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1) Introduction: What are 2D materials?

Ever since the discovery of graphene in 2004 (Novoselov, 2004), there has been
increasing interest in 2D materials owing to their distinct electronic, photonic
and mechanical properties. So far, graphene is still the most known 2D
material. However, it faces some limitations for this use in applications which
include a band gap, for example. This has triggered research on other 2D
materials. Some 500 2D materials are already expected to be found.

Presently, known 2D materials include:

Graphene — Xenes! (Dirac physics) (Ruijsenaars, 2006)
TMDs (Nature, 2014)
Semiconductors QWs (quantum wells) (Materials, 2017) (Bastard, 1988)

Graphene: properties and applications?

The properties of graphene are well known nowadays:

It has a width of 3,5A

In photonics terms: when the light incides over a graphene layer, itself
absorbs 2,3% of the white light.

Its bandgap is between 0-0,25eV

Experiments Kerr effect3

There are transition metals dichalcogenides (TMDs) that may fills its

gap

Some applications:

It is used on optoelectronic devices (which is challenging, because of its
lack or absence of natural GAP)

On photonics (In spite of the graphene it is probably the best 2D
materials on the photonics field, likewise the scientist must go further
and try to find a better material on this field)

! Xenes (Silicene, Germanene, Stanene, Phosphorene, Borophene, for instance)

*(Virendra Singha, 2011), (Photonics, 2016) (Rosei, 2017)

3 Kerr effect: it is the change of the refraction index when it applies over a material an external electric field. Also called Non-linear
electro-optic effect. (An=AK E?)
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Xenes, semiconductors & TMDs the other familiars 2D of
graphene

What are Xenes?

They are 2D structures of the correspondent 3D material. For instance, Silicon
forms Silicene and this is arranged in a hexagonal way containing a crystalline
atomically thin structure.

The Xenes share with graphene the same Dirac physics.

Semiconductors QWs*

In general a quantum well is a potential well with only discrete energy values.

The classic model used to demonstrate a quantum well is to confine particles,
which were originally free to move in 3D, to 2D, by forcing them to occupy a
planar region. The effects of quantum confinement take place when the
quantum well thickness becomes comparable to the de Broglie wavelength of
the electrons and holes, leading to energy levels called “energy subbands”. As
well the carriers may only have discrete energy values.

Quantum Well

¥
X
—
L

z

Figure 1. Quantum well geometry

The semiconductors utilised here are:

III-V: The famous III-V semiconductors are all those with relation to Gallium,
for instance: GaAs, GaP, GaN and so on.

II-VI: The II-IV semiconductors comprise the compounds containing Zn, Cd,
and Hg as the cations and O, S, Se, and Te as the anions.

Both sort of semiconductors turn into less covalent as it goes down in the
periodic table.

Transition metal dichalcogenides (TMDs)

The TMDs are atomically thin semiconductors with a structure: MX,5

4 (Emmanuel Lhuillier, 2015)



Energy (eV)

It is used as alternative to the absence of natural GAP problems that presents
the graphene. However, detailed understanding of their optical and electronic
behaviour lags behind their use in devices, and only now the effects of charge-
carrier confinement in these 2D structures are being quantified.

With the TMDs it might be possible stack vertically various layers one above
another, to create the so-called: Van der Waals heterostructure. First of all,
you would put a MoSe,, immediately you would introduce an h-BN dielectric,
and finally another layer of MoSe.. The h-BN dielectric is employed as a
support for metal catalyst due to its chemical, thermal, acid-base stability and
high thermal conductance.

To sum up where it is found in the electromagnetic spectrum each kind of
material:

a :
NIR: communications, MIR: thermal infrared, FIR: astronomy, Aircraft communication
night vision goggles military medicine AM radio
: /
Document security, Display, /-"' Microwave oven, satellite communications,
DVD players solid-state lighting radar, cell phone, Bluetooth, etc
/
/
. A } A - A =
Frequency — e N i = \
10" 10" 10' 10" 10" 10" 10" 10" 10° 108 10" 108 10°
(PHz) (THz) (GHz) (MHz)

Ultraviolet rays Visible light Infrared rays Microwaves Radiowaves

hBN MosS, Black phosphorus Graphene
(insulator) (semiconductor) (semimetal)

Graphene: zero-gap

:
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Figure 2. How some materials are distributed on the electromagnetic spectrum.

> M: Mo, W; X: S, Se, Te and so on.



Beyond topological and spin-orbit properties which may arise in Xenes
because of their Dirac physics, in general 2D materials present very different
properties from their 3D counterparts. The next page table summarizes some
of the most relevant ones.



Electron

Electron

mobilit mobilit Young's | Young's Thermal Thermal Lattice Lattice Relative Relative
3D 2D Y Y Modulus | Modulus | conductivity | conductivit; constant | constant | Permittivity | Permittivit
(room T) (room T) Y Y < < y y
(3D)(cm2/Vs) | (2D)(cm2/Vs) (TPa)(3D) | (TPa)(2D) | (W/mK)(3D) | (W/mK)(2D) (A)(3D) (A)(2D) (er) (3D) (er) (2D)
. 0,0041- 3,567 | a=2,461
6 7 ) _ _ ki
Graphite Graphene 20000 320000 0.0276 1 8,7-114 3000-5000 (diamond) | p=z.260 37,9 51
6. a=3,880
Si8 Silicene? 1500 257000 510 5 0,0617 0,2-2,55 150-200 .5’431 11,7 34,33
x10 (diamond) | 1=6710
a=4,030
Gelo Germanene!! 3900 624000 0,103 0,0440 60,2 16,5 .5’658 16 ~ 15
(diamond) b=6,970
- MoS212 - 200 - 0,33 - 34,5 - a=3,1475 - ~ 15

Table 1. Comparison table between 2D & 3D materials and MoS2 TMD

® (Xinghua Hong, 2015); (Smith)

7 (Jin-Young Kim, 2014)
8 (Fischetti, 1991)

9 (Bohayra Mortazavi, 2017)
10 (Ng, 1995)

11 (Po-Hsin Shih, 2016)
12 (Xiao Li, 2015); (Rusen Yan, 2014); (Young); (Bablu Mukherjee, 2015)




How it may appreciate on the previous table, certain values change drastically
depending on its kind of dimensions, 3D or 2D. The question arises of why the
physics and chemistry of 2D and 3D materials is so different. To this end, we
will analyse the electronic properties of the most elementary of all atoms: the
hydrogen atom. We will revisit the 3D resolution of the Schrédinger equation
for this species. Next we will derive again solutions assuming the hydrogen
atom is bound to live in a 2D universe.

We will study the implications that this has on the electronic properties, the
optical spectrum, the formation of molecules and the interaction between
electrons.

We would like to note that the interest of this study goes beyond an
exceptionally interesting academic exercise. 2D hydrogen is currently being
used to interpret the properties observed in 2D materials. (Alexey Chernikov,
2014) (S. Ithurria, 2011)



2) Hydrogen atom in 3D

The mechano-quantic study of the hydrogen atom is truly important because
their wave functions work as base to an approximated quantum treatment on
the rest of elements in the periodic table. Now, we will start by evaluating the
most general case of the monoelectronics species with nuclear charge Ze
following a similar derivation to that have been done on (Rajadell) (Levine, 2001).
If my and me represents, respectively, the core and the electron masses, the
Schrodinger equation follows as,

2my 2m,

_ h? 2 S _
Vi Ve + V() |Yne = EYpne (1)

where

V.= 2 2 2
dx,” 0dy,” 0z,
Xe, Ve, Ze are the electron coordinates
(Ze)e
V(r) =-K " (2)

r= \/(xe - xN)Z + (.Ve - yN)Z + (Ze - ZN)Z

(The potential energy of the system depends only on the distance r between
the core and the electron — it is central due to the force between both particles

-)
le,e = lp(xe' YerZey XNy YN ZN)

The coordinates of the system come defined by

me

(g Pgr5,)

M (XC.\{ 2 YC‘.\{ 3 Z[‘.!( )

My

(xx. ¥w.2x)

Figure 3. Coordinates of 3D system



Where,

MeX, + MyXy
X =X, + Xy Xem=—"""—7—"7""

mey, + myyy
Y=Y+ Iy Yoy —————

MeZ, + MyZy

zZ = Ze + ZN ZCM= M

(Here M = me+mn is the total mass of the system, and xcwm, yem, zcm the
coordinates of the centre of mass)

Operating the two masses m; and m2, we may get the next expression to the
kinetic energy for the three dimensions:

_ dXCM dYCM 2 dZCM)Z AN AN AN S
[ dt)+(dt i) (&) (&) |
2

2
P'cm  Pu
T=——""+—— (3

m T &

The potential energy (2), only depends on the internal coordinates (%, y, z),
therefore,

(Ze)e

Jx?2 + y? + z?

r =0t =27 + e =90 + Go — 2)* =37 +y7 + 22

V(r) =—-K

The classical equations (2) & (3), allow us to write the Hamiltonian as follows,

_ h?2 _, (h? 2 g (Le)e
H == Vem <2HV )(4)

The bracket term depends on the internal coordinates (x, y, z). So we can
make the following variables separation,

l/)CM,u = l/J(XCMJ YCMJZCMJx;u y;u Z,u) = l/JCM(XCMJ YCM:ZCM)l/)u(x;uy,wZu)

Then the Schrédinger equation for the term associated to the centre of mass
and relative motion results, respectively,

Bwe replace the subscript “N” by “CM” because my>>>m, and then Xy = Xy, and the same logic for

“_n “ . n

the replacing of the subscript “e” by “n”, since we have p=m..

14 m
=12 in other words, i is the reduced mass
m1+m2
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hZ
__VCMszM = EcyPem (5)

oM
h2 7
_ <zvﬂ2 Lk :)e> W, = Eap, (6)

Now, equation (5) describes the free particle; on the other hand, the (6)
equation describes the relative movement between core and electron. We just
want the last equation (the (5) one leads to a constant value that it is not
concerning us right now), then, removing every single subscript of the (6)
equation we could rewrite

h? (Ze)e\
—<ﬂv2 + KT>1/) = Ey (7)

At this point we cannot do any additional variable separation; however, if it
uses spherical coordinates (suggested by the spherical symmetry of the
potential -central force-) it is still possible this variable separation.

The Laplace’s operator, in spherical coordinates, results from the expression,

2= 19 (20 L (L 2 (g0) L O i
vi= r29r (T‘ 6r) +r2 (sin9 00 (Smeae) + sin266(p2) (8) (LlStOl’l, 2013)

Keeping in mind the angular momentum equation in spherical coordinates
and defining the operator D as follows

02— g2 1 6(_96)+ 1 92
- sing 96 \°" " 90) " sin2 6 ag?

The Laplacian operator (8) would remain as

, 1 (. T2
V=T_2 D—ﬁ (9)

According to (9) & (7) equations we could write the Schrédinger equation

~ 2ur?

