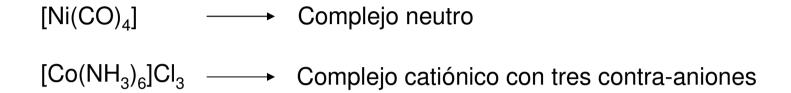
1.- Perspectiva histórica y conceptos básicos


Química de coordinación*: se ocupa de los complejos metálicos, compuestos que tienen un átomo central rodeado de un grupo de moléculas o iones.

Ligando: ion o molécula que podría tener existencia propia

Compuesto de coordinación: estructura neutra, que contiene un complejo.

Si el complejo es iónico, el compuesto de coordinación se forma por asociación con contra-aniones o contra-cationes

1.- Conceptos básicos

Perspectiva histórica

Primeros complejos → Finales s. XVIII

Primeras teorías — Principios s. XX

Finales de s. XIX — Formación de enlaces por fuerzas electrostáticas

Valencia = nº de coordinación = estado oxidación

Cu(+1, +2); P(-3, +3, +5)
$$\longrightarrow$$
 valencias variables

La valencia determina la capacidad coordinativa de los elementos

Perspectiva histórica

A finales del s. XIX las teorías no podían explicar ciertos comportamientos:

→ Capacidad de algunos metales para reaccionar con NH₃:

$$CrCl_3 + 6 NH_3$$
 \longrightarrow $CrCl_3 \cdot 6NH_3$
 $PtCl_2 + 4 NH_3$ \longrightarrow $PtCl_2 \cdot 4NH_3$

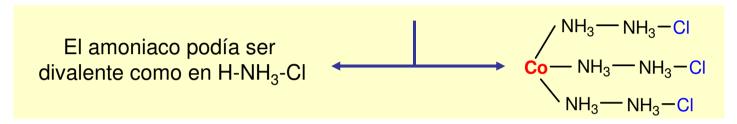
La justificación de estas Blonstrand y Jorgense par la justificación de estas

$$Pt$$
 $NH_3 - NH_3 - CI$
 $NH_3 - NH_3 - CI$

Perspectiva histórica

A finales del s. XIX las teorías no podían explicar ciertos comportamientos:

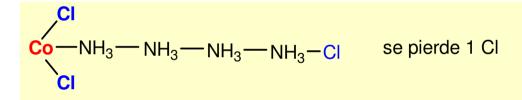
Compuestos con misma fórmula con propiedades diferentes:

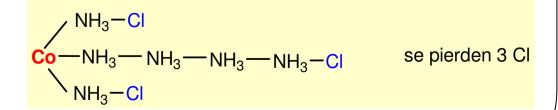

 $CoCl_3.4NH_3$ violeta $CoCl_3.4NH_3$ verde $CoCl_3.5NH_3$ Púrpura $CoCl_3.6NH_3$ amarillo

Diferente reactividad con AgNO₃:

$$CoCl_3\cdot 4NH_3 + AgNO_3$$
 (exc) — un equivalente de $AgCl$ [$CoCl_2(NH_3)_4$] Cl $CoCl_3\cdot 5NH_3 + AgNO_3$ (exc) — dos equivalentes de $AgCl$ [$CoCl(NH_3)_5$] Cl_2 $CoCl_3\cdot 6NH_3 + AgNO_3$ (exc) — tres equivalentes de $AgCl$ [$Co(NH_3)_6$] Cl_3

