\								
6		A_VPB_ER	RA1								
7		A_VPB_ER	RA2								
8		A_VPB_ER	RA3								
9		A_VPB_ER	RA4								
10		A_VPB_PIS	STA1								
11		A_VPB_PIS	STA2								
12		_VPB_PA	TIO								
13		A_VPB_BB	IQ								
14		A_VPB_PIS	SCINA								
15		A_VP1_HA	B3								
16		_VP1_W0	23								
17		A_VP1_HA	B2		•						
18		VP1 WC									
19		_VP1_PA	SILLO								
20		A_VSC_ER	RA .								
21		A_VSC_PIS	STA								
22		A_VT_ERA									
23		A_VT_PIST	Ā								
24		A_VT_PAT	10								
25		A_DP_ENT	RADA								
26		A_DP_ESC	:1								
27		A_DP_PAS	ILLO								
28		A_DP_ESC	2								
29		A_SI_PEXT	ERIOR								
30		A_FIBRA_C	OPTICA								
31		NCION_IND	_CORRAL	-							

AVISO_DE_ALARMAS_EN_PANTALLA

	1	2	3	4	5	6	7	8	9	10	11
32	PREVENCION_IND_WC1										
33	PREVENCION_IND_WC2										
34	PREVENCION_IND_COCINA										
35	PREVENCION_IND_WC3										
36	PREVENCION_SI_PERSIA										
37	NIVEL_D	EPOSITO	_MINIMO								
38	NIVEL_T	OLVA_PE	LLET_M								

RELOJ

	1	2	3	4	5	6	7	8	9	10	11
1	decimal(E	BCD) lo pas		ecimal cod	lificado bin	ario. La ho	ra y los mi	nutos del	automata s	se encuent	
2			arca %SW y el divisor							100 el divid es	endo
3								segund		RATE — _TO_INT(%	SW5
4	OPERATE										
5	OPERATE										
6	OPERATE mes:=BCD TO INT(%SW52)/100;										
7	OPERATE ————————————————————————————————————										
8	-							D		RATE — a:=(%SW4:	9);
9								anyo		RATE — D_INT(%S\	N53);
10	igual que	25 será el	día de can	nbio de ho						del mes es uando sear	
11	bajará una	a hora a⊺a	hora actua	al.							
12		PARE]		PARE]		PARE		PARE]		veran	o_invierno
13	verano_in	vierno								%	SW59.11
14		PARE]—	-							veran	o_invierno R)
15									•	l mes es n ando sean	-
16	increment	tará una ho	ora a la hor	a actual.							
17		PARE]		PARE]		PARE		PARE]		invien	no_verano
18	invierno_\	<i>v</i> erano								C	%SW59.3
19	verano_in	vierno								-	%S59 —()—
20	invierno_v	<i>v</i> erano									

