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1. Introduction

T
HE PRESENT WORK is aimed to study the granular hypothesis developed by

Gabaix (2011), namely a few very large firms are able to account for a very

large fraction of macroeconomic fluctuations, in the Spanish economy. This au-

thor finds that the idiosyncratic movements of the largest 100 firms in the United States

explain about one-third of variations in output growth.

The granular hypothesis has been employed in several empirical works in order to study

the volatility in the economic activity. Blank et al. (2009), using an early approach of the

granular residual (Gabaix, 2009), show that fat-tailed distribution in the German banking

sector affects its own stability. Wagner (2012) test the hypothesis in a sample of German

manufacturing industry. The author finds that very few firms are able to account for a sig-

nificant amount of the industry’s sales growth, the estimated coefficient of determination is

approximately 45%. Other works, however, have focused on studying variations in exports

through the granular approach. This is the case of Di Giovanni and Levchenko (2012) and

del Rosal (2013). The first authors show that trade openness can increase the explanatory

power of the granular measure on the aggregate volatility, whilst the second author reaches

the conclusion that the granular behavior can be present in the exports of all UE countries,

causing significant impact on the aggregate output.

In addition, it is also our purpose to try to explain this behavior theoretically. The model

developed by Delli Gatti et al. (2005) has been chosen as a base for the theoretical analysis.

It employs the agent-based (AB) approach which allows heterogeneous agents (multiple
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firms and a bank) to interact with each other. This interaction is able to create scaling laws,

which are widely observed in nature, along with self-sustained growth and business cycle

fluctuations. Concretely, a generalization of the model is proposed, in which the production

function is not linear but exponential, with an exponent smaller than one. By doing this,

we can analyze the behavior of the model when decreasing-returns-to-scale technology is

introduced.

The remainder of the work is organized into five sections. Section 2 presents the re-

lated literature. It is divided into two subsections. The first one briefly reviews some of the

works that constitute the literature known as “financial accelerator” hypothesis as well as

some works using the AB approach to study this hypothesis. The second one is precisely

dedicated to comment on the paradigm shift that is taking place in macroeconomics thanks

to the AB approach. Section 3 presents the data set employed and the empirical analysis

carried out with them. Section 4 introduces the generalization of Delli Gatti et al.’s (2005)

model proposed and develops the deterministic analysis of it. Section 5 shows the simula-

tion results, comparing the ones obtained with the original model to the ones obtained with

the generalization. Finally, Section 6 concludes.

2. Related literature

2.1. Macroeconomic models and the “financial accelerator” hypothesis

Until the 1990s, mainstream macroeconomics had adopted the assumptions underlaying

the Modigliani-Miller theorem (see Modigliani and Miller (1958)), namely: frictionless

markets, competitive markets, individuals and firms can undertake financial transactions at

the same prices, no asymmetries of information, no taxes and no bankruptcy cost. These

assumptions imply that financial structure is both indeterminate and irrelevant to real eco-

nomic outcomes (Bernanke et al., 1999). However, a large body of literature, referred as

“financial accelerator” hypothesis (FAH), has shown that financial factors have a signif-

icant impact on business cycle fluctuations and on the transmission of monetary shocks.

Concretely, when credit markets are characterized by asymmetric information and agency

problems, they are able to propagate and amplify shocks to the macroeconomy (Bernanke

et al., 1996, 1999), hence the Modigliani-Miller irrelevance theorem no longer applies.

It shall be presented below some works finding evidence that the credit market is rel-

evant to explain aggregate fluctuations. One of the first works using the “financial accel-

erator” hypothesis is the one carried out by Bernanke and Gertler (1989). These authors,
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by introducing asymmetry of information between the entrepreneurs (borrowers) and the

savers (lenders) in a RBC model, show that borrowers’ net worth and the agency costs of

investment are inversely correlated. According to them, the implication of this finding is

two-fold. First, the procyclicality of borrowers’ net worth causes a decline in agency costs

in booms and a rise in recessions, which is able to generate investment fluctuations and

cyclical persistence, hence a kind of accelerator effect emerges. Second, shocks to bor-

rowers’ net worth will be an initiating source of real fluctuations. This makes that those

individuals with the most direct access to investment projects become un-creditworthy. The

resulting fall in investment has negative effects on both aggregate demand and aggregate

supply.

Following the approach adopted by Bernanke and Gertler (1989), Bernanke et al. (1999)

show that asymmetries of information play a key role the relationship between lenders and

borrowers. They show that the existence of credit-market imperfections creates an inverse

relationship between the external finance premium, namely the difference between the cost

of funds raised externally and the opportunity cost of funds internal to the firm, and borrow-

ers’ net worth. This fact occurs because, when borrowers cannot contribute to the financing

of projects due to the lack of wealth, the divergence of interests between the borrower and

the suppliers of external funds increases, leading to an increase in agency costs; in equi-

librium, lenders must be compensated for higher agency costs by a larger premium. Since

borrowers’ net worth is found to be procyclical, the external finance premium is counter-

cyclical, which enhances the swings in borrowing and thus in investment, spending, and

production. Therefore, this leads the authors to conclude that the addition of credit-market

effects raises the possibility that relatively small changes in entrepreneurial wealth could be

an important source of cyclical fluctuations.

Focusing also in the asymmetries of information as an amplifying source of economic

cycles, Bernanke and Gertler (1990) study an economy in which entrepreneurs evaluate

potential investment projects and select those that seem most worthwhile. Entrepreneurs,

who are also borrowers, are assumed to know more about the project’s probability of suc-

cess than the potential lender. According to the authors, This informational asymmetry

introduces an Akerlof “lemon” problem (see Akerlof (1970)) in the issuance of securities.

The consequence of this problem is an increase in the prospective financing costs and thus

the entrepreneurs’ willingness to evaluate projects in the first place. The results obtained

suggest that, in general equilibrium, both the quantity of investment spending and its ex-

pected return will be sensitive to the net worth positions of potential borrowers, i.e., the
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entrepreneurs. Furthermore, it is found that a decline in borrowers’ net worth below an

endogenously determined limit will precipitate a complete collapse of credit markets and

investment.

Greenwald and Stiglitz (1993) use the existence of informational imperfections to in-

terfere in the appropriate distribution of risks among economic agents. In other words, the

role played by information imperfections is to restrict a firm’s ability to raise equity funds

in external capital markets. In the framework employed by the authors, firms make their

economic decisions taking into account the risk consequences and their willingness to un-

dertake risks is affected both by their total net worth and their stock of liquid assets. The

results point out that the level and distribution of net worth among firms has real macroeco-

nomic implications, namely changes in firms’ perceptions of the risks which they face and

in their net worth position have potentially large effects on their willingness to produce.

Despite the fact that these kind of models were able to shed light on how financial factors

can have a real impact on the economy, Gallegati et al. (2003) suggest two drawbacks that

characterize the “financial accelerator” macroeconomic models: (1) the dynamics of the

variance of their financial position is not analyzed and (2) the lack of interaction direct

interaction among agents. Based on these facts, they decide to resort to the AB approach.

The authors create an AB economy in which heterogeneous agents (multiple firms and one

bank) interact in the financial markets. Allowing the interaction of the agents causes the

model to be able to generate empirical regularities such as: every recession is forestalled

by a sensible rise of the ratio between debt commitments to profits and the ratio between

debt and capital, firm sizes are left-skewed distributed, growth rates are Laplace distributed

and small idiosyncratic shocks to firms generate large aggregate fluctuations. In addition,

the model may also develop bankruptcy cascades. When a firm goes bankrupt, it leaves the

market and cannot pay back its debt as well as the debt commitments to the bank. Therefore,

the bank’s balance sheet deteriorates because of the capital loss. As a consequence of the

existing link between bank capital and the credit supply, this last shrinks, triggering an

interest rate rise. Since debt commitments rise, firms insolvency increases more, thus self-

reinforcing this dynamic.

Battiston et al. (2007), focusing on credit inter-linkages, also study the link between

the financial acceleration and financial contagion. They show that financial acceleration

offsets the stabilizing role of risk sharing and amplifies the effects of a shock to a single

agent of the network, leading to a full fledged systemic crisis. The authors suggest that

above an intermediate level of connectivity, a further increase may have the perverse effect
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of amplifying financial distress through the financial acceleration and to increase systemic

risk.

More recent work also points in this direction. For instance, Grilli et al. (2014), using

the AB approach, find that when an interbank connectivity exceeds a certain threshold,

it increases agents’ financial fragility and generates larger bankruptcy cascades because it

triggers a larger systemic risk which in turn prevails over sharing risk. The authors define

this threshold as pseudo-optimal and claim that it depends critically on the random network

topology modeled.

2.2. Agent-based models: the alternative paradigm

The Lucas’ critique (Lucas, 1976) of econometric models argues that they are not suitable to

evaluate economic policies because they lack a microeconomic foundations, namely tastes

and technology, which may cause the estimated coefficients to vary when there are changes

in policy regimes.

