
1 
 

 
 
 
 
 

 
 

 

MASTER´S IN APPLIED PHYSICS 

 

 

 Thesis 

 

A Photoelectrochemical study of Bismuth Vanadate 

Photoanodes for Solar Water Splitting 

 

Sandheep Ravishankar 

 

 

 

Submitted to 

Dr. Sixto Giminez 

August 2015  



2 
 

 
 
 
 
 

Acknowledgements 
 

 

I would primarily like to thank my thesis supervisor, Dr. Sixto Giminez for his guidance and help 

during the course of this investigation.  I would also like to thank Dr. Francisco Fabregat 

Santiago and Prof. Juan Bisquert for providing several useful inputs and clarifications regarding 

solar water splitting and impedance spectroscopy. 

The lively discussions with Dr. Isaac Herraiz – Cardona, Dr. Rafael Sanchez and Luca Bertoluzzi 

regarding all aspects of solar water splitting are gratefully acknowledged. 

I sincerely thank Dr. Wilson Smith and Bartek Trzesniewski for the measurements made at TU-

DELFT and their guidance and hospitality during my research visit. 

Last but not the least, I would like to acknowledge Generalitat Valenciana for funding under 

the Project GRISOLIA/2014/034. 

  



3 
 

 
 
 
 
 

Abstract 

 

Bismuth Vanadate (BiVO4) is a promising photoanode in the field of solar water splitting due to 

its low cost of synthesis, low toxicity, good stability and high theoretical photocurrent density. 

However, several reports on this material have shown poor photocurrent densities, poor 

photon conversion efficiencies, high surface recombination and slow kinetics at the 

BiVO4/electrolyte interface. 

In order to identify and address these issues, a review of the properties of this material and 

the research carried out on it is provided, followed by a thickness dependent study to make an 

overall characterisation of the material in terms of morphology, phase and 

photoelectrochemical performance.  

We also confirm the high surface recombination and slow kinetics at the BiVO4/H2O interface, 

while shedding light on the reported mechanisms of slow electron transport and photocurrent 

enhancement by an interfacial SnO2 layer (hole mirror effect). 

Electrochemical impedance spectroscopy measurements determine a capacitance with 

magnitudes similar to a depletion-region capacitance with a capacitive peak at ~0.75 V vs VRHE, 

related to the V4+/V5+ redox couple, which made the estimation of the actual flatband potential 

difficult. 
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Harvesting the energy of the sun possesses great potential to solve the current global energy 

crisis. The energy from the sun is a clean, renewable and inexhaustible resource with the 

magnitude of power striking the Surface of the earth at any instant equal to that produced by 

130 million 500 MW power plants [1].  

Several factors like material for energy conversion and storage must be taken into account. 

Since the energy flux from the sun is seasonal, provisions must be made to store this energy in 

chemical form for easy transport and usage on demand. These needs must also be met in a cost-

efficient and environmentally friendly way. 

In this regard, solar water-splitting is a viable solution, which involves utilising semiconductor 

materials to photo-catalyse the reduction and oxidation of water ie: store the energy of the sun in 

the chemical bonds of H2. These reactions are environmentally clean and produce hydrogen gas 

and oxygen gas, with hydrogen touted to be an important fuel that will power the economies of 

the future. 

For all its promise, water splitting is an uphill reaction to carry out thermodynamically. The free 

energy change for the conversion of one molecule of H2O into H2 and ½ O2 is 237.2 kJ/mol 

which corresponds to 1.23 V according to the Nernst equation. This essentially means that the 

semiconductor carrying out water splitting must possess a bandgap in excess of 1.23 V for these 

reactions (shown below) to be thermodynamically feasible [2]. 

H2O + 2(h
+
)  ½ O2 + 2H

+  
      (Oxygen Evolution Reaction) 

2H
+
 + 2e 

-
    H2                       (Hydrogen Evolution Reaction) 

The reduction potential of H2 is known is the Standard Hydrogen Electrode (SHE) and is used 

as reference for all other potentials. It is taken to be 0 V. This means that the water oxidation 

potential occurs at +1.23 V vs VSHE. 

A basic solar water splitting cell consists of a photoanode and a photocathode in contact with 

the electrolyte. Upon irradiation, electron-hole pairs are generated in the semiconductor. In the 

case of a photocathode, electrons photo-generated in the conduction band, drive the reduction of 

H2O into H2 while holes transferred from the photoanode to the electrolyte oxidise the water at 

the photoanode/electrolyte interface. 

