
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2010; 00:1–28
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

On the Benefits of the
Remote GPU Virtualization Mechanism: the rCUDA Case

F. Silla1∗, S. Iserte2, C. Reaño1, and J. Prades1

1Universitat Politècnica de València, Spain
2Universitat Jaume I, Spain

SUMMARY

Graphics Processing Units (GPUs) are being adopted in many computing facilities given their extraordinary
computing power, which makes it possible to accelerate many general purpose applications from different
domains. However, GPUs also present several side effects, such as increased acquisition costs as well
as larger space requirements. They also require more powerful energy supplies. Furthermore, GPUs still
consume some amount of energy while idle and their utilization is usually low for most workloads.
In a similar way to virtual machines, the use of virtual GPUs may address the aforementioned concerns. In
this regard, the remote GPU virtualization mechanism allows an application being executed in a node of the
cluster to transparently use the GPUs installed at other nodes. Moreover, this technique allows to share the
GPUs present in the computing facility among the applications being executed in the cluster. In this way,
several applications being executed in different (or the same) cluster nodes can share one or more GPUs
located in other nodes of the cluster. Sharing GPUs should increase overall GPU utilization, thus reducing
the negative impact of the side effects mentioned before. Reducing the total amount of GPUs installed in the
cluster may also be possible.
In this paper we explore some of the benefits that remote GPU virtualization brings to clusters. For instance,
this mechanism allows an application to use all the GPUs present in the computing facility. Another
benefit of this technique is that cluster throughput, measured as jobs completed per time unit, is noticeably
increased when this technique is used. In this regard, cluster throughput can be doubled for some workloads.
Furthermore, in addition to increase overall GPU utilization, total energy consumption can be reduced up
to 40%. This may be key in the context of exascale computing facilities, which present an important energy
constraint. Other benefits are related to the cloud computing domain, where a GPU can be easily shared
among several virtual machines. Finally, GPU migration (and therefore server consolidation) is one more
benefit of this novel technique.
Copyright c© 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: GPGPU; CUDA; GPU virtualization; rCUDA; Slurm; virtual machine; cloud computing;
InfiniBand; GPU migration; Xen

∗Correspondence to: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores
(DISCA). Edificio 1G. 46022 Valencia, Spain. E-mail: fsilla@disca.upv.es

Contract/grant sponsor: This work was funded by Generalitat Valenciana under Grant PROMETEOII/2013/009 of the
PROMETEO program phase II. The author from Universitat Jaume I was supported by project TIN2014-53495-R from

Copyright c© 2010 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 F. SILLA ET AL.

Interconnection Network

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

node nnode 2 node 3node 1

Figure 1. Example of a GPU-accelerated cluster.

1. INTRODUCTION

Currently, the massive parallel capabilities of GPUs (Graphics Processing Units) are leveraged
to accelerate specific parts of applications. In this regard, programmers exploit GPU resources
by off-loading the computationally intensive parts of applications to them. To that end, although
programmers must specify which parts of the application are executed on the CPU and which
parts are off-loaded to the GPU, the existence of libraries and programming models such as
CUDA (Compute Unified Device Architecture) [1] noticeably ease this task. In this context, GPUs
significantly reduce the execution time of applications from domains as different as Big Data [2],
chemical physics [3], computational algebra [4], image analysis [5], finance [6], and biology [7],
for instance.

Current computing facilities typically include one or more GPUs in the nodes of the cluster.
Depending on the exact cluster configuration, GPUs may be present only at some of the nodes or
they may be installed at every node. Figure 1 shows an example of a deployment, composed of
n nodes, where each node includes one GPU. These nodes could be, for instance, SYS1027-TRF
Supermicro servers containing two Xeon processors and one NVIDIA Tesla GPU. Additionally, the
interconnection network could be an FDR InfiniBand fabric. Notice, however, that using GPUs in
such a configuration is not exempt from side effects. For example, let us consider the execution of
a distributed MPI (Message Passing Interface) application which does not require the use of GPUs.
Typically, this application will spread across several nodes of the cluster thus flooding the CPU
cores available in them. In this scenario, the GPUs in the nodes involved in the execution of such
an MPI application would become unavailable for other applications because all the CPU cores in
those nodes would be devoted to the non-accelerated MPI application. This would cause that those
GPUs remain idle for some periods of time, thus reducing overall GPU utilization and making that
the initial economic investment done during cluster acquisition requires more time to be amortized.

Another example of the concerns associated with the use of GPUs in clusters is related to the
way that job schedulers such as Slurm [8] perform the accounting of resources in a cluster. These
job schedulers use a fine granularity for resources such as CPUs or memory, but not for GPUs. For
instance, job schedulers can assign CPU resources in a per-core basis, thus being able to share the
CPU sockets present in a server among several applications. In the case of memory, job schedulers

MINECO and FEDER. The authors are grateful for the generous support provided by Mellanox Technologies and the
equipment donated by NVIDIA Corporation.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BENEFITS OF THE rCUDA REMOTE GPU VIRTUALIZATION FRAMEWORK 3

Interconnection Network

Network

P
C

Ie

CPU

CPU RAM

RAM

Network

P
C

Ie

CPU

CPU RAM

RAM

Network

P
C

Ie

CPU

CPU RAM

RAM

Network

P
C

Ie

CPU

CPU RAM

RAM

node nnode 2 node 3node 1

GPU GPU GPU GPU

Figure 2. Logical configuration of a cluster when the remote GPU virtualization technique is used.

can also assign, in a shared approach, the memory present in a given node to the several applications
that will be concurrently executed in that server. However, in the case of GPUs, job schedulers use a
per-GPU granularity. In this regard, GPUs are assigned to applications in an exclusive way. Hence,
a GPU cannot be shared among several applications even when it has enough resources to allow the
concurrent execution of those applications on it, causing that overall GPU utilization is, in general,
low. This fact not only reduces the effective computing power of clusters but also causes that a non-
negligible amount of energy is wasted, being both aspects key concerns in the context of exascale
computing.

In order to address some of the side effects related to the use of GPUs, the remote GPU
virtualization mechanism could be used. This software mechanism allows an application being
executed in a computer which does not own a GPU to transparently make use of accelerators
installed in other nodes of the cluster. In other words, the remote GPU virtualization technique
allows physical GPUs to be logically detached from nodes, thus allowing that decoupled GPUs are
concurrently shared by all the nodes of the computing facility in a transparent way to applications.
Figure 2 shows the new cluster envision after applying the remote GPU virtualization mechanism.
In the new cluster configuration GPUs are logically detached from nodes and a pool of GPUs is
created. GPUs in this pool can be accessed from any node in the cluster. Furthermore, a given
GPU may concurrently serve more than one application. This sharing of GPUs not only increases
overall GPU utilization but also allows to create cluster configurations where not all the nodes in the
cluster own a GPU at the same time that all the nodes in the cluster can execute GPU-accelerated
applications. This cluster configuration would reduce the costs associated with the acquisition and
later use of GPUs. In this regard, the total energy required to operate a computing facility may be
decreased, thus loosening the big energy concerns of future exascale computing installations.

In this paper we explore some of the benefits that the remote GPU virtualization mechanism
provides to clusters. We present this exploration in the context of the rCUDA middleware, given
that it is the most modern remote GPU virtualization solution and also the one that provides the best
performance, as it will be shown later in the paper. The rest of the paper is organized in the following
way: Section 2 presents a review of the remote GPU virtualization technique. Later, Section 3
introduces the rCUDA technology in more detail, given that it will be the one used in this work
to quantify the benefits of the remote GPU virtualization mechanism. Next, Section 4 introduces six
of the benefits of this virtualization technique. Finally, Section 5 concludes the paper.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 F. SILLA ET AL.

Figure 3. Organization of remote GPU virtualization frameworks.

2. REMOTE GPU VIRTUALIZATION

Frameworks such as CUDA [1] assist programmers in using GPUs for general-purpose computing.
Several remote GPU virtualization solutions exist for this framework, such as GridCuda [9],
DS-CUDA [10], gVirtuS [11], vCUDA [12], GViM [13], and rCUDA [14]. Basically, these
middleware proposals share a GPU by virtualizing it. In this way, these middleware solutions
provide applications with virtual instances of the real device, which can therefore be concurrently
shared. Usually, these GPU sharing solutions place the virtualization boundary at the API level
(CUDA in the case of NVIDIA GPUs). In general, CUDA-based virtualization solutions aim to
offer the same API as the NVIDIA CUDA Runtime API [15] does.

Figure 3 depicts the architecture underlying most of these virtualization solutions, which follow a
client-server distributed approach. The client part of the middleware is installed in the cluster node
executing the application requesting GPU services, whereas the server side runs in the computer
owning the actual GPU. In this way, the client receives a CUDA request from the accelerated
application and appropriately processes and forwards it to the remote server. In the server node,
the middleware receives the request and interprets and forwards it to the GPU, which completes
the execution of the request and provides the execution results to the server middleware. In turn,
the server sends back the results to the client middleware, which forwards them to the original
application, which is not aware that its request has been served by a remote GPU instead of a local
one.