This idea was incorporated into the general equilibrium (GE) framework, in which the

equilibrium between supply and demand is achieved by maximizing the behavior of agents.

Concretely, price-taking firms who produce goods and services of known type and qual-

ity maximize their profit, price-taking consumers with exogenously determined preferences

maximize their utility and the Walrasian Auctioneer that determines prices to ensure each

market clears (Tesfatsion and Judd, 2006). These optimizing agents are assumed to have ra-

tional expectations (Hoover, 1990), which, according to Kryvtsov and Petersen (2015), im-

plies that: they consider all the information available, understand how the economy works

and the future consequences of their actions and make optimal decisions that are time con-

sistent. Thus future policy changes can be discounted and have an effect on the choice of

today. Therefore, changes in economic policies are analyzed dynamically.

Nevertheless, this approach poses problems in terms of aggregation. Models are not

tractable due to strong non-linearities. The representative-agent (RA) was used to overcome

this problem. The existence of this representative maximizing agent whose choices coincide

with the aggregate choices of the heterogeneous individuals allows to compute the optimal

aggregate solution by means of a summation of the choices made by each agent (Delli Gatti

et al., 2007). Moreover, its dynamics is identical to that of each single unit. Therefore, the

RA is able to provide microfoundations for aggregate behavior and a framework in which

equilibria are unique and stable (Kirman, 1992).

The RA assumption has aroused much criticism. Kirman (1992), for instance, argues
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that reducing the behavior of a heterogeneous group of agents is both unjustified and leads

to misleading conclusions. The author sets out four reasons why the use of the RA in

macroeconomic models is not sustainable.

1. Individual maximization does not imply collective rationality, nor a certain degree of

rationality observed in the collective implies that individuals act rationally.

2. Even if the first point is overlooked and it is accepted that the choices of the aggregate

are those of a maximizing individual, the reaction of the RA to parameter changes

may not coincide with the aggregate reactions of the agents represented.

3. Assuming that the two previous points do not apply, there may still be cases where,

given two situations, the RA prefers the first to the second, whilst every individual

prefers the second to the first.

4. At the empirical level, the RA assumption causes this individual to have unnatural

characteristics, because his behavior has the complicated dynamics of a group of

heterogenous individuals.

In addition, according to Fagiolo and Roventini (2012), the presence of a Walrasian auc-

tioneer, setting prices before exchanges take place, along with the RA assumption rule out

almost by definition the possibility of interactions carried out by heterogeneous individuals.

Geweke (1985), using the neoclassical production and several representative agents (one

for production, one for factor demand and one for supply), shows that the perils (incorrect

evaluations of the effect of a policy change) of ignoring aggregation are of the same order

of magnitude as those of ignoring expectations, and proposes to treat aggregation more

explicitly than is usually done. Kirman (1992) claims that:

[. . .] to develop appropriate microfoundations for macroeconomics is not to

be found by starting from the study of individuals in isolation, but rests in

an essential way on studying the aggregate activity resulting from the direct

interaction between different individuals.

Trying to break away from the reductionist paradigm, which is based on the RA assump-

tion, some economists have adopted the holistic approach. According to this approach,

the aggregate is different from the sum of its components because of the interaction be-

tween them. Interactions create emergent properties at aggregate level, hence the properties

of the sub-units can be grasped only analyzing the behavior of the aggregate as a whole
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(Delli Gatti et al., 2005). In this approach the concept of equilibrium differs dramatically

from the mainstream equilibrium concept. The equilibrium of a system does not require

that every element is in equilibrium, but the aggregate is quasi-stable, namely all influences

acting on the system offset each other so that the system is in an unchanging condition (Tes-

fatsion and Judd, 2006). Thus the aggregate equilibrium is compatible with the individual

disequilibrium (Feller, 1957).

The holistic approach seems more suitable to study a complex system, which is the sign

of human societies, institutions and organizations (Gilbert, 2004), since they are character-

ized by the presence of a wide number of mutually interacting elements whose interactions

produce non-linear dynamics (Grilli et al., 2014) that generate a feedback process where

causes and effects are no longer proportional to each other (Helbing, 2012).1 In a complex

system the dynamics at the micro-level are chaotic 2. However, from this chaotic interaction

of heterogeneous individuals natural laws emerge at the aggregate level as the outcome of

a self-organizing process (Grilli et al., 2014).

A modeling strategy based on the RA is not able to reproduce either the persistent het-

erogeneity of the agents or their interactions, hence the search for natural laws in economics

does not require the adoption of the reductionist paradigm. Some authors (see, for instance,

Amaral et al. (1997), Marsili and Zhang (1998) and Stanley et al. (1995)) have shown that

scaling laws are generated by a system with strong heterogeneous interacting agents (HIA),

which is incompatible with the reductionist approach employed by mainstream economics

(Delli Gatti et al., 2005).

Delli Gatti et al. (2005) suggest that the agent-based modeling (ABM) strategy should be

adopted in order to study HIA, because ABMs have been developed to study the interaction

of many heterogeneous agents. They are based on new microfoundations, whose relevance

and reliability are grounded in the empirical evidence they can account for. Therefore, mi-

crofoundations are solid if they produce an economic behavior coherent with the empirical

evidence, not with some optimizing principle.

ABMs applied to economics are called Agent-based Computational Economics (ACE).

ACE is defined by Tesfatsion and Judd (2006) as the computational study of economic pro-

cesses modeled as dynamic systems of interacting agents, where the term “agent” refers to

bundled data and behavioral methods representing an entity constituting part of a computa-

tionally constructed world.

1Despite the fact that there is consensus on the characteristics of a complex system, namely interacting units
and emergent properties (Flake, 1998), no consensus has been reach on its definition. Tesfatsion and Judd
(2006) gather up to three different definitions used in the complex systems literature.

2According to Ott (2002), a system is chaotic if it shows an exponential sensitivity to initial conditions.
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Fagiolo and Roventini (2012) enumerate ten characteristics defining ACE models. First,

bottom-up perspective, which means that aggregate properties must be obtained as the

macro-outcome of a possibly unconstrained micro-dynamics at the level of basic agents.

Second, heterogeneity of agents. Third, the evolving complex system approach, namely ag-

gregate properties emerge out of repeated interactions among agents. Fourth, nonlinearity

of interactions, and nonlinear feedback between micro- and macro-levels. Fifth, direct en-

dogenous interactions, namely the decisions undertaken today by an agent directly depend

on the past choices made by other agents in the population. Sixth, bounded rationality,

which implies that agents have some local and partial principles of rationality both in time

and space. Seventh, the nature of learning consequence of dynamically changing environ-

ments. Eighth, “true” dynamics, i.e., true, non-reversible dynamics generated by adaptive

expectations Ninth, endogenous and persistent novelty that forces agents to learn and adapt.

Tenth, selection-based market mechanisms, which are complex and span a number of di-

mensions.

Fagiolo and Roventini (2012) also explain the methodology followed by ACE models.

According to these authors the evolution of the system is observed in discrete time steps

(t = 1,2, . . .), and over time the size of agents, which populate the economy, may change.

At each time t every agent i is characterized by a finite number of microeconomic variables,

which may change across time, and by a vector of microeconomic parameters, that are fixed

in time. In addition, the economy may be characterized by some macroeconomic (fixed)

parameters.

Given the microeconomic variables and parameters specified at t = 0, at t > 0 some

agents are randomly chosen to update their variables. The agents selected collect their

available information about the current and past state of a subset of other agents, typically

those they directly interact with, and plug this information into heuristics, routines and

other algorithmic behavioral rules, which, in turn, are designed to mimic empirical and

experimental knowledge found in the literature. Once the update is completed, a new set

of microeconomic variables is fed into the economy. Aggregate variables are computed by

summing up or averaging individual characteristics.

Finally, because of stochastic components in decision rules, expectations or interac-

tions, the dynamics of the variables can be explained by a stochastic process parameterized

by micro- and macro-parameters. Nevertheless, the existence of nonlinearities makes the

researcher to have to resort to computer simulations in order to analyze the behavior of the

model.
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3. Data set

The data employed is taken from the database Sistema de Análisis de Balances Ibéricos

(SABI), elaborated by INFORMA D&B in collaboration with Bureau Van Dijk, which con-

tains more than two million of Spanish firms and five hundred thousand Portuguese firms.

Yet we are only interested in the Spanish firms. As can be seen in Table 1, the sample

obtained is made of forty thousand firms from all sectors, except Public Administration.

However, only seven thousand have observations for each year, which represent 17.5% of

the total sample. The most populated sectors in our sample are: Wholesale Trade - Durable

Goods, Wholesale Trade - Nondurable Goods, General Building Contractors, Food & Kin-

dred Products and Business Services. In order to assess whether the sample is representative

of the Spanish economy, the out-degree and in-degree distribution of the input-output (IO)

network of the whole economy have been calculated. It is found that the largest sectors

are Wholesale, Construction and Food Products, which coincides with our sample. Other

important sectors are Real State and Accommodation and Food Services.3 Moreover, when

plotting the decumulative distribution function of number of firms by sector, this resembles

to the in-degree and out-degree distributions (see Fig. 1).