Dy +—<E s e

r

ZZ
= >¢=ﬁ¢um

Where the right term operator in the equation depends on the coordinates 6
and @, whereas the set of operators that appear on the other side just depend
on the coordinate r. This permits us to do the following variable separation in
the wave function y:

Y(r,0,9) = R(r)Y(6,9)(11)

Replacing (11) in the Schrdédinger equation (10) and immediately dividing on
the resulting equality by (11), it results

-9-



2ur? < (Ze)e) ] I?
DR(r) + E+K R(7) Y(6,9) (12)

R(J 2 Yw o) 2

Now, to get the previous equation (12) occur, both sides of the equality have to
be the same constant value, then

1 2ur? (Ze)e 2ur? (Ze)e
R[DR+ Py <E+K " )R] y - Py E + K— R =yR (13)
- ZZ - [?Y = h?yY (14

Where one may realise that equation (14) is similar to the spherical harmonics
equation. So we can conclude

2y = I(l+ 1)A%Y » y = 1(L + 1)(15)
So taking (15) and carrying it to (13) equation it obtains

- 2ur? (Ze)e
D+— (E+K——)-1(+1|R=0(16)
With the objective to transform the differential equation (16) to may identify it

with any standard differential equation:

i) We take into account the definition of the Laplace’s operator:
D= a<20) 2r 2+ 262—2 " 2 & 17)1s
ar\" o) T T a2 = T T drz( )
ii) Afterwards, it does the constant replacing by the use of the Bohr’s

radius equation, aol6, on the r variable.

goh? e~ ¢ h? h? 18
—_— = =
ume? %o 4m2Kue? Kpue? (18)

a0=

With both expressions, (17) & (18) it could obtain

2 221 1(+1)

2
R+ 2R+ ( JrR=0019)"

Ke?a, agr r?

Once solved (19) differential equation by Laguerre polynomials it obtains the
following expression
Z%e*K 1

g n? (withn =1,2,3,...) (20)
0

> We can turn into the partial derivatives in total derivatives, because those, it only applies on the r
variable.

The Bohr’s radius is the first orbit to the hydrogen atom according to Bohr’s model.

YR’ (first “r” derivative) & R” (second “r” derivative)

-10 -



and
0<l<n-1(21)

The R(r) functions, obtained as differential equation solutions (19), are the
Associated Laguerre Polynomials,

For instance, to the 1s orbital (hydrogen atom); (n=1; 1=0)

L (p) = ¢9 - (pe™) = eP(e"P = pe ) = 1= p (22.1)

0 0
1250 = 1 = —(Ly(p)) = 5, (1—P) =-1@222)

ap
3 1
22\ (o l=DVNE 2Zr
=—\\—) 73 2 . —
Rn,l <(na0> 27’1[(7’1 + l)']?’) e 2p" LyY (22.3); 1% _Tl " (224-)

Zr

Z\2 _4r
R10 = 2 <_) e % (22)
) aO

Radial wave functions belonging to a different “n” value are orthogonal and, if
they are normalized it may be performed as

[oe]

(Rn,lanl,ll> = f Rn,l(r)Rn',l’(r)rzdr = 5n,nr (23)
0

On the next figures are drawn some radial wave functions for the hydrogen

atom
Ry 1s Ry 2s&2p R, 3s,3p&3d

e==R20 —R30
—R21 —R31
R32

]
10 20 0 10 20 0 10 20

r/a r/a r/a

Figures 4, 5, 6. Hydrogen 3D orbitals from to 1s to 3d

Finally, the wave functions to monoelectronic atomic species might be written
in the next form

Ynimi(1,6,9) = Ry (r)Y(0,9) = Ry 1 (1)01 ()P ()

-11 -




Orthonormality requirement

<¢n,l,ml (T, 9: (P) w)nr,ll,ml (T‘, 9: (P)) = 6n,n161,115ml,mll

The probability to find an electron into a coordinates r,0,¢p comprised between
r and r+dr, 6 and 6+d6, @ and @+d@, respectively, results from the expression

[Y12dt = |Ry i (M)|? Yy (8, 9)|?7? sin 6 drdode

We ought to keep in mind that the spherical harmonics are normalized,

2 .
I 1T 1Y (6, @)|? sin 6 dode=1

So finally, we can conclude that the radial distribution function is as follows

Rn,l (T)Zrz

Examples about representations of some orbitals

2s&2p

==—=1/"2R20"2
==——=r/"2R21"2

20 y1/a

Figures 7, 8, 9. Hydrogen 3D Probability distribution from to 1s to 3d

R 1s
nl r? Rnlz
0
0 5 10 15 r/a 20
3s,3p&3d
r’R,?
w1/ 2R3072
a1/ 2R3172
r"2R32/2
0 10 20
r/a

Once seen most of the deduction about 3D hydrogen atom we could proceed to
study the 2D hydrogen atom.

-12 -




3) Hydrogen atom in 2D

We next derive equations for the 2D hydrogen atoms. The procedure we follow
is largely based on analogies with the 3D case (Section 2). We begin by the
Schrodinger equation,

- h? h?
HYye=EYy,= (‘ 2y Vy?— 7m, Ve’ + V(T)>1/’N,e =E¢pe (24)
Where
) R R
Vyl= +—
N c')xNZ c')yNZ

xn & yn are the coordinates of the core

92 92

2
= N
axez ayez

e

and x. & ye are the electron coordinates.

Now, the potential energy equation is the same as in 3D, just leaving out the z
axis,

V) = —K (Ze)e __k (Ze)e

and

r=yx2+y2=(xc —xy)% + e — yn)?

The potential energy of the system how it is known only depends on the
distance r between core and electron.

le,e = l/)(xe, Ve, erYN)

Once defined which elements there are into Hamiltonian, let us define the
coordinates of our 2D system,

€- (Xe,Ye)

CM (xcum,ycm)

N X X

Figures10, 11. Coordinates of the 2D system
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Before continuing with the calculations, we need to first obtain the coordinates
of the centre of mass to x and y.

We suppose x: and X» represents the momentary positions of the masses m;
and mo, respectively, respect the centre of mass. So we define the internal
coordinates as

where M = m; + m,.
Next, we are going to obtain x; and x; values:
Obtaining of x;
X, = x1 —x (25.2)
Taking (25.2) and carrying it to (25.1)
Mxcpy = myxqg + myXxy — Myx = Mxcy + myx = (my + my)xy

Resulting
X1 =Xcy + %x (25.3)
And keeping on obtaining of x»
X1 = x5 +x(25.4)
Taking (25.4) and also carrying it to (25.1)
Mxcy = mix, + myx + myx, - Mxcy —myx = (my + my)x,
Giving as result
my
Xy = Xcy — ﬁx (25.5)
Taking into account that the kinetic energy is:
T = %mvz (25.6)

Then, we are going to start operating on kinetic energy in a one-dimensional
system

T_l , 1 (ax1)2+1 (6x2)2 -
B MR T: 225 ) 257

-14 -



Now, we may obtain the following expressions from (25.3) & (25.5) and carry
them to (25.7) equation

0x; Oxcy MmMy0x 0xy 0xcpm M2 (0x\*
-t e ) - () (3
ot ot M ot

t at M/ \ot
axZ axCM m1 ax (axZ)Z (axCM)Z (m1)2 (ax>2
—_— —_— | — — —_ — JR—
ot ot M at ot at M at
1 Oxcn\>  man2 0x\] 1 Oxca\2 myn2 [0x\>
r=gm| (%) + (52) (o) |+ 3| (52) - G Go)

Resulting the kinetic energy as,

1 Oxcy\> My mon2 0x\% 1 Oxcy\2 My myn2 (0x)\2
r=gm(52) +5 G G) vz () ~Z G (5o

Since rearranging the previous expression we might obtain

2

Oxcy\>  mym, d0x
) g ) ()

M (0xcy 2 u axz_ng Pﬁ
A ) e

_1
T—E(m1+m2)(

2 2\at) ~— 2M

So, making reference to kinetic energy part of equation (7) we can rewrite it as

pio M (e 4 00
2

2\ ot at
TlD — pQZCCM @
2M  2u

2 2
Where p:% & 5_:2 correspond to translation kinetic energy of the system centre

of mass & relative motion, respectively

We can extrapolate toward a 2D equation,

2 2 2 2
sz=pxc1v1+pJ/CM P_x p_y

2M ' 2M ' 2u 2u

Next, we proceed to reconvert this classical equation in a quantum equation,
taking into account that

o d

P = —ih g

d2
P’ > —h o

-15-



We further add the potential energy we treat, the electrostatic energy. So we
can write the Hamiltonian in 2D,

~ h? h? (Ze)e
A=-—V*-=—V,2-K
< 2M M ou r )

Then, we can separate the internal coordinates from the centre of mass
coordinates obtaining,

_ h? , (R* 2, ( e)e
A =—orVeu <2Hv >(26)

Where the bracket term only depends on the internal coordinates (x,y)!8. So we
can make the following variables separation:

lpCM,u = lp(xCM'yCerw yu) = lpCM(xCM'yCM)lpu(xwyu)

After all, the Schrodinger equation for the associated terms to the centre of
mass and relative movement result, respectively,

2

oM vCM Yem Kems Yem) = Ecu¥em ems Yem) (27)

h? A
<2MV 2 4 ( e)e>wﬂ(xﬂ’yﬂ) Ep, (x4 7,)(28)

Only is taken the second equation for the obtaining of the hydrogen atom
energy.19

So, our Schrodinger equation is,

(Ze)e
<2Mv2 K—>¢ EY (29)

Once reached this point we cannot make more variables separation, unless we
change our relative coordinates (X, y) by polar coordinates20.

'® Keeping our eyes on CM and u subscripts, we could think: What about the previous
subscripts N and e? What happened with them? The idea for both cases is clear
enough. How it is known the core mass (m, = 1,672623x107% kg) is larger than the

electron mass(m, = 9,10939x1073 kg) so the approximation is m, >>m.. We conclude
_ myxN+Mex, MN>Me mnm. MN>Me
NAN ete N'Me U ~ me

Xcm = xy and the same for piu =

then, for xcm:xcy =
CM- CM my+me my+me

19 Knowing that the Hamiltonian comes defined by H = Hey + H, we may disregard the

Hcy term since in spectroscopy AE is used. In addition, the H;yterm is constant due it
comes described by the free particle model. Finally, if we solve this Hamiltonian, we

2
would obtain as eigenvalue E;, = hz where k = — (m=whole number) is a constant as
the Ey is.

20 Suggested by the spherical form of the potential in 3D and thus the circular form of the potential in 2D

-16 -



Therefore we proceed with the obtaining of our 2D Laplacian in polar
coordinates?! to later make other variables separation.