 1 Introduction and Objectives 
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Figure 1 Energy diagrams for a) n-type single bandgap photoanode  b) n-type photoanode and p-type photocathode 

connected in series c) n-type photoanode connected to a PV cell for additional bias d) dual bandgap cell with PV cells 

connected to both photoanode and photocathode [2] 

Solar water splitting cells are divided into two categories. A single bandgap device is termed S2 

and has a maximum conversion efficiency of 30% under 1 sun illumination (100 mW/cm
2
) and 

requires a minimum of two photons to generate a single molecule of H2, whereas a dual 

bandgap device is termed as D2 or D4, requiring two or four photons to produce one molecule 

of H2. A dual bandgap device requires stacking of two different materials, with different 

bandgaps in order to absorb a greater region of energy from the solar spectrum. The theoretical 

maximum efficiency of a D2 device is 41% [1,2]. 

Another important consideration is the position of the valence and conduction bands with 

respect to the redox potentials and the overpotentials required to drive these reactions. A 

material whose valence band potential is not sufficiently positive or conduction band whose 

potential is not sufficiently negative will not be able to carry out water oxidation or reduction 

respectively. Since it is very difficult to find a material that straddles both the water oxidation 

and hydrogen reduction potentials, in general, different semiconductors are used as photoanode 

and photocathode. Figure 2 shows a list of several semiconductors and the positions of their 

valence and conduction bands with respect to water oxidation potential. 
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                    Figure 2 Band edges of Valence and conduction bands of different PEC electrodes [2] 

In general, n-type electrodes are used as photoanodes and p-type electrodes as photocathodes. 

The reasoning behind this is the fact that a driving potential in the form of band bending occurs 

at the interface in the dark, which drives minority carriers to the solution when the electrode is 

illuminated (figure 3).  

 

Figure 3 Band energetics for n-type photoanode in the case of a) dark conditions, before contact b) Equilibration of 

fermi level with redox potential in the electrolyte, formation of space charge region of width w c) Change in hole 

quasi-fermi level upon illumination, providing suitable overpotential for transfer of minority carriers to solution [2] 

  

The interest in using BiVO4 as a photoanode stems from its good stability, low cost, reliable 

theoretical photocurrent (upwards of 7 mA/cm
2
), absorption in the visible and the very positive 

position of its valence band, ~ 2.4 V vs VRHE with the conduction band slightly more positive 

than VRHE ( + 0.02 V vs VRHE)(figure 4)[3]. This large difference in potential, coupled with the 
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inherent n-type nature generates a large driving field for the transfer of minority carriers ie: 

holes to solution to carry out the water oxidation. 

 

                   Figure 4 Position of bands and fermi level under a) dark conditions b) illumination [12] 

 

While BiVO4 possesses many advantages for use as a photoanode, the performance of this 

material has been quite poor, with an onset potential shifted several hundreds of mV from its 

reported flatband potential. Several limiting factors like high amount of recombination of 

electron-hole pairs,  slow electron transport and slow water oxidation kinetics at the interface 

have been reported[4-6]. (The latter is widely known as is the case for multi-electron or hole 

transfer reactions) 

The objectives of this report are: 

 Determination of optimum PEC performance 

 Identification of performance limiting factors like surface/bulk recombination, slow 

kinetics etc 

 Implementation of strategies to improve the PEC performance 

 Identification and modelling of bulk and interfacial processes involved in BiVO4 

photoanodes using Electrochemical impedance spectroscopy  
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2.1 CRYSTAL AND ELECTRONIC STRUCTURE 

Bismuth Vanadate prepared in the laboratory exists in two crystal structures, the scheelite or a 

Zircon-type structure. The Scheelite structure can either exist in a monoclinic (space group I2/b 

with a = 5.1935 Å, b = 5.0898 Å and c = 11.6972 Å, ß = 90.387˙) phase or a tetragonal (space 

group I41/a with a = b = 5.1470 Å, c = 11.7216 Å)[7] phase while the Zircon-type exists in a 

Tetragonal system (space group I41/a with a = b = 7.303 Å, c = 6.584 Å)[8]. 

In the Scheelite structure, each V ion is coordinated by 4 O atoms to form a tetrahedral structure 

with each Bi atom coordinated by 8 O atoms from 8 different VO4 tetrahedral units (figure 

10)[7]. 

The structures of the monoclinic and tetragonal structures are similar except for the distortion in 

the environment of the V and Bi ions, removing the four-fold symmetry of the tetragonal 

system[7]. 