10 50 100 500 5000 50000

1
2

5
10

20
50

D
D

F

Number of firms by sector
In-Degree
Out-Degree

Fig. 1. Decumulative distribution function (DDF) of number of firms by sector, in-degree and out-
degree of IO network of year 2010.

3The IO tables can be found at http://www.ine.es/dyngs/INEbase/es/operacion.htm?c=

Estadistica_C&cid=1254736165950&menu=enlaces&idp=1254735576581.

http://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736165950&menu=enlaces&idp=1254735576581
http://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736165950&menu=enlaces&idp=1254735576581
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Table 1. Sector definitions and number of firms in each sector. Firms operating in more than one
sector are classified according to the first SIC code they provided.4The fourth column refers to the
firms for which there are observations each year.

Division SIC/Sector Sample Complete cases

Agriculture, Forestry, & Fishing 01 Agricultural Production - Crops 182 13
02 Agricultural Production - Livestock 360 57
07 Agricultural Services 73 6
08 Forestry 22 3
09 Fishing, Hunting, & Trapping 49 16

Mining 10 Metal, Mining 14 3
13 Oil & Gas Extraction 17 1
12 Coal Mining 19 5
14 Nonmetallic Minerals, Except Fuels 141 33

Construction 15 General Building Contractors 2884 172
16 Heavy Construction, Except Building 333 101
17 Special Trade Contractors 922 147

Manufacturing 20 Food & Kindred Products 2353 554
21 Tobacco Products 15 4
22 Textile Mill Products 225 59
23 Apparel & Other Textile Products 167 47
24 Lumber & Wood Products 225 42
25 Furniture & Fixtures 149 35
26 Paper & Allied Products 487 161
28 Chemical & Allied Products 452 126
29 Petroleum & Coal Products 931 305
27 Printing & Publishing 11 6
30 Rubber & Miscellaneous Plastics Products 548 165
31 Leather & Leather Products 57 14
32 Stone, Clay, & Glass Products 622 160
33 Primary Metal Industries 487 112
34 Fabricated Metal Products 957 232
35 Industrial Machinery & Equipment 653 166
36 Electronic & Other Electric Equipment 475 140
37 Transportation Equipment 585 141
38 Instruments & Related Products 102 18
39 Miscellaneous Manufacturing Industries 102 33

Transportation & Public Utilities 40 Railroad Transportation 25 4
41 Local & Interurban Passenger Transit 394 101
42 Trucking & Warehousing 1003 153
43 U.S. Postal Service 27 3
44 Water Transportation 335 63
45 Transportation by Air 125 7
46 Pipelines, Except Natural Gas 17 2
47 Transportation Services 649 93
48 Communications 338 25
49 Electric, Gas & Sanitary Services 1017 105

Wholesale Trade 50 Wholesale Trade - Durable Goods 6052 1242
51 Wholesale Trade - Nondurable Goods 5730 994

Retail Trade 52 Building Materials & Gardening Supplies 53 10
53 General Merchandise Stores 87 11
54 Food Stores 476 86
55 Automative Dealers & Service Stations 516 59
56 Apparel & Accessory Stores 227 28
57 Furniture & Homefurnishings Stores 279 19
58 Eating & Drinking Places 237 33
59 Miscellaneous Retail 468 74

Finance, Insurance & Real Estate 60 Depository Institutions 85 9
61 Nondepository Institutions 174 17
62 Security & Commodity Brokers 68
63 Insurance Carriers 96 1
64 Insurance Agents, Brokers & Service 150 17
65 Real State 588 61
67 Holding & Other Investment Offices 492 49

Services 70 Hotels & Other Lodging Places 668 90
72 Personal Services 105 18
73 Business Services 2072 187
75 Auto Repair, Services, & Parking 246 37
76 Miscellaneous Repair Services 106 19
78 Motion Pictures 154 8
79 Amusement & Recreation Services 378 59
80 Health Services 402 65
81 Legal Services 68 2
82 Educational Services 189 23
83 Social Services 121 6
84 Museums, Botanical, Zoological Gardens 20 1
86 Membership Organizations 11
87 Engineering & Management Services 1131 137

Total No. Firms 40000 6995
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The period under study ranges from 1995 to 2015, namely a lapse of time of 21 years.

As it is well-known, Spain went through the worst crisis of its recent history during this

period. From year 1995, when Spain joins the Monetary Union, to 2008 took place the ex-

pansion phase (see Fig. 2 upper panel). A direct consequence of belonging to the Monetary

Union was the reduction of interest rates and the absence of exchange rate risk, triggering

a sharp increase in credit supply (Fernandez-Villaverde et al., 2013), which subsequently

led to an increase in consumption and investment. The expansion phase was followed by

a deep recession (Fig. 2), which began by the influence of the financial crisis of 2008 and

continued because of the bubble in the construction sector, which had a major role in the

Spanish economy and the accumulated household debt during the boom.
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Fig. 2. Hodrick-Prescott smoothed series and cyclical component of logarithm of total sales.5

The only variable employed in the analysis is the amount sales. In order to make the

values of sales in different years comparable, all values have been adjusted to 2010 euros

by the GDP deflator, which can be found at Eurostat’s database.

4The Standard Industrial Classification (SIC) is a system for classifying industries through a four-digit code
used by government agencies of different countries, including United States and United Kingdom. In this work,
it is used the version with two digits.

5Hodrick and Prescott (1997) proposed the following filter:

min
{gt}T

t=−1

{
T

∑
t=1

(yt −gt)
2 +λ

T

∑
t=1

[(gt −gt−1)− (gt−1−gt−2)]
2

}
,

in order to remove the cyclical component of a time series from raw data. The multiplier λ allows to adjust
the sensitivity of the trend to short-term fluctuations. Since the frequency of the time series employed here is
annual, λ has been set equal to 100.
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Following Gabaix (2011), the sum of the sales of the top 50 and 100 firms in the sam-

ple as a fraction of total sales has been calculated. It is found that, on average, the 100

largest firms account for 24.8 % of the total sales and the 50 largest firms account for 18.2%

(see Fig. 3), whilst they only represent, on average, 0.39% and 0.19% of the total volume

of sales, respectively. This is a first piece of evidence suggesting that there exist a large

heterogeneity in the sample. Aiming at characterizing the firms’ size distribution, in the

following section it is used statistical test and measures applied to the volume of sales.

1995 2000 2005 2010 2015
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Fig. 3. Sum of the sales of the top 50 and 100 firms in the sample, as a fraction of total sales.

3.1. Empirical distributions

The graphical representation of the firms’ size distribution, measured by the volume of sales,

has been made using the kernel density estimation, which is a nonparametric method that

estimates probability density function (PDF). The kernel density estimator is:

f̂h(x) = (nh)−1
n

∑
i=1

K
(

x− xi

h

)
,

where the kernel K used is the gaussian function and h is the bandwidth, which is set equal to

0.5 (as Segarra and Teruel (2012)). The left panel of Fig. 4 shows that the tails of the firms’

size distribution are fatter than the normal distribution. In addition, the Q-Q plot (left panel

of Fig. 4) points out that the tails of the distribution are too fatter to be identified as gaussian.
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Fig. 4. Firms size distribution (left panel) and Q-Q Plot (right panel), year 2010.

In order to assess also whether the rest of the years have a firms’ size distribution char-

acterize by fatter tails, it has been resorted to several of the most employed normality tests.

All of them have in common the null hypothesis (H0), namely data is normally distributed,

whereas the alternative hypothesis (H1) states that data is not normally distributed.

The first test is the Shapiro-Wilk test. The test statistic is

W =

(
∑

n
i=1 aix(i)

)2

∑
n
i=1 (xi− x̄)2 ,

where x(i) is the ith order statistic, i.e., the ith-smallest number in the sample, ai are con-

stants, and x̄ is the sample mean. According to Razali et al. (2011), the Shapiro-Wilk test is

the most powerful normality test, followed by the Anderson-Darling test and Lilliefors test.

Regarding the Anderson-Darling test, the test statistic is

A2 =−n−
n

∑
i=1

2i−1
n

[
ln(p(i))+ ln(1− p(n−i+1))

]
,

where p(i) = Φ
([

x(i)− x
]
/s
)
. Φ is the cumulative distribution function of the standard

normal distribution and s is standard deviation of the data values. Finally, the test statistic

used in the Lilliefors test is

D = max{D+,D−}

where D+ = maxi=1,. . . ,n
{

i/n− p(i)
}

and D− = maxi=1,. . . ,n
{

p(i)− (i−1)/n
}

.

Table 2 presents the test statistics along with the skewness and kurtosis for each year.