V2_62+62_16+62+1 a2 30
T 0x2  dy? ror  Or? rza(pz( )

Keeping in mind that the (30) equation gives to us an operator with both
terms, radial and angular, we can distinguish them defining A as follows:

A= 19 o 31
a 02()

where the Laplacian operator comes defined by

, .~ 107

According to (32) equation we can write the Hamiltonian as

h> . h*1 02 (Ze)e

Hz_ﬂA_ﬂr_za_q)z (33)
and the (29) equation as
h? . h? 1 0%y (Ze)e
W T g T Y =EY (34)

Now, reordering and multiplying by ( 2K )

. 0% 2ur?( (Ze)e
2 _
r Al/)+a(p2+ %) <K - +E>1/J—0(35)

we can observe that exists a radial and an angular part. Thus it proceeds to
put the radial part (r) in a side and the angular part (p) on the other side of the
equation,

2 2
r2 A + 2’;; <K (Z:)e )w - ——lp (36)

Then knowing that ¢ = R(r)Y(¢) and leaving out the functions independents
as much to the radial part as to the angular part we may arrive to the
following equation:

7 2
Y(<p)[ (K(f)e )R( )] T2 @7

Continuing with a multiplication of (

h

1 ' .
R(r)Y((p)) on (37) equation. We obtain,

*! Laplacian 2D obtaining it is found in annex (A.1)
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. 2ur? [ (Ze)e 1 0°Y(p)
[TZAR(T) +—<K - + E)R(T)] = _T(p)a—q)z(%g)

72
In order to (38) give meaning to the equation; both sides of the equality have to
be constant. In other words, both sides are equal to the same constant. For
instance:

1
R(1)

R

N 2ur? Z
ur <K( e)e
72

1 2
—|r“AR + 2

R 2ur? Ze)e
+E>R]=Q — 1r2AR + a <K( )

+E>R = QR (39)

190%Y q 9%y Qv (40
- = _— = —
Y d¢p? dp? (40)
Once reached this point we have a problem, we do not know what the Q value
is, so we are going to use symmetry to try to find that value focusing on the
(40) equation.

First of all we need to check if we can use the symmetry to obtain Q value.
Knowing that the electron movement with respect to the core draws a
circumference implies that exist an infinitesimal rotation axis (C%):

=~ Cfo), o
Q
Figure 12. Electron movement respect to core
\ Represents an axis going
o 5 out from the paper plane
y /
X c?

Figure 13. Symmetry elements
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And if there are infinitesimal rotation axes, there also exists infinitesimal
vertical planes. So we can conclude that our symmetry point group could be a
Cwy- Next, we know that a rotation could be described by the following
equation:

Y = ei™® (41) 22

With “m” as whole number. If we would apply our symmetry operation C% to
(41) we will obtain,

Cfo’ eime = gimdboime — oim(@+9) (42)

Function (42) represents,

Q

/ L/

eim(p Cgo) eim((p+¢)

Figure 14. How affects the rotation operator on ™%

Knowing how it is the behaviour of the rotation symmetry operation on the
function mentioned before, we just need to verify if our rotation symmetry

9%y
T 92
eigenfunction from one operator be compatible with the other. Fortunately, it
is like this,

operation commutes with our Hamiltonian ﬁ(p to make possible that an

[A,, C2lY(p) =0 2

So, we can also affirm that e™¢ is C,, base2tand it is the general form of
equation (40) eigenfunction Y as well. We have to point out that the orbital
distribution is quite different in 2D respect to the orbital distribution in 3D, as
one can see by comparing equation (41) with the spherical harmonics
obtaining in the 3D case.

Now, making reference to equation (40) we can, right now, solve what the Q
value is,

22 |t uses this kind of function because this functions describe the periodic movement of a rotation since
is ranged between 0 and 2r. By means of Euler we have: Y = ™ = cos mg + isin mg. In addition, m
is always a whole number, that it is explained in the annex C.1)

% Deduction in the annex (B.1)

** Verification proof in annex (C.2)
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2%y 5 5
a—(p2= —(—m )Y - O0=-m (4‘3)

Carrying Q value to equation (39) it is obtained,

R 2ur? Ze)e
H <K( )

r?AR +— + E> R = m?R (44)

where reordering, we would have,

R 2ur? Ze)e
u <K( )

r?AR + = +E—m2>R=O(4S)

Regarding A, we are going to replace it by its content (31), on (45):

210R 20°R | 2ur? (Ze)e 2 .
r222 4 222 2B (KE22 4 F - m?) R = 0 (46)
Now, we are going to postulate that the solution of the 2D hydrogen 1s orbital
it is quite similar to the 3D hydrogen, apart from the exponent. If in the 3D
case we had equation (22), now we would have,

_br
R = Npe % (47)

Where Ny is the radial normalization, b is the 2D parameter and lastly aq, is the
Bohr’s radius. Next, we take (47) to the equation (46),

_br 5 _br
a a
8<NRe 0>+ za <NR€ O>+2#T2 K(Ze)e+E 2\ (N _? 0 (48
—_ 0 =
r or r or? h2 T m R¢ (48)

It is done the correspondents derivatives and this results on,

b brooobN? o Dm 2t (o (Ze)e 5 _br
r(—a—O)NRe o +r (a—o) Npe %o + ¥ K " +E—m*“|Nge % =0

r (— 3) + 72 (i)z + 2ur” <K (Z:)e +E- m2> =0 (49)

ao ao h?

Taking into account that we are dealing with a hydrogen atom 1s orbital we
can make the “m” term equal to zero. Besides, terms are reordered according

(=

to “r” power, leading to,

b\*> 2uE] , [2u b
<a_o) +? re+ ﬁK(Ze)e—a—o]r=O(50)

Because equation (50) must hold for any value of r, we can make both terms
separately equal to zero, then obtaining b:

2u b 2uKZe?a,
ﬁK(Ze)e—a—0=O—>b=T
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2
If we go further taking into account that e'? = Ke? and a, = h /ue’z’ b results

as,

b= ZuKZeZao e'?2=Ke? b= ZuZe’Zao ap= /

hZ
pe'?
= - b=27.(51)

In order to obtain the Energy value, we use the same procedure as before. The
first term of the (50) equation is solved, then obtaining E:

a ﬁz/

2 2 32 Qo= 2 2,12 b=2Z 2,12

b 2UE b h ue bce 2Z%e

(—) e =0—>E=—(—)— E - E=- . (52)
h2 2u 2a, a

QAo Qo

Next, to corroborate that (52) Energy equation is right; we verify its validity by
means of virial theorem. Now, it is followed by the next series of operations:

1) (T)value

- R T e
f Y TYyd4d — f Y*TY rdrde (T.1)
o Jo

To make the calculation more accurate, we proceed to calculate the T term,

10RY 0%RY 1 0%RY
r or or?  r2 d¢?

7 h? 02 Y=RY Hh?
= —— —_—

(T.2)

br
Knowing the functions definition R = Nze % and Y = N,e"™? we might reorder

it (T.1) as

. _br _br _br .
Vo = Nye'™? dNpe 9o N eime d%Nge % N Nze @ 0%N,e'™?
r or ¢ or? r2 a2

Operating the derivatives and extracting the independent values, we get:

br
eme , py _brp\E BT eTas
Vzlp =N Nop|——|——]e % + elm(p J— e 4o — mzelm(p
'R 2
aop ay r

o brr o p b\?> m?
2.0 —
\vj 7./) — N(pNRelm‘pe ag [—r—%+ (a—o) —r_z] (T 3)
Now it is multiplied by its conjugated function ¥~
2

2b 2
l/}*vzl/) =N ZNRZeim(pe—im(Pe_a_; _i_{_ (ﬂ) _m_
¢ ra, \a r?
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Next, we make m equal to zero; according to we are on the 1s’ orbital,

) ) b 1 b Zbr
P*V2Y = N,*Ng a—[—;+ ]e a0 (T.4)
0

Take (T.4) to (T.1) equation

fl b 21 ® [y _2br b 00 2br
(T) = ——N 2NR —{f do [—f <—e Qo dr>+—J <re Qo dr)]}
2u ao (Jo o \7 ao Jo
It is integrated and it is obtained:

K2 b
(T) = T o2 Ng? = {Zn [—;—Z+4b]} (T.5)

Now, would be a perfect occasion to obtain both normalizations,

21
1
N,2| dp=1->N,22r=1-|N, =—
v )y, ¢ N
szoo “adr =1 1\/2(a°)2 1o Ny = 2202y, = 22
re oar =1 - -— =1- = — - —
R . R \3p R aq R g

Finally, the normalizations are replaced on (T.5) equation,

Ty = h214222b{ [ a  a ]} Ty = h214222b2na0[ 1.1
2u2T ay? a, 172 " b 2u2tm ag? a, b 2 4
R242720 17 A2 22 a0=" [0 272¢7
()= ooy |3 = 2z | =
2# 4 1 ay? 0

2) It is known that (E) = (T) + (V) where (T) and (E) come defined as,

27%e'? 27%e'?
; (T) =

0 Qo

(E) = —

So, the potential energy is,

27%e'%  27%e'? 47%e'?
(V) =(E)—(T)=— - =—

Ao Qo Qo

3) In addition, it is also known that 2(T) = n(V) 25where “n” is the order of
the homogenous function representing the potential energy, in this case
represented by the electrostatic potential, so

2(T) n=-1 2 2Z%"? 47%¢'?
(Vy=— =-

-1 a ag

V)=

27%e'?

(T)=

QAo

25 . .
The order of the homogenous function would be equal to minus zero, because:

(Ze)e

=1
V=K —K(Ze)er‘”n—>V=K(Ze)e r-1
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Therefore, our energies obey the virial theorem and according to it, we can
make a series of calculations on a trustworthy way. Now, we find that we can
make the following questions:

1) What is the probability to find an electron between core and the first
Bohr radius in 2D?

f WA = [ (Ra P (@) rdrdgs

As the polar harmonics are normalized we have then:

21
JO [Y™(@)]*de =1

Just remaining:
Az Qo
ag 5 47 2 rag 4z 47 2 e 4o , AT7r
J, o rar= () [, e = () ot (-0 1)

0 Qo Qo
0

z=1
2D Probability = [e™*4(—4Z — 1) — e°(—1)] — 2D Probability = 0,9084 = 90,84%

In 3D, the probability to find an electron is 0,3233 or 32,33%?27. In the follow
figure we may compare both probabilities as much in 2D as in 3D,

I’2R§DVSI’R§D

Prob R
1.5+
— rR2d(r)?
107 r? R3d(r)?
0.5
,
1 2 3 4 5 a0

Figurel5. Comparison of the probability to find an electron between 2D and 3D

?® Jacobian obtaining on annex A.2)
7 Obtaining of 3D probability on annex D.1)
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It is observed 2D probability is higher than 3D probability, this likely be due to
the electron is more tightly bound to the nucleus than in 3D. In addition, the
difference according to space is halved from 3D to 2D.28

Now the electron ground state energies as much in 2D as in 3D are,

ZeIZ

E?P = .E.(2D) = — = —54,423 eV (53)

Qo

2,12
E3P = [.LE.(3D) = —sz = —13,606 eV (Levine, 2001)
0

It is observed that the 2D energy is higher than 3D energy. Therefore we would
have to apply a 4 times greater energy to ionize the hydrogen atom or in other
words, to pull out its electron.

eV 3D 2D
0
-5
-10
-15
-20
-25
-30
-35 I.E.(2D)
40
-45
.50
_55 S S
.60

I.E.(3D)

|AE| = 40,817 eV

Figurel6. Comparison between 1s orbital (3D) and 1s’ orbital (2D)

%% In fact, as one can notice by comparing eq. (22) and eq. (47) (both without normalizations), the
ground state wave function of the 2D hydrogen electron is like that of the 3D one but replacing the
usual 3D Bohr radius, a, , by an effective 2D Bohr radius, ag , which turns out to be simply a; = ao/z .