 

Figure 5 Crystal structures of a) Tetragonal Scheelite b) Zircon type BiVO4 (Red – V, Purple – Bi and Gray – O)  

Local coordination of V and Bi ions in c) Monoclinic Scheelite d) Tetragonal Scheelite and e) Zircon type BiVO4 

with all bond lengths in Å [9] 

 

 2 Literature Review 
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For solar water splitting purposes, it is of interest to crystallise the Monoclinic scheelite 

structure due to its absorption in the visible with a bandgap of ~2.4 eV (figure 4) as opposed to 

the Tetragonal scheelite, which absorbs in the UV region of the spectrum (bandgap ~2.9 

eV)[10]. 

 

 

 

2.2 SYNTHESIS 

Several synthesis methods of BiVO4 have been reported in literature, the most prominent 

methods of which are mentioned in this section. An efficient method has been Metallorganic 

deposition (MOD) using spray pyrolysis, as reported in [11, 12]. Electrodeposition is also a 

reliable method, with both a single step and two step method reported. In the single step 

method, adopted by Seabold et al [13], the precursor solution, maintained at a slightly acidic pH 

is used for electrodeposition of BiVO4, followed by annealing at 500
.
 C for 1 hour. In the two 

step process [14], the first step involves cathodic deposition of Bi from an acidic BiCl3 medium, 

followed by anodic stripping in an aqueous medium containing V precursor, which then yields 

crystallised BiVO4. Another commonly used method is MOD by spincoating of the precursor 

[15, 16]. The annealing step in these processes is most important because the crystallization of 

the monoclinic Scheelite phase occurs at elevated temperatures above 450
.
 C [17]. 

 

2.3 STRATEGIES TO IMPROVE PEC PERFORMANCE 

2.3.1 Composite electrodes 

Liang et al [11] significantly enhanced the performance of BiVO4 by the addition of an 

interfacial layer of SnO2. The addition of this layer improved the collection efficiency by 20% 

between 350 and 450 nm. According to the authors, the SnO2 layer behaves as a ´hole mirror´by 

passivation of a surface trap in the FTO, which acts as a recombination center (Figure 11). 



16 
 

 
 
 
 
 

 

Figure 6 Proposed models - a,b) Trapping of electrons at a defect state at the FTO/BiVO4 interface followed by 

recombination with holes in the valence band c) ´Hole mirror´ effect of SnO2 [11] 

In the same investigation, it was observed that illumination from the substrate side (back) 

produced a higher collection efficiency than illumination from the electrolyte side (front) (figure 

8). The authors concluded that this occurs due to the slow transport of electrons in BiVO4. In the 

case of back illumination, the electrons are extracted easily because they are generated close to 

the contact but during front illumination, since the electron-hole pairs are generated within the 

penetration length, they are required to diffuse over the entire length of the semiconductor 

before extraction. The observed poorer performance during front illumination points to the fact 

that the greater length over which the electrons are required to diffuse limits the performance, 

concluding that the electron transport is slow. This argument is supported by observing the 

electronic and crystal structure. Electronic structure calculations show that the conduction band 

of BiVO4 consists of mainly V 3d orbitals [18, 19]. However, the crystal structure shows that 

the VO4 tetrahedra are not interconnected with each other, which could be an explanation for the 

poor transport properties [16]. 

Several reports have been made regarding WO3/BiVO4 electrodes, due to the favourable 

conduction band edge (+0.42 V vs VRHE) and good stability of WO3 [3, 16, 20, 21]. Saito et al 

[21] demonstrated improved PEC performance with a multi- composite WO3/SnO2/BiVO4 

electrode. Apart from the increased absorption in the visible region of the spectrum due to WO3, 

a cascade driving potential is developed for the electrons due to the favourable positions of the 

bands of the different semiconductor materials. This leads to efficient extraction of electrons to 

the contact while the SnO2 layer prevents holes generated in the BiVO4 from reaching the WO3 

layer, which reduces recombination at the WO3/SnO2  and WO3/FTO interface. 
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Figure 7 Cascade driving potential for electrons photogenerated in BiVO4 towards the back contact with 

photogenerated holes reflected at the SnO2/BiVO4 interface [21] 

 

2.3.2 Porous and nanostructured morphologies 

The main advantage of a porous electrode is the large surface area available per unit volume. 

This allows for improved carrier extraction to the solution as the minority carriers need not 

diffuse over the entire length of the semiconductor for extraction. A higher porosity can also be 

detrimental to the performance due to poor transport properties due to formation of surface 

states, grain sites and poor crystallinity [22]. 

Luo et al [23] produced porous BiVO4 electrodes which consisted of worm-like particles with 

sizes between 50-200 nm. This greatly enhanced the PEC performance, especially in the high-

bias (0.9 V vs VRHE) region. 