As can be seen, the skewness has negative sign, except for years 2014 and 2015, indicating

that the tail on the left side is fatter than the right side, namely the mass of the distribution



14 3 DATA SET

Table 2. Skewness and kurtosis, along with the normality tests: Shapiro-Wilk (SW), Anderson-
Darling (AD) and Lilliefors. N is the number of complete cases. * Significant at 0%.

.
Year N Skewness Kurtosis SW Test6 AD Test Lilliefors Test

1995 18112 -0.86 8.81 0.826* 184.062* 0.069*
1996 20064 -0.79 8.29 0.826* 179.248* 0.065*
1997 21434 -1.01 10.15 0.824* 233.032* 0.074*
1998 22975 -0.92 7.96 0.821* 265.032* 0.077*
1999 24403 -1.08 10.00 0.820* 309.455* 0.080*
2000 25809 -1.24 11.53 0.820* 375.400* 0.085*
2001 26844 -1.14 10.41 0.818* 382.598* 0.086*
2002 27664 -1.24 11.37 0.820* 435.826* 0.094*
2003 28189 -1.29 12.14 0.818* 464.674* 0.095*
2004 28503 -1.11 11.5 0.820* 428.090* 0.090*
2005 28927 -1.47 14.57 0.818* 556.807* 0.104*
2006 29420 -1.25 12.18 0.822* 560.416* 0.101*
2007 28147 -1.38 14.72 0.824* 555.931* 0.101*
2008 27496 -1.67 17.66 0.830* 639.296* 0.109*
2009 27936 -1.08 13.72 0.833* 555.512* 0.099*
2010 27997 -0.89 14.31 0.833* 581.467* 0.099*
2011 27726 -1.46 24.22 0.833* 675.035* 0.109*
2012 27451 -0.72 17.57 0.834* 646.682* 0.105*
2013 27427 -0.7 20.26 0.832* 758.450* 0.114*
2014 27221 0.39 12.69 0.827* 854.325* 0.118*
2015 25721 1.74 8.14 0.827* 1116.651* 0.149*

is concentrated on the right hand side. The kurtosis is higher than three for all years, which

is the value observed in the univariate normal distribution, hence the distribution of firms’

size is leptokurtic. This implies that the distributions produce more outliers than the normal

distribution. In regard to the normality tests, all of them have a p-value equal to zero, so

that the null hypothesis of normality can be rejected in favor of the alternative hypothesis.

This finding is in line with Ganugi et al. (2005) and Reichstein and Jensen (2005), who

rejected that the firm’s size distribution, measured by the volume of sales, is characterized

by a lognormal distribution.

Following Newman (2005), it has been decided to use a rank/frequency plot of the data

in order to illustrate the degree of heterogeneity in the firms’ size distribution. To make the

plot of the DDF P(x),7 it is needed to sort the volume of sales in decreasing order and rank

them, then by definition there are n volume of sales with frequency greater than or equal

to the nth most common volume of sales. Thus the DDF P(x) is proportional to the rank

n of a volume of sales. The resulting graph of the process explained above can be seen in

the Fig. 5. It is shown how a very small number of firms had a very large volume of sales,

whilst a very large number of firms had a very small volume of sales. Thus the distribution

6Due to a maximun imposed by the R package Stats in the number of observations that can be used to
compute the SW Test, it has been used the first 5000 firms each year.

7Plot of the probability P(x) that x has a value greater or equal to x: P(x) =
∫

∞

x p(x′)dx′.

R
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is characterized by an upper fatter tail.

Fig. 5. Rank/frequency plot with logarithmic scales, year 2010.

Moreover, the plot in Fig. 5 follows closely a straight line for a volume of sales exceed-

ing 107 (Zipf, 1949). This implies that the fraction of firms with a volume of sales between

x and x+dx, p(x), can be adjusted by p(x) = c−ζ lnx. Taking exponential of both sides,

p(x) = ecx−ζ ,

which is a kind of distributions considered to follow a power-law.

Based on this evidence, next section is devoted to assess whether the firms’ size distri-

bution follows a power-law.

3.2. Power-law

Clauset et al. (2009) states that the density presented above cannot hold for all x≥ 0, since

it diverges as x→ 0. Therefore, it is essential to have a lower bound to the power-law

behavior, which is denoted by them as xmin. Provided ζ > 1, they find that the continuous

power-law distribution is

p(x) =
α−1
xmin

(
x

xmin

)−ζ

.

Aiming at estimating the scaling parameter ζ , the authors use the method of maximum

likelihood (MLE). Assuming that the data employed is drawn from a power-law distribution
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for x≥ xmin, they found that the MLE for the continuous case is

ζ̂ = 1+n

[
n

∑
i=1

ln
(

xi

xmin

)]−1

,

where xi are the observed values of x such that xi ≥ xmin. This MLE for the scaling pa-

rameter is equivalent to the Hill estimator (Hill, 1975). The standard error associated is

(ζ̂ −1)/
√

n+O(1/n).

Regarding the lower bound, xmin, it is estimated by choosing the estimated lower bound

(x̂min) that makes the probability distributions of the data and the best-fit power-law model

similar as possible above x̂min (Clauset et al., 2007). To quantify the distance between

two probability distributions, Clauset et al. (2009) decided to use the Kolmogorov-Smirnov

(KS) statistic, which is the maximum distance between the cumulative distribution functions

(CDF) of the data and the fitted model:

D = max
x≥xmin

|S(x)−P(x) |,

where S(x) is the CDF of the data for those observations with value at least xmin, and P(x)

is the CDF for the power-law model that best fits the data in the region x≥ xmin. Therefore,

x̂min is the value of the lower bound that minimizes the distance.

Finally, Clauset et al. (2009) propose a goodness-of-fit test based on measurement of the

distance between the distribution of the empirical data and the hypothesized model. First,

a large number of power-law distributed synthetic data sets with scaling parameter ζ̂ and

lower bound x̂min are generate. Then, each synthetic data set is fitted to its own power-law

model, and the KS statistic for each one is calculated. The fraction of the synthetic distance

that are larger than the empirical distance is the p-value. The null hypothesis (H0) states

that data is generated from a power law distribution, whereas the alternative hypothesis

(H1) states that data is not generated from a power law distribution.

The results are presented in Table 3. As can be seen, the estimated scaling parameter

is close to two, which is the number that reflects the maximum heterogeneity. It is also

worth noting that this scaling parameter has been calculated using, on average, 28% of the

observation, namely the number of firms with a volume of sales above the lower bound. The

p-value obtained from the goodness-of-fit indicates that the power-law model is a plausible

fit to the data, except for years: 2011, 2012 and 2013. Nonetheless, these results do not

mean that the firms’ size distribution can only be fitted by a power-law. Due to the fact

that it is always hard to differentiate between log-normal and power-law behavior in small
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Table 3. Estimated scaling parameter (ζ̂ ) and its standard error (Se(ζ̂ )), maximum volume of sales
(max), total number of observations (N), number of observations in the region x ≥ xmin (n), and the
p-value generated by the goodness-of-test. Statistically significant values are denoted in bold.9

Year N n max x̂min ζ̂ Se(ζ̂ ) p-value

1995 18112 3180 8.86·109 2.00·107 2.13 0.020 0.98
1996 20064 3446 9.50·109 1.90·107 2.12 0.019 0.84
1997 21434 4000 1.03·1010 1.89·107 2.12 0.018 0.52
1998 22975 4835 1.06·1010 1.45·107 2.12 0.016 0.10
1999 24403 5596 1.01·1010 1.83·107 2.12 0.015 0.93
2000 25809 6694 1.29·1010 1.79·107 2.11 0.014 0.86
2001 26844 7094 1.16·1010 2.09·107 2.11 0.013 0.40
2002 27664 7325 1.05·1010 2.40·107 2.12 0.013 0.71
2003 28189 7722 1.09·1010 2.32·107 2.12 0.013 0.38
2004 28503 8151 1.25·1010 2.73·107 2.11 0.012 0.46
2005 28927 8650 1.64·1010 2.88·107 2.11 0.012 0.39
2006 29420 9315 1.83·1010 3.34·107 2.11 0.011 0.64
2007 28147 9607 1.85·1010 2.81·107 2.10 0.011 0.45
2008 27496 9105 2.03·1010 2.82·107 2.06 0.011 0.69
2009 27936 8441 1.44·1010 1.30·107 2.03 0.011 0.11
2010 27997 8592 1.65·1010 2.69·107 2.05 0.011 0.90
2011 27726 9125 2.18·1010 1.11·107 2.02 0.011 0.06
2012 27451 9178 2.60·1010 1.03·107 2.01 0.011 0.02
2013 27427 9460 2.43·1010 1.39·107 2.01 0.010 0.05
2014 27221 9621 2.25·1010 4.16·107 2.06 0.011 0.91
2015 25721 9736 1.91·1010 4.53·107 2.07 0.011 0.98

samples such as the one employed here, it is decided to apply the direct comparison of

models proposed by Clauset et al. (2009). These authors propose a likelihood ratio test

intended to directly compare two distribution against each other. The procedure consist in

compute the ratio of the likelihoods, one for each data. The logarithm of this ratio, R, can be

positive, negative or zero. Nevertheless, the sign of the log-likelihood ratio is not enough to

indicate which model is the better fit because it depends on statistical fluctuations. In order

to identify whether the sign of R is sufficiently positive or negative that could not be the

result of a chance fluctuation, the authors employ the method proposed by Vuong (1989),

which gives a p-value indicating whether the observed sign of R is statistically significant.