CUDA-based GPU virtualization solutions may be classified into two types: (1) those intended
to be used in the context of virtual machines and (2) those devised as general purpose virtualization
solutions, to be used in native domains (notice that these latter solutions may also be used
within virtual machines). Frameworks in the first category usually make use of shared-memory
mechanisms in order to transfer data from main memory inside the virtual machine to the GPU in
the native domain, whereas the general purpose virtualization solutions in the second type make
use of the network fabric in the cluster to transfer data from main memory in the client side to the
remote GPU located in the server. This is why these latter solutions are commonly known as remote
GPU virtualization solutions.

Regarding the first type of GPU virtualization solutions mentioned above, several solutions have
been developed to be specifically used within virtual machines, such as for example vCUDA, GViM,

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BENEFITS OF THE rCUDA REMOTE GPU VIRTUALIZATION FRAMEWORK 5

gVirtuS, and Shadowfax [16]. The vCUDA technology, intended for Xen virtual machines, only
supports an old CUDA version (v3.2) and implements an unspecified subset of the CUDA Runtime
API. Moreover, its communication protocol presents a considerable overhead because of the cost of
the encoding and decoding stages. This overhead causes a noticeable drop in overall performance.
GViM, targeting Xen environments, is based on the obsolete CUDA version 1.1 and, in principle,
does not implement the entire CUDA Runtime API. gVirtuS is based on the old CUDA version
2.3 and implements only a small portion of its API. Despite being designed for virtual machines, it
also provides TCP/IP communications for remote GPU virtualization, thus allowing applications in
a non-virtualized environment to access GPUs located in other nodes. Regarding Shadowfax, this
solution allows Xen virtual machines to access the GPUs located at the same node, although it may
also be used to access GPUs at other nodes of the cluster. It supports the obsolete CUDA version
1.1 and, additionally, neither the source code nor the binaries are available in order to evaluate its
performance.

In the second type of virtualization solutions mentioned above, which provide general purpose
GPU virtualization, one can find rCUDA, GridCuda, DS-CUDA, and Shadowfax II [17]. rCUDA,
further described in Section 3, features CUDA 7.5 and provides specific communication support
for TCP/IP compatible networks as well as for InfiniBand fabrics (rCUDA uses the InfiniBand
Verbs API in order to leverage the RDMA features of this network). GridCuda also offers access to
remote GPUs in a cluster, but supports an old CUDA version (v2.3). Moreover, there is currently
no publicly available version of GridCuda that can be used for testing. Regarding DS-CUDA, it
integrates a more recent version of CUDA (4.1) and includes specific communication support for
InfiniBand by making use of the InfiniBand Verbs API. However, DS-CUDA presents several strong
limitations, such as not allowing data transfers with pinned memory. Finally, Shadowfax II is still
under development, not presenting a stable version yet and its public information is not updated to
reflect the current status of the source code.

In order to provide a comprehensive comparison among the different GPU virtualization solutions
described in this section, Figure 4 presents a performance analysis of three publicly available GPU
virtualization solutions: DS-CUDA, rCUDA, and gVirtuS. This figure also shows the performance
of CUDA as the baseline reference. The widely used bandwidthTest benchmark from the
NVIDIA CUDA Samples [18] has been employed. The testbed employed for carrying out the
performance experiments is based on two Supermicro servers as the ones described in Section 4.
The bandwidth test (along with the client side of the different frameworks) was run in one of the
computers whereas the server side of the middleware solutions was executed in another computer
which owns a Tesla K20 GPU. The InfiniBand FDR network technology was used to connect both
computers. Therefore, both the rCUDA and DS-CUDA solutions made use of the InfiniBand Verbs
API. In the case of gVirtuS, given that it is not able to take advantage of the InfiniBand Verbs API,
TCP/IP over InfiniBand was used.

Results in Figure 4 deserve some discussion. First, it can be seen that CUDA achieves the highest
performance when pinned memory is used (Figures 4(a) and 4(b)), attaining a bandwidth around
6000 MB/s. Notice that this bandwidth is reduced to the half for copies using pageable memory
(Figures 4(c) and 4(d)). Second, Figure 4 shows that rCUDA outperforms the other two remote GPU
virtualization solutions. Actually, for copies using pageable memory rCUDA also performs better
than CUDA. This is a well-known effect thoroughly described in previous works on rCUDA [14] and

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 F. SILLA ET AL.

CUDA rCUDA DS-CUDAgVirtuS

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60

B
an

d
w

id
th

 (
M

B
/s

)

Transfer Size (MB)

CUDA rCUDA GVirtuS

(a) Copies from host pinned memory to device
memory.

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60

B
an

d
w

id
th

 (
M

B
/s

)

Transfer Size (MB)

CUDA rCUDA GVirtuS

(b) Copies from device memory to host pinned
memory.

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60

B
an

d
w

id
th

 (
M

B
/s

)

Transfer Size (MB)

CUDA rCUDA GVirtuS DS-CUDA

(c) Copies from host pageable memory to device
memory.

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60
B

an
d

w
id

th
 (

M
B

/s
)

Transfer Size (MB)

CUDA rCUDA GVirtuS DS-CUDA

(d) Copies from device memory to host pageable
memory.

Figure 4. Performance comparison among three publicly available CUDA GPU virtualization solutions:
gVirtuS, DS-CUDA, and rCUDA. The comparison is performed in terms of attained bandwidth. The

performance of CUDA is also depicted for comparison purposes.

is due to the use of an efficient pipelined communication based on the use of internal pre-allocated
pinned memory buffers. On the other hand, notice that both rCUDA and DS-CUDA make use of
the InfiniBand Verbs API, thus having access to the large bandwidth available in this interconnect.
However, although rCUDA is able to struggle an important fraction of the available bandwidth, DS-
CUDA presents a relatively poor performance. Therefore, it must be assumed that the difference in
bandwidth is due to the different way that both GPU virtualization solutions manage the InfiniBand
interconnect. Also notice that DS-CUDA supports neither memory copies larger than 32MB nor the
use of pinned memory. On the other hand, notice that the performance of gVirtuS is extremely low.
One may think that this is due to the fact that gVirtuS is using TCP/IP over InfiniBand, which
clearly achieves lower performance than the InfiniBand Verbs API. However, according to our
measurements with the iperf tool [19], InfiniBand FDR provides around 1190 MB/s when TCP/IP
over InfiniBand is used. This bandwidth is noticeably larger than the one attained by gVirtuS. Hence,
the low performance of this middleware is not due to the use of TCP/IP over InfiniBand but to the
way it internally manages communications.

As a final consideration for this review section, it is important to remark that although remote
GPU virtualization has traditionally introduced a non-negligible overhead, given that applications
do not access GPUs attached to the local PCI Express (PCIe) link but rather access devices that
are installed in other nodes of the cluster (traversing a network fabric with a lower bandwidth), this
performance overhead has significantly been reduced thanks to the recent advances in networking

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BENEFITS OF THE rCUDA REMOTE GPU VIRTUALIZATION FRAMEWORK 7

Figure 5. rCUDA layered and modular architecture.

technologies as well as a careful design of the remote virtualization solution, as shown in Figure 4
for the rCUDA framework.

3. rCUDA: REMOTE CUDA

As already mentioned in the introduction section, we use in this study the rCUDA middleware given
that it is the most up-to-date solution, providing also the best performance among the different
publicly available GPU virtualization solutions, as shown in the previous section. Furthermore,
it was the only framework able to run the applications analyzed in this paper. In this section we
present rCUDA in more detail. Figure 5 depicts a detailed view of the architecture of the rCUDA
middleware.

The rCUDA middleware supports version 7.5 of CUDA, being binary compatible with it, which
means that CUDA programs do not need to be modified for using rCUDA. Furthermore, it
implements the CUDA Runtime and Driver APIs (except for graphics functions) and also provides
support for the libraries included within CUDA, such as cuFFT, cuBLAS, or cuSPARSE. Moreover,
the rCUDA middleware allows a single rCUDA server to concurrently deal with several remote
clients that simultaneously request GPU services. This is achieved by creating independent GPU
contexts, each of them being assigned to a different client [14]. These independent GPU contexts
also provide robustness against the failure of one of the clients.

rCUDA provides specific support for different interconnects. Support for different underlying
network fabrics is achieved by making use of a set of runtime-loadable, network-specific
communication modules, which have been specifically implemented and tuned in order to obtain
as much performance as possible from the underlying interconnect. Currently, two modules are
available: one intended for TCP/IP compatible networks and another one specifically designed for
InfiniBand.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 F. SILLA ET AL.

Regarding the InfiniBand communications module, it is based on the InfiniBand Verbs API. This
API offers two communication mechanisms: the channel semantics and the memory semantics. The
former refers to the standard send/receive operations typically available in any networking library,
while the latter offers RDMA operations where the initiator of the operation specifies both the source
and destination of a data transfer, resulting in zero-copy transfers with minimum involvement of the
CPUs. rCUDA employs both mechanisms, selecting one or the other depending on the exact task to
be carried out [14].

Moreover, regardless of the exact network used, data exchange between rCUDA clients and GPUs
managed by rCUDA servers is pipelined so that higher bandwidth is achieved. Internal pipeline
buffers within rCUDA use pre-allocated pinned memory given the higher throughput of this type of
memory.