Kim et al [24] developed nanoporous BiVO4 using a modified electrodeposition method 

involving initial deposition of a BiOI electrode. The advantage of BiOI is that its 2-D structure 

enables deposition of very thin films with voids between them. These voids prevent nucleation 

which results in the formation of nanoporous electrodes. The performance of these electrodes  

was very high, with a reported photocurrent density of 3.3 mA/cm
2
 (0.5 M phosphate buffer 

with 1 M Na2SO3 as hole scavenger) at 0.6 V vs VRHE. 
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Nanorods and nanowires are other methods to increase the surface area, while improving the 

transport properties of the carriers. Su et al [25] developed WO3 nanorods and also pyramidal 

shaped BiVO4 nanowire arrays on FTO substrates to improve the PEC performance. 

2.3.3 Facet dependence 

It is well known that the crystal plane that is exposed at the surface greatly affects the PEC 

performance [26, 27], including both thermodynamic and kinetic factors [28, 29]. While some 

studies have been reported [30-32], the most interesting study is by Xi et al [33], who 

synthesized monoclinic scheelite BiVO4 nanoplates with well defined {001} facets exposed 

using a hydrothermal method. The photocatalytic activity was found to be higher than nanorod 

samples grown along the [001] direction (facet at the surface undetermined) whose surface area 

was three times greater. The authors were unable to prove that the enhancement in performance 

is solely due to the exposed {001} planes but the study provides an important aspect of the PEC 

electrode that must be taken into account while designing the electrodes. 

2.3.4 Doping studies 

Among several doping studies performed on BiVO4, a significant one was carried out by Park et 

al [34], who discovered that incorporation of 2 atomic percent Mo and 6 atomic percent W in 

BiVO4 showed much higher performance compared to undoped samples or any other 

combination of concentration of dopants. DFT calculations, which assumed the substitution of 

V by Mo and W, confirmed that Mo and W act as shallow donors which increase the carrier 

density. An unexpected result was the change in phase from the less symmetric monoclinic 

scheelite to tetragonal, confirmed by XRD. These results were reproduced by Berglund et al [6]. 

In both cases, it was observed that the carrier density doubled after doping but the flatband 

potential remained the same. The increase in performance was attributed to the improved 

conductivity due to the increased carrier density. 

Another interesting effect of the doping was determined from DFT calculations by Zhao et al 

[35], who concluded that the effective mass of holes decreases slightly upon doping with Mo or 

W but the effective mass of electrons increases. This finding supports the reasoning of slow 

electron transport in BiVO4. However, DFT calculations performed by Park et al [34] predicted 

no change in the effective masses of holes and electrons. Their calculations also showed that the 

excess electrons from W or Mo localize on a V atom to form V
4+

 centers and cause local 

distortions in the structure. If the transport is governed by polaron hopping (V
4+

 center 

migration), then the addition of dopants increases the number of V
4+

 centers, increasing overlap 
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between them and reducing the activation energy for hopping, which improves the PEC 

performance. 

Further doping studies were performed by Zhong et al [4]. The BiVO4 samples were doped 

using W as an n-type dopant to increase the concentration of the electrons. Liang et al [11] 

observed that W doping improved the collection efficiency by ~ 20% along the entire absorption 

spectrum, with a maximum of 52% at 370 nm. In both the reports, the difference in performance 

between back and front illumination was also reduced, which points towards the existence of 

slow electron transport in BiVO4 (figure 8).  

 

Figure 8 Proposed model for slow electron transport in BiVO4 – In the case of back illumination, electrons are 

photogenerated closer to the back contact while under front illumination, photogenerated electrons are required to 

diffuse over the entire length of the semiconductor before extraction [11] 

 

2.3.5 Oxygen evolution catalysts (OEC) 

An oxygen evolution catalyst is used in order to improve the slow water oxidation kinetics at 

the BiVO4/electrolyte interface. The role of the OEC is to enhance the evolution of oxygen by 

reducing surface recombination by rapid extraction of the holes at the surface.  

The most common OEC in the case of BiVO4 is Co-Pi. Several studies report a cathodic shift in 

onset potential, enhanced photocurrents and increased stability of the electrode [4, 5, 36-38]. In 

a study by Zhong et al [4], a W/BiVO4 – Co-Pi system (figure 9) yielded a collection efficiency 

of ~20% at 420 nm, 0.6 V vs VRHE, as compared to a W/BiVO4 electrode that yielded no 

photocurrent for the same applied potential.   