Only if p < 0.1, the sign is a reliable indicator of which model is the better to fit the data.

The alternative distributions considered in the analysis are the log-normal and the ex-

ponential. The results presented in Table 4 suggest that the exponential distribution can be

ruled out for each year. However, for most of the years the test cannot differentiate between

log-normal and power-law.8 The exception are the years 2011, 2012 and 2013, for which

the log-normal distributions is a better fit to the data.

8In a large enough sample, 5.5 million of firms, Axtell (2001) does find that the firms’ size distribution
follows a power-law.

9The results presented in Table 3 and Table 4 were calculated using the R package poweRlaw, developed by
Gillespie (2014).

R
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Table 4. Likelihood ratio test R and p-values. The p-values of the power-law distribution are the
same as Table 3.

Power-law Log-normal Exponential

Year p R p R p

1995 0.98 0.22 0.83 9.62 0.00
1996 0.84 -0.31 0.75 9.55 0.00
1997 0.52 -0.27 0.79 10.10 0.00
1998 0.10 -0.31 0.76 11.71 0.00
1999 0.93 -0.05 0.96 12.10 0.00
2000 0.86 -0.14 0.89 12.54 0.00
2001 0.40 -0.06 0.95 13.22 0.00
2002 0.71 0.00 1.00 13.44 0.00
2003 0.38 0.05 0.96 13.88 0.00
2004 0.46 -0.21 0.84 13.33 0.00
2005 0.39 0.05 0.96 13.18 0.00
2006 0.64 0.02 0.99 12.85 0.00
2007 0.45 -0.09 0.93 14.56 0.00
2008 0.69 -0.73 0.46 13.95 0.00
2009 0.11 -1.32 0.19 17.55 0.00
2010 0.90 -0.85 0.40 14.43 0.00
2011 0.06 -1.61 0.11 16.91 0.00
2012 0.02 -1.23 0.22 16.38 0.00
2013 0.05 -1.51 0.13 15.45 0.00
2014 0.91 -0.54 0.59 12.42 0.00
2015 0.98 -0.50 0.62 12.99 0.00

To conclude with the power-law analysis, let us present Fig. 6, which can summarize the

whole process outlined above. Both the power-law and the log-normal fits are almost iden-

tical in the region x ≥ xmin, differing slightly in the upper tail. Moreover, it is emphasized

that the exponential distribution is not able to describe properly the firms’ size distribution.

Fig. 6. The CDF P(x) and its maximum likelihood power-law fit, sales in year 2010.
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3.3. “Islands” Economy model

Having showed that the firms’ size distribution is characterized by a great heterogeneity, it

is now our aim to assess how this fact can impact at macroeconomic level. To achieve this

goal we follow Gabaix (2011). According to this author, when the firms’ size distribution is

not uniform, the idiosyncratic shocks of the largest 100 firms are able to explain one-third

of the fluctuations of GDP.

The “granular hypothesis” is illustrated by Gabaix (2011) by using the “Islands Econ-

omy” model. The model presented below has been adapted to our case of study.

It is considered an economy populated by N firms which do not have linkages between

them. Firm i produces and sells in year t a quantity Sit of the consumption good. Firm i’s

growth rate can be expressed as

git =
∆Sit+1

Sit
=

Sit+1−Sit

Sit
= σiεit+1, (3.1)

where σi is firm i’s volatility and εit+1 are uncorrelated random shocks with mean 0 and

variance 1. Total sales is St = ∑
N
i=1 Si,t , and its growth is

∆St+1

St
=

1
St

N

∑
i=1

∆Si,t+1 =
N

∑
i=1

Sit

St
σiεit+1, (3.2)

Due to the fact that εit+1 are uncorrelated, if we assume that firms all have the same volatility

σi = σ , and define σS =
√

var ∆St+1
St

, then the standard deviation of sales can be expressed

as

σS = σ

√
N

∑
i=1

(
Sit

St

)2

= σh, (3.3)

where h is the square root of the Herfindhal-Hirschman Index (HHI). Therefore, the impact

of sales volatility on the aggregate depends on the firms’ size distribution. This is finding

is at odds with the “diversification argument” (Acemoglu et al., 2012), which states that

the large number of firms populating the economy ensures that idiosyncratic shocks aver-

age out in the aggregate (Lucas, 1977). If firms all have the same weight in the economy,

namely Sit/St = 1/N, eq. 3.3 becomes σ/
√

N, hence individual volatility is negligible.

Nonetheless, it has been showed that there exist a great deal of heterogeneity. Particularly,

the estimated scaling parameter α is found to be close to 2, namely the maximum hetero-

geneity (Zipf’s law). In this case, Gabaix (2011) shows that the aggregate volatility decays

much more slowly, 1/lnN instead of 1/
√

N. This implies that individual volatility has a
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non-negligible impact on the aggregate.

The average square root of the HHI and sales volatility have been calculated in order

to illustrate the argument exposed above. Moreover, according to Directorio Central de

Empresas, the number of firms in year 2015 is approximately 3 million.10 Following the

diversification argument the estimated volatility of sales is 0.0002 (σ = 35.1%), whereas

taking into account the existing heterogeneity the estimated volatility is 1.57 (h = 4.5%),

which is much more close to the actual one, 4.9.11

As regards to the empirical implementation, we aim to quantify not the impact of id-

iosyncratic shocks of the largest firms on the aggregate, but the explanatory power of the

growth rate, so that unlike Gabaix (2011), we do not subtract the average growth rate from

the individual growth rate. The idea it is to keep the analysis as simple as possible. The

resulting measure is

Γt =
κ

∑
i=1

Sit

St
git , (3.4)

where κ are the largest firms (κ ≤ N).

The sales growth of firms has been winsorized in order to handle the outliers. Con-

cretely, values above 100% and below −100% have been replaced with this value.12
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Fig. 7. β1 and R2 as function of the κ largest firms.

We run the growth rate of aggregate sales on eq. 3.4 in order to assess whether there

exists granular behavior in our sample made of Spanish firms.13 It can be expresses as

10More information can be found at http://www.ine.es/jaxiT3/Datos.htm?t=299.
11The effect of linkages between firms is estimated to have a multiplicative effect close to 2.6, in such case

the estimated volatility would be 4.1%.
12git has been winsorized at M = 100% by replacing it by T (git), where T (x) = x if |x|≤ M, and T (x) =

sign(x)M if |x|≥M. Results do not change significantly when the threshold M changes.
13It has been calculated using the 1000 largest firms in the sample in order to make it comparable with the

results obtained from the model.

http://www.ine.es/jaxiT3/Datos.htm?t=299
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g = β0 +β1Γ+µ , (3.5)

where g = ∆St+1/St . Fig. 7 shows the estimated β1 and the determination coefficient (R2)

for different values of κ . This analysis considers the largest one thousand firms, in steps

of ten firms, namely κ ∈ {1,10,20, . . . ,1000}. As can be seen, the estimated β1 tends to

1 as the number of firms used in computing eq. 3.4 increases. In addition, the evolution

of R2 indicates that there is a very strong granular behaviour in our sample. For instance,

the growth rate of sales of the largest 100 firms is able to explain approximately 80% of the

aggregate growth rate of one thousand firms (red dot in Fig. 7).

To sum up, in this section we have shown that our sample, made of Spanish firms,

presents a large heterogeneity. The firms’ size distribution cannot be described by a gaussian

distribution because the probability of having extreme values is much higher. Then, we

have tried to contrast whether the distribution follows a power-law distribution by using the

approach suggested by Clauset et al. (2009). It is found that both power-law and log-normal

can fit the distribution. Finally, following Gabaix (2011), we found that there is granular

behavior in our sample, namely a few very large firms are able to account for an important

part of aggregate behavior.

4. Structure of the Model

The model presented in this section aims to be a generalization of Delli Gatti et al.’s (2005)

financial accelerator model. The authors consider a sequential economy populated by many

firms and the banking sector (“the bank”), which undertake decisions at each time period

t, where t = 1,2, . . . ,T . Two markets are opened: the goods market for an homogeneous

good and the credit market. In the goods market, output is supply-driven, following the

leveraged aggregate supply class of models developed by Greenwald and Stiglitz (1990,

1993), which implies that firms sell all the output they optimally decide to produce. Due

to the fact that the only input used to produce is capital, output follows the evolution over

time of the capital stock, which in turn is determined by investment. Investment depends on

the interest rate and the degree of financial fragility. The higher the net worth, the lower the

probability of bankruptcy and the higher the level of supply and investment.