Perspectiva histórica

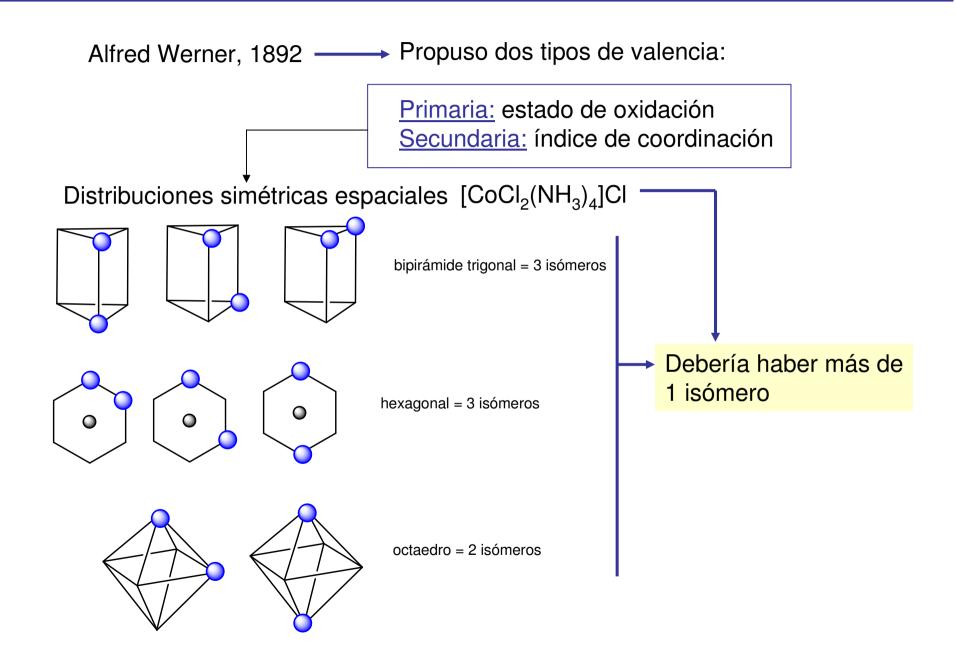

Blonstrand, 1869 Teoría de las concatenaciones



Perspectiva histórica

Blonstrand, 1869 Teoría de las concatenaciones

Jorgensen, 1884 — modifica la teoría para justificar diferentes pptaciones de cloruros



Cuestiones sin resolver:

- -¿por qué no concatenan 8 NH₃?
- -¿Cómo se justifica que IrCl₃.3NH₃ no tenga cloruros ionizables?

Alfred Werner, 1892 ——— Propuso dos tipos de valencia:

Primaria: estado de oxidación Secundaria: índice de coordinación

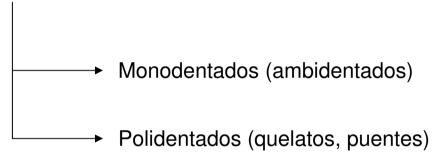
Werner aisló el segundo isómero de [CoCl₂(NH₃)₄]Cl (cis)

→ Jorgensen admite públicamente su derrota

Lewis, 1916 → formación de enlaces por donación de pares de e.

Sidwick, 1927 → Ligandos dodares de pares de e.

Alfred Werner (Nobel 1913)



"En reconocimiento por sus trabajos sobre la unión de los átomos de las moléculas, que han arrojado nueva luz y han abierto nuevos campos en la investigación, especialmente en la química inorgánica"

2.-Tipos de ligandos y nomenclatura

Clasificación de ligandos:

- 1) Según naturaleza del átomo dador: O, N, P, S, Cl (haluros), C
- 2) Según número de átomos dadores

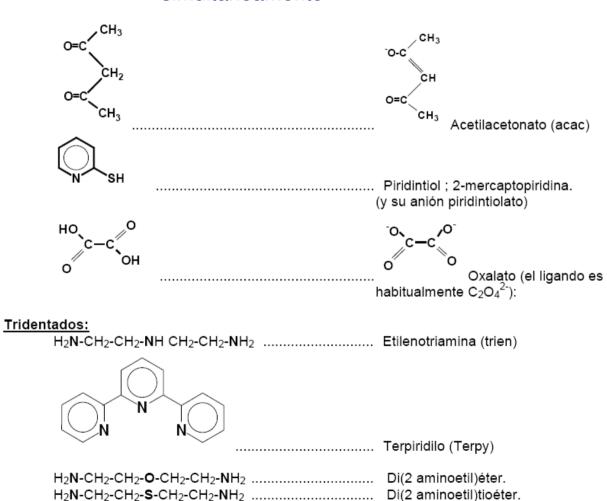
Ligandos monodentados

Fórmula	Nombre cuando actúa como ligando (abreviatura)
Monodentados:	
H ₂ O	Aquo
OH ⁻	Hidroxo
NH ₃	Ammino (y derivados: NR ₃)
NH ₂	Amido
F ⁻	Fluoro
CI ⁻	Cloro
Br ⁻	Bromo
Γ ₃	Yodo
02	Oxo
O ₂ ²⁻ S ²⁻	Peroxo
	Tio
HS ⁻	
CN	
CO	
NO	
PH ₃	Fosfina (y derivados: PR ₃)
	Trifenil fosfina (y derivados)
N	
	Piridina (pv)