Using rCUDA is very simple. It just requires to set three environment variables prior to
application execution: RCUDA DEVICE COUNT, RCUDA DEVICE j, and RCUDAPROTO. The first
variable indicates the amount of GPUs accessible by the application. For example, if two GPUs
are assigned to the application, then the command “export RCUDA DEVICE COUNT=2” should
be executed. The second environment variable, RCUDA DEVICE j, indicates, for each of the n

GPUs assigned to the application, in which cluster node the GPU with identifier j is located. For
instance, in the previous example, the commands “export RCUDA DEVICE 0=192.168.0.1”
and “export RCUDA DEVICE 1=192.168.0.2” should be executed. Finally, the RCUDAPROTO

environment variable sets the communication module to be used during the execution of the
application. For instance, the command “export RCUDAPROTO=IB” should be used in order
to leverage the InfiniBand Verbs API. In case of using the TCP/IP communication module, the
command “export RCUDAPROTO=TCP” should be executed.

4. BENEFITS OF USING REMOTE GPU VIRTUALIZATION

In this section we introduce six of the benefits that the remote GPU virtualization mechanism
presents to clusters and applications. Namely, these benefits, which will be further described and
analyzed in the next subsections, are the following ones:

1. More GPUs are available for a single application.
2. Busy CPU sockets in a server do not hinder the use of the GPUs at that server.
3. Cluster throughput is increased at the same time that energy consumption is reduced. Overall

GPU utilization is also increased.
4. Cluster upgrades are made easier and cheaper just by attaching GPU servers to a non-GPU

cluster.
5. Several virtual machines can concurrently access the same GPU in a shared manner.
6. GPU jobs can be easily migrated across the cluster in order to consolidate them into fewer

servers.

The next subsections further describe and analyze these benefits. A performance evaluation is
included for most of them. To that end, the testbed leveraged is based on the use of 1027GR-TRF
Supermicro servers, each of them including two Intel Xeon E5-2620 v2 processors (six cores with

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BENEFITS OF THE rCUDA REMOTE GPU VIRTUALIZATION FRAMEWORK 9

(a) Total options per second computed.

(b) Execution time.

Figure 6. Performance of the MontecarloMultiGPU Sample by NVIDIA with a varying number of GPUs
when using CUDA and rCUDA.

Ivy Bridge architecture) operating at 2.1 GHz and 32 GB of DDR3 memory at 1600 MHz. They
also have a Mellanox ConnectX-3 VPI single-port FDR InfiniBand adapter connected to a Mellanox
Switch SX6025 (InfiniBand FDR compatible) to exchange data at a maximum rate of 56 Gb/s.
Furthermore, an NVIDIA Tesla K20 GPU is installed at each node.

Regarding the software configuration of the cluster, Linux CentOS 6.4 was used along with
CUDA 7.0 and Mellanox OFED 2.4-1.0.4 (InfiniBand drivers and administrative tools). For those
experiments involving a job scheduler, Slurm version 14.11.0 was used. It was configured to use the
backfill scheduling policy. In this way, jobs can overtake others. Finally, for those applications
requiring the MPI library, version 2.0b of the MVAPICH2 implementation of MPI, specifically
tuned for InfiniBand, was used.

Benefit #1: More GPUs Available for a Single Application

When using CUDA, an MPI application can be distributed across several nodes in the cluster in order
to make use of the GPUs installed in those nodes. However, a parallel shared-memory application
based on the use of threads can only run in a single node and therefore it can only benefit from
the GPUs installed in that node. On the contrary, when rCUDA is leveraged, an application being
executed in a single node can use all the GPUs in the cluster, thus boosting its performance. In this
case, the only limitation to increase application performance would be the ability of the programmer
to code the application in the proper way so that it takes advantage of as many GPUs as they are
available.

Figure 6 shows the performance of the MontecarloMultiGPU Sample by NVIDIA when executed
in a single node owning 4 GPUs with CUDA and also when executed in a cluster making use of
up to 14 GPUs with rCUDA. The CUDA executions have been performed in a node based on the

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 F. SILLA ET AL.

Figure 7. Screenshot of the deviceQuery Sample by NVIDIA when used with rCUDA after assigning
64 GPUs to an application.

Supermicro SYS7047GR-TRF server, populated with four NVIDIA Tesla K20 GPUs. Given that
CUDA can only use the GPUs installed in the same node that is executing the application, only up to
the 4 GPUs inside the Supermicro SYS7047GR-TRF server can be used for the CUDA executions.
On the contrary, when rCUDA is used, many additional GPUs can be provided to the application.
Figure 6 shows how the use of a larger amount of GPUs contributes to reduce total execution time.
Notice also that for 1 and 2 GPUs, execution time with rCUDA is slightly lower than with CUDA.
This is mainly due to the higher bandwidth attained by rCUDA for moving data to/from the GPU,
as shown in Section 2.

On the other hand, Figure 7 depicts part of the output provided by the execution of the
deviceQuery sample by NVIDIA. In this case, all the 64 GPUs installed in one of the clusters
owned by the Barcelona Supercomputing Center were provided to the application, showing the
possibilities that remote GPU virtualization brings.

Benefit #2: Busy CPUs in a Server Do Not Hinder The Use of The GPUs at That Server

Users of a cluster tend to require as many computing resources as possible for executing their
applications in order to reduce application execution time. Requiring as many resources as possible
may happen in several ways. For instance, it is quite common that users submitting a non GPU-
accelerated shared-memory parallel application to the job scheduler queues in the system request
for their application as many CPU cores as available in the node. In practice, this requirement
translates into the application using all the CPU cores of the cluster node where the application has
been launched. In this way, during the execution of such an application, no other application can be
executed in that node due to the lack of CPU cores.

In a similar way, users may also submit to the job scheduler queues requests for executing non-
accelerated hybrid MPI shared-memory applications. These applications span over several nodes
of the cluster, usually flooding all the CPU cores present at each of the nodes. As in the previous
example, during the time that one of these hybrid applications is being executed, no other application
can fit into the nodes that the former application is using because there is no CPU core available.

Although the execution of the mentioned applications may lead to a reduced application execution
time and therefore an overall high CPU utilization, when the nodes involved in their execution
include one or more GPUs, these accelerators will remain idle during the time that these non-
accelerated applications are being executed. The accelerators in those nodes become unavailable
for other applications because, in order to use them, it is required to launch an application in
those nodes. However, this is not possible because that application would require at least one
available CPU core but all the CPU cores have been allocated to the non-accelerated application

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BENEFITS OF THE rCUDA REMOTE GPU VIRTUALIZATION FRAMEWORK 11

Interconnection Network

Network

GPU

P
C

Ie

CPU

CPU RAM

RAM

Network

GPU

P
C

Ie

CPU

CPU RAM

RAM

Network

GPU

P
C

Ie

CPU

CPU RAM

RAM

Network

GPU

P
C

Ie

CPU

CPU RAM

RAM

node nnode 2 node 3node 1

Figure 8. GPUs in nodes 1 and 2 are not available because all the CPU cores at those nodes are busy with
the execution of non-accelerated applications.

and therefore the job scheduler will not forward any application to that node. This condition is
depicted in Figure 8, where the GPUs in nodes 1 and 2 of the cluster are not available because all
the CPU cores at those nodes are busy with the execution of non-accelerated applications. Notice
that these blocked GPUs do not only cause a temporal reduction on the overall computing power
of the cluster but they still consume some amount of energy. For instance, the NVIDIA Tesla K20
GPU consumes 25W during the idle state. In a similar way, the NVIDIA Tesla K40 GPU wastes
20W while in this condition.

The remote GPU virtualization mechanism may be useful in the previous scenarios, as shown
in Figure 9. When non-accelerated applications block the use of the GPUs in one or several nodes
of the cluster, frameworks such as rCUDA may allow to use the blocked GPUs by allocating them
to applications being executed in other nodes of the cluster. In this way, the free CPU cores that
were missing in the previous scenarios will now be located in other nodes. The net result is that, in
addition to increase overall CPU utilization, GPU utilization is also increased. On the other hand,
remember that the rCUDA framework makes use of the rCUDA server in order to provide access
to remote GPUs. This server, which is run as a daemon, must be executed in one of the CPU cores
of the node owning the GPU. Given that in the scenarios considered above all the CPU cores in the
nodes with blocked GPUs are being used for the execution of the non-accelerated application, one
may wonder whether the execution of the rCUDA server would introduce an important overhead,
which in turn would penalize the execution time of the non-accelerated application. Nevertheless,

Interconnection Network

Network

P
C

Ie

CPU

CPU RAM

RAM

Network

P
C

Ie

CPU

CPU RAM

RAM

Network

P
C

Ie

CPU

CPU RAM

RAM

Network

P
C

Ie

CPU

CPU RAM

RAM

node nnode 2 node 3node 1

GPU GPU GPU GPU

Figure 9. The remote GPU virtualization mechanism allows GPUs in nodes with busy CPU cores to be used
by applications being executed in other nodes of the cluster.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 F. SILLA ET AL.

such an analysis is beyond the scope of this paper and, additionally, has already been addressed in
[14].

Benefit #3: Increased Cluster Throughput

When the remote GPU virtualization mechanism is used in a cluster, GPUs can be concurrently
shared among several applications as far as there are enough memory resources available in
the GPUs for the applications being executed. Additionally, given that a GPU can be used by
applications being executed in a node other than the one where the GPU is installed, when all
the CPU cores in the node owning the GPU are busy with a non-accelerated application, the
GPU can still be used from another cluster node, as described in the previous Benefit #2. These
features contribute to a higher GPU utilization, what translates into an increased cluster throughput
(measured in jobs per time unit) and a reduced energy consumption.