12

29 z%e'? | . L
E3D = 2, IS the general equation for 3D ionization energy
n 0
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Some differences between the 2D and 3D hydrogen atom

Similar procedure for other higher energy states where the series of energies
and orbitals obtained differ systematically from the 3D case. The following

table summarizes thems30:

Constant: ; 5
?:;“22 ® | Orbital Yip) R(r) Wi, @) = RV (¢) Energies
27 1 47 -2ZX 47y | =T 2722
b=— 1s T —g G — @ o
fy vim fp Gy v 2Im ag
2 1 165 z iz 1643 A 2zr 5 7Tt
s | o2 ﬂ(i) (,_ﬁ) = E(i} L(,_ﬂ]m 250
3ap Var 45 \ag, 47 45 \ay/ Jag\ 4 ag
1 .. 6/7\2 2 67247 1 221 27t
=2 [ | L HEEY o= WEEY L e 27
42 v2n 27 \a, 27 \ay/ Im 9 a,
2z 1 64 I\ . 15ar  75m,%\ _ZE 64 IV 1 [ . 18ar T5gpty P e
b=— 3s e —,_(—J Tl +t—]e ¥ ,_(—],—_ “— +——]e 5 e
Say Var 1254111 ‘ag 47 1622 125¢111 ‘ap/ 2m 4z 162° 25 g,
h 1 . 3 1 22r 2 : 221 9 FE_r
c =—L5ﬂD 3p e e L,—(i] (r ——LS%J re S —64,_(£J ,L_(r ——LSHDJre_Fﬂe[”’ —;Z -
4z vam 125+/30 ‘ay 4z 12530 ‘ay/ 2r¢ 4z 25 a,
d 1 . 2 P o 2 BEY 2zr 2 7212
s ?5%‘ 3d — giltle 3"_(5] +2q 5ig 3"_(5] 'L_r:g'scng!': o _;Z i
162+ Vim 1254/30 ‘ag 125v30 ‘ap/ 2w 23 a6

Table2. Different hydrogen 2D properties about energies and orbitals

By inspection of Table 2, one can infer a general expression for the energy of
2D hydrogenic atoms:

2226,2

EZD —
(2n —1)2a,

(54)

Where n is the quantum number (n = 1,2,3,...)

2D

d'(m=+2)

p'lm=11}

s'(m=0)

3D

d (1=2; m=0,+1,%2)

p(1=1; m=0,%1)

s (1=0; m=0)

Figure 17. Comparison of energetic levels between 2D and 3D

%% All the calculations can be found in annex E.1)
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The orbital symmetry regarding on their energies would be, for 2D and 3D
respectively,

(b)

Figure 18. Comparison of orbitals between 2D and 3D. (a) 2D, (b) 3D
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Further differences between the 2D and 3D hydrogen atom

In this section we illustrate further differences between the electronic properties of 3D

and 2D hydrogenic atoms

-Energetic differences:
- Emission spectrum differences:

3D

e

35,3p,3d (-1,511 eV)

2s,2p (-3,401 eV)

15 (-13,606 eV)

1s « 3s,3p,3d
AE; 3 =—12,095 eV

1s « 4s,4p, 4d,4f

ls < 2s2p AEj 4 =—12,756 ¢V

AE;, = —10,205 eV

25,2p « 4s,4p,4d,4f

2s,2p - 3s,3p,3d
AE, 4 =—2,551eV

AEy s =—189 eV

3s,3p,3d « 4s,4p,4d, 4f
AE3 4 =—0,661 eV

Figure 19. Emission spectrum comparison between 2D and 3D.

45,4p,4d,4f (-0,850eV)

2D

45'4p'4d" 4f' (-1,111eV)

T iV 3s'3p’3d" (-2,177eV)

2s,2p' (-6,047 eV)

1s' « 25", 2p' 1s' « 3s,3p',3d" 1S < 4s,4p, 4d,4f
AE; ,=—48376eV AE,_; = —52,246 eV AEica=—53,312eV

25',2p" «3s',3p’,3d 25:2p < 4s,4p, 4d,Af
AEy 3 =-387eV  AF2cqa=-4936¢V

3s',3p',3d" « 4s',4p',4d’, 4f'
Mgy = —1,066 eV

15’ (-54,423 eV)

To obtain all this energies we only have to take into account the equation (54)
for 2D energies and equation (ref.29) for 3D energies. Lastly, we would
calculate the difference between states, to cover all the electron transitions.

For instance: Electronic transition from 2s excited state to 1s ground state in 2D.

(Emission process)

First of all, we would obtain the single energies for 2s and 1s:

— Ei = —2hartrees = —54.423eV/ 31

E 2226'2 n=1
57 (2n—-1)32q,
27%e'?  n=2
Eys =

*1hartree = 27.212eV

"~ (2n - 1)%a, -

2
Eis = —§hartrees = —6.047eV32
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Now, it is made the difference between these states obtaining,

16
AEy 1 =Eis —E) = —?hartrees = —48.376eV

So, in this way you could obtain all the electronic transitions for every single

Series de Paschen (IR)
3D
3s,3p, 3d « 4s,4p,4d, Af
Azeq = 1876nm
800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
2D
3s',3p',3d" «4s',4p',4d', Af'
Azeq = 1163nmM
800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
orbital.
Series de Balmer (UV-Vis)
3D
25,2p < 4s,4p, 4d,4f 2s,2p < 3s,3p,3d
Azeq = 486nm Apes = 656nm
A (nm)
250 300 350 400 450 500 550 600 650 700
2D
2s5,2p < 4s,4p, 4d, 4f 2s',2p" « 3s,3p',3d’
Azeq = 251nm Azes = 320nm
A (nm)
250 300 350 400 450 500 550 600 650 700
1s « 3s,3p,3d
Series de Lyman (UV) Al 3 =103nm
3D
1s « 4s, 4p, 4d, 4f 1s « 25,2p
Ay gy =97nm Adyep = 121nm
A (nm)
0 10 20 30 40 50 60 70 80 90 100 120 130
ZD ’ ’ ’ ’
15"« 25, 2p" 15/1(_ 3:;2’,;;‘1 1s « 4s, 4p, 4d, 4f
Ay = 25nm 18 Mg =23nm
A (nm)
0 10 20 30 40 50 60 70 80 90 100 120 130

A (nm)

A (nm)

Figure 20, 21, 22. Comparison of the emission spectrum between 2D and 3D plotted as Paschen’s, Balmer’s &

Lyman’s series respectively.

%2 Note as the 2s & 2p are degenerated, the energies would be the same and therefore the energy

difference will be the same as well.
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- Periodic table differences (until Z=74)

3D
s
1|H |He P
20i |Be B |C N [0 |F |Ne d
3Na [Mg (AL [Si [P S [Cl |Ar (Sc [Ti [V [Cr [Mn [Fe [Co [Ni [Cu |[Zn f
4K |Ca |Ga |Ge |As |[Se |Br |Kr |Y |Zr |Nb |Mo |Tc |Ru |Rh [Pd |Ag [Cd |Ce |Pr [Nd |Pm [Sm |Eu |Gd |[Tb |[Dy |Ho |Er |Tm Lu
SRb St fIn [Sn [Sb |Te |l [Xe |La |Hf |Ta |W (W
6/Cs [Ba |
2D
s
1[H He o)
2|Li Be B C N (0] d
3|F Ne |Na [Mg [Al Si P S Cl |Ar f
4(K Ca [Sc Ti \Y Cr Mn |[Fe Co |[Ni Cu [Zn Ga [Ge
5(As |Se |Br [Kr |Rb |Sr |[Y Zr  |[Nb [Mo |Tc¢ [Ru |Rh |Pd
6|Ag |Cd |[In Sn [Sb |Te I Xe Cs [|Ba |[La Ce |[Pr Nd
7|Pm [Sm |Eu |[Gd |Tb |Dy |[Ho |Er Tm (Yb |Lu |Hf |[Ta [W

As can be observed on 2D periodic table, for simplicity we do not take into account
with the Aufbau principle as it does on 3D periodic table.
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4) The H} molecule33

We next study the formation of the simplest possible molecule in a 2D
universe, the planar Hy molecule. Again by comparison with the well-known

case of 3D HS, we will get a flavour of how different chemistry and reactivity
would be in 2D.

First of all, we define the geometry of the system:

NG w1y
\, o ..
A

Rab B X ’

X

Figure 23. A & B are nuclei, ra & rv are the distance of the nuclei A & B with the electron and Rab is the
distance between nuclei.

r= (A7

R R
ra=J(x'+7°”’)2+y2; rb=J(x'—7“”>2+y2

Next, it does the following test to continue with the calculations:

Sab = {Paldp) =1 if a=b
Where ¢, = \/%e‘zra and ¢, = \/%e‘zrb. Note ¢, and ¢, have atomic units

(ap =1oray=1/2).
To verify the previous equality it has to make Ra, equal to zero, so we have,

Sab = (Palpp) = (Ne™?"a|[Ne™2"b) = N?(e™?"a|e™?7a)3
21

sz e 2Ta e 2a g = sz f T, e ?Tae™2"a dr,de (55)
- 00

For simplicity, we may leave out the subscripts and (55) results such as

* Other way to treat Hf molecule is reported in the annex F.3)
** Notice e 2" is just the 2D hydrogen 1s wavefunction without their normalization.
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21

oo N=4’/
00

Then we can proceed changing the coordinates from polar to Cartesian
obtaining the following expressions:

=—t¢
ba o
r_Rap)?
op = —4 e_z (x _Tb) +y?
V2T

Now, it obtains the overlap integral between both nuclei in an infinite space,

2 [e0) [ee]
Sap = f J.(e x+Rab) +y2> (e 2 (x _%) 2)dxdy= 1

Knowing that in 3D molecule Hj the Req (equilibrium distance) is 2 Bohrs
(Levine, 2001), we could extrapolate this information in order to obtain the 2D
HF molecule Req. As we want to cover the whole space that occupies the 2D
HF molecule, we are going to suppose, from the 2 Bohrs data, the whole space
could be arbitrarily covered by 3 Bohrs where theoretically has to be similar to
an infinite space.

3 3

2 Rab _M
Sap = f f(e %) ”2) <e —2(x'=52) +y 2>dxdy = 0,999964 ~ 1

3

Once deduced the [-3, 3] limits are practically the same than [—o, o] it may
does all the calculations based on infinite limits. So the overlap integral has
the next behaviour,

10
Overlap

08

06

04

02

2 4 6 8 10 Rap/ bohrs

Where whenever it increases the Ra.,, decreases the overlap. Therefore the
function obtained has congruence because it is what was expected.

*> The calculations have been done by Mathematica 10 and all the commands used are in the annex F.1)
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Next it is obtained the Haa & Habs36

Hyo = (¢a|ﬁ|¢a) = f ba ﬁd’a dA (56)

Hap = (¢a|A|¢s) = f o Ay dA (57)

Those integrals are carried to the bonding and antibonding energies equations

which have been obtained and may be seen in the annex F.2).

_Hog+Hgy 1
Y 1+S, Ry’

Haa - Hab + i
1 _Sab Rab

The U (Rab) curves to 2D and 3D electronic state 1s of Hy respectively are,

U/hartrees U/hartrees

2D

3D

0.0
10

o]

=201
E+ —
R/bohrs 25l

R/bohrs

In those graphics it is observed the huge energy that has the 2D HJ (-70,75eV)
regarding to 3D Hf (-16.32eV) and besides, the proximity of the electron to the
hydrogen atoms leading to believe the great difference on the electrostatic
energies between 2D and 3D. This is also a consequence of the enhanced e-
nucleus interaction in 2D systems, and it implies 2D molecules should display
much superior reactivity than 3D analogues.