Seabold et al [13] reported the use of FeOOH as an OEC for BiVO4. The FeOOH was deposited 

on the surface of BiVO4 by using photogenerated holes to oxidise Fe
2+

 to Fe
3+

, thereby creating 

a thin film of FeOOH. The electrode showed a remarkable photocurrent for sulfite oxidation, 

reaching 1 mA/cm
2
 at a bias of 0.58 V vs VRHE under AM 1.5 G, 100 mW/cm

2
 illumination. 
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                  Figure 9 Mechanism of hole extraction at the semiconductor surface by Co-Pi [4] 

 

 

 

 

 

3.1 SPINCOATING 

This method involves placing a small volume of the liquid precursor at the center of a substrate 

and then spinning the substrate at high speed. Centripetal force causes the precursor to spread 

out over the entire substrate, while air flowing over the substrate causes the evaporation of the 

precursor, leaving behind a thin layer. Final film thickness depends on several factors like 

nature of the precursor (viscosity, drying rate, solid content, surface tension etc), spin rate and 

acceleration. 

BiVO4 samples were prepared by spincoating 50 µL of precursor - Bi(NO3)3.5H2O (0.1940 g, 

0.4 mM) and Vo(acac) (0.106 g, 0.4 mM) in 11.5 ml Acetylacetone on FTO coated glass 

substrates ( Pilkington TEC8, 8 Ω cm
2
) at 1000 rpm for 30 seconds. The thickness of the 

samples was varied by the number of spin-coating cycles: 3, 5, 7, 9, 11 and 13 cycles. (In this 

report, for convenience, the samples are referred to with their respective number of cycles of 

spincoating) After each spin-coating cycle, the samples were annealed at between 450 - 550
·
 C 

for 15 minutes with a final annealing step for 2 hours at 500
·
 C.   

 

Experimental Techniques and Parameters 

 

 3 
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3.2 X-RAY DIFFRACTION  

A technique that provides information regarding the composition, phase and planes of the 

constituent atoms, in which the atoms diffract a beam of incident x-rays, which then interfere on 

a screen at specific angles, according to Bragg´s law. The condition for constructive interference 

is given by 

nλ = 2dsinθ                                                 

 

Figure 10 Principle of X-ray diffraction from adjacent planes of a  crystal lattice 

 

3.3 UV – VIS SPECTROPHOTOMETRY 

This technique is based on the Beer-Lambert law, which states that the absorbance of a sample 

is directly proportional to the path length (thickness) and the concentration of the species. A UV 

lamp generates photons comprising of wavelengths in the ultraviolet and visible, which is 

transmitted to a beam splitter to generate a reference beam and sample beam. The sample beam 

passes through the sample of interest and the transmitted intensity is measured relative to the 

reference beam, from which the absorptance data is obtained. Several parameters like sample 

thickness, absorption coefficient and also the bandgap of the semiconductor can be derived from 

the absorptance data. 

 

λ – incident beam wavelength 

d – lattice plane spacing 

θ – angle of incidence 

n – order of diffraction 
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Figure 11 Schematic view of the UV-VIS absorption setup 

 

Absorptance values were obtained from transmittance measurements made by a Cary 5000 UV-

VIS spectrophotometer. The absorptance was calculated as  

                            A = - log (T)                                                               T - Transmittance 

Film thickness was estimated using the Beer Lambert law 

          L = A/α                                                                  α – absorption coefficient  

                                                             

3.4 CYCLIC VOLTAMMETRY 

This technique involves the measurement of the current  with application of a voltage that varies 

linearly with time.  Measurements are made in a three electrode cell comprising of a working 

electrode, counter electrode and a reference electrode, under illumination or in the dark. A 

potential difference is applied between the working and counter electrodes by means of a 

potentiostat. The potential of the working electrode is measured with respect to the reference 

electrode, which in this case is a Ag/AgCl electrode. The counter electrode used is a Platinum 

wire. Scans were made at a sweep rate of 50 mV/s under 1 sun (100 mW/cm
2
) Xe-lamp 

illumination in a Potassium Phosphate buffer (pH 6.55) using a FRA equipped PGSTAT-30 

from Autolab and a Keithley 2612 system sourcemeter. 
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Figure 12 Three electrode setup with working (WE), counter (CE) and reference (RE) electrodes 

 

3.5 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) 

In general, impedance spectroscopy involves the application of a frequency-dependent 

perturbation to a system at steady-state. It consists of the AC measurement of the current, Ĩ(ω) 

by applying a voltage perturbation Ṽ(ω) or vice versa to obtain the frequency-dependent 

impedance Z(ω). 