Imperfect information in the equity market is assumed to cause firms to only raise funds

in the credit market. Credit demand depends on investment expenditures, which is therefore
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dependent on the bank’s interest rate. Credit supply is a multiple of the bank’s net worth,

which is negatively affected as borrowing firms go bankrupt.

When firms go bankrupt, aggregate output decreases and the net worth is eroded by “bad

debt”. Consequently, credit supply diminishes, raising the interest rate to each firm. Fragile

firms will default and leave the market, whilst the surviving ones will reduce investment

and production. Bankruptcies will spread and a domino effect will follow.

As noted by Delli Gatti et al. (2007): “the source of the domino effect is the positive

feedback of bankruptcy on aggregate financial fragility, which in turn is a consequence of

the direct interaction of firms through the banking sector”.

4.1. Firms

In each time period t, the economy is populated by large finite number of competitive firms

indexed by i = 1, . . . ,N. It is assumed that firms have no relation between them, namely

the authors assume that each firm is located in an island. At each time t firms produce an

homogeneous output (Y ) using as input capital (K). The firm’s production functions is:

Yit = φKβ

it , (4.1)

where capital productivity (φ ) is constant and uniform across firms and β is less than or

equal to one. Delli Gatti et al. (2005) consider the case in which β is equal to one, hence they

assume constant-returns-to-scale technology. We, however, decide to analyze the model

assuming the existence of decreasing-returns-to-scale technology, namely output increases

by less than that proportional change in capital.

At each time period t, firms set their individual selling price through a random process

around the average market price of output Pt , according to the law

Pit = uitPt , (4.2)

with expected value E(uit) = 1 and finite variance σ2. Moreover, uit = Pit/Pt is a random

variable uniformly distributed in the range [0,2].

The authors assume that firms are fully rationed on the equity market, so that the only

external source of finance they have at their disposal is credit. Firms can finance their capital

stock through either net worth (A) or bank loans (L), according to the balance sheet identity

Kit = Ait +Lit . Assuming that firms and bank hold a long-term contractual relationship, the

debt commitment in real term is ritLit , where rit is the real interest rate and the return on net
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worth. Thus, financial cost faced by firms are equal to rit (Ait +Lit) = ritKit . Total variable

costs are equal to gritKit , with g > 1. g represents other financial costs related to the capital.

Therefore, profits in real terms (π) are

πit =
PitYit −Ptgrit (Lit +Ait)

Pt
= uitφKβ

it −gritKit , (4.3)

and the expected profit is E(πit) = φKβ

it −gritKit .

The law of motion of net worth at each time period t is

Ait = Ait−1 +πit , (4.4)

and firms go bankrupt when their net worth becomes negative, Ait < 0. Inserting eq. 4.3

into eq. 4.4 and rearranging, it is obtained that bankruptcy occurs when

uit <
1
φ

(
gritK

1−β

it − Ait−1

Kβ

it

)
≡ ūit . (4.5)

The probability of bankruptcy is therefore

Pr (uit < ūit) =
1
2

ūit =
1

2φ

(
gritK

1−β

it − Ait−1

Kβ

it

)
. (4.6)

Following Greenwald and Stiglitz (1990, 1993), Delli Gatti et al. (2005) incorporate the

probability of bankruptcy into the firm’s profit function, since going bankrupt costs, and

this cost is increasing in the firm’s output. In addition, it is assumed that bankruptcy costs

are quadratic, cY 2
it , with c > 0. The objective function is as follows

Γit = φKβ

it −gritKit −
cφ

2
Kβ

it (gritKit −Ait−1) . (4.7)

The first order condition is

∂Γit

∂Kit
= φβKβ−1

it −grit −
cφβ

2
Kβ−1

it (gritKit −Ait−1)−
cφgrit

2
Kβ

it = 0.

Rearranging it, we obtain the following equation

2βφ + cβφAit−1 = 2grK1−β

it +(β +1)cgritφKit (4.8)
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In order to find the desired capital, namely the optimal capital stock, it is assumed that

Kβ−1 in eq. 4.8 is equal to one. The resulting expression is

Kd
it =

2(φβ −grit)

(β +1)cφgrit
+

βAit−1

(β +1)grit
(4.9)

Desired investment in time t is the difference between the desired capital stock and the

capital stock inherited from the previous period, Iit =Kd
it −Kit−1. To finance this investment,

firms recur to retained profits and to new mortgaged debt, Iit = πit−1 +∆Lit , where ∆Lit =

Lit −Lit−1. Therefore, the demand for credit is: Ld
it = Kd

it −πit−1−Ait−1. Introducing eq.

4.9 into the previous expression and rearranging, it is obtained that the demand for credit is

given by:

Ld
it =

2(φβ −grit)

(β +1)cφgrit
−πit−1 +

(β −2grit)Ait−1

(β +1)grit
(4.10)

4.2. Banks

In Delli Gatti et al.’s (2005) model, it is assumed that banks are lumped together in a ver-

tically integrated banking sector. Credit supply (Ls) at each time period t is determined by

the sum of bank’s equity (E) and deposits (D), which are determined as a residual. This is

Ls
t = Et +Dt . To determine the aggregate level of credit supply, the authors assume that the

bank is subject to a prudential rule such that

Ls
t =

Et−1

ν
, (4.11)

where the risk coefficient ν is constant. Therefore, the more financial robustness the bank

has, the higher the credit supply.

Credit is allotted to each individual firm i on the basis of the mortgage it offers, which

is proportional to its size, and to the amount of cash available to serve debt according to the

following rule:

Ls
it = λLs

t Φit−1 +(1−λ )Ls
t Λit−1, (4.12)

where Φit−1 = Kit−1/Kt−1 and Λit−1 = Ait−1/At−1, with Kt = ∑
Nt−1
i=1 Kit−1, At = ∑

Nt−1
i=1 Ait−1

and 0 < λ < 1. The equilibrium interest rate is determined as credit demand (eq. 4.10)

equals credit supply (eq. 4.12), that is:
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rit =
β (2+ cAit−1)

gc((2/cφ)+(1+β )Ait−1 +(1+β )πit−1 +(1+β )Ls
it)

(4.13)

Assuming that the return on bank’s equity is given by the average of lending interest rate r̄t

and deposits are remunerated with the borrowing rate rA
it , the bank’s profit (πB) at time t is

given by:

π
B
t = ∑

i∈N
ritLs

it − r̄t [(1−ω)Dt−1 +Et−1] , (4.14)

where ω captures the degree of competition in the banking sector and 1/(1−ω) is the

spread between lending and borrowing interest rates.

The law of motion of Et at each time period t is

Et = π
B
t +Et−1− ∑

i∈Ωt−1

Bt−1, (4.15)

where Ωt−1 is a set containing the bankrupt firms and Bt−1 represents the bad debt of these

firms. According to eq. 4.15, idiosyncratic real shocks lead to systemic consequences. An

increase in bad debts makes equity decrease, which in turn leads to a lower credit supply.

Consequently, financial costs rise due to a higher interest rate. Firms’ net worth distribution

affects the average lending interest rate, which in turn influences the bank’s profits and,

hence, credit supply. Thus, the firms affect each other trough indirect interactions.

4.3. Firms’ demography

As pointed above, firms go bankrupt when their net worth becomes negative, so that they

leave the market. Delli Gatti et al. (2005) specify that new entrants, replacing bankrupted

firms, are determined by the following endogenous mechanism:

Nentry
t = N̄P(entry) =

N̄
1+ exp [d (r̄t−1− e)]

, (4.16)

where N̄ > 1, d and e are constants. The higher is the interest rate, the higher are firms debt

commitments, and the lower is the number of entries. In addition, it is assumed that entrants

are on average smaller than incumbents (Bartelsman et al., 2005; Caves, 1998). New firms’

capital stock is a fraction of the average of incumbents’ stocks. Therefore, entrants’ size in

terms of their capital stock is drawn from a uniform distribution centered around the mode

of the size distribution of incumbent firms.
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4.4. Deterministic analysis and dynamics

The deterministic analysis takes only into account one bank and one firm (i = 1), which sets

a price of the homogeneous good equal to the expected one. Thus, the representative firm

is unaffected by shocks on price, ut = 1. This fact implies that the firm’s profit is the same

as the expected profit in the stochastic version. The idea is to consider the deterministic

version as a benchmark to later explain the stochastic dynamic.