Ligandos ambidentados: más de un átomo dador, aunque sólo pueden utilizar uno

Ambidentados:

NO_2	 Nitro
ONO	 Nitrito
SCN-	 Tiocianato
NSC ⁻	 Isotiocianato


<u>Ligandos polidentados</u>: tienen dos o más átomos dadores que pueden utilizar simultáneamente

Clasificación según número de dientes: bidentado, tridentado, tetradentado...

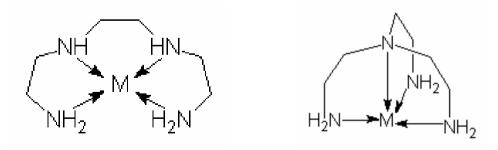
Quelato (gr. Garra) — unido a un mismo metal

Puente — unido a dos o más metales

<u>Ligandos polidentados</u>: tienen dos o más átomos dadores que pueden utilizar simultáneamente

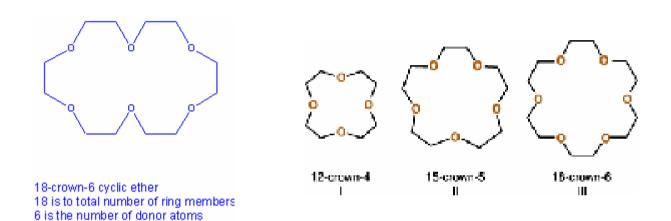
<u>Ligandos polidentados</u>: tienen dos o más átomos dadores que pueden utilizar simultáneamente

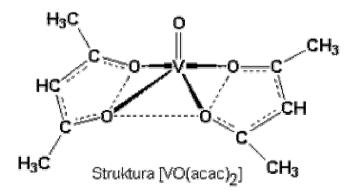
Tetradentados:


Simultáneamente puentes y quelatos:

<u>Ligandos polidentados</u>: tienen dos o más átomos dadores que pueden utilizar simultáneamente

LIGANDOS TRIDENTADOS


2, 2', 2''-terpiridina (terpy) Dietilentriamina (dien)


LIGANDOS TRETRADENTADOS

trietilentetraammnina (trien)

<u>Ligandos polidentados</u>: tienen dos o más átomos dadores que pueden utilizar simultáneamente

Nomenclatura de compuestos de coordinación:

- 1. Los nombres de los ligandos se citan, sin separación, delante del ion o átomo central (aunque si el complejo es un anión o catión se nombrarán en el mismo orden que en las sales: primero el anión y después el catión).
- 2. Si el complejo es neutro o catiónico, el nombre del átomo central no se modifica. Si el complejo es un anión, el nombre del átomo central termina en *ato*.
- 3. El número de oxidación del átomo central se indica en último lugar mediante la notación de Stock. Puede utilizarse el método Ewens-Bassett indicando la carga global del ion entre paréntesis.
- 4. Los ligandos se citan por orden alfabético, sin tener en cuenta en esta ordenación los prefijos numerales. ion hexafluoroferrato(III)

Por Feirm plating diagrantifa purparta aix es ferra to (alth); trishidrógenos ulfito va antes que bisperclorato; bis disulfato va antes que tetra fluoro, etc.

```
Ni(CO)_4 tetracarbonilniquel(0)

[Fe(H_2O)_6]^{2+} hexaaquahierro(II)
```

Nomenclatura de compuestos de coordinación:

5. El número de ligandos de cada tipo se indica con prefijos griegos (*mono, di, tri, tetra*, etc.) delante del nombre del ligando. Cuando es necesario indicar el número de grupos compuestos de átomos, o cuando el ligando contiene ya los prefijos anteriores se emplean los prefijos *bis, tris, tetrakis, pentakis*, etc., y se encierra entre paréntesis el nombre del grupo.