In order to quantify the benefits of these features, in this subsection we study the impact that using
the remote GPU virtualization mechanism has on the performance of a small cluster. To that end,
we have executed several workloads in the cluster by submitting a series of randomly selected jobs
to the Slurm queues. After job submission, several parameters have been measured, such as total
execution time of the workloads, energy required to execute them, and GPU utilization. We have
considered two different scenarios for executing the workloads. In the first one, the cluster uses
CUDA and therefore applications can only use those GPUs installed in the same node where the
application is being executed. In this scenario, an unmodified version of Slurm has been used. In the
second scenario we have made use of rCUDA and therefore an application being executed in a given
node can use any of the GPUs available in the cluster. Moreover, we have modified Slurm [20] so
that it is possible to schedule the use of remote GPUs. These two scenarios will allow us to compare
the performance of a cluster using CUDA with that of a cluster using rCUDA. A 16-node cluster
has been used for executing the workloads. The characteristics of the nodes are the same as the ones
mentioned before (two Xeon E5-2620 v2 sockets with one NVIDIA Tesla K20 GPU and one FDR
InfiniBand adapter). One additional node (the 17th node) has been leveraged in order to execute the
Slurm controller daemon responsible for scheduling jobs (the slurmctld process).

Several workloads have been considered in order to provide a more representative range of
results. The workloads are composed of the following applications (see Table I): GPU-BLAST [21],
LAMMPS [22], mCUDA-MEME [23], GROMACS [24], BarraCUDA [25], MUMmerGPU [26],
GPU-LIBSVM [27], and NAMD [28]. They have been selected from the list of NVIDIA’s Popular
GPU-Accelerated Applications Catalog [29] because of their different characteristics. The versions
of NAMD and GROMACS used in this study do not make use of GPUs and therefore they are
intended to contribute to a higher degree of heterogeneity of the workloads.

Table I provides information about the applications used in this study, such as the exact execution
configuration used for each of the applications, showing the amount of processes and threads used
for each of them. It can be seen that LAMMPS, mCUDA-MEME, GROMACS, and NAMD are
MPI applications that will spread across several nodes in the cluster. On the contrary, the other four
applications will execute in a single node. Additionally, some of the applications also make use of
threads. For instance, it can be seen in the table that the GPU-Blast application uses a single process
composed of 6 threads. During execution, each of these threads will use a different CPU core. In
a similar way, the NAMD application will be distributed across 4 different nodes of the cluster

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BENEFITS OF THE rCUDA REMOTE GPU VIRTUALIZATION FRAMEWORK 13

Table I. Configuration details for each of the applications used in the workloads employed to test cluster
performance.

Execution Memory
Application Configuration time (s) per GPU
GPU-Blast 1 process with 6 threads in 1 node 21 1599 MB
LAMMPS 4 single-thread processes in 4 different nodes 15 876 MB
mCUDA-MEME 4 single-thread processes in 4 different nodes 165 151 MB
GROMACS 2 processes with 12 threads each one in 2 nodes 167 –
BarraCUDA 1 single-thread process in 1 node 763 3319 MB
MUMmerGPU 1 single-thread process in 1 node 353 2104 MB
GPU-LIBSVM 1 single-thread process in 1 node 343 145 MB
NAMD 4 processes with 12 threads each one in 4 nodes 241 –

(4 processes) and 12 threads will be launched at each node. Therefore, the NAMD application will
make use of 4 entire nodes. In a similar way, the GROMACS application will keep busy two entire
nodes while being executed. Furthermore, as both the NAMD and GROMACS applications do not
make use of GPUs, the concern mentioned in the previous Benefit#2 about the use of the accelerators
will appear.

Table I also shows the execution time for each application, which ranges from 15 up to 763
seconds for LAMMPS and BarraCUDA, respectively. In this regard, applications can be classified
according to their execution time. For instance, GPU-Blast, LAMMPS, mCUDA-MEME, and
GROMACS require less than 170 seconds to complete execution (they are “short” applications)
whereas BarraCUDA, MUMmerGPU, GPU-LIBSVM, and NAMD require more than 240 seconds
to be executed (“long” applications).

In addition to execution time, Table I also shows the GPU memory required by each application.
For those applications composed of several processes, the amount of GPU memory depicted in
Table I refers to the individual needs of each particular process. Notice that the amount of GPU
memory is not specified for the GROMACS and NAMD applications because we are using non-
accelerated versions of these applications. The reason for this choice is simply to increase the
heterogeneity degree of the workloads by using some CPU-only applications, as it could be the
case in many data centers.

In summary, the eight applications used in this study present different characteristics, not only
regarding the amount of processes and threads used by each of them and their execution time but
they also present different GPU usage patterns, what includes both memory copies to/from GPUs
and also kernel executions. Therefore, although the set of applications considered is finite, it may
provide a representative sample of a workload typically found in current data centers. Actually, the
set of applications in Table I could be considered from two different points of view. In the first one,
the exact computations performed by each application would receive the main focus. In this point
of view, some applications address similar problems, like LAMMPS, GROMACS, and NAMD.
However, in the second point of view, the exact problem addressed by each application is not the
focus but applications are seen as processes that keep CPUs and GPUs busy during some amount
of time and require some amount of memory. Now the focus is the amount of resources required by

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 F. SILLA ET AL.

Table II. Slurm launching parameters

Application Launch with CUDA Launch with rCUDA
GPU-Blast -N1 -n1 -c6 –gres=gpu:1 -n1 -c6 –gres=rgpu:1:1599M
LAMMPS -N4 -n4 -c1 –gres=gpu:1 -n4 -c1 –gres=rgpu:4:876M
mCUDA-MEME -N4 -n4 -c1 –gres=gpu:1 -n4 -c1 –gres=rgpu:4:151M
GROMACS -N2 -n2 -c12 -N2 -n2 -c12
BarraCUDA -N1 -n1 -c1 –gres=gpu:1 -n1 -c1 –gres=rgpu:1:3319M
MUMmerGPU -N1 -n1 -c1 –gres=gpu:1 -n1 -c1 –gres=rgpu:1:2104M
GPU-LIBSVM -N1 -n1 -c1 –gres=gpu:1 -n1 -c1 –gres=rgpu:1:145M
NAMD -N4 -n48 -c1 -N4 -n48 -c1

each application and the time that those resources are kept busy. From this second perspective, the
set of applications in Table I becomes even more representative.

Table II displays the Slurm parameters used for launching each of the applications. The use of real
and virtual GPUs has been considered in the table. In the first case, CUDA will be used (column
labeled “Launch with CUDA”). In the second case, remote GPUs can be shared among several
applications. To that end, the amount of memory required at each GPU must be specified in the
submission command, as shown in the column labeled as “Launch with rCUDA”. On the other
hand, it can be seen by comparing the parameters in the two columns that when CUDA is used it is
required that MPI applications are mapped to different nodes (parameter “-Ni” where i is the amount
of different nodes requested) whereas this requirement is removed when rCUDA is employed.

The previous applications have been combined in order to create three different workloads as
shown in Table III. Workload labeled as “Set 1” is composed of 400 instances randomly selected
from applications GPU-Blast, LAMMPS, mCUDA-MEME, and GROMACS. The exact amount
of instances for each application is shown in the table. Additionally, the exact sequence of the
applications within the workload is also randomly set. In a similar way, workload labeled as “Set 2”
is composed of 400 instances of applications BarraCUDA, MUMmerGPU, GPU-LIBSVM, and
NAMD. Finally, a third workload, referred to as “Set 1+2”, has been created with instances from all
the applications.

Table III. Workload composition

Workload
Application Set 1 Set 2 Set 1+2
GPU-Blast 112 - 57
LAMMPS 88 - 52
mCUDA-MEME 99 - 55
GROMACS 101 - 47
BarraCUDA - 112 51
MUMmerGPU - 88 52
GPU-LIBSVM - 99 37
NAMD - 101 49
Total 400 400 400

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BENEFITS OF THE rCUDA REMOTE GPU VIRTUALIZATION FRAMEWORK 15

(a) Total execution time of the workloads.

(b) Average GPU utilization.

(c) Total energy consumed during the execution of the
workloads.

Figure 10. Performance results from the 16-node 16-GPU cluster.

Figure 10 shows the performance results. Remember that a small cluster composed of 16 nodes
with one GPU at each node is being used. The figure shows, for each of the workloads depicted
in Table III, the performance when CUDA is used along with the original Slurm job scheduler
(results labeled as “CUDA”) as well as the performance when rCUDA is used in combination with
the modified version of Slurm (label “rCUDA”). Figure 10(a) shows total execution time for each
of the workloads. Figure 10(b) depicts the averaged GPU utilization for all the 16 GPUs in the
cluster. Data for GPU utilization has been gathered by polling each of the GPUs in the cluster once
every second and afterwards averaging all the samples after completing workload execution. An
in-house Python script based on the pyNVML library was used for polling the GPUs. In a similar
way, Figure 10(c) shows total energy required for completing workload execution. Energy has been
measured by polling once every second the power distribution units (PDUs) present in the cluster.
Used PDU units are APC AP8653 PDUs, which provide individual energy measurements for each
of the servers connected to them. After workload completion, the energy required by all servers was
aggregated to provide the measurements in Figure 10(c).

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16 F. SILLA ET AL.