ANEXO III PANTALLA

Ilustración 1. Panel 1

Ilustración 2 Panel 2

Ilustración 4 Panel 10

Ilustración 5. Panel 15

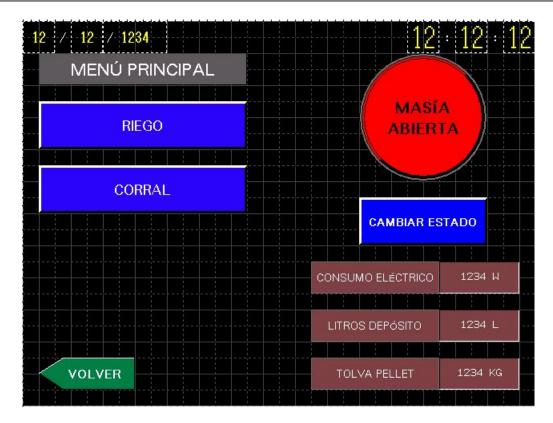


Ilustración 6 Panel 16

Ilustración 7 Panel 21

Ilustración 8 Panel 30

Ilustración 9 Panel 40

Ilustración 10 Panel 41

Ilustración 11 Panel 42

Ilustración 12 Panel 43

Ilustración 13 Panel 44

Ilustración 14 Panel 45

Ilustración 15 Panel 50

Ilustración 16 Panel 51

Ilustración 17 Panel 52

Ilustración 18 Panel 60

Ilustración 19 Panel 61

Ilustración 20 Panel 62

Ilustración 21 Panel 63

Ilustración 22 Panel 64

Ilustración 23 Panel 65

Ilustración 24 Panel 66

Ilustración 25 Panel 67

Ilustración 26 Panel 68

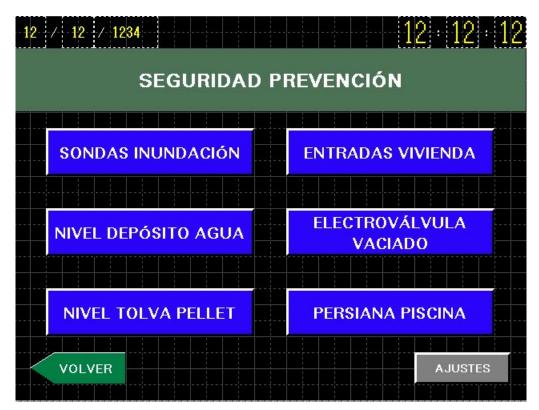


Ilustración 27 Panel 69

Ilustración 28 Panel 70

Ilustración 29 Panel 71

Ilustración 30 Panel 72

Ilustración 31 Panel 73

Ilustración 32 Panel 74

Ilustración 33 Panel 75

Ilustración 34 Panel 76

Ilustración 35 Panel 77

Ilustración 36 Panel 78

Ilustración 37 Panel 79

Ilustración 38 Panel 80

Ilustración 39 Panel 81

Ilustración 40 Panel 85

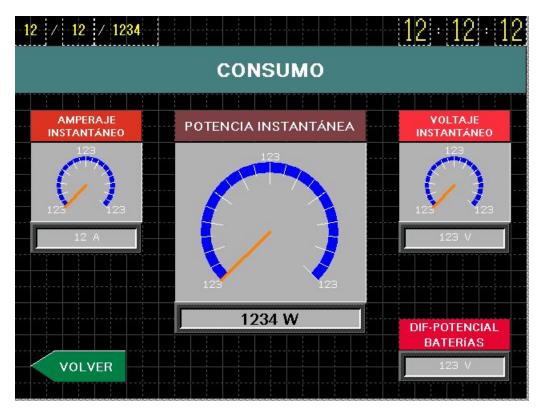
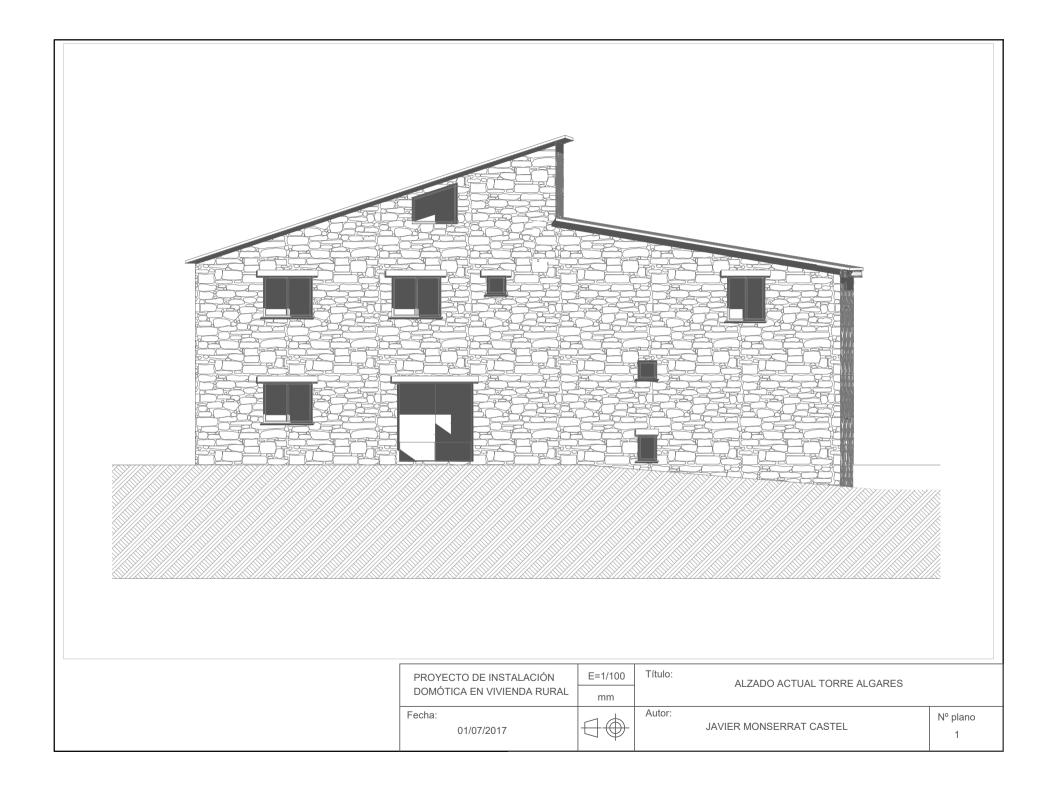
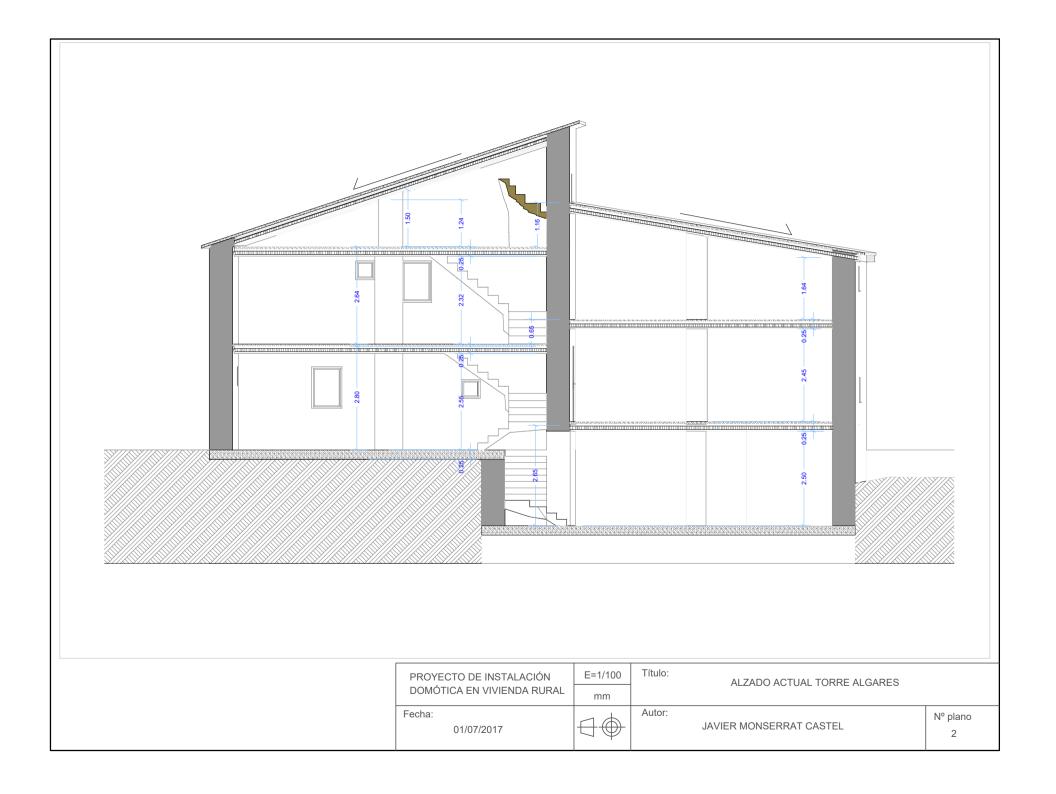
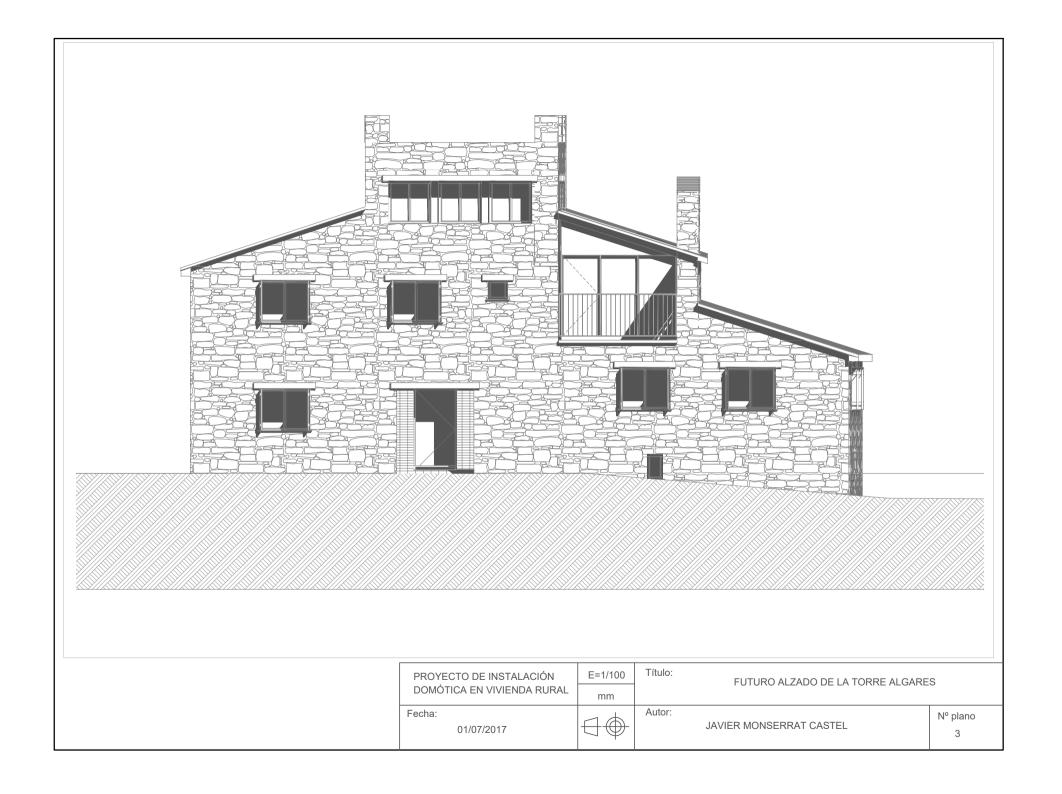