Pt(PPh₃)₄ tetrakis-trifenilfosfinaplatino(0) PdCl₂(dppe) diclorobisdifenilfosfinoetanopaladio(II)

6. Los nombres de los ligandos aniónicos terminan en *o* y son los mismos que tienen como grupos aislados:

H⁻ hidruro, S₂O₃²⁻ tiosulfato, SCN⁻ tiocianato, etc

8. Los radicales derivados de los hidrocarburos se consideran negativos a la hora de calcular el número de oxidación, pero se nombran sin la terminación *o*.

Cy ciclohexil Ph fenil Me metil

Nomenclatura de compuestos de coordinación:

8. Los nombres de los ligandos neutros permanecen inalterados, excepto:

```
H<sub>2</sub>O = aqua; NH<sub>3</sub> = ammina; NO = nitrosilo; NS = tionitrosilo; CO = carbonilo, CS = tiocarbonilo
```

- 9. Los grupos puente se indican con la letra griega μ., colocada delante del nombre del grupo y éste se separa del resto del complejo con un guión. El número de grupos puente de la misma naturaleza se indica con prefijos numerales: di-μ, tri-μ, etc. Cuando el grupo puente se une a más de dos átomos centrales, el número de átomos centrales enlazados se indica como subíndice de la letra μ.
- 10. Algunos ligandos son capaces de unirse al átomo central de dos formas distintas:

-**O**NO⁻ ion nitrito -**N**O₂⁻ nitro

-SCN⁻ ion tiocianato -NCS⁻ isotiocianato

Nomenclatura: ejemplos

Formulación

- 1. En las fórmulas primero se escribe el catión y después el anión. Tanto el anión como el catión, o los dos, pueden ser compuestos de coordinación.
- 2. La fórmula del ion o molécula complejos se encierra entre corchetes. Se escribe primero el símbolo del ion o átomo central y a continuación los ligandos en el siguiente orden:
 - 1º) Ligandos iónicos (en orden alfabético del átomo dador)
 - 2º) Ligandos neutros (en orden alfabético del átomo dador)

Ejemplos

$$[Co(C_2H_8N_2)_2(C_{10}H_8N_2)]^{3+}$$
 " $[Co(en)_2(bpy)]^{3+}$ "

ion bipiridinabis(etilendiamina)cobalto(III)

$$[PtCl_2(C_5H_5N)(NH_3)]$$
 " $[PtCl_2(py)(NH_3)]$ "

amminadicloropiridinaplatino(II)

amminabromocloronitroplatinato(II) de sodio

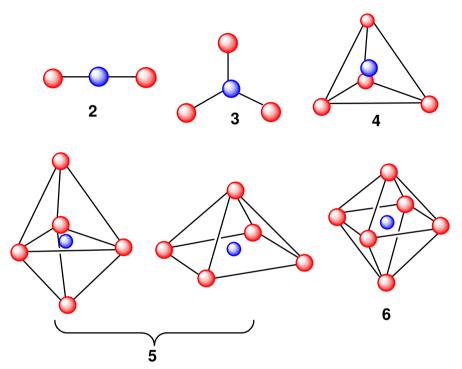
Compuestos con ligandos puente:

Si el complejo a cada lado es igual: prefijo multiplicador

 $[(NH_3)_5Cr-OH-Cr(NH_3)_5]^{5+}$ o $[\{Cr(NH_3)_5\}_2(\mu-OH)]^{5+}$: ion μ -hidroxo-bis(pentaamminacromo (III))

 $[(NH_3)_4Cr-(OH)_2-Cr(NH_3)_4]^{4+}$: ion μ , μ -dihidroxo-bis(tetraamminacromo (III))

Si el complejo a cada lado es diferente: uno detrás del otro


[Cl₅Cr-OH-Cr(NH₃)₅]: μ -hidroxo-pentaamminacromo (III) pentaclorocromo (III)

3.- Índices de coordinación y estructuras:

- -Estereoquímica de un compuesto del grupo-p: modelo VSEPR
- -La estereoquímica de un compuesto viene marcada por:
 - -Parámetros estéricos: repulsiones entre ligandos
 - -Parámetros electrónicos: estabilidad conferida por configuración dⁿ.