As can be seen in Figure 10(a), workload “Set 1” presents the smallest execution time, given that
it is composed of the shortest applications. Furthermore, using rCUDA reduces execution time for
the three workloads. In this regard, execution time is reduced by 48%, 37%, and 27% for workloads
“Set 1”, “Set 2”, and “Set 1+2”, respectively. Regarding GPU utilization, Figure 10(b) shows that the
use of remote GPUs helps to increase overall GPU utilization. Actually, when rCUDA is used with
“Set 1” and “Set 1+2”, average GPU utilization is doubled with respect to the use of CUDA. Finally,
total energy consumption is reduced accordingly, as shown in Figure 10(c), by 40%, 25%, and 15%
for workloads “Set 1”, “Set 2”, and “Set 1+2”, respectively. These results about reducing energy
are very important given that energy consumption is an important concern in current computing
facilities and will be key in future exascale systems.

Several are the reasons for the benefits obtained when GPUs are shared across the cluster. First,
as already mentioned, the execution of the non-accelerated applications makes that GPUs in the
nodes executing them remain idle when CUDA is used. This is the case for the GROMACS
and NAMD applications, which span over 2 and 4 nodes, respectively, hindering the use of the
GPUs at those nodes. On the contrary, when rCUDA is leveraged, these GPUs can be used by
applications being executed in other nodes of the cluster. Notice that this remote usage of GPUs
belonging to nodes with busy CPUs will be more frequent as cluster size increases because more
GPUs will be blocked by non-accelerated applications (also depending on the exact workload).
Another example is the execution of LAMMPS and mCUDA-MEME, which require 4 nodes with
one GPU. While these applications are being executed with CUDA, those 4 nodes cannot be
used by any other application from Table I: on the one hand, the other accelerated applications
cannot access the GPUs in those nodes because they are busy and, on the other hand, the non-
GPU applications (GROMACS and NAMD) cannot use those nodes because they require all the
CPU cores and LAMMPS and mCUDA-MEME already took one core. However, when GPUs
are shared among several applications, GPUs assigned to LAMMPS and mCUDA-MEME can
concurrently be assigned to other applications that will run in any available CPU in the cluster,
thus increasing overall throughput. This concurrent usage of the GPUs brings to a second cause for
the improvements shown in Figure 10, as explained next.

The second reason for the improvements shown in Figure 10 is related to the usage that
applications make of GPUs. As Table I showed, some applications do not completely exhaust GPU
memory resources. For instance, applications mCUDA-MEME and GPU-LIBSVM only use about
3% of the memory present in the NVIDIA Tesla K20 GPU. However, the original version of Slurm
(combined with CUDA) will allocate the entire GPU for executing each of these applications, thus
causing that almost 100% of the GPU memory is wasted during application execution. This concern
is also present for other applications in Table I. Moreover, if NVIDIA Tesla K40 GPUs were used
instead of the NVIDIA Tesla K20 devices employed in this study, then this memory underutilization
would be worse because the K40 model features 12 GB of memory. On the contrary, when rCUDA
is used, GPUs can be shared among several applications provided that there is enough memory for
all of them. Obviously, GPU cores will have to be multiplexed among all those applications, what
will cause that all of them execute slower. In this regard, Figure 11 presents the execution times
for the GPU-accelerated applications in Table I when several instances of the same application

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BENEFITS OF THE rCUDA REMOTE GPU VIRTUALIZATION FRAMEWORK 17

0

0.5

1

1.5

2

N
o

rm
al

iz
e

d
Ex

e
cu

ti
o

n
 T

im
e 1 Instance

2 Instances
4 Instances

Figure 11. Normalized execution time when several concurrent instances of the same application are
executed with CUDA.

are concurrently executed in a GPU†. Executions in Figure 11 have been manually constrained
to a single node using CUDA without the use of Slurm. For some of the applications only two
concurrent instances were executed due to their larger memory requirements. In a similar way,
BarraCUDA does not allow the concurrent execution of other instances due to its high memory
requirements. As shown, executing several instances of the same application reports a speed up
for all of them: LAMMPS achieves the smallest one whereas GPU-LIBSVM obtains significant
benefits. In summary, sharing a GPU among several applications reduces total execution time. This
reduction makes that combining rCUDA with the modified version of Slurm results in important
reductions in the time required to complete workload execution.

Another possible point of view related to sharing GPUs among applications is that all the
applications sharing the GPU execute slower because they have to share the GPU cores. However,
despite the slower execution of each individual application, the entire workload is completed earlier,
as shown in Figure 10. This means that (1) the time spent by applications waiting in the Slurm
queues is reduced and (2) the execution of each individual application is completed earlier. As a
consequence, data center users increase their satisfaction about the service received.

Benefit #4: Cheaper Cluster Upgrade

The use of GPUs in a cluster usually puts several burdens on the physical configuration of the nodes
in the cluster. For instance, nodes owning a GPU need to include larger power supplies able to
provide the energy required by the accelerators. Also, GPUs are not small devices and therefore they
require a non-negligible amount of space in the nodes where they are installed. These requirements
make that installing GPUs in a cluster which did not initially include them is sometimes expensive
(power supplies need to be upgraded) or simply impossible (nodes do not have enough physical
space for the GPUs). However, the workload in some data centers may evolve towards the use of
GPUs. At that point, the concern is how to address the introduction of GPUs in a computing facility
that did not include accelerators at acquisition time.

†It is also possible to analyze concurrent executions when the applications concurrently using the GPU are different.
However, using several instances of the same application generates a higher pressure on the system because all the
instances will try to synchronously perform the same operations.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18 F. SILLA ET AL.

Table IV. Composition of two additional workloads

Workload
Application WL 1 WL 2
GPU-Blast 41 48
LAMMPS short 39 46
LAMMPS long 2p 20 10
LAMMPS long 4p 20 10
mCUDA-MEME short 39 46
mCUDA-MEME long 2p 20 10
mCUDA-MEME long 4p 20 10
GROMACS 40 40
BarraCUDA 40 47
MUMmerGPU 41 47
GPU-LIBSVM 40 46
NAMD 40 40
Total 400 400

One possible solution to the concern above is acquiring some amount of servers populated with
GPUs and divert the execution of accelerated applications to those nodes. The Slurm workload
manager would automatically take care of dispatching the GPU-accelerated applications to the new
servers. However, although this approach is feasible, it presents the limitation that GPU jobs will
probably have to wait for long until one of the GPU-enabled servers is available even though GPU
utilization is usually low. Another concern is that accelerated MPI applications will only be able
to span to as many nodes as GPU-enabled servers were acquired. Given these concerns, a better
approach would be to acquire some amount of servers populated with GPUs and use rCUDA to
execute accelerated applications at any of the nodes in the cluster while using the GPUs in the new
servers. This solution would not only increase overall GPU utilization with respect to the use of
CUDA in the previous scenario but would also allow MPI applications to span to as many nodes
as required because MPI processes would be able to remotely access GPUs thanks to rCUDA. In
summary, the remote GPU virtualization mechanism allows clusters which did not initially include
GPUs to be easily and cheaply updated for using GPUs by attaching to them one or more computers
containing GPUs. In this way, the original nodes will make use of the GPUs installed in the new
nodes, which will become GPU servers. The modified version of Slurm would be used to schedule
the use of the GPUs in the new servers.

In order to analyze the performance of these two possible solutions, we have substituted one
of the nodes in the testbed cluster by a node containing four GPUs. This node is based on the
Supermicro SYS7047GR-TRF server, populated with four NVIDIA Tesla K20 GPUs and one FDR
InfiniBand network adapter. Furthermore, in order to additionally consider the use of parallel shared-
memory applications in order to increase the heterogeneity of the workloads, we have modified the
workloads used in the previous experiments by modeling shared-memory applications with two and
four threads that require two and four GPUs, respectively. To that end, two different flavors of the
LAMMPS and mCUDA-MEME applications have been used, as shown in Table IV: (1) “LAMMPS
long 2p” and “mCUDA-MEME long 2p” consist of two single-threaded processes that are forced to

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BENEFITS OF THE rCUDA REMOTE GPU VIRTUALIZATION FRAMEWORK 19

(a) Total execution time of the workloads.

(b) Average GPU utilization.

(c) Total energy consumed during the execution
of the workloads.

Figure 12. Performance results when a server with 4 GPUs is attached to a 15-node cluster without GPUs.

be executed in the same node. These instances of the applications will model the use of two-thread
shared-memory applications, (2) “LAMMPS long 4p” and “mCUDA-MEME long 4p” consist of
four single-threaded processes that will be forced to execute in the same node. They will model
the use of four-thread shared-memory applications. One additional flavor of these applications
will model single-thread shared-memory applications. This additional flavor is composed by the
“LAMMPS short” and “mCUDA-MEME short” cases shown in Table IV which make use of one
single-threaded process. Furthermore, small input data sets are used for the “LAMMPS short” and
“mCUDA-MEME short” cases whereas the multi-threaded flavors use a large input data set in order
to lengthen their execution time.

Figure 12 shows the performance results when a server with four GPUs has been attached to a
cluster without GPUs. The original cluster is composed of 15 nodes (same node configuration as in
the previous subsections, but GPUs have been removed). Results show that decoupling GPUs from
nodes with rCUDA allows applications to make a much more flexible usage of the resources in the
cluster and therefore execution time is reduced as well as energy consumption.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20 F. SILLA ET AL.