On the other hand, 2D materials are expected to have higher melting point as
well as stronger mechanical properties (compression, Young modulus and so
on) than their 3D counterparts, since these properties often scale proportional
toRzZ . (Naumann, 2009)

*® As we have a homonuclear molecule we can affirm that Haa=Hbb or Hab=Hba.
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Difference about rotational constant between 3D and 2D

Let us start by the rotational constant definition,

B (58)

= 8nl

Where h is just the Planck’s constant and I the inertial moment what comes
given by,

I = uR? (59)

Knowing u is the reduced mass and that we are treating Hy, the reduced mass
may be written as follows,

mpymgy my 2 my

K my +my ZmHﬁH 2 (60)

Taking (60) to (59) and (59) to (58), it may obtains the next expression,

B (61)

- 4m2my R?

So, once to this point we could obtain the rotational constant for both
dimensions.

B3P =9,031x1011s7137

And if we go beyond we might obtain the AE,_,;, where by definition it is equal
to 2B, then

AEFD, = v3P = 2B3P —|AE3D, = 1804,74GHz|

And on the other hand we have,

AEZD, =v?P = 2B?P — |AEZD, = 20052GH¢|

Where B?P = 1,003x10%3s71. So we could conclude with the following relation,

10AE3D, = AE2D, | (62)

This implies that the rotational spectroscopy in 2D still in the
microwave spectrum, but now, with a 10 times larger separation
between lines than it was in 3D

¥ To calculate B, we need to turn into from the Bohr unit to I.S. (meters). So, if 1Bohr is 0,529177A then
0,5291774 is 0,529177x10"°m
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5) 2D helium atom

We have seen in the previous section electron-nucleus interaction in 2D are
stranger than usual, and this has important implications e.g. in the formation
of molecules. The question arises whether the same is true for electron-
electron interactions and if this has implications for polielectronic 2D atoms
too. To this issue, in this address section we will study the helium atom.

The helium atom has two electrons and a nuclear charge +2e. We suppose
that the core is stationary, and we will establish the coordinates system at the
nucleus. The electron 1 & 2 coordinates are (X1,y1, z1) and (X2, y2, z2). If we take
the nuclear charge as +Ze instead of +2e, we could treat ions with the helium
configuration as H-, Li*, Be2*. The Hamiltonian would be,

Where u as we have already seen is like the electron mass and is independent
use one terminology or another (electron mass or relative mass), r1 and r are
the distance between electron 1 and 2 to the core, and ri2 is just the distance
between both electrons. The two first terms are the electrons kinetic energy.
The third and fourth terms are the electron potential energy. Finally the last
term is the Coulomb interaction between electrons.

The Schroédinger equation has four independent variables, one for each
electron. In polar coordinates we have,

Y =Py, 91,12, 92)(64)

The 2D polar Laplacian comes given by (30), replacing r, ¢ by 1i, @; where i is
the subscript of the electron on treatment. The ri, variable may be written as,

12 =~/ (6 — 22)2 + (y1 — ¥2)? (65)

Now, ri» is the responsible term that avoid we may separate on any
coordinates system, so we only could use approximate methods. We shall
study this problem with two different approaches of increasing complexity and
accuracy: Ist order perturbational method38 & variational method.

® By simplicity we will call it from here on out: Perturbational method
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Perturbational method

First of all we need to know that the Hamiltonian might be divided in two
terms,

A=A+ A (66)

The first term will give us as eigenvalue the hydrogenoid atom energy in regard
with both independent electrons. It may describes,

o n ., Ze'* h*_, Ze'
A= ——v2_-" ——_v2_"__(67)
2u 7 2u Ty
It is observed that,
2 2 2 2
go— Mo Ze” go - Mo Ze”
1 2# 1 ,rl ) 2 2# 2 ,rz

The second Hamiltonian is the perturbative term, what will correct the energy
result.
7 =" (68)
T12

We are going to start defining the system coordinates,

X

Figure 24. The nucleus is the blue circle, e1 and ez are the yellow circles, r1 and r2 are the distance of
electrons 1 & 2 with the nucleus and ri2 is the distance between electrons.
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Let us introduce about the wave function (64), we need to antisymmetrize it
with the Slater determinant,

_ 2 _i hra P1f _i . 39
lpok—Aw—ﬁ b bR —ﬁ[¢1¢z(aﬁ pa)l

To check that the wave function ¥, is equal to ¢;¢, ,we are going to start by
observe if is obeyed the ortonormality condition focusing mainly on the spin
part,

2 [p102(af — Ba)]

\/—
= D2 apiap) — (aplpa) — (Balap) + (Balpa)

(i1))=0 {(P1P2|P1P2) 5 ($10219192)=1
2

(YorlWor) = < [¢1¢2(“ﬁ 505)]>

|(lpok|¢ok> = 1|40

How it is known, the equation (67) gives us as eigenvalue the hydrogenoid
atom energy (54). To obtain (68), the expectation value, we use atomic units,

2 e'?=1 (u.a)

¢ok> —_— <1/Jok i

T12

Jiz = <wok Yo

2T 2T

Vo) = j f f f wokwokanT d rydrydgsdes (69)
0O 0 0O

(o] =

By means of cosine theorem we can achieve the following,

T2 = \/7"12 + 7"22 — 211y cos(@, — 1)

So (68) results as,

27 21T oo ©o .
%k f f f f VY nnT—— dridr,dp,de, (69)
00 00 \/rl + 15 — 2ry1; cos(p, — ¢1)

Now, with the intention to reduce the dimensionality of this multiple integral
we are going to make a variables change,

(e ==

Py =P+ @q
P =@ — Q1

Where do,d@, = %dcp+d<p_.41 So (70) results as

3 WY,k is the wave function antisymmetrized
Ot is skipped this checking, but it is easily demonstrable

1t has taken account the following equalities,
_ T, _ eyt
(pl - 2 ’ (pz - 2 ’
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oo 0o 1
—lwo)= [ [ [ [worr—e— dridr,dp,dg. (71)"
2 S0 0 2\/7"1 + 1 — 2ryry cos(p-)

Finally as an Ionization Potential we have,
IP= ElSZ - Elsl = (E]_ + E2 +]12) - E]_

Where E; and E, are the monoelectronic energy already known and J;, is the
Coulomb integral, so

1

I.P.=E, + ], = —-27% + <¢ok
T2

Yor) = —8 + 471 = ~3.29hartrees = ~89.527¢V

Variational method

This method consists on the addition of one term that is called . The a term
might be associated to the screening effect what will be responsible of the
decreasing on the effective nuclear charge, a will be ranged from O to 1, where
for the hydrogen atom (only one electron) @ would be 1, and as soon as the
electron amount increase, this parameter will go down.

It does the same calculations what we have done in the previous method, the
difference how is already mentioned is a, then the wave function has the
following form:

Y0 p) = e T
21

To obtain the I.P. we would do the same what we have done on the
perturbational method,

1- Antisymmetrize the wavefunction with the Slater determinant.
2- It would be obtained the hydrogenoid energy without the electronic
repulsion energy. The hydrogenoid atom energy equation is,

E =27%a% — 47%a

3- Next, just it is solved the Coulomb integral (/;,) . Afterwards we would
have to minimize the energy value and at this value of energy, take the

a value(a = 0.85)%3.
Eig2 =E1 + E; + 1%

* |t is observed the change on the integral range in regard with the angles. The explanation is left out of
this study. Besides, this equation has been solved numerically using Mathematica. J;,=4.71hartrees. See
annex G.1)

* Some curiosities about the a value on the annex G.3)

* Variational method J1, =4.37hartrees. See annex G.1)
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-12
-16
-20
-24
-28
-32
-36

-52
-56
-60
-64
-68
72
-76
-80
-84
-88
-92
-9
-100

4- To finish, it is obtained the Ionization Potential,

1

1P=E2 +_]12 = —222a+<l/)0k r
12

¢0k> = —3.63hartrees = —98.780eV

Lastly, we could say that the variational method improves the electrostatic
repulsion energy from the perturbational method by 7,22%*%5

Having reached this point, we could compare the energies between hydrogen

and helium atoms?6,

3D 2D

T AE =10.982 eV
E,; = —13.605 eV

Eye = —24.587 eV

E; = —54.423 eV

AE = 44.357 eV

Ep, = —98.780 eV

We realise that the energy differences in 2D & 3D between hydrogen & helium
are proportional between them by approximately a 4 factor,

AE?P _ 44.357eV
AE3?  10.982eV —

= 4 - |AE* = 4 AE?P|(72)

So, if we would want to know 2D energies, just taking into account (72) we
could know the 2D energy wished. (At least, in the case of hydrogen and

helium)

* %improvement = (1 - M) x100 = 7.218%
J1z(per)

* The energy used is the calculated by variational method, because it is the enhanced energy value.
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Conclusions

The 2D science material is still in its infancy nowadays but, despite this, the
scientists have already collected so much information about it. We have
checked out e.g. Young modulus, thermal conductivity, electronic mobility,
lattice constants, and relative permittivity (Table 1) finding an unbelievable
properties on some 2D materials, which have really showed to be better than
their 3D counterparts. From the study of this materials, arise the use of
bidimensional models with the well-known simplest atom: the hydrogen atom.

We have seen the 2D hydrogen atom presents a strong interaction electron-
nucleus. As a consequence of this, it generates more stability, taking place 4
times larger Ionization Energy, exactly: -54,423 eV, than 3D hydrogen atoms: -
13,605 eV. In addition, it has been found a particular orbital distribution
where the s orbitals are similar to the 3D, fitting as much 2 electrons.
However, from the p orbital to next orbitals, just 4 electrons could be fit there,
giving a periodic table more than unusual. Regarding with the hydrogen 2D
emission spectrum, it has found that the transitions occur a lower
wavelengths than in 3D hydrogen atom emission spectrum. Nevertheless,
Paschen’s, Balmer’s and Lyman’s series still similar to 3D.

With relation to the Hy molecule, we have found out that the 2D energy and
3D energy at equilibrium distance differ, approximately, by a 4 factor. This
huge energy belonging to 2D H; molecule results in large stability, causing an
increasing on their mechanical properties as the Young modulus,
compressivity and included as well, higher melting point. Besides, as far as
rotational spectroscopy is concerned, it still is in the microwave spectrum,
only differing with the 3D Hj molecule that the difference between their
rotational lines are 10 times larger than they are in 3D (eq. 62).

Finally, it has done two different treatments to obtain the helium 2D Ionization
Energy: 1st order perturbational method & Variational method; where the
variational method has improved the perturbational method by 7 points,
approximately. Also, it is noticed that the energetic difference between
hydrogen and helium atoms in 2D are 4 times, approximately, larger than they
are in 3D (eq. 71).
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Annex
A.1) Polar 2D Laplacian obtaining

First of all, it defines the system and the conversion from Cartesian
coordinates to polar coordinates,

x2+y2;(p=arctg=§

X =71cosQ;y = rsing

Now, it is prepared the equation for the variables changing regarding to x and
toy:

d a ar Jd do
— = —(a.1)
dx  orox (3<p dx

a dor 0J do

a.2
ay 6r6y+0<p0y (@.2)

0> 0> aror 009 0% 0pdp _ 0 0%
o — +—— (a.3)
9x2  or2dxox = Orox? 8<p2 0x 0x = 9 0x?