Predicción de geometrías:

Modelo de Kepert: los ligandos son cargas puntuales que tienen que distribuirse alrededor del metal de forma que minimicen su repulsión estérica

Geometrías de mínima repulsión para I.C.: 2-6

Predicción de geometrías:

Modelo de Kepert: los ligandos son cargas puntuales que tienen que distribuirse alrededor del metal de forma que minimicen su repulsión estérica

Factores que determinan el índice de coordinación:

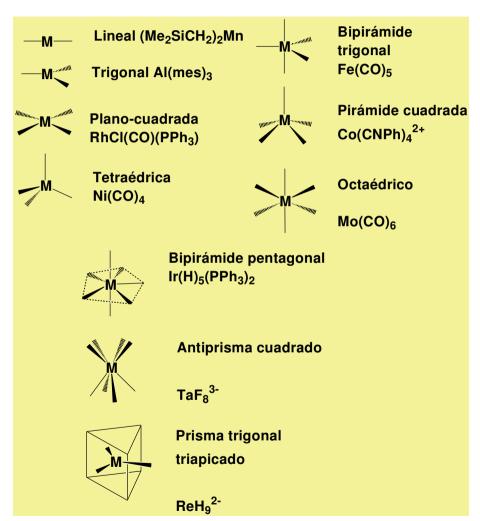
- -Índices de coordinación conocidos entre 1-12 (1, 11 y 12 se consideran valores extremos).
- -Índice de coordinación = 1. Sólo compuestos organometálicos con ligandos muy impedidos

-El I.C. = 6 establece el límite entre coordinación alta y baja

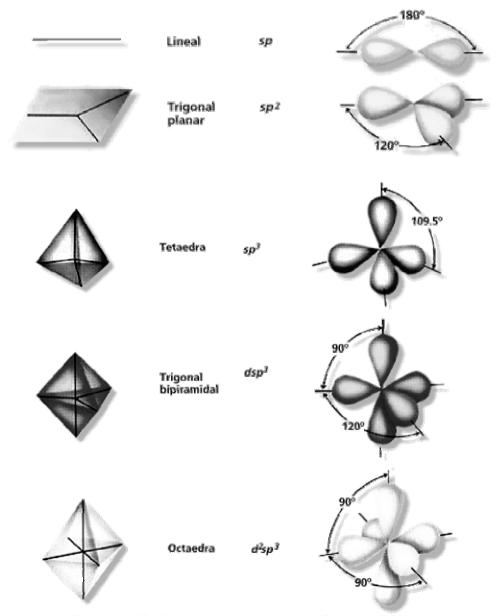
Coordinación baja: 1< I.C. < 6

Coordinación alta: IC > 6

Factores que determinan el índice de coordinación:


Coordinación Baja:

- 1.- Metales no muy voluminosos (1ª serie de transición)
- 2.- Ligandos voluminosos
- 3.- Ligandos blandos y metales en bajo estado de oxidación
- 4.- Contraiones con poca capacidad coordinante (NO₃-, ClO₄-, CF₃SO₃-, BF₄-, PF₆-).


Coordinación alta:

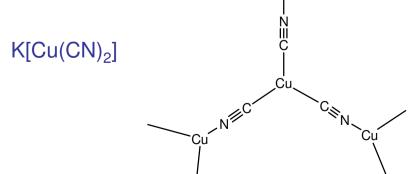
- 1.- Metales grandes (2ª y 3ª series de transición, lantánidos, actínidos)
- 2.- Ligandos poco voluminosos
- 3.- Alto estado de oxidación y ligandos duros

Factores que determinan el índice de coordinación:

Hibridación	Geometría	
sp	Lineal	
sp ²	Triangular	
sp ³	Tetraédrica	
sp²d	Cuadrada	
sp ² d ²	Bipirámide triangular	
sp ³ d	Pirámide cuadrada	
sp ³ d ²	Octaédrica	
sp ³ d ³	Bipirámide pentagonal	
sp ³ d ⁴	Dodecaédrica	

Inorganic Chemistry-3rd Ed.. Shriver & Atkins. Oxford Uiversity Press. (1999) Oxford.