Z(𝛚) = Ṽ(ω)/ Ĩ(ω) 

It is of crucial importance that the perturbation is small in order to maintain the linear form of 

the impedance as shown. Ideally, during an impedance measurement, the system is kept at 

steady-state by imposing stationary conditions such as fixed DC current, illumination intensity 

etc. The system then obtains the impedance and scans over a range of frequencies, generally 

ranging a few decades. This procedure is repeated over a range of steady-state voltages to 

observe the evolution of the parameters with the voltage.  

 

Figure 13 Small signal linear response of the perturbing voltage required for EIS 
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Using the acquired data, the system is then modelled using the following electrical components: 

 

       Figure 14 Basic electric components used for modelling EIS data and their corresponding impedances 

 

A CPE is used to represent the fact that it is extremely difficult to obtain a purely capacitive 

response from a system. When the index n = 1, we obtain a purely capacitive response but it is 

often necessary to use n < 1 during the fitting of impedance data. 

EIS measurements were made in the same 3-electrode configuration as described in section 2.4. 

The range of potential applied was 0.1 – 1.5 V with a step size of 0.05 V. The applied 

perturbation amplitude (rms) was 0.02 V and the frequency range of the scan was 0.05 – 100000 

hz. 

 

 

 

4.1 MICROSCOPY 

 

The morphology of a SnO2/BiVO4 sample was determined by Scanning Electron Microscopy 

measurements, shown in figure 15. The film appears polycrystalline, with a degree of porosity. 

Large grain sizes are observed (> 500 nm) with many voids between them, though the film is 

compact. A clear differentiation between the different phases (FTO/SnO2/BiVO4) is not 

observed.  

 

 4 Results and Discussion 
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         Figure 15 SEM image of SnO2/BiVO4 sample 

  

4.2 X-Ray Diffraction 

Crystalline phase of the BiVO4 samples was determined using X-Ray Diffraction (figure 16), 

carried out at TUD, Netherlands.  Our samples clearly exist in the monoclinic Scheelite phase of 

BiVO4 with the data fitted using PDF 14-688 for the planes and their corresponding 2-theta 

angles. 

 

                 Figure 16 2θ scan results for samples with their respective number of spincoating cycles 
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4.3 OPTICAL MEASUREMENTS 

The optical density of the films was determined from transmittance measurements. Figure 17 

shows the absorbance calculated from transmittance measurements and Table 1 provides the 

estimated values of thickness from these optical measurements, with an absorption coefficient of 

30000 for BiVO4 at 400 nm [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Calculated thickness (absorption coefficient = 3 x 104 cm-1 at 400 nm) of BiVO4 samples prepared by 3, 5, 7, 

9, 11 and 13 cycles of spin-coating 

 

 

No. of 

Cycles 

Thickness 

(nm) 

         3          120 

         5          174 

         7          233 

         9          257 

         11          332 

         13          442 

Figure 17 Absorptance of BiVO4 samples prepared by 3, 5, 7, 9, 11 and 13 cycles of spin-coating 
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4.4 Photoelectrochemical (PEC) tests 

 

 

The variation of the PEC performance under illumination with thickness of the BiVO4 film is 

shown in figure 18. Two important factors to be noted are the onset potential and the 

photocurrent at moderately high potentials (Vonset < V < 1.5 V), as the current at high positive 

potentials is mainly due to charge transfer of carriers from the valence band. The onset potential 

is very high for the thinnest sample (3 cycles), ~ 1.6 V vs VRHE. With increasing thickness, there 

is a corresponding cathodic shift in the onset potential, with a value of ~ 0.6 - 0.8 V vs VRHE for 

the 11 cycles sample. It is also noted that the onset potential is shifted anodically for the thickest 

sample (13 cycles). The photocurrent also follows a similar trend (figure 19), with a maximum 

photocurrent density of 0.194 mA/cm
2
 at 1.23 V vs VRHE for the 11 cycles (~330 nm thickness) 

sample, followed by a reduction in the performance for the thickest sample.  

Figure 18 Comparison of substrate (back) illumination of BiVO4 samples prepared by 3, 5, 

7, 9, 11 and 13 cycles of spin-coating as shown in legend 
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An explanation of these trends can be made by considering the diffusion length of the holes, 

which are the minority carriers, reported to be ~ 100 nm [39]. The PEC performance is 

determined by the competition between increased absorbance, which generates more electron-

hole pairs for extraction, and the thickness of the film over which the carriers have to diffuse to 

the surface for extraction in relation to the diffusion lengths (The length over which the carrier 

diffuses before recombination or extraction) of electrons and holes in BiVO4. Due to its porous 

morphology as observed in Figure 15, it is plausible that the diffusion of electrons is the limiting 

factor for performance. From figure 18, it is clear that the absorption increases with increasing 

thickness for all the samples, which can explain the increasing photocurrent and corresponding 

cathodic shift of the onset potential. With the increasing thickness however, the length over 

which the holes need to diffuse for extraction increases, leading to higher recombination until 

finally, this limitation counteracts the increased absorption to give an overall reduction in 

performance, as is observed for the thickest sample (13 cycles). Another factor that could also 

contribute is the porosity of the samples, which would allow extraction of the holes to the 

electrolyte without the requirement of diffusion to the top surface, which would explain the 

improvement of the photocurrent for thicknesses greater than the diffusion length. 