Xen Hypervisor

Host HW

Dom0 DomU1 DomU2 DomUn

Control Domain

Toolstack

Control Domain

BR0

vETH vETH vETH

Scheduler, MMU

ETH0

P
C

I P
T

GPU

GPU

Figure 13. Typical configuration of a Xen-based system showing how the Ethernet adapter and the GPU
available in the host are provided to VMs.

Benefit #5: Virtual Machines Can Easily Access GPUs

Providing CUDA acceleration to virtual machines (VMs) is usually accomplished by making use of
the PCI passthrough technique [30] [31]. This mechanism is based on the use of the virtualization
extensions widely available in current high performance computing (HPC) servers, which allow
assigning a GPU, in an exclusive way, to one of the VMs running at the host. Moreover, when
making use of this mechanism, the performance attained by accelerators is very close to that
obtained when using the GPU in a native domain. Figure 13 depicts a typical VM deployment
based on the Xen hypervisor, showing a computer hosting several VMs. It can be seen in the figure
that the host hardware comprises, among other devices, an Ethernet network adapter and a GPU. On
top of the hardware, a thin software layer (the Xen hypervisor) is installed. Above the hypervisor we
can find the VMs (Dom0 and DomUi). Notice that the Dom0 VM is a predefined VM using the Xen
Linux kernel and behaves as the configuration and management interface to the hypervisor. The rest
of VMs (from DomU1 to DomUn) are unprivileged VMs that can be provided to users. Figure 13
shows how the Ethernet adapter and the GPU are provided to VMs. On the one hand, the Ethernet
adapter is owned by the Dom0 VM, which provides connectivity to the rest of VMs by using a
software Ethernet switch, thus creating a virtual network among the VMs. On the other hand, the
GPU is assigned to one of the VMs by making use of the PCI passthrough (PCI PT) mechanism.
For other hypervisors, such as the KVM one, the overall deployment is similar although the exact
configuration details differ. The reader may refer to [32] for a complete discussion on the KVM
case.

Unfortunately, the PCI passthrough approach assigns GPUs to VMs in an exclusive way and,
therefore, it does not allow simultaneously sharing GPUs among the several VMs being concurrently
executed at the same host. In the case of Figure 13, VM DomU1 is the only one that may access the
GPU. The rest of VMs hosted in that computer cannot make use of the accelerator until it is detached
from DomU1. Moreover, it is important to remark that at that point only one of the other VMs will be
able to use the GPU. It is noteworthy the small flexibility that this configuration provides regarding
the use of GPUs, given that only one of the VMs can access the GPU.

In order to address the concern about the exclusive assignment nature of the PCI passthrough
mechanism, there have been several attempts, like the one proposed in [33], which dynamically
changes on demand the GPUs assigned to VMs. However, these techniques present a high time
overhead given that, in the best case, two seconds are required to change the assignment between
GPUs and VMs. This issue constrains the use of GPUs in the cloud computing domain.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BENEFITS OF THE rCUDA REMOTE GPU VIRTUALIZATION FRAMEWORK 21

Xen Hypervisor

Host HW

Dom0 DomU1 DomU2 DomUn

ControlADomain

Toolstack

ControlADomain

BR0

vETH vETH vETH

Scheduler,AMMU

ETH0

P
C

I P
T

GPU

rCUDAAserver

vGPU vGPU

rCUDAAclient rCUDAAclient

GPU

TCP TCP TCP

(a) Testbed using the virtual network within Xen.

XenWHypervisor

Dom0 DomU1 DomU2 DomUn

ControlGDomain

Toolstack

ControlGDomain

BR0

vETH vETH vETH

Scheduler,GMMU

P
C

IWP
T

IB

rCUDAGclientGIB

IB IB

rCUDAGclientGIB rCUDAGclientGIB

vGPU vGPU vGPU

P
C

IWP
T

P
C

IWP
T

InfiniBandWFabric

rCUDAGserverGIB

GPU

HostWHW

ETH0 IBWPF IBWVF IBWVFIBWVFIBWVF

(b) Testbed using InfiniBand to access a remote GPU.

Figure 14. Testbeds used in the experiments presented in this subsection, which make use of rCUDA to
provide GPU access to VMs. (a) In a single-node testbed, VMs employ the virtual network to access the
rCUDA server by means of the TCP/IP protocol stack. (b) When an InfiniBand fabric is available, VMs use

such interconnect to access a remote rCUDA server.

With the remote GPU virtualization mechanism it is possible to concurrently assign a given GPU
to several VMs, so that the applications being executed inside them can share the GPU resources.
Two different scenarios can be considered: one where VMs access a GPU located at the same host
executing the VMs and another one where the InfiniBand fabric is already present in the cluster and
therefore VMs access a GPU installed in another cluster node. Figure 14(a) depicts the first scenario
whereas Figure 14(b) presents the second one.

In the first scenario, one of the VMs will have exclusive access to the GPU by making use of the
PCI passthrough mechanism. This VM will grant GPU access to the other VMs by using the rCUDA
middleware: the rCUDA server will be executed in the VM owning the GPU whereas the other
VMs will use the rCUDA client to access the GPU across the Xen virtual network. TCP/IP based
communications will be used in this scenario to communicate the rCUDA clients with the rCUDA
server. Accordingly, VMs running the rCUDA client will have one or several virtual instances
(vGPU) of the real GPU, which is physically connected to the VM DomU1. Moreover, the VM
DomU1 will be able to use either the real GPU or its virtual instances. Notice that the rCUDA
server can only be installed in the DomUi VMs given that NVIDIA does not provide support for the
Xen Linux kernel used in the Dom0 VM.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

22 F. SILLA ET AL.

Regarding the second scenario, shown in Figure 14(b), which uses the InfiniBand fabric already
present in the cluster to access a GPU in another node, the firmware in the InfiniBand adapter
must be changed, according to the directions in Mellanox User’s Guide [34], in order to provide
several virtual instances (virtual functions, VFs) of the InfiniBand adapter, in addition to the real
instance (physical function, PF). Each of these virtual functions will be provided, in an exclusive
way, to a Xen VM by using the PCI passthrough mechanism. Moreover, given that an InfiniBand
network is available, communication between the rCUDA clients in the VMs and the remote rCUDA
server will be based on the use of the high performance InfiniBand Verbs API. Notice that in the
later experiments involving the InfiniBand fabric, the remote GPU server is executed in a remote
computer which has not been virtualized and also whose InfiniBand network adapter makes use of
the original firmware which does not provide virtualization features. Similarly to the scenario shown
in Figure 14(a), VMs will have one or several virtual instances of the real GPU, which is physically
located in the remote node. Finally, it is important to remark that, although in this discussion we
only consider sharing a single GPU, the rCUDA middleware also allows sharing multiple GPUs.

The testbed used in this subsection to explore the use of the remote GPU virtualization inside
Xen VMs is composed of three 1027GR-TRF Supermicro nodes as the ones mentioned before.
One of them will host the Xen VMs whereas the other two nodes will not make use of VMs.
In one of the native domains we will execute the rCUDA server as shown in Figure 14(b) and
the other native domain will be used for several comparison purposes. Regarding the software
configuration, SUSE Linux Enterprise Server 11 SP3 (x86 64) was used in the three servers, with
kernel version 3.0.76-0.11. Additionally, in the node hosting the VMs, Xen version 4.2.2 was used.
The same kernel version was used in the Dom0 and all the DomU domains, although for Dom0 the
kernel was recompiled in order to activate the Xen options. Finally, VMs were configured to have
4 cores and 12 GB of RAM memory. The applications used in this analysis are LAMMPS [22],
CUDA-MEME [23], CUDASW++ [35], and GPU-BLAST [21], being all of them listed in the
NVIDIA GPU-Accelerated Applications Catalog [29]. Figure 15 shows the performance of these
four applications when executed in the following scenarios:

• Execution with CUDA with a local GPU in a native domain. Results for this scenario are
referred to as “CUDA non-VM”.

• When CUDA is used in DomU1 by using the PCI passthrough mechanism (rCUDA is not
used), the label “CUDA VM PT” is used. In this case, the Xen virtual machine will access the
GPU in the host by making use of PCI passthrough.

• The label “rCUDA non-VM” refers to the performance of the rCUDA middleware when used
between native domains (no Xen VM involved) making use of the InfiniBand network.

• When Xen VMs are involved in the tests, the performance of applications using rCUDA in
the scenario depicted in Figure 14(b) is denoted by the label “rCUDA VM IB”.

• When using rCUDA in the scenario shown in Figure 14(a), the performance of applications
will be labeled as “rCUDA VM Local”.

Every experiment has been performed 10 times, so that Figure 15 shows the averaged results.
Furthermore, the plots in Figure 15 also include a breakdown of the execution time, which is split
into three different components: (1) time required to transfer data to/from the GPU (“GPU Data
Transfer”), (2) time spent making computations in the GPU (“GPU Computation”), and (3) time

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BENEFITS OF THE rCUDA REMOTE GPU VIRTUALIZATION FRAMEWORK 23

(a) LAMMPS application. (b) CUDA-MEME application.

(c) CUDASW++ application. (d) GPU-BLAST application.