Número de coordinación 2:


-Elementos de los grupos 11 y 12 con configuración d¹0: Cu(I), Ag(I), Au(I), Hg(II)

11	12
Cu(l) X — Cu — X — X = Cl, Br	
Ag(l) H ₃ N — Ag — NH ₃ +	
Au(I) R ₃ P— Au — PR ₃ +	H ₃ C—Hg—CH ₃

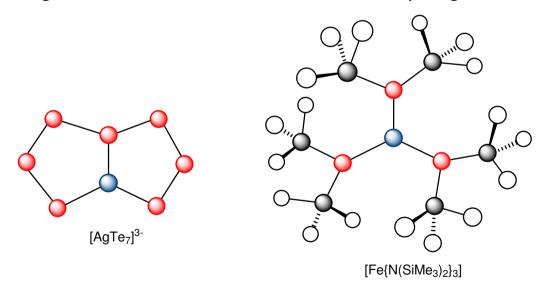
Inorganic Chemistry-3rd Ed.. Shriver & Atkins. Oxford Uiversity Press. (1999) Oxford.

-A veces una fórmula que sugiere un compuesto dicoordinado implica la formación

de un polímero de I.C. superior.

Número de coordinación 3:

- -Muy poco habitual.
- -Suele darse en metales d¹⁰.
- -Geometría trigonal plana


Cu(I) : $[Cu(CN)_3]^{2-}$, $[Cu(CN)_2]$ -Ag(I) : $[AgTe_7]^{3-}$, $[Ag(PPh_3)_3]$ +

 $Au(I) : [Au(PCy_3)_3]^+$

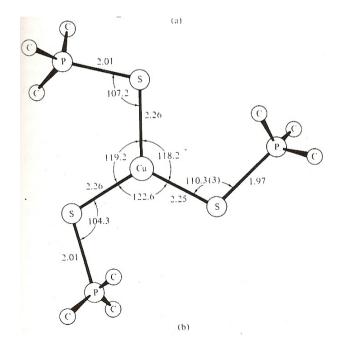
 $Hg(II) : [HgI_3]^-, [Hg(SPh_3)_3]^-$

 $Pt(0) : [Pt(PPh_3)_3]$

-Ligandos con gran tamaño estérico o restricciones topológicas

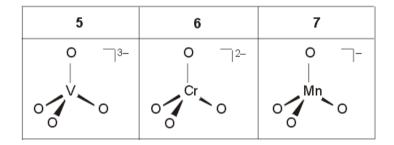
Número de coordinación 3:

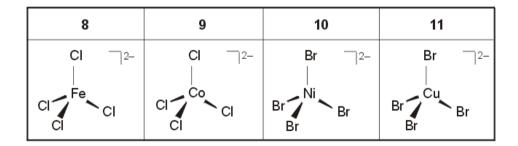
- -Muy poco habitual.
- -Suele darse en metales d¹⁰.
- -Geometría trigonal plana


Cu(I) : $[Cu(CN)_3]^{2-}$, $[Cu(CN)_2]$ -Ag(I) : $[AgTe_7]^{3-}$, $[Ag(PPh_3)_3]$ +

 $Au(I) : [Au(PCy_3)_3]^+$

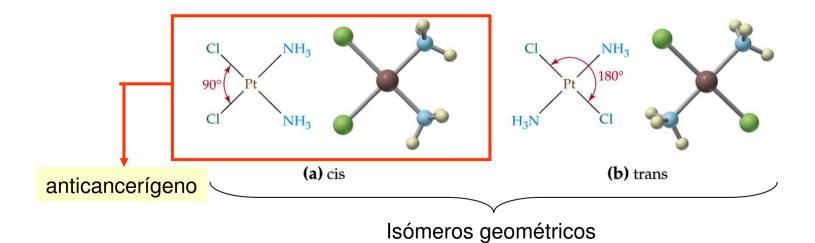
 $Hg(II) : [HgI_3]^-, [Hg(SPh_3)_3]^-$


 $Pt(0) : [Pt(PPh_3)_3]$


-Ligandos con gran tamaño estérico o restricciones topológicas

Número de coordinación 4:

- -Muy habitual.
- -Puede dar dos geometrías: Td y cuadrado plana.
- -Geometría Td favorecida con ligandos grandes (Cl,Br y l) y metales pequeños