A comparison between the performance of front and back illumination is shown in figure 18 and 

19. Contrary to the reports described in section 2.3.1, we observe no obvious difference in the 

performances over the entire range of thicknesses (110 – 450 nm). The slow electron transport 

described in section  2.3.1 were observed for samples with thickness ~ 200 nm.  

In order to identify any limitations in performance due to kinetics at the interface and determine 

the maximum photocurrent, BiVO4 with thickness ~ 230 nm (7 cycles spincoating) was tested in 

a Phosphate buffer (pH 6.55) containing 0.1 M H2O2 as hole scavenger. The results are shown in 

  

Figure 19 Variation of current density versus thickness of BiVO4 represented by the number of spincoating cycles (error 

bars for measurements over 2 samples of each thickness) 
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figure 20. 

  

 

We observe a large enhancement (~ 0.5 mA/cm
2
 at 1.23 V vs VRHE) in the photocurrent and a 

cathodic shift in the onset potential upon addition of a hole scavenger. The addition of H2O2 

improves the kinetics at the BiVO4/electrolyte interface. H2O2 has a much higher oxidation rate 

constant than water due to its more negative reduction potential (+0.68 vs VRHE) and the fact that 

it requires only two holes to be oxidised compared to four for water oxidation [5].The large 

improvement in performance confirms the slow water oxidations kinetics at the 

BiVO4/electrolyte interface, where the slow kinetics of charge transfer leads to a loss of carriers 

by accumulation and large amount of surface recombination. 

 

4.5 Interfacial SnO2 layer 

 

To improve the PEC performance, prior to deposition of BiVO4 (7 cycles spincoating), an 

interfacial Tin Oxide layer was deposited on the FTO with thickness ~ 100 nm at TU-DELFT by 

automatic spray pyrolysis. The performances of the FTO/SnO2/BiVO4 samples are shown in 

Figure 20 J-V curves in the dark, under illumination and in the presence 

of a hole scavenger under illumination 

Figure 21 Comparison in performance of BiVO4 (7 cycles spincoating) with and 

without an interfacial Tin Oxide layer 
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figure 21. 

 

A large enhancement in photocurrent (~ 0.55 mA at 1.6 V vs VRHE) in the moderate to high 

potential range along with a cathodic shift in the onset potential of a few 100 mV is observed. 

These results confirm the beneficial effect of the interfacial SnO2 layer, as described in reports. 

 

5.6 EIS MEASUREMENTS 

In this section, we investigate the carrier dynamics of the BiVO4 system by impedance 

spectroscopy in order to identify the various charge-transfer processes, resistances and 

capacitances contributing to the water oxidation process. Important information regarding the 

space-charge capacitance at the interface including the flatband potential and doping densities 

will give an idea about the performance and limitations of this photoanode. 

EIS measurements were carried out on the samples in the dark and the obtained results, 

including the fitting circuit, is shown in figure 22 and 23. 

             

Figure 22  a) Nyquist plot of 7 cycles spincoating BiVO4 sample at 1.4 V vs VAg/AgCl  b) Fitting circuit used for the 

EIS data in dark 

The observed single arc in the Nyquist plot is typical of a resistor and capacitor in parallel, with 

a resistor in series displacing the arc along the real axis, which was the fitting circuit used. A 

CPE was used instead of a capacitor, from which the capacitance values (figure 23) were 

extracted using the Brug formula [40]. 
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The obtained capacitance values are of the order of 10
-6

 F, which are similar values to that 

obtained for Haematite photoanodes for a space-charge/bulk capacitance[41, 42]. Similar values 

have also been reported for BiVO4 photoanodes [13,22,40,41]. Fitting of surface states model 

developed by Bisquert [43] yielded no evidence of the existence of surface states in the dark 

(fitting not included), which points favorably to the fact that the observed capacitance is indeed 

the space charge capacitance at the surface. 