Following Pulcini (2017), it is first compute the return on equity (ROE), namely the

measure of a firm’s profitability indicating how much profit it generates without recourse to

external sources of financing. It is defined as ROE f irm = π/At−1. Rearranging eq. 4.9, it is

found that the net worth is expressed as

At−1 =
Kt (β +1)grt

β
− 2(φβ −grt)

βcφ
. (4.17)

Considering that the first component of eq. 4.17 grows exponentially because of K,

whereas the second component changes much more slowly, the equation can be approxi-

mated as follows

At−1 ≈
Kt (β +1)grt

β
. (4.18)

Therefore, the representative firm’s ROE is

ROE f irm =
β

(
φKβ

t −grtKt

)
Kt (β +1)grt

. (4.19)

Due to the fact that the bank side of the model has not been modified, we employ the

bank’s ROE, defined as ROEbank = πb/Ab
t−1, computed by Pulcini (2017). It is as follows

ROEbank = rtωγ , (4.20)

where γ = 1/ν − 1. As can be see, while ROEbank depends positively and linearly on the

interest rate, ROE f irm does it negatively and non-linearly.

The equilibrium interest rate r? presented in eq. 4.21 is obtained by Equalizing eq. 4.19

and 4.20 and solving for r.

r? =
β

1+β

1
2γω

(√
1+4Kβ−1

t
γωφ

g

(
1+β

β

)
−1

)
. (4.21)
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Making use of the following Taylor expansion:
√

1+ x≈ 1+ 1
2 x− 1

8 x2+o(x), the equi-

librium interest rate can be expressed as

r? =
φ

g
Kβ−1

t − φ 2

g2 γω

(
1+β

β

)
K2β−2

t . (4.22)

Inserting eq. 4.22 into the deterministic version of firm’s profits, π = φKβ −gr?K, we

find that the second term of the expansion is essential for the economy to grow (see eq.

4.23).

π =
φ 2

g
γω

(
1+β

β

)
K2β−1

t . (4.23)

Now, eq. 4.22 is inserted into eq. 4.18,14 so that we obtain

At−1 =
β +1

β
φKβ

t (4.24)

According to 4.24, representative firm’s equity is its revenue times the mark-up (β +1)/β .

Using eq. 4.23 and eq. 4.24, we can compute the analytic ROE f irm, which is

ROE f irm
t =

φ

g
γωKβ−1

t . (4.25)

Following the same procedure for calculating the bank’s ROE, we find that this is

ROEbank
t =

φ

g
γωKβ−1

t . (4.26)

Then, in equilibrium, ROE f irm = ROEbank. In additon, recalling that law of motion of

firm’s equity is the equity of the previous period plus profits (see eq. 4.4), the growth rate of

the bank’s and the firm’s equity are the ROEbank and ROE f irm, respectively. If we calculate

the growth rate of eq. 4.24 and divide it by the equity in t−1 (eq. 4.24), it is obtained that

the growth rate of equity is equal to the growth rate of capital times β (eq. 4.27).

∆A
A

=

β+1
β

βφKβ−1∆K
β+1

β
φKβ

= β
∆K
K

(4.27)

Equalizing ROE f irm and the growth rate of capital times β , we find that growth rate of

14For simplicity, we only have taken into account the first term of the eq. 4.22.
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capital is explained as

∆K
K

= χKβ−1, (4.28)

where χ = φγω

βg . Thus, the growth rate of the economy depends on the financial parameters

γ and ω , the real parameters φ and g, and β .

Rearranging and solving eq. 4.28, we obtain the theoretical capital:

Kt = K0

(
1+χ

(1−β ) t

K1−β

0

) 1
1−β

. (4.29)

For β → 1, eq. 4.29 can be expressed as: Kt = K0 exp
(

φγω

g t
)

.

We now insert eq. 4.29 into eq. 4.22, taking into account the first term of the expansion,

in order to obtain the theoretical interest rate:

rt =
φ

g
Kβ−1

0

(
1+χ

(1−β ) t

K1−β

0

)−1

(4.30)

It is worth noting that when β is set equal to one, rt = φ/g, which is the interest rate

based on perfect competitive equilibrium found in the original model (see Pulcini (2017)).

5. Simulations

This section is devoted to present the simulation results generated by the generalization of

Delli Gatti et al.’s (2005) model we propose in this work. It is considered both the en-

dogenous entry mechanism and the constant entry mechanism. In addition, we will discuss

which one is able to get closer to the empirical evidence presented in section 3.

In the simulations reported, the initial number of firms (N0) is set to 1000 and the number

of iterations (T ) to 1000. When the endogenous entry mechanism is employed, N̄ is set to

18, d = 100 and e = 0.1. Concerning the parameters, we follow Delli Gatti et al. (2005).

For the firm they are set as follows: φ = 0.1, c = 1, ν = 0.08 and g = 1.1. For the bank,

they are: ω = 0.002 and λ = 0.3.

Simulations start at time t = 1. To perform calculations in period one for each firm

we must set the following initial conditions: Ki0 = 100, Ai0 = 20, Li0 = 80, πi0 = 0 and

Bi0 = 0. These initial conditions are uniform across firms. Therefore in period zero firms

are identical.
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5.1. Comparison between stochastic and deterministic case

The left panel of Figure 8 shows the evolution of aggregate capital in the stochastic case

with constant number of firms and the theoretical capital when β = 1. It can be seen that

the aggregate capital grows as fast as the theoretical version. This fact implies that the latter

is able to replicate the growth rate of the former.

In regard to the interest rate (see Figure 8 right panel), it fluctuates and evolves over

time around the perfect competitive equilibrium interest rate, rt = φ/g, hence it can explain

the behavior of the stochastic interest rate in the long-run.
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Fig. 8. Long-run theoretical K (left) and r (right) and the stochastic version when β = 1.
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Fig. 9. Long-run theoretical K (left) and r (right) and the stochastic version when β = 0.97.

When considering β < 1, namely decreasing-return-to-scale technology, the theoretical

capital does not seem to explain the dynamics of the stochastic version as well as the pre-

vious case (Figure 9 left panel). Particularly, when β is set to 0.97, it can be seen that the

theoretical capital diverges from the stochastic version as time goes by. It has also been

found that the difference between the two capitals increases substantially as β decreases.

The reason for this behavior will be studied in subsequent works.
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It is also presented the interest when β = 0.97 in the right panel of Figure 9. As can be

seen, it presents a fairly reasonable adjustment of the interest rate obtained in the stochastic

model.

Finally, it is interesting to focus the attention on the differences between the long-run

stochastic K and r when β = 1 and when β = 0.97. Fist, the long-run K with β = 1

generates much more fluctuations than the long-run K with with β = 0.97. Second, K

with β = 1 grows slightly less than K with β = 0.97, which is expected. It was not ex-

pected, however, the self-sustained growth in the very long-run generated by the model

with decreasing-return-to-scale. We believe that this behavior is consequence of the third

difference observed, namely the decreasing trend in r when β = 0.97. A lower interest

rate makes external financing for firms more affordable, so that they can invest and produce

more over time.

5.2. Simulation results with dynamic reintroduction

5.2.1. Constant-returns-to-scale technology

It is first presented the results generated by the model when β is set equal to one, namely

there exists a constant-returns-to-scale technology and the entry process is determined by

the endogenous mechanism exposed above.

In the left panel of Figure 10 is shown the aggregate output which is characterize by

sizable fluctuations. For instance, from the simulation period 800 to 900 the growth rate of

aggregate output goes from an increase of 10% to a decrease of 30%. It also reflects the ex-

istence of volatility clustering, namely large changes tend to be followed by large changes,

of either sign, and small changes tend to be followed by small changes (Mandelbrot, 1963).

Regarding the interest rate, it fluctuates around the perfect competitive equilibrium in-

terest rate (middle panel of Figure 10). Moreover, in periods of instability it increases

substantially its volatility.

Right panel of Figure 10 reports the evolution of the number of firms as time goes on

and the ratio of failed firms to new entrants. Considering that the initial number of firms

was set to 1000, almost half of the population has disappear by the period 150. Then the

number grows, but most of the time it is below the initial number of firms. The ratio of

failed firms to new entrants fluctuates around one. It shows clearly the periods in which a

large number of firms fail and the number of entrants is not enough to replace them, these

are the two picks around period 800 and 1000.
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We now turn our attention to the analysis of heterogeneity in firms’ size distribution.

Following the same procedure explained in Section 3, we aim at measuring how heteroge-

neous is the firms’ size distribution each simulated period. The right panel of Figure 11

presents the estimated scaling parameter of the distribution. It fluctuates around the value

two and has an average of 2.1, which is consistent with the values observed empirically. In

addition, it is well-fitted by a power-law distribution (right panel of Figure 11). It is worth

recalling that all the firms starts with the same values of capital, equity and loan, and it

is the model which generates this heterogeneity. As mentioned in the literature, form the

interaction of heterogeneous agents emerge naturals laws such as the power-law.
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Fig. 11. The CDF P(x) with its power-law fit (left) and the estimated scaling parameter ζ with its
average value (right) when β = 1.