92 azarar 9 0%r 8% dpdp 0 %9

5 P 4

ay? = or2 dy dy ar ay? * 0p? dy dy * 90 d¢ dy?
With the chain rule is obtained the following derivative series for x:

or X oar

x
=2y .= 2y-1/2 =__— —=—(a.3.1
ax (x Ty /x2+y2=>6x r(a )
o0%r _ 2x ~ 1 x% 1 x?
W:((x2+y2) 1/2)+x[—7(x2+yz) 3/2]=;—r—3=;[1—r—2] (a.3.2)
dop 1 Yy _ 2, o109
a_T-(—F):—y(x +y*) =>a——r—2(a.3.3)
1+7 /.2
aZ

% o 2xy
7= —y2x(-D(x? +y?*)?2 = T (a.3.4)
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And the same for y:

or ~1/2 _ y or y
=25 2 ———=—==(a.41

%r 2y y2 1 y2
— = 2 2y-1/2 _ 272 2y-3/2| 2 _2 _2|{_72_
9y? (G +5%) )+J’[ > (x“+y%) ] 3 r[l 2 (a.4.2)

do 1 X ) N1 do x

= (-53)= == -2 (a.43

Oy 1+y2/ 2 ( xz) XY= ox r2 (a.4.3)

x

2

% o, 2xy
P x2x(—1)(x? + y?)2 = —r (a.4.4)

Now, knowing that )r—c = coSQ; % = sing may define (a.3.1) (a.3.2) (a.3.3) (a.3.4) &
(a.4.1) (a.4.2) (a.4.3) (a.4.4) in the following way,

or = 3.11
a—comp(a. 1.1)
’r 1 1
Frvi [1 — cos?e] = —sm 2p(a.3.2.1)
dop smcp
—_— .3.3.1
Fr (a )
0%2¢p  2cos?’@sin?e
9z = 2 (a.3.4.1)
O _ sing (a.4.1.1)
3y " sing (a.4.1.
*r 1 1
a—yz=;[1—sm p] = —cos 20 (a.4.2.1)
a cos
99 _9%% (4.43.1)
dy r
0%¢ 2cos?psin?e
3y? = — 2 (a.4.4.1)
The Laplacian definition is,
9% 02
V2= —+— (a.5
dx? + y? (@-5)

Where (a.5), would result as,
02 [(ap\*  (0p\*]  d [(0%¢ 92¢ 32 [srar\> /0r\*] a [[/d%r a2r
v )+ () |+ 5 (5) + (55 + 3l Ge) +(5) |+ 3 (5) + (555) s
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In order to obtain the final expression of the 2D Laplacian it just has to
replace the previous expressions on (a.5.1) resulting,

92 9% 10 0% 1 9°

V= — +—=-"—F—+—— (a.6
6x2+6y2 r0r+6r2+r20<p2 (a.6)

A.2) Jacobian obtaining

¥ X = 1CosQ

y =1Ssing

Knowing that the area differential is: d4 = | ]p|drd<p, we just have to obtain the
Jacobian, then

dx 0dy
a J cos sin ) .

/| = 6; 6; = —rsiZ(p rcos(l()p =rcos?g — (—rsin?@) = r(cos?@ + sin®@) =7
ap og

So finally we have:

dA = rdrde
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B.1) Deduction about if the Hamiltonian shares a set of

eigenfunctions with symmetry operator C?; that represents a ¢
rotation into a circumference, ranged between O and 2.

First of all, we define,

92 .
Ay =557 (0D Y(p) = em®(b.2)

In other hand, we have the change produced by Ccﬁ over Y(¢), since,

cy(p) = Y(p+¢)(b.3)

As Y(¢ + ¢) indeed, contain two variables, and it has an exponential form
(b.2), the two variables function it may reconverts in two functions containing
just one variable, therefore we have,

Y(p+) =Y(@)Y($) = e™Pe™?
So, the equality (b.3) would result as,
Ci Y(p) = Ci elMme = gimPeime (h 3 1)
This equality (b.3.1) we will be taken into account later.

Now, we will verify if the operator that response in the presence of a rotation

axis Ci’ commutes with the, so far defined, as Hamiltonian (b.1),
Ay, C2Y () = 1 €V () = CE 7V () = 0 Chei™® — CE L eime (b.4)
It is observed that the first term in the equation (b.4) is equivalent to (b.3.1),
(Al C21Y () = ooz eMbeime — c2 2 eime (b.4.1)

After it is left out from the derivatives, those independent terms to ¢ result in,
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A . 2 . 2 .
[A,,C21Y (@) = em® a"’? eimo _ c® a"’? ei™m® (b.4.2)

Next the derivatives are operated

aeimq) ] azeim(p )
T ime™? = 307 = —m?2e'™¢ (b.5)

Now, it is carried the expression (b.5) to the expression (b.4.2) giving as a
result,

[ﬁ¢,C£]Y(¢) = —eMbm2eime 4 cPn2eime (h 4.3)
Reordering (b.4.3) as follows,
[ﬁ(p,Ci]Y(qo) = —m2embeime 4 m2cPeime(p 43.1)

It is observed the equivalence (b.3.1) in the equation (b.4.3.1), then, it is
replaced resulting like this,

[A,, C21Y () = —m2emPeim® 4 m2CEemPeimd = o

Finally, we can affirm that both operators commute.
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C.1) Why is “m” a whole number?

The explanation is simple, the exponential e/™¢ that represents the rotation,
indeed is ranged between 0 and 2m, so

[0,27]
—

eim(p eim((p+27r) — eim(peimZTr — eim(p

Therefore, to accomplish the previous equality, necessarily has to be e/™?" = 1,
Next applying Euler we have,

e™2T = cos 2mm + isin 2mrm = 1

The sinus function always is null in 0,7, 2r, 37, ...mr and the cosines function
always is the unity when it has an angle of 0,2r,4m, 67, ...mn

Finally it is concluded that m is a whole number that is ranged between O to
infinity.

C.2) Proof that e™? it is C,,, base

Study function: (¢) = e™®; ¢ = 0 ; Symmetry elements: E, (1,2, 5,

1) How do the symmetry operators behave over the coordinates?

E[p] = [¢]; CLp] = [¢ + 7] ; C2[p] = [p + 61;6,[¢] = [¢ + 6]

2) How do the symmetry operators behave over the function?

m=0 -e’=1

opf(¢D) = fF(E'[P]) = f(E[P]) = f([p) =P =€’ =1=1-f
aerf(D) = f(C'[P]) = F(C3l9]) = f([p +m]) = PP =0 =1=1-f

oo f(9D) = £ (C2PTe1) = £ (C2I9]) = FUp+ 6D = WD) =P =1=1-f
o5, f($]) = 1
05, f (D) = —1

m=1 - eil¢

opf((9D) = fF(ET'[9]) = f(EP]) = flpD =¥ =1-f
aeif(D) = f(C[]) = f(C2I@]) = f([p + m]) = e P+ = elbei™ = (—1) - f
(Euler - e™ = (cosw +isinm) = —1)
oo fUeD) = £ (C2P191) = £ (C2191) = f (i + 1) = eT1(#+0) = ¢idei®
= (cos O +isin@)-f
(Euler - e% = (cos 6 + isin 9))
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=-1 - ei(_1)¢

oef(p)) = F(E7[p]) = f(E[B]) = f([p]) = eV =1 f
oesf (D) = F(C D)) = f(C3B]) = f([§ +n]) = D@D = gidp=inm = (—1) . f

(Euler - e ™ = (cosm—isinm) = —1)
oo fUeD) = £ (C2P191) = £ (C2191) = f( + 1) = el D@H0) = it i
= (cos 0 —isin @) - f (Euler - e~ =(cos @ —isin 9))

m=|1] — eilll¢

oef([¢]) = e1®e~1P = cos ¢ + isin ¢ + cos ¢ — ising = 2cos¢p ¢—Z(>)0,3~f([¢]) =2

. , , . ePeid=p
oaf(oD = elPe~®eliMe=t s cosm +isinm+cosm—isinm = —2

. L . ePe-id=p
Jé¢f([¢]) = ePeiPpi®p=i0 50560+ isin@ + cos O —isin O = 2cos 6

o5, f([¢D) =0

m=2 - e'??

opf(loD) = f(E[]) = f(E[$]) = f([¢D) =e?¢ =1 f
aerf([pD) = f(C3[P]) = F(CG3[h]) = f([p + m]) = (947 = e2Pel2T = 1 . f
(Euler > €™ = (cos 2m + isin 2m) = 1)
oo fUeD) = £ (C2P191) = £ (C219]) = f ([ + 6]) = e2(#+0) = ¢i2dei2d
= (cos 20 +isin20) - f
(Euler - e%2% = (cos 26 + isin 29))

m=-2 - ei(—2)¢

oef([#)) = F(E7[P]) = f(El@]) = f([p]) = e'DP =1 f
aerf([pD) = f(C3[P]) = F(C3[B]) = f([p + m]) = ' TP+ = o =202 = (—1) . f
(Euler - e ™ = (cos 2w — isinm) = 1)
oo f(SD) = £ (C2PTe1) = £ (C2I9]) = F([p + 6) = e CDB+0) = iz emize
= (cos 20 —isin20) - f
(Euler — 7129 = (cos 20 — isin 29))
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m = |2| — eil?l?
oef([¢]) = e2®e~2% = cos 2¢ + isin 2¢ + cos 2¢ — isin 2¢
= 2.cos 20 S o f ([p]) = 2

. . . . el2bei2d—p
oerf([p]) = el2Pe=2¢p2Mp=i2T o5 21 + isin 2w + cos 2m — isin 2m = 2

. . . . i2¢ —i2¢=2
00 f([P]) = e2Pe 1220120 S cos 20 + isin 26 + cos 20 — isin 20

= 2cos 20

o5, f([#]) =0

Keeping in mind that 6, has always a conjugated plane G, starting from the
value m = +1,42,43, ... we may consider the planes equal to zero.

Character table of Cy,

e E G 2c? e 000,
A=x' 1 1 1 1
A=Y T | 1
E=I1 . 2 2 cos ¢ 0
Ep=A % 2 2cos2¢ - 0
Es=® 2 2 2 cos 3¢ 0

D. 1) Obtaining of 3D probability to find an electron

31%0

ap Qo 2 2
2 2 4 “27/a0p2 gy — 4 —or/a, T %0 2rag B 2a,
Ripr® =—3 e redr =—se
0 aO 0 aO 2 4’ 8

0

3D Probability = 4[e%(=5/4) — (—=1/4)] = 0,3233 = 32,33%

E.1) Obtaining of radial functions and angular functions with its
corresponding normalizations

The way to proceed in the obtaining of the radial functions is beginning by the
last quantum number in the orbital which has no constant value out of the
exponent, so finally carried out to the (46) equation. Let us start by 2s&2p,

2p orbital - R(r) =re ™" andm =1
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The derivatives required are:

OR(r) _ S %R (1)

_ -b 2,.,—b
i 52 = —2be + bere™P"

Once the (46) equation replace the derivatives and is reordered by “r” it results
as,

E 27
[bz + ,2] r3+ [—3b + —] r’+[1-m?lr=0
age a,

With the r? term is obtained b:

2Z 2Z
-3b+—=0->|b=-—
ay 3a,

And now, with the r3 term is obtained the Energy:

b2+ ZE _ b=2Z/3a0 _ _322612
age'? 9 a,
We continue with,
2s orbital > R(r) =re " —ce ™ andm =0
The derivatives required are:
OR(r 0%R(r
@) =e " —pre=? 4+ che b7, g ) = —2be D" 4 br2e~br — cphZeP
Jar Jar

Once the (46) equation replace the derivatives and is reordered by “r” it results
as,

E 2Z 2Ec 2Zc
[b2+ ]r3+[—3b—cb2+—— ]r2+[1+cb—a—]r=0
0

age'? a, age'?