Figure 15. Execution time of several applications when executed in different local and remote scenarios.
Execution time is broken down into three components: GPU computation, GPU data transfer, and Other.

spent in tasks not involving the GPU, such as CPU computations and I/O (“Other”). Execution
times presented in Figure 15 show that the four applications have a similar behavior, spending a
very small portion of time for transferring data to the GPU, and spending the rest of the time making
computations either in the CPU or in the GPU. More specifically, in the case of GPU-BLAST and
CUDA-MEME applications, they present periods of time in which the GPU is not used. On the
contrary, both LAMMPS and CUDASW++ keep the GPU busy for almost all the execution time.

Figure 15 also shows the average overhead with respect to executions with CUDA in a native
domain for the four applications. It is shown that rCUDA overhead in LAMMPS, CUDASW++
and GPU-BLAST applications is mainly due to data transfers between main memory and GPU
memory. Additionally to the overhead of transfers, the CUDA-MEME application also presents a
performance decrease when using a VM that makes use of the PCI passthrough technique. This
additional overhead is not due to the increase of GPU data transfer time, but to the time spent in
other tasks by the PCI passthrough technique.

In general, the fact that the overhead of rCUDA is mainly due to data transfers between
main memory and GPU memory was expected because once data is in the GPU memory, GPU
computations require the same amount of time to be completed as in a native environment. In
average, in the experiments, the overhead of running GPU-accelerated applications in a Xen VM

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

24 F. SILLA ET AL.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

GPU utilization (%)
20 40 60 80 1000

(a) GPU utilization before consoli-
dating the rCUDA servers. All the
nodes in the cluster are switched
on.

1

3

7

9

12
13
14

GPU utilization (%)
20 40 60 80 1000

off

off
off
off

off

off
off

(b) Cluster state after consolidating
the rCUDA servers. Seven nodes
have been switched off.

Figure 16. Usage of rCUDA server migration in a cluster in order to consolidate GPU jobs and reduce energy.

with respect to a native domain is 2%, 2.8%, and 5.8% when using PCI passthrough, rCUDA over
an InfiniBand fabric, and rCUDA over the Xen virtual network, respectively.

Benefit #6: GPU Migration: Towards Server Consolidation

Maximizing resource utilization is one of the goals pursued when running a data center. By
maximizing the utilization of the different resources in the computing facility a larger revenue can
be achieved, thus causing a faster amortization of the initial acquisition costs as well as making a
larger profit afterwards.

Resource utilization in data centers evolves over time, depending on the exact workload applied
at every moment. Therefore, at some point in time, the utilization of the GPUs in the cluster may
be similar to that depicted in Figure 16(a). This figure shows a small cluster composed of 14 nodes,
each of them including one GPU. Next to each node, the utilization of its GPU is displayed. It
can be seen that some nodes present a high GPU utilization. For instance, node 9 and node 12 are
using their GPUs at 90% approximately. On the contrary, some other nodes present a very low GPU
utilization, such as node 6 or node 11, whose GPUs are almost not used.

In this scenario where some nodes of the cluster present a very low GPU utilization, it would be
useful to gather the GPU jobs being executed in those nodes into other nodes. That is, it would be
useful to consolidate the GPU jobs into a smaller number of servers, so that those nodes that become
free can be switched off, thus reducing the energy consumption of the data center. Figure 16(b)
depicts this consolidation of GPU jobs, where jobs generating a lower GPU utilization, such as the
ones in nodes 2, 4, 5, 6, 8, 10, and 11 have been migrated to other nodes. After job migration, the
nodes sourcing the movement of jobs have been switched off, thus consuming a negligible amount
of energy.

Carrying out the migration of jobs using GPUs requires to migrate the process being executed
at the CPU as well as the GPU part of the application. Migrating the CPU part of an application
has been achieved in the past by many different frameworks. However, migrating the GPU part of

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BENEFITS OF THE rCUDA REMOTE GPU VIRTUALIZATION FRAMEWORK 25

a CUDA application is much more complex because of two reasons: (1) kernels being executed in
the GPU run asynchronously with the CPU and therefore when migration is triggered, the kernel in
the GPU could be under execution, and (2) the GPU memory allocated to the application, which is
not tracked by the operating system, must be copied to the destination GPU.

Addressing (1) above is easy. Once migration has been triggered, the migration framework could
just execute a synchronization call (such as the cudaDeviceSynchronize function) in order to
wait for the completion of the kernels being executed in the GPU. However, addressing (2) is not so
easy given that the map of memory used by the application at the GPU is not included in the system
tables stored by the operating system for this process. Therefore, unless some additional support is
implemented, it is not possible to retrieve which are the memory regions used by the application at
the GPU.

In order to implement this additional support, the GPU memory management calls executed by
the application (such as the cudaMalloc and cudaFree functions) could be intercepted. By
intercepting them, it is possible to gather the required information for retrieving the memory regions
used at the GPU. This is the usual approach followed by other frameworks that provide support for
migrating applications that make use of GPUs, such as CheCUDA‡ [36].

Nevertheless, although obtaining the required information about memory regions used at the
GPU makes it possible to migrate CUDA applications from one node to another, it is still possible
to make this migration even more effective when the remote GPU virtualization mechanism is
being leveraged. In this regard, when remote GPU virtualization is not used, migrating a CUDA
application to another cluster node means that the destination node has (1) enough CPU cores
available for the application being migrated, (2) enough main RAM memory for hosting the
application data, and (3) enough GPU memory to hold the data stored at the source GPU. Finding
a target node within the cluster that complies with these three requirements may not be difficult.
However, when the remote GPU virtualization technique is used, another approach could be
followed in order to make the migration process more efficient. This new approach is based on the
fact that the remote GPU virtualization mechanism detaches GPUs from nodes, from a logical point
of view, and therefore the CPU and GPU parts of the application may be migrated independently
from each other to different destination nodes. In this manner, it would not be necessary that the
three requirements described above are satisfied by a given node but these requirements could be
split into two sets: finding a node that satisfies requirements (1) and (2) and finding another node that
complies with requirement (3). The first set of requirements is intended for the migration of the CPU
part of the application whereas the second set is devoted to the GPU part. This new approach would
make it easier to find better node candidates than when the three requirements must be satisfied by
the same node. Furthermore, given that the GPU part of the application was probably running in
a node different from the CPU part, it would even be possible that only one of the parts (CPU or
GPU) needs to be migrated. In this context, selecting whether to migrate the CPU part or the GPU
part of an application would be based on the current cluster status and optimization policies. In any
case, by using the remote GPU virtualization mechanism it would be possible to consolidate both
CPU and GPU servers at the same time that (1) migration is carried out faster because the amount

‡The CheCUDA framework does not provide remote GPU virtualization features as rCUDA does. The CheCUDA
framework is only intended for making it possible to checkpoint applications that use GPUs.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

26 F. SILLA ET AL.

(a) Execution time of a synthetic application. (b) Execution time of the GPU-BLAST application.

Figure 17. Evolution of application execution time when rCUDA is leveraged for executing the applications
using a remote GPU and an increasing amount of migrations are forced during application execution.

of data to be moved is probably smaller (likely only one of the CPU or GPU parts is migrated), and
(2) given that the target node only has to comply with a subset of the conditions above, finding a
better destination candidate should be much easier than in the original approach.

The rCUDA middleware supports the migration of the GPU part of CUDA applications. In this
regard, with the rCUDA framework it is possible to select one of the multiple jobs using a given GPU
and move it to another GPU in the same or in other node of the cluster. This process is transparent
to the application using the GPU, which is not aware of the migration.

Figure 17 shows the evolution of the execution time of two applications when up to 5 migrations
are forced during their execution. Only the GPU part of the applications is migrated. Figure 17(a)
depicts such evolution for a synthetic application whereas Figure 17(b) shows the evolution for
the GPU-BLAST [21] application. Several nodes are used in these experiments. The characteristics
of these nodes are the same as the ones mentioned before: two Xeon E5-2620 v2 sockets with
one NVIDIA Tesla K20 GPU and one FDR InfiniBand adapter. EDR InfiniBand has also been
considered. Given that source and destination GPUs are located at different cluster nodes, several
interconnects and communication protocols are considered: RDMA over EDR InfiniBand, RDMA
over FDR InfiniBand, TCP/IP over InfiniBand, and TCP/IP over 1 Gb Ethernet. On the other hand,
label “Reference” in Figure 17 refers to the execution time of the applications when CUDA is used
(rCUDA is not used for executing the applications in this case).

The synthetic application used in Figure 17(a) performs the multiplication of a vector by a scalar.
To that end, it initially allocates GPU memory for 1000 randomly-sized arrays and fills them by
copying data from host memory to GPU memory. Then the application launches the necessary
kernels to apply the multiplication to the 1000 vectors and finally results are copied back from GPU
to host memory and GPU memory is then released. The aggregated volume of memory used at the
GPU for the 1000 arrays is 700 MB. When migration is triggered, the rCUDA framework performs
1000 allocations of GPU memory at the destination GPU, performs 1000 memory copies between
source and destination GPUs, and then carries out 1000 memory releases at the source GPU, which
is freed and thus no longer related to the execution of the application. It can be seen in the figure
that, as expected, the use of RDMA over InfiniBand provides the smallest migration overhead given
the superior features of this communication mechanism.