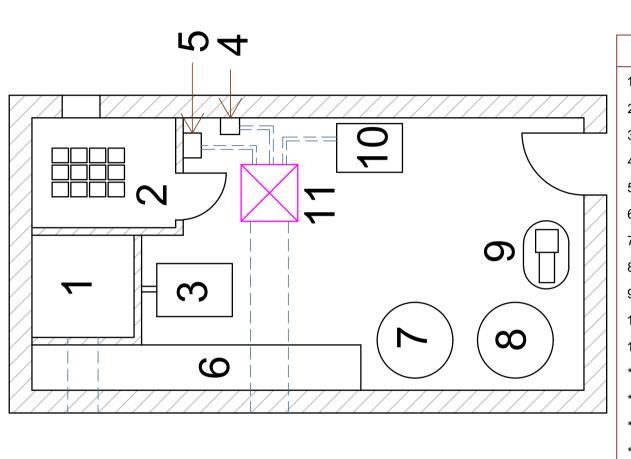
Ilustración 41 Panel 90




Ilustración 42 Panel 91


V PLANOS

ÍNDICE DE PLANOS


- 1. ALZADO ACTUAL
- 2. SECCIÓN ACTUAL
- 3. ALZADO FUTURO
- 4. SECCIÓN FUTURO
- 5. PLANTA CASETA DE CONTROL
- 6. PLANTA MASÍA SISTEMA DE ABASTECIMIENTO DE ENERGÍA
- 7. SOPORTE DE PLACAS SOLARES A 22°
- 8. SOPORTE DE PLACAS SOLARES A 57°
- 9. ARMARIO DOMÓTICA
- 10. PLANTA MASÍA DOMÓTICA
- 11. PLANTA DE LA BODEGA DÓMOTICA
- 12. PLANTA DE LA PLANTA BAJA DOMÓTICA
- 13. PLANTA DE LA PLANTA PRIMERA DOMÓTICA
- 14. PLANTA DEL ESTUDIO DOMÓTICA
- 15. ESQUEMA CONEXIÓN PANELES SOLARES
- 16. ESQUEMA FUENTES DE ENERGÍA
- 17. ESQUEMA UNIFILAR

INFORMACIÓN

- 1 Tolva pellet 1.35m x 1.35m
- 2. Cuarto placas 1.45m x 1.9m
- 3. Caldera 0.7m x 1m
- 4. Regulador 0.22m x 0.25m
- 5. Inversor 0.328m x 0.24m
- 6. Pesebre 4.35m x 0.6m
- 7. Vaso expansor 1 d(1m)
- 8. Vaso exapansor 2 d(1m)
- 9. Equipo de presión 0.6m x 0.9m
- 10. Grupo electrógeno 0.87m x 0.645m
- 11. Arqueta 0.75m x 0.75m
- *** Muro exterior 0.3m***
- ***Tabiques interiores 0.1m***
- ***Puerta entrada 0.82m***
- ***Puerta cuarto placas 0.62m***

PROYECTO DE INSTALACIÓN	E=1/50	Título:	PLANTA CASETA ABASTECIMIENTO DE ENERGÍA Y	CALDERA
DOMÓTICA EN VIVIENDA RURAL	mm		TEANTA GAGETA ABAGTEGINIENTO DE ENENGIA T	OALDLIVA
Fecha:	Пф	Autor:	JAVIER MONSERRAT CASTEL	Nº plano
01/07/2017	7 \$		JAVIER WONSERRAT CASTEL	5