Other measures of heterogeneity are the square root of the HHI and the granular resid-

ual (Gabaix, 2011) – both have been introduced in Section 3. The first measure has been

calculated as

hK
t =

√
N

∑
i=1

(
Kit

Kt

)2

.

The second measure, taking into account that the output is supply-driven and hence all the

output produced is sold, has been calculated using the production of each firm.

Γ
Y
t =

κ

∑
i=1

Yit

Yt
gY

it ,

where gY
it = (Yit −Yit−1)/Yit .

The results are presented in Figure 12. The left panel displays the time series of the

square root of the HHI. As can be seen, the values produced are much more large than the

ones observed empirically (h = 10% when considering 1000 firms). It is also worth noting

the existing gap between the this measure with the largest firm and without it during the
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period of instability. Based on this, it can be said that the fail of the largest firm triggers the

recession observed in the aggregate output and the pronounced drop in the growth rate.

The explanatory power of granularity measurement is presented in the right panel of

Figure 12. It has been calculated using a lapse of time 21 simulation periods, so that we can

compare this result with the one observed empirically. Concretely, we have used periods

ranging from 350 to 371. The results suggest that the model with constant-return-to-scale

is able to generate a granular behavior that is close to the one observed. Both measures,

empirical and theoretical, point out that when the number of firms used in the calculation is

increased above 200, the additional explanatory power is very low.
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Fig. 12. hK over time (left) and R2 as a function of the κ largest firms (right) when β = 1.

5.2.2. Decreasing-returns-to-scale technology

The simulation results of the model with decreasing-returns-to-scale technology, β is set

equal to 0.97, and dynamic reintroduction of firms are presented below.

The left panel of Figure 13 shows the aggregate output and its growth rate. It can be

seen that aggregate fluctuations are much softer, in the range ±4%, and the occurrence of

expansions and recessions have disappeared. Furthermore, the economy grows at a slightly

slower rate.

The interest rate (middle panel of Figure 13) seems to decrease over time and fluctuates

in a narrower range than the model with decreasing-returns-to-scale technology. This has

an direct impact on the population of firms (right panel of Figure 13). The number of

firms grows in time, doubling the population. The economy suffers episodes where few

companies disappear, but are followed by massive entries due to the fact that the interest

rate is lower as time goes on. The ratio fail firms to new entries indicates that new entries

are more in number that exists.
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Despite the fact that the model with β = 0.97 is able to generate power-law firms’

size distributions, as shown in the left panel of Figure 14, these are not common, because

the heterogeneity is reduced considerably. This can be seen in average estimated scaling

parameter displayed in the right panel of Figure 14, which increases to 2.6.
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Fig. 14. The CDF P(x) with its power-law fit (left) and the estimated scaling parameter ζ with its
average value (right) when β = 0.97.

The decrease in the heterogeneity is also reflected by the time series of the square root

of the HHI (left panel of Figure 15). Now, it is closer to the empirical than it was when β

was set to one. Moreover, the gap between the index with and without the largest firm has

been substantially reduced.

Nevertheless, the measure employed to quantify the existence of granular behavior

presents much less heterogeneity than observed (right panel of Figure 15). As can be seen,

the explanatory power increases substantially until around 600 firms are considered in the

calculation. Yet empirically and the case with constant performance, there was an increase

in the explanatory power practically negligible from 200 companies onwards.
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Fig. 15. hK over time (left) and R2 as a function of the κ largest firms (right) when β = 0.97.
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6. Conclusion

This work has assessed the existence of granular behavior in the Spanish economy, namely

a few very large firms account for a very large fraction of the macroeconomic fluctuations

(Gabaix, 2011). Using the approach proposed by Clauset et al. (2009), it is found that the

firms’ size distribution can be fitted by a power-law distribution, which implies the existence

of a high degree of heterogeneity. This, in turn, causes that the sales growth of the largest

firms in the sample are able to account for most of the growth in aggregate sales.

Aiming at replicating the granular behavior theoretically, we resort to Delli Gatti et al.’s

(2005) model, of which a generalization is proposed. Concretely, we employ an exponential

production function instead of a linear one. This change allows us to study how the out-

put produced by the model varies when decreasing-return-to-scale technology is taken into

account.

We find that the original model is able to generate, thanks to the interaction among het-

erogeneous agents, a degree of heterogeneity close to the one observed empirically. For

instance, the average estimated scaling parameter is very similar to one observed in the

sample. Moreover, the explanatory power of the measure proposed to quantify the granular

behavior evolves similarly as the number of firms employed to calculate it increases. Nev-

ertheless, it is also observed that the model with constant-return-to-scale technology creates

a gigantic firm able to capture a disproportionate market share.

When there is decreasing-return-to-scale technology, the model produces almost no het-

erogeneity. This is quantify by using the estimated scaling parameter of the firms’ size dis-

tribution, which increases considerably and moves away from value 2, and the evolution of

the explanatory power of the granular measure, which needs more firms to be taken into ac-

count to explain the same amount that is explained by many fewer companies in the original

model. The model also reduces the market share of the largest firm.

It is also worth noting that it is observed that the model with decreasing-return-to-scale

technology has self-sustained growth in the very long-run. We believe that this behavior is

consequence of an interest rate that decreases over time, which makes external financing for

firms more affordable, so that they can invest and invest more over time.

Finally, I would like propose a future line of research. This work could be enriched by

using a model with multiple banks which interact with each other, competing for granting

credit to firms.
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A. Simulation results with constant reintroduction

A.1. Constant-returns-to-scale technology

With constant reintroduction, namely the number of failing firms is replaced by the same

number of entries, the model with constant-returns-to-scale technology generates aggregate

fluctuations more frequently (see left panel of Figure 16). Unlike its dynamic reintroduction

version, this version presents four clear periods of instability, in which the interest rate

oscillates much more (right panel of Figure 16).
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Fig. 16. Left: logarithm of the aggregate output (top) and growth rates of aggregate output (bottom).
Right: interest rate. Constant reintroduction of firms. Constant-returns-to-scale technology, β = 1.
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In regard to the power-law fit of firms’ distribution, this version of the model is able to

generate power-law distribution (left panel of 17), but, however, due to the fact that there

are more periods of instability, they are less frequent. This can be see in the evolution of the

estimated scaling parameter over time (right panel of 17). There are few values around the

value 2.
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Fig. 17. The CDF P(x) with its power-law fit (left) and the estimated scaling parameter ζ with its
average value (right) when β = 1 with constant reintroduction.

The square root of the HHI is characterize by the same behavior as the dynamic reintro-

duction version (see left panel of Figure 18). It produces values that are much more large

than the ones observed empirically and it creates an enormous gap between the index with

and without the largest firm. Concretely, it can be seen that in three of the four periods

of instability, the largest firm accumulates a disproportionate market share, and its failure

triggers the recession.
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Fig. 18. hK over time (left) and R2 as a function of the κ largest firms (right) when β = 1 with
constant reintroduction.

The granular measure indicates that when considering constant reintroduction the de-

gree of heterogeneity is reduced substantially (see right panel of Figure 18). the number

of firms from which the explanatory power increases in an almost negligible way is much
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higher than in the dynamic case.

A.2. Decreasing-returns-to-scale technology

The simulation results generated by the model with decreasing-returns-to-scale technology

and constant reintroduction is presented in this subsection.

The model is very similar to the version with dynamic reintroduction in terms of aggre-

gate production and interest rate (see Figure 19). It does not present pronounced aggregate

fluctuations and the interest decreases over time.

9.
5

10
.0

10
.5

11
.0

ln
Y

200 400 600 800 1000

-0
.0

4
0.

00
0.

04

Time

g tY

200 400 600 800 1000

0.
07

0
0.

07
5

0.
08

0
0.

08
5

Time

r̄ t

Fig. 19. Left: logarithm of the aggregate output (top) and growth rates of aggregate output (bottom).
Right: interest rate. Constant reintroduction of firms. Decreasing-returns-to-scale technology, β =
0.97.

The model is able to generate firms’ size distributions that can be fitted by a power-law

(left panel of Figure 19), but they are rare cases, since in most of the periods the scaling

parameter is very far from the value 2 (right panel of Figure 19). Concretely, the average

value is 2.5.
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Fig. 20. The CDF P(x) with its power-law fit (left) and the estimated scaling parameter ζ with its
average value (right) when β = 0.97 with constant reintroduction.

Finally, we show the evolution of the square root of the HHI over time in the left panel
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of Figure 21 and the explanatory power of the granular measure in the right panel. As can

be seen, the heterogeneity is slightly higher than that generated by the model with dynamic

reintroduction. Concretely, the average value of the h index is higher, and the largest firm

seem to be able to accumulate a disproportionate market share. On its part, the measure

of the granularity, presented in the right panel of Figure 21, indicates that heterogeneity

decreases great with respect to the dynamic case. In view of this discrepancy between the

two measures, the change in the degree of granularity seems more significant.
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constant reintroduction.
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