Figure 17(b) shows a similar study for the GPU-BLAST application. In this case, the application
holds 1300 MB of data in 9 regions of GPU memory. Therefore, every time the application is
migrated, the rCUDA framework must allocate 9 memory regions in the destination GPU, must

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BENEFITS OF THE rCUDA REMOTE GPU VIRTUALIZATION FRAMEWORK 27

copy the 9 regions from source to destination GPUs, and finally must release the 9 regions at the
source GPU. It can be seen that migration overhead is negligible when RDMA is used.

5. CONCLUSIONS

In this paper it has been shown that the use of the remote GPU virtualization technique provides
several benefits to computing facilities. For instance, the improvements attained in execution time
for a batch of jobs have been quantified. The associated reduction in energy consumption has also
been presented. These features may be interesting in the context of exascale computing facilities
given that one of the walls in this area is the hard power consumption limitation.

Other benefits of this novel virtualization mechanism have also been explored. Perhaps the most
significant one may be GPU migration. In this manner, we have shown that migrating GPU jobs
from one GPU server to another is quite complex to perform in an efficient way when the remote
GPU virtualization mechanism is not being used. On the contrary, GPU job migration is very simple
when the rCUDA technology is used due to the fact that rCUDA intercepts all the CUDA calls and
tracks the state of the memory areas used by the application in the GPU. Migrating GPU jobs would
be an inexpensive and efficient way of consolidating GPU servers, so that as many GPU jobs as
possible are packed together, switching off those GPU servers not required. This would be a means
of further reducing the total energy consumed in exascale computing facilities.

REFERENCES

1. NVIDIA. CUDA C Programming Guide 7.5 2016.
2. Wu H, Diamos G, Sheard T, Aref M, Baxter S, Garland M, Yalamanchili S. Red Fox: An Execution Environment

for Relational Query Processing on GPUs. Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’14, ACM, 2014; 44:44–44:54.

3. Playne DP, Hawick KA. Data parallel three-dimensional cahn-hilliard field equation simulation on GPUs with
CUDA. Proceedings of the International Conference on Parallel and Distributed Processing Techniques and
Applications, PDPTA, 2009.

4. Yamazaki I, Dong T, Solc R, Tomov S, Dongarra J, Schulthess T. Tridiagonalization of a dense symmetric matrix
on multiple GPUs and its application to symmetric eigenvalue problems. Concurrency and Computation: Practice
and Experience 2014; 26(16):2652–2666.

5. Yuancheng Luo D. Canny edge detection on NVIDIA CUDA. Computer Vision and Pattern Recognition Workshops,
2008. CVPRW ’08. IEEE Computer Society Conference on, IEEE, 2008; 1–8.

6. Surkov V. Parallel option pricing with fourier space time-stepping method on graphics processing units. Parallel
Computing 2010; 36(7):372 – 380.

7. Agarwal PK, Hampton S, Poznanovic J, Ramanthan A, Alam SR, Crozier PS. Performance modeling of
microsecond scale biological molecular dynamics simulations on heterogeneous architectures. Concurrency and
Computation: Practice and Experience 2013; 25(10):1356–1375.

8. Yoo AB, Jette MA, Grondona M. SLURM: Simple Linux Utility for Resource Management. Springer Berlin
Heidelberg: Berlin, Heidelberg, 2003; 44–60.

9. Liang TY, Chang YW. GridCuda: A Grid-Enabled CUDA Programming Toolkit. Advanced Information Networking
and Applications (WAINA), 2011 IEEE Workshops of International Conference on, IEEE, 2011; 141–146.

10. Oikawa M, Kawai A, Nomura K, Yasuoka K, Yoshikawa K, Narumi T. DS-CUDA: A Middleware to Use
Many GPUs in the Cloud Environment. Proceedings of the 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, SCC ’12, IEEE Computer Society: Washington, DC, USA, 2012; 1207–1214.

11. Giunta G, Montella R, Agrillo G, Coviello G. A GPGPU Transparent Virtualization Component for High
Performance Computing Clouds. Springer, 2010.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

28 F. SILLA ET AL.

12. Shi L, Chen H, Sun J. vCUDA: GPU accelerated high performance computing in virtual machines. Parallel &
Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, IEEE, 2009; 1–11.

13. Gupta V, Gavrilovska A, Schwan K, Kharche H, Tolia N, Talwar V, Ranganathan P. GViM: GPU-accelerated virtual
machines. Proceedings of the 3rd ACM Workshop on System-level Virtualization for High Performance Computing,
ACM, 2009; 17–24.

14. Peña AJ, Reaño C, Silla F, Mayo R, Quintana-Orti ES, Duato J. A Complete and Efficient CUDA-Sharing Solution
for HPC Clusters. Parallel Computing 12/2014 2014; 40:574–588.

15. CUDA API Reference Manual 7.5. https://developer.nvidia.com/cuda-toolkit 2016.
16. Merritt AM, Gupta V, Verma A, Gavrilovska A, Schwan K. Shadowfax: Scaling in Heterogeneous Cluster

Systems via GPGPU Assemblies. Proceedings of the 5th International Workshop on Virtualization Technologies
in Distributed Computing, VTDC ’11, ACM: New York, NY, USA, 2011; 3–10.

17. Shadowfax II - scalable implementation of GPGPU assemblies. http://keeneland.gatech.edu/

software/keeneland/kidron. Accessed: 2015-05-20.
18. NVIDIA. The NVIDIA GPU Computing SDK Version 5.5 2013.
19. iperf3: A TCP, UDP, and SCTP network bandwidth measurement tool. https://github.com/esnet/

iperf 2016.
20. Iserte S, Castelló A, Mayo R, Quintana-Orti ES, Silla F, Duato J, Reaño C, Prades J. Slurm Support for Remote GPU

Virtualization: Implementation and Performance Study. Computer Architecture and High Performance Computing
(SBAC-PAD), 2014 IEEE 26th International Symposium on, 2014; 318–325.

21. Vouzis PD, Sahinidis NV. GPU-BLAST: Using graphics processors to accelerate protein sequence alignment.
Bioinformatics 2010; .

22. Brown WM, Kohlmeyer A, Plimpton SJ, Tharrington AN. Implementing molecular dynamics on hybrid high
performance computers: Particle-particle particle-mesh. Computer Physics Communications 2012; 183(3):449 –
459.

23. Liu Y, Schmidt B, Liu W, Maskell DL. CUDA-MEME: Accelerating motif discovery in biological sequences using
CUDA-enabled graphics processing units. Pattern Recognition Letters 2010; 31(14):2170 – 2177.

24. Pronk S, Pll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D,
et al.. Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics
2013; 29(7):845–854.

25. Klus P, Lam S, Lyberg D, Cheung M, Pullan G, McFarlane I, Yeo G, Lam B. Barracuda - a fast short read sequence
aligner using graphics processing units. BMC Research Notes 2012; 5(27).

26. Kurtz S, Phillippy A, Delcher A, Smoot M, Shumway M, Antonescu C, Salzberg S. Versatile and open software for
comparing large genomes. Genome Biology 2004; 5(2).

27. Chang CC, Lin CJ. Libsvm: A library for support vector machines. ACM Trans. Intell. Syst. Technol. May 2011;
2(3):27:1–27:27.

28. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kal L, Schulten K. Scalable
molecular dynamics with namd. Journal of Computational Chemistry 2005; 26(16):1781–1802.

29. NVIDIA Popular GPU-Accelerated Applications Catalog. http://www.nvidia.es/content/tesla/
pdf/gpu-accelerated-applications-for-hpc.pdf 2016.

30. Walters JP, Younge AJ, Kang DI, Yao KT, Kang M, Crago SP, Fox GC. GPU-Passthrough Performance: A
Comparison of KVM, Xen, VMWare ESXi, and LXC for CUDA and OpenCL Applications. 7th IEEE International
Conference on Cloud Computing (CLOUD 2014), 2014.

31. Yang CT, Wang HY, Ou WS, Liu YT, Hsu CH. On implementation of GPU virtualization using PCI pass-through.
Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th International Conference on, IEEE, 2012;
711–716.

32. Pérez F, Reaño C, Silla F. Providing CUDA Acceleration to KVM Virtual Machines in InfiniBand Clusters with
rCUDA. Proceedings of the International Conference on Distributed Applications and Interoperable Systems, 2016.

33. Jo H, Jeong J, Lee M, Choi DH. Exploiting GPUs in Virtual Machine for BioCloud. BioMed research international
2013; 2013.

34. Mellanox. Mellanox OFED for Linux User Manual 2015.
35. Liu Y, Wirawan A, Schmidt B. CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling

CPU and GPU SIMD instructions. BMC Bioinformatics 2013; 14(1):1–10.
36. Takizawa H, Sato K, Komatsu K, Kobayashi H. CheCUDA: A Checkpoint/Restart Tool for CUDA Applications.

Proceedings of the 2009 International Conference on Parallel and Distributed Computing, Applications and
Technologies, 2009.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

 https://developer.nvidia.com/cuda-toolkit
http://keeneland.gatech.edu/software/keeneland/kidron
http://keeneland.gatech.edu/software/keeneland/kidron
https://github.com/esnet/iperf
https://github.com/esnet/iperf
http://www.nvidia.es/content/tesla/pdf/gpu-accelerated-applications-for-hpc.pdf
http://www.nvidia.es/content/tesla/pdf/gpu-accelerated-applications-for-hpc.pdf

	1 Introduction
	2 Remote GPU Virtualization
	3 rCUDA: remote CUDA
	4 Benefits of Using Remote GPU Virtualization
	5 Conclusions