PROYECTO DE INSTALACIÓN DOMÓTICA EN VIVIENDA RURAL E=1/500

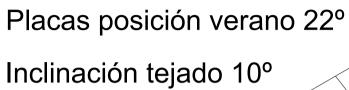
Título:

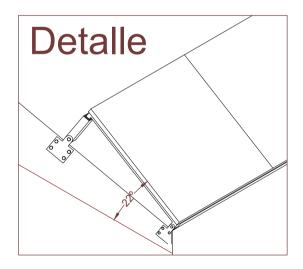
VISTA EN PLANTA DE LOS SISTEMAS DE ABASTECIMIENTO

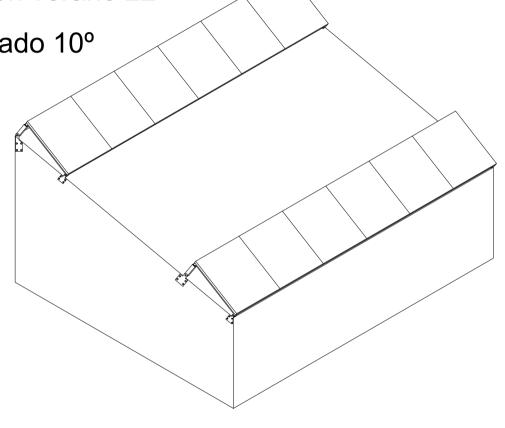
DE ENERGÍA Y ZANJAS

Fecha:

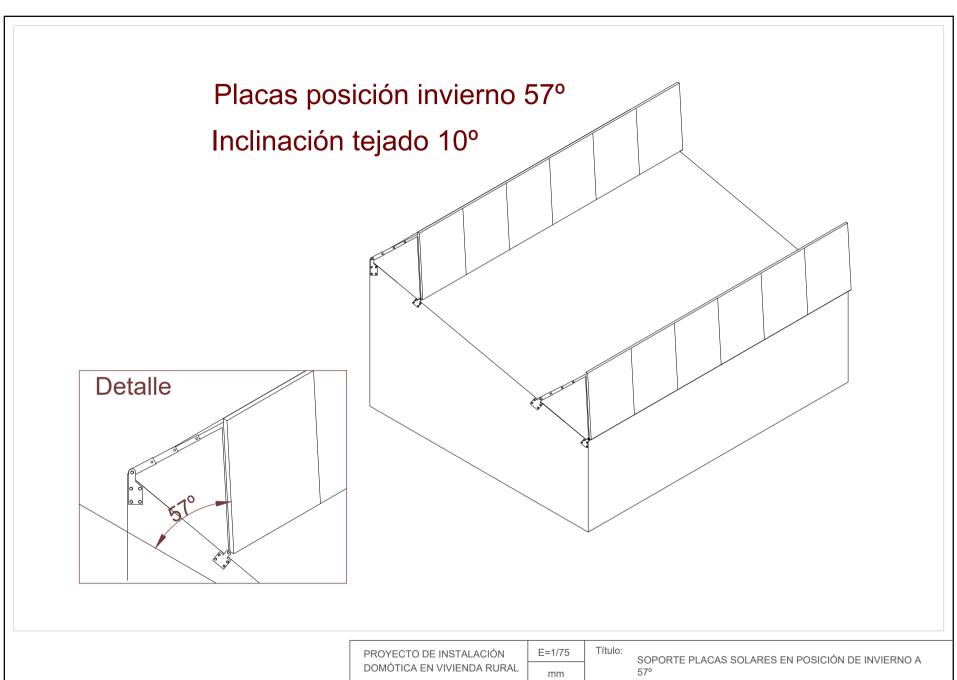
01/07/2017




mm


Autor:

JAVIER MONSERRAT CASTEL


Nº plano 6

PROYECTO DE INSTALACIÓN	E=1/75	Título:	SOPORTE PLACAS SOLARES EN POSICIÓN DE VEI	RANO A
DOMÓTICA EN VIVIENDA RURAL	mm		22°	0.0071
Fecha: 01/07/2017		Autor:	JAVIER MONSERRAT CASTEL	Nº plano 7

PROYECTO DE INSTALACIÓN DOMÓTICA EN VIVIENDA RURAL	E=1/75 mm	Título:	SOPORTE PLACAS SOLARES EN POSICIÓN DE INV 57°	IERNO A
Fecha: 01/07/2017		Autor:	JAVIER MONSERRAT CASTEL	Nº plano 8

ARMARIO SCHNEIDER PRISMA G 08104 ♦ B MOT_PUERTA ♦ EV_ENTRADA ♦ EV_ENTRADA ♦ EV_ENTRADA ♦ EV_VACIADO ♦ LUZ_ENTRADA ♦ LUZ_ENCI ♦ LUZ_HAB3 ♦ LUZ_HAB3 ♦ LUZ_PARK ♦ LUZ_PARK ♦ LUZ_BBQ ♦ LUZ_ERA ♦ LUZ_ERA © EV_TOLV_PIEN © EV_TOLV_PIEN EV_SC EV_REGO_Z1 EV_REGO_Z2 EV_REGO_Z3 EV_REGO_Z3 EV_REGO_Z3 ♠ pg LUZ_PATIO ♠ pg ON_CALDERA ♠ pg EV_HAB1 ♠ pg EV_HAB2 © © EV_RIEGO_PIS ♦ BELECTROLISIS MOT_PERS_PI S B LUZ_EXT_PIS **⊘** [©] EV_HAB3 X Q44 Q45 Q46 Q47 Q48 Ø Ø Ø Ø Ø X</t