Knowing that every constant value is the same to every single orbital we can

deduce “c” taking into account the “r” term,
2Zc  b=%/y 3a
1+cb-— =0 Ble==2
ay 47

In addition, as the energy is degenerated we would obtain again:

2E b=2%/ 27%"
b+ =0 —8|F=-=
age 9 ag

Once obtained the 2s&2p constants and energies, we carry on with the 3s, 3p
& 3d orbitals constants and energies:

3d orbital - R(r) =r%e™® andm =2
The derivatives required are:
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OR(r) _

=2e b —4prebT 4 p2r2eb
oar

2re br — pr2e-br,

The (46) equation once replaced the derivatives and reordered by “r” results as,

E 27
[b2+ ]r4+[—5b+a—]r3+[2+2—m2]r2=0
0

aOeIZ

With the r3 term is obtained b:

2Z 2Z
—-5b+—=0->|b=—
a 5a,

And now, together with the r* term the energy obtained is:

2E b=2%/s 4, 2 Z%e?

bZ = —
+ 25 a,

age'?

Then, we may obtain the “d” constant value by 3p orbital, so

br _yce " andm =1

3p orbital — R(r) =r?e”
The derivatives required are:

dR(r)
or

2re PT — pr2e=bT — ce7PT 4 phere b7

0%R(r)
0r?

=2e " —4bre™P 4 b2r2e7b" 4 2bce™ — b2cre~Pb"

The (46) equation once replaced the derivatives and reordered by “r” results as
follows,

[bz + 2E ]r4+ [—Sb—cb2 +¥— ZEC]r3 + [4+3bc—ﬁ—m2]r2 + [—c— 2Ec —mzc]r =0
aqe’? a, age’ ao age’?
With the r2 term is obtained c:
2Zc ,  m=1b=%%/5q, 15a,
44+3bc——-m*=0 —|c =
ay 47
And the energy will be the same as the 3d orbital is,
p=2Z _15ag 2.1
5a, €=
—5b—cb2+¥— 2kc =0 /ao /4ZE=—£Z_6
a, age'’? 25 ag

Finally with the 3s orbital we can obtain the constant that is left,
3sorbital » R(r)=r%e™® —rce™ +de " andm=0
The derivatives required are below:

OR(1)

= 2re ™ —pr2e P —ce " 4 pcreb" — dbeP7;
r
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90%R(r)

PRI 2e " — 4phreb + b2r2e b 4 2bce " — b%cre T 4+ db2e P

The (46) equation once replaced the derivatives and reordered by “r” results as,

E

2 2Z  2Ec
age'’?

]r4+[—5b+—— =
ap ape

2Zc  2Ed
]r3+[4+3bc—cb2+db2——+ >
Qo ape

2Ed
[b2+ ]r2+[—c—db+—,2r=0
ape

With the r term is obtained d:

2Ed b=22/5q, =12 0/,, _ 75a,
age’? 1622

And the energy how it is known, is degenerated, so

2

=2Z _15aq, q="5% 7

4+ 3bc — cb? + db? — 25 4 22 =0b fsay =""/ag /16ZZE=_£Z e?
%o aoe’Z 25 Qo

E.2) Normalizations

-Radial part-

2s orbital

N2 [f r3e 20Ty — czf re‘Zbrdr] =1— N? -
R1Jo R124p* 22h2

3 1 ]_ b=22/3q,c=2%),,| 16\/§(Z)2
= NZS = -
0 45 ap

2p orbital

3' ] _ 1b:22/3a() N2p _ 2\/8(£>2

N3 U r3e‘2brdr] =1— N2 [
0

24p* R 27 \a,
3s orbital
N U rSe 2brdr — ZCZJ re ?brdr + Zdj r3e ?bTdr + CZJ r3e 2bTdr — 2cdf r2e ?brdr + dzf re‘z’”dr] =1
0 0 0 0 0 0
51 4 31 31 21 1! b=22j, 15 o), a="5 O, 64 [Z\°
2| 2 5 o 2 2 e 2 1 | _ 0 47 1622| pr3s _ Z
Ng 2656 2c25b5+2d24b4+c 244 2cd23b3+d ZZbZ] R 125 _111(%)
3p orbital
Ng [f rSe~20"dr + czf ri3e=2b"dr — ZCI r4e‘2brdr] =1—
0 0 0
51 3! 41 b=2Z /34, c=3%/ 64 7\
N}%[es"'cz 44_2C55]= = 4ZN1§p= (_>
26b 24b 25b 12530 \ao
3d orbital
0 5! b=22/cq 32 /Z\°
N3 [f rse_zmdr] =1— N3 [ = 6] =1 SINZP = —(—)
0 2°b 125+/30 \ag
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-Anqgular part-

The angular part will be always the same in every single orbital because a
single imaginary function multiplied by its conjugated will be 1, so we will

always have the same result, then

27T

21
N(/Z)L elm(pe—lmfpd(p =N(/2)f0 d(p =1— qu,ZT[ =1-|N, =

Sl
=)

F.1) Mathematica calculations
ClearAll["Glokal'+"]

falra ] :=

+Exp[-2%ral:r fblrb ] :=
2% 2%

+*+Exp[-211b]

NIntegrate[ra.*fa[ra]:, {ra, 0, w}, {9, 0, 2x7}]

s

ClearAll["Glocbal's"]

fa[ 1 2 E [ 25,/ ( Rab]: y"] Rab =0 ( Rab]z ¥
=1 - S +Exp|-2 % X+ — | + e =07 Fa= X+ — | + z
N2aa 2 2

SSab[Rab_] := NIntegrate[fa[x, ¥1%: [Eio—mpoml s s =y =}]

SSab[Rab]

- 1
Sab[Rab ] := NIntegrate[fa[x, ¥l (X, =388 Tw3; 3}]

Sab[Rab]

0.999%64

ClearAll["Glocbal's"]

Eafx ;w1 == 2 *Exp[—Q*..ﬂ (x+ Rib]:+y*1 ] ;r Tb[x ¥]1:= = *Exp[—Q* (X—Rib]:+_'y)]
- - V2am 2 - N V2am 2

Plot[Sab[Rab], {Rab, 0, 10}, PlotRange -> Full]

ClearAll["Global'x"]
falx , v ] := & tE)Cp[—Qt (x+Rib}:+f]'fb[x ¥ 1= 4 *Exp[—Q* (x—Rib}:Ly:I
== e v 2 =T Yaam v 2

fa[x, vl fa[x, v¥]

R TR TR

Haa[Rab ] :=NIntegrate[ fa[x, ¥]+ —2*{D[fa[x, ¥], {x, 2}] +D[fa[x, ¥], {¥, 2}1) -

Hab[Rab_] ::NIntegrate[ fa[x, ¥y1+ —é*(D[fb[Kr ¥1l, {x, 2}] +D[fb[x, ¥1, {¥, 2}1) -

P %, -m, @), (Y, @,
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Haa[Rab] + Hab[Rab] 1 Haa[Rab] - Hab[Rab] 1

B.[R& ] := —————— 4+ — ;E [Rab ] iz —— m m— — ——————— } —;
2 1 + Sab[Rab] Rab * 1 - Sab[Rab] Rab

Plot[{E,[Rab], E_[Rab]}, {Rab, 0, 10}, PlotRange - {{0, 10}, {-3, 0}}1]

0.0

8 10
-0.5 H

1ol

-15F

F.2) Secular equations

We have the following system,

® ©

Every single core has a particular behaviour (¢, & ¢;), and the global
behaviour comes given by the following LCAO,

Y =cada +cpdyp (f.2.1)

Next, the energy can be obtained using the following expression,

E= wlA) (f.2.2)

W)
Now taking (f.2.1) to (f.2.2),

E = (Cad)a + Cb¢b|caﬁ¢a + Cbﬁd)b) — Cg(d)a'ﬁqba) + zcacb<¢a|ﬁ¢b) + Cg(¢b|ﬁ¢b)
(Ca¢a + Cb¢blca¢a + de)b) Cg + 2CaCbSab + CI?

(d’ilﬁ‘»b}'):Hij E = CgHaa + 2CaCbHab + Cl%be
€2+ 2¢cqCpSap + ¢

(f.2.3)
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Now (f.2.3) is reordered obtaining the following expression,
2 2p — 2 2
CGE + 2¢c4cpSapE + chE = cfHyq + 2cqcpHyp + ciHyp ()

Next the energy is minimized in (k),

ok
30 = 0 = 2¢,E + 2¢pSapE = 2¢cqHyq + 2¢pHyy (. 1)
a
c,Hyq + cpH
ca= a'laa b'tab (51)
Ca + CbSab
Ok
% =0= 2CbE + ZCaSabE = Zchbb + ZCaHab (K'. 2)
b

cpHyp + 4 H
Ec _ “pbb a‘lab (52)

b Cp + CpSan

Then we can order E; & E,, respectively to solve the secular equations:
CqHgq + cpHgp — CoE — cpSapE =0
cpHpp + CqHgp — CpE + cpSapE =0

Continuing with the reordering according to c,& ¢, ,we might obtain,
(Haa — E)cq + (Hap — SapE)cp = 0
(Hap — SapE)cq + (Hpp —E)cy =0

In addition to this, if we take into account Hj, which is a homonuclear
molecule we can affirm H,, = Hp,, so when we try to solve the previous
equations all it turns easier to solve,

(Haa — E)cq + (Hap — SapE)cp =0
(Hap — SapE)cq + (Haq — E)cp =0
Next a determinant is prepared to obtain energy values:

Haa_E Hab _SabE

=0
Hab - SabE Haa —E

[Haa - E]Z - [Hab _SabE]2 =0 _>|[Haa - E]z = i[Hab _SabE]z(a)|

If we make (a) positive we will obtain antibonding energy and if it makes (a)
negative we will obtain bonding energy,

() positive:

Haa - Hab

E_=
1-S5g
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(a) negative:

— Haa +Hab
1+ 8y,

ADDITIONAL
Now if we replace E, in the secular equations it may obtain,

Ca
_— 1 —_ =
ch Ca Cp

On the other hand, if we replace E_ in the secular equations it is obtained,

Knowing which is the relation regarding normalization constants, we are going
to proceed on the obtaining of their values. Taking into account the
normalization condition we will obtain them,

W) = Cg + 2¢4¢pSap + Cg =1

Ifc, =cp:
1
2¢2+2¢,%Sqp =1 > |cg=¢p =
2[1+ S.]
Ifc, = —cp:
2¢c2 — 2¢,°S 1 ! !
Cb_ Cp“Ogp = —|Cp) = ——=—Cg = —
2[1 = Sgpl 2[1 = Sgp]
It concludes then,
1
E, — l/)+ = Cad)a + Cad)b = Ca(¢a + ¢b) - l/)+ = —(d)a + ¢b)
2[1+ Syp]
1
E_—Y_=ca¢pg —copp = Ca(d)a - d)b) — Y- = —(d)a - ¢b)
2[1 _Sab]
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F.3) Hymolecule (elliptical coordinates)