With the assumption that the observed capacitance is the space charge capacitance at the surface 

(band bending), Mott-Schottky plots were generated (figure 24) and obtained flatband potentials 

with corresponding literature values are shown in table 2. Large positive values for the flatband 

potentials for 3, 5, 7 and 9 cycles of spincoating are observed.  There also exists a peak in the 

capacitance at ~ 0.75 V vs VRHE, which is the potential of the V
4+

/V
5+

 redox couple [44]. The 

fitting of the straight line to obtain the flatband potential has been carried out between 0.8 -1.8 

V vs VRHE, without including the capacitance peak, which could alter the actual flatband value. 

 

 

Figure 23 Variation of capacitance with applied voltage of BiVO4 samples of different thicknesses obtained 

from EIS measurements in dark conditions 
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Figure 24 Mott-Schottky plots of BiVO4 samples of different thicknesses represented by number of spincoating 
cycles shown in legend obtained from EIS measurements in dark conditions 

 

Number of 

spincoating 

cycles 

 

     

 Vfb vs 

VRHE 

  (V) 

   

 Donor density   * 10
18

  

(cm
-3

) 

                                              

Reference 

               

    Vfb vs VRHE 

                 (V) 

                    

           3 

                 

+0.6 

                 

                   42.6 

    

Seabold et al [13] 

    

 ≈   - 0.07  

                   

           5 

                 

+0.52 

                 

                   33 

    

Sayama et al [45] 

  

≈   + 0.02 

                  

           7 

                 

+0.5 

                  

                   13.3 

    

Berglund et al [22] 

 

≈   - 0.08 

                   

           9 

                 

-0.21 

                 

                   7.7 

    

Rettie et al [46] 

 

≈  +0.03 – 0.08 

                   

          11 

                 

-0.05 

                  

                   4.5 

   

                   

          13 

                 

+0.25 

                  

                   26.6 

   

Table 2 Obtained Flatband Potentials and Doping density values from EIS measurements, flatband 

potentials obtained from literature 
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The large deviation of the obtained flatband values, especially for samples of 3, 5, 7 and 9 

cycles of spincoating, are an indicator that either the attribution of the observed capacitance to a 

space-charge capacitance is erroneous or the fact that the space-charge capacitance is coupled 

with another capacitance. 

The variations in flatband potentials could be related to the changes in doping densities, which 

is a bulk property. This points to the fact that there are variations in composition of the samples, 

possibly due to naturally occurring defects and other variations during synthesis. Variations in 

the Helmholtz potential at the interface can be caused by the charging of surface states, which 

alters the flatband value by band unpinning [47]. Another factor is the variation in surface 

roughness for the different samples, which can alter the capacitance at the interface and hence 

cause a variation in the flatband potential value. Since we do not have any evidence of the  

existence of surface states in dark from the EIS measurements, a further investigation must be 

made in the future to determine the variations in surface roughness and the bulk composition of 

the samples to understand the variations in flatband potentials and doping densities with 

thickness. 

Another interesting observation is the comparison between flatband potentials and onset 

potentials. The obtained onset potentials for 7 cycles spincoated BiVO4 samples in the presence 

of a hole scavenger (figure 20) are very similar to the obtained flatband potentials (Table 2), 

while the onset potential is more positive for BiVO4 samples in the absence of a hole scavenger. 

This shows that while a large potential difference exists for driving the holes from the valence 

band of BiVO4, the major limitation in performance is the kinetics at the interface. 
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In conclusion, the thickness dependent study on bismuth vanadate photoanodes has shown that: 

 Bismuth Vanadate is a promising photoanode, with maximum obtained performance of 

0.194 mA/cm
2
 at 1.23 V vs VRHE for a bare BiVO4 sample with thickness ~ 330 nm 

 PEC performance scales with thickness until a limiting value (~ 330 nm), related to the 

trade-off between increased absorption and lengths of diffusion for the carriers 

 Water oxidation kinetics at the BiVO4/H2O interface is very slow, leading to high 

surface recombination 

 There exists no discernible difference in performance of front and back illumination 

over a range of thickness of the samples, lack of evidence of slow electron transport 

 An interfacial SnO2 layer deposited on the FTO prior to BiVO4 deposition enhances the 

PEC performance in the moderate to high potential range with a cathodic shift in onset 

potential 

 Further investigations are required for: 

 Confirmation of the observed capacitance in EIS measurements as indeed the 

space-charge capacitance  

 Investigation of surface roughness of the samples to identify effect on 

Helmholtz layer and hence flatband potential 

 Investigation of the degree of porosity of the spincoated samples 

 Clarification of the mechanism of SnO2 interfacial layer PEC performance 

enhancement 

 Understanding the claim of slow electron transport in BiVO4  

 Optimisation of thickness of SnO2 layer to maximise PEC performance 

 

 

 

 

 

 5 Conclusion and future work 
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