O DOMÓTICA
ERRAT CASTEL Nº plano

LEYENDA

ELECTROVÁLVULA RIEGO

SENSOR ULTRASONIDOS

FINAL DE CARRERA

ELECTROVÁLVULA RIEGO

PUNTO DE LUZ CONTROLADO

FIBRA ÓPTICA

ELECTROVÁLVULA ENTRADA

CONTROL REMOTO

PROYECTO DE INSTALACIÓN
DOMÓTICA EN VIVIENDA RURAL

E=1/500

mm

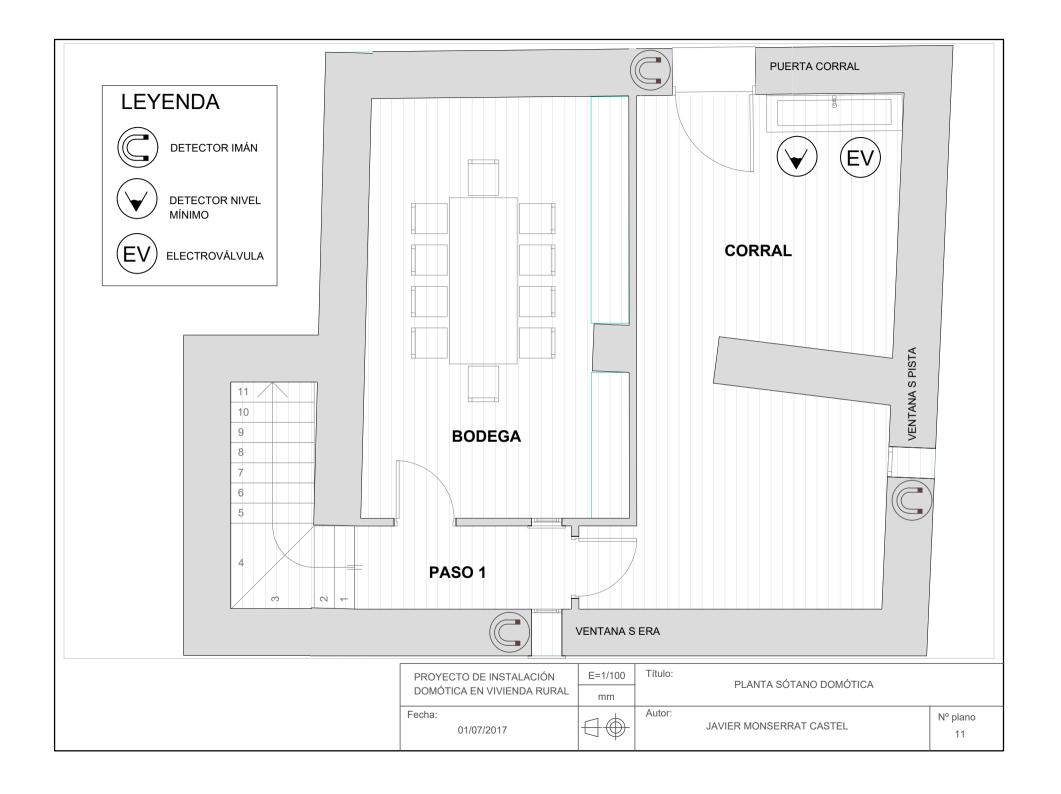
Título:

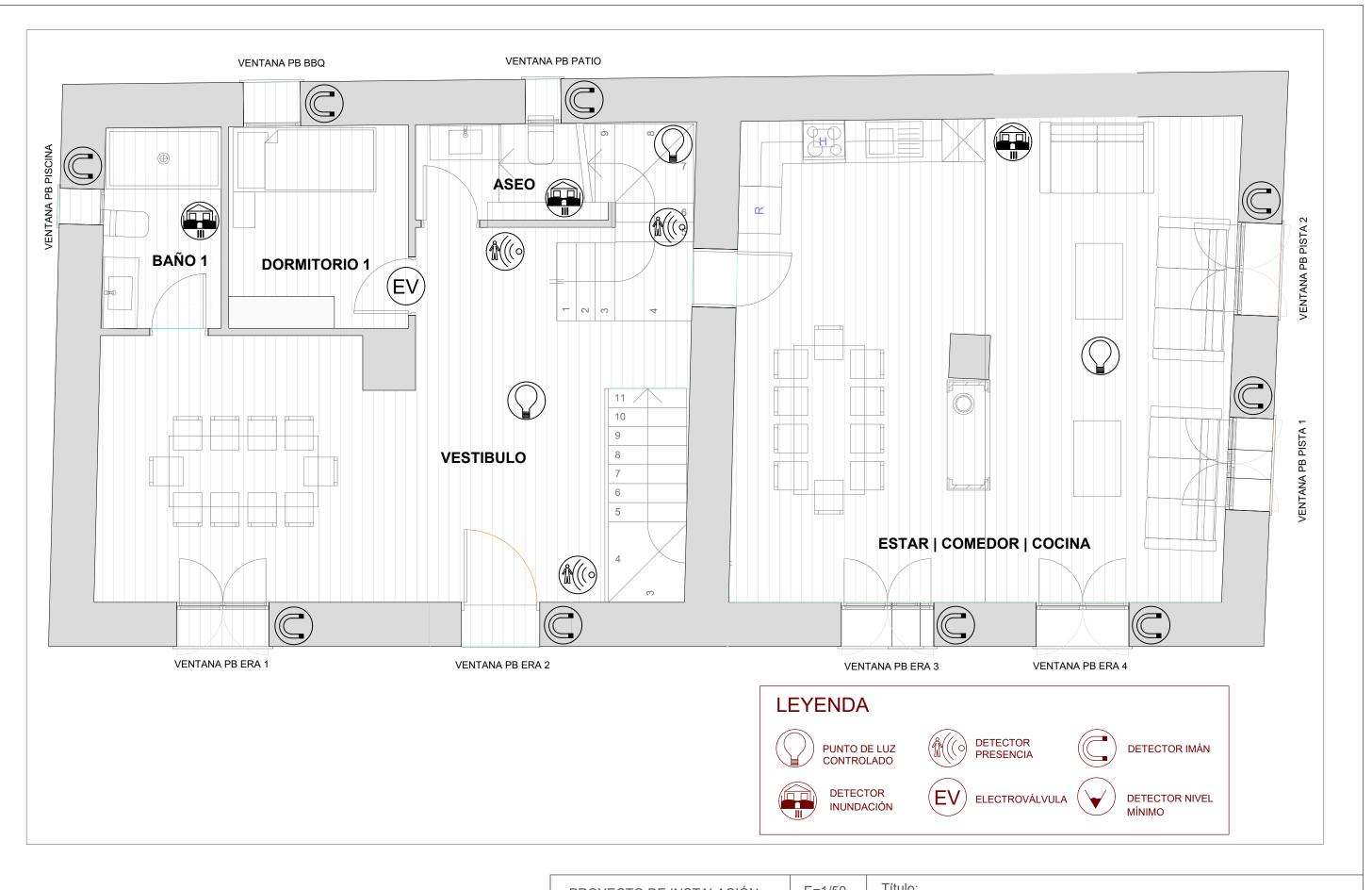
:

PLANTA MASÍA DOMÓTICA

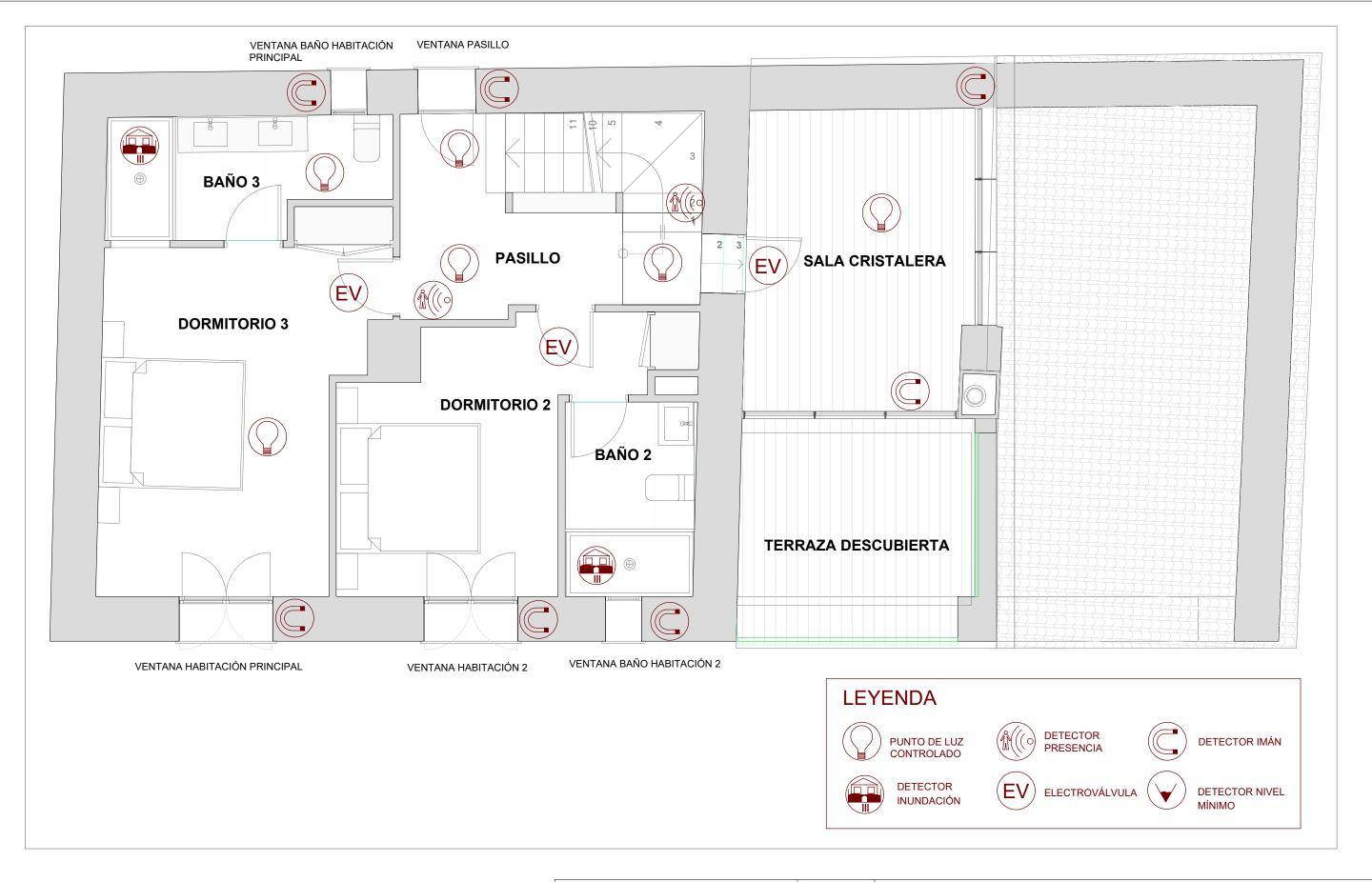
Fecha:

01/07/2017

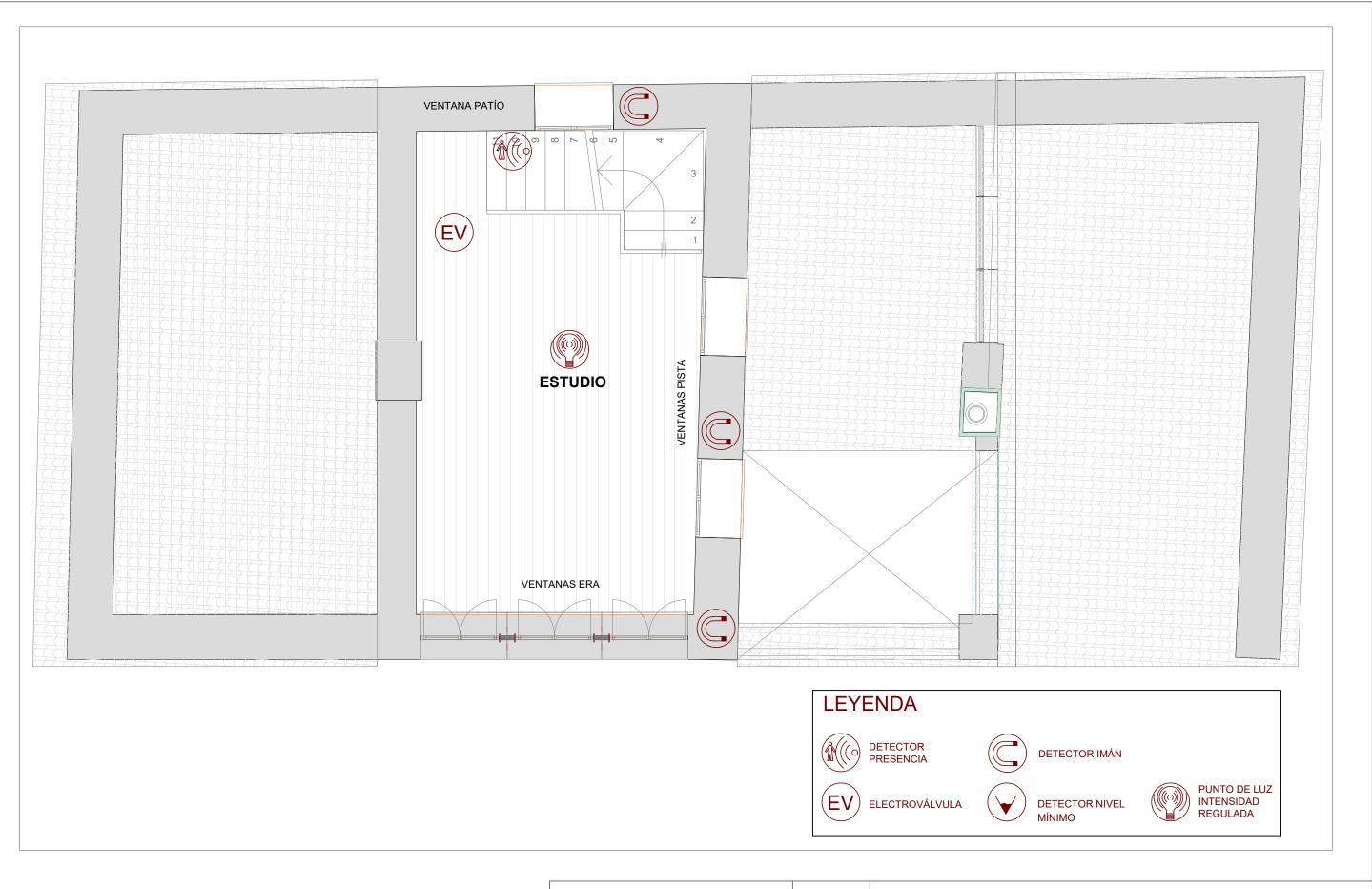


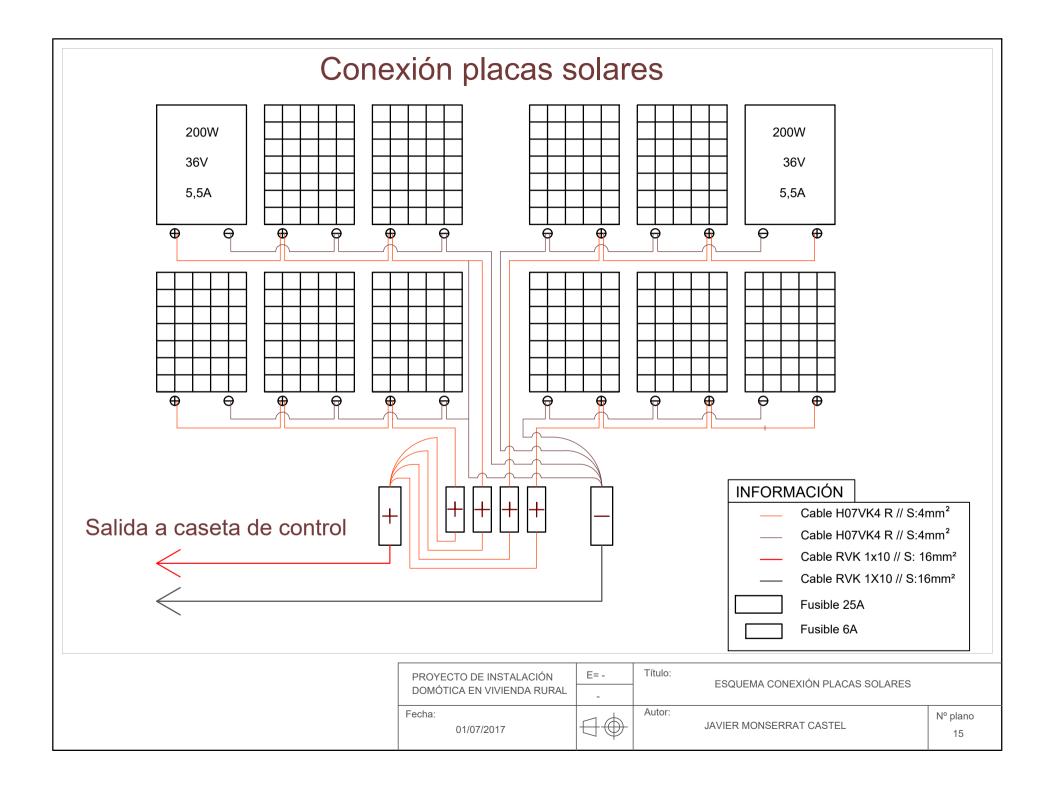

Autor:

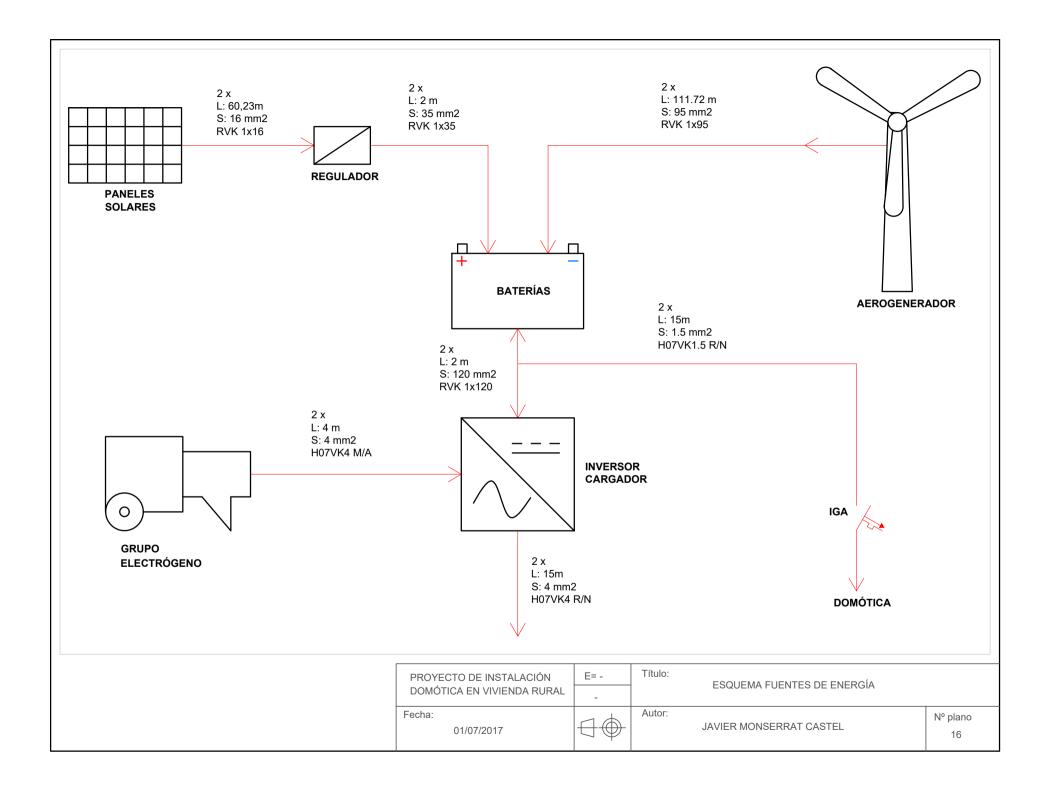
JAVIER MONSERRAT CASTEL

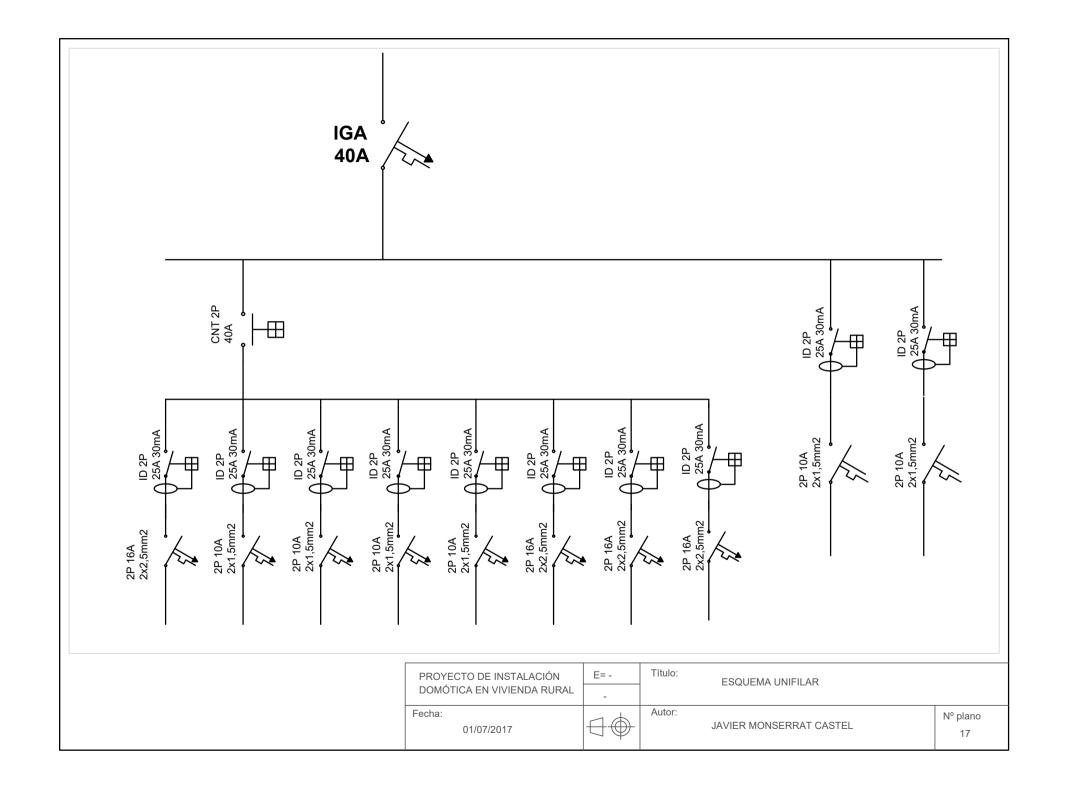

Nº plano

10




PROYECTO DE INSTALACION DOMÓTICA EN VIVIENDA RURAL	E=1/50 mm	Titulo.	PLANTA DE LA PLANTA BAJA DOMÓTICA	
Fecha: 01/07/2017		Autor:	JAVIER MONSERRAT CASTEL	Nº plano 12




PROYECTO DE INSTALACIÓN	E=1/100	Título:	PLANTA DE LA PRIMERA PLANTA DOMÓTICA	
DOMÓTICA EN VIVIENDA RURAL	mm		TEANTA DE LATINIMENATEANTA DOMOTIOA	
Fecha: 01/07/2017		Autor:	JAVIER MONSERRAT CASTEL	Nº plano 13

PROYECTO DE INSTALACIÓN DOMÓTICA EN VIVIENDA RURAL	E=1/50 mm	Título:	PLANTA DEL ESTUDIO DOMÓTICA	
Fecha: 01/07/2017		Autor:	JAVIER MONSERRAT CASTEL	Nº plano 14