To start with, let me introduce the system,

/

A Rab B

r= (A7

To make the variables change, we need to take into account the following
equalities:
_TgtTy _ Tg —T1p

u= PV =
Rab

Once known the previous equalities, it may obtain,

1 1
razzRab(u+U) &Tb =§Rab(u_v) USl)&UBZ)

And now, making reference to 1s wave function for nuclei A & B,

4
e—ZTa; ¢b — e—ZTb

V2r

We could carry (£.3.1) & (f.3.2) to the 1s wave functions, where we may obtain,

4 4
e e_Rab(u'H’); e e_Rab(u_v)
¢a ,—21_[ ¢b ,—21_[

Next, we need to obtain the following parameters:47

1) 2D elliptical Laplacian,

Vi= : (u? 1)62+ a+(1 2)62 i
RZ, (u? —v?) “ uz " " ou Vv Yoy
2) Area differential for an ellipse,
R\2 U? — 12
dA = dxdy = |fp|dudv = (5) Ty (o e

Now, it is obtained Sab, Haa and Hap,

It will be detailled at the end of the section F.3)
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Sap = (Baldp) = f atby dA (f.33)
Haa = (¢a|Alda) = f b3 Aba dA (F.3.9)

Hap = (¢a|A|¢5) = f o Ay dA (f.35)

Note: The integration is done to x axis between [l,0] and to y axis
between|[—1,1]. In addition, because of the x axis we will need to multiply by 2,
because only it is considered in one side of the space. In other words, it is just
taken into account the x positive values and so we need as many the positives
as the negatives.

The calculations done by Mathematica 10 are:

ClearAll["Global's"]

faln , v ] := % @), Fhin L, v ] := x g elmiERL
W2 2
R? o? - v? .
Int.egrat.e[fa[u, v]xfb[u, v] & — % y 0,1, w}, {v, -1, 1}, Assumptions + {Re[R] =0, Im[R] = D}]

4 ((o?-1) & (1-v2))**
Cr:n:'u:iit,io:‘1e.:l.E:q::t:es.sicn:‘x-R2 BesselK[2, 2R], R> o]
Sab[R ] :=2 R BesselR[2, 2 R]

Plot[Sab[R], {R, 0, 10}, PlotRange - Full]

1.0

0.8

Here is observed the overlap behaviour what is congruent with the expected
(y=overlap, x=internuclear distance).

Next we proceed with Haa and Hap obtaining,

Integrate[
2 . )
fafo, v]# [—ﬁ*{u‘*n[fa[u, v, {u, 2}] -D[fa[u, v], {u, 2}] +usD[falu, v], {u, 1}] +D[fa[u, v], {v, 2}] - v «D[fa[u, v], {v, 2}] - v+D[falu, v], {v, 1}]} -
R (o -v*
fa[u, v] fafu, v] R? - i
- *— % -, {0, 1, =}, {v, -1, 1}, Assumptions + {Re[R] 20, Im[R] = 0}
%*R*{L‘H‘?) %ﬂit{u—v} 4 {{11’-1}*(1—'-3:))“‘

iy 1 2R (-7Bessell[1, 2R] BesselK[0, 2R] + 3 7Bessell[0, 2 R] BesselK[1, 2 R]) 1
ConditionalExpression - ,R>0

HaalR ] 4 R (-mBesselI[l, 2 R] BesselK[0, 2 R] + 3 m BesselI[0, 2 R] BesselK[1, 2R])
aalR ] :=-

m
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Integrate [

fblu, v]+ [— = { 7 *(u:*D[fa[u, v], {u, 2}] -D[fa[u, v], {u, 2}] +us+D[fa[u, v], {u, 1}] +D[fa[n, v], {v, 2}] —v:*D[fa[u, v], {v, 2}] - vs«D[fa[u, v], {v, 1}]} -
R°%(o°-v
fa[u, v] fa[u, v] B! o-v? 2
- =1 -, {1, 1, =}, {v, -1, 1}, Assumptions + {Re[R] 2 0, Im[R] ::U}]
:liR*(LH-V} ?*Ri(u—v) 4 ({u1_1}*(1_v’)}“'

ConditionalExpression[-2 R (RBesselK[0, 2R] + 3 Bes=elK[1, 2R]}, R> 0]

Hab[R ] := -4 R (RBesselK[0, 2 R] + 3 BesselR[1, 2 R])

Now those integrals are carried to the next expressions,

_ Haa + Hab

_HaatHep 1 . Hoa=Hap
+ 1+S,  Rap’

L
1- Sab Rab

Obtaining the following graphic,

0.0 : : : : ‘ Rab/bohrs
2 4 6 8 10
-05 ¢

-10 ¢

-15 ¢

-20 ¢

-25 ¢

-30"

U/hartrees

-Differential area element for an ellipse

y

/

A Rab B

x — ERabuv

y = 2 Rapl(u? = 1)(1 — w12
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Knowing that the differential area element is: d4 = | ]p|dudv, we just have to

obtain the Jacobian, then
Rap 2u(l —v?)

ox 0dy %Rabv = T
|] |= % ﬁ — [ -1 -v?)]2
p ox 0y 1 R Rap 2v(1 —u?)

- = “Ryu -2
v vl |27t g4 [w? — 1)(1 v2)]%

— 52 _ 2
(w2 = DA -vA)]2 (w2 = DA -vA)]2

B R_2 v? —v2u? (E)z u

% 22 [(wz -1 - Uz)]% 2) [ —-1Dw?2—-1)]1/2

2 2

R? u? — v2y?

2 @2 - (1 - )]

So finally we have:

dA = <§)2 [(u? = 1;;(;2”2_ INEE dudv

-Elliptical 2D Laplacian obtaining (Mathematica 10)

dx? := (D[u[R], {x, 1}]):tch+D[u[R], {x, 2}] #cul + (D[VI[R], {x, 1}]):tcv2+D[v[R], {x, 2}]1 #cvl

dy2 := (D[u[R], {v, 1}1)*#cu2+D[u[R], [y, 2}] #cul + (D[V[R], {¥, 1}1)**ev2+D[V[R], {y, 2}] #evl

Lap := dx2 + dy2

1 1 YT —— q
X=-—#Ran+v;y=—aRsYuw -w+v -1+v" ;
2 2

Lap
1{ [ R Ruwyz 1 e e o o [fR Ruwviz 1 . 2
cve | T auv -Jl-=+ +-R ([-1l:u+v'-u" v + ||=-+ +—R (-1+u" +v -u" v +
T R Vio2 2 4 i ¥ iz 2 4
s O G Al T - s, At i) e /R Ruvjz 1 , i
eVl S rBuv = |=.) ==+ + - R (-l:m v -u'v +.0 = +—-R (-1iu+v -u"v) |+
[Rav,z) iz 3 I 12 > T |
) 1 [{ R Ruvy? 5 2 8. 3 i [{R Ruwy? 5 5 -
(ol o e ey el 0 St e ok B T e Ea il s 5 +-R (-l:u +v —u v =
[Fav-tafalfafe? gl r | W L2 2 Ylz 2
o G A R 31 s T - TR Buwy? Ao s 4 s =
EWLEy: e i L ey +-R (-liw+v —uwv) +,/[= +—-R |[-l:u*+v -—u" v =
{gBV -leufarfuf v 2L R Y 2 2 4 ¥ iz 2 4 E
I 1| {{ R Ruwyz W N [fIR Ruwi2
cu? |G;Ruw 1= |4 == = R -liusv"-u"v) + |-+ — R (-1+u*+v'-u*v* +
=ir [Vl 27 2 V1272
_ 2l {f R Ruwvi? 1 ., 5 ks o /{fR Ruwvj? 1 . AR
cul Frruv g = W + SR (CliutivE ot V) 2L | o FIRR (1 e B ) |
R (V1 2 2 4 ' iz 2 4 !
1{ (/R Ruvyz 1 , 5w sugg . TR Rawy? g 5,5 i
cu? |8, T S [ -+ +-R (-liuzv-u v} +,]|-+ +—-R (-l+u"+v' -u" v =
[gBotadadadZ Al R (Y 1 2 2 q iRl 2
1|/ R Ruvyz 1 , s gy LfRE Buviz 1 . g iy g
cul 5, e av il 0 0 e + =R (-liuw+v'-u" v} & [[= 2= R* [-1:u®+v*-u®v)
lalaafataiet gl YL 2 4 V2 2 4
FullSimplify[%45]
= A g — 2
Eleoemis (WRE (u-v1% -yRE (usvif | evi) s+ R® [-2+0% 4+ ¥®) (euZ -cv2) +RE (u-v)% B® (u+v}® (cuZs:cv2 .'_-

b -
[z (R [[VEBE (u-v)® ++/R® (usvw)

Where,
0° 1 5} 2 = 0°
vl =—;cv =52

cu1=£;cu2=m;c E
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G.1) Perturbational & Variational method Ji:z obtaining

Perturbational method:

rlxr2 A
* fokxfok« — , {rl, 0, =}, {r2, 0, =}, {énn, O, 2xm},
2 rl2

e=l = NIntegrate [4 & 0T &

MaxRecursion -+ 100, Method <+ {GlobalAdaptive, MaxErrorIncreases - 3530}]

4.7122&

Variational method:

rlar2 1
ereplfa ] ::NIntegrate[:;ant +fok[rl, r2] «fok[rl, r2]« —, {rl, 0, »}, {r2, 0, ®}, {¢n, O, 247}, MaxRecursion + 100, Method + {GlobalAdaptive, MaxErrorIncreases + 3530}
2 rl2
enevar[a ] izel[a] +e2[a] + erepl[a]

enevar[a] - {-8)

3.63452

Therefore, if the I.P. is —3.63452hartrees and E; + E, = —8hartrees, then
J12 = —3.63452 + 8 = 4.36548hartrees
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G.2) Where do the Slater’s rules come from?
We are going to put some examples to visualize better where the Slater’s rules

come from,
02 04 06 08 10 “
0 a=072"=Za=07
10 E = 0.009 hartrees
-15
N /
Evar a
02 04 06 08 10
Lit| a=09;Z'=Za =27
-5t
E = —11.28 hartrees
_10 L
_15 L
20t
-25
-30. Evar —
0z o 00 o8 1 Be?*|a = 0.925;Z' = Za = 3.7
-0} a
E = —22.92 hartrees
_20 L
_30 L
_40t
50+
Evar

|H™ < He < Li* < Be?* |

a:0.7 <0.85<0.9<0.925

Z:1<2<3<4
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Alpha is given as a fraction of unity in relation with the effective nuclear
charge that the electrons perceive with regard to the nucleus. We might call
alpha as the non-shielding parameter according to: the largest it is the least
shielding exists. It is observed that all the examples above obey the Slater’s
rules. Z' = Za = Z — 0. The Slater’s rules say: for all the electrons that may be
found in the 1s orbital of two-electron atom, the shielding will be ¢ = 0.30 and
that is observed when we take into account the relation: Za = Z —o.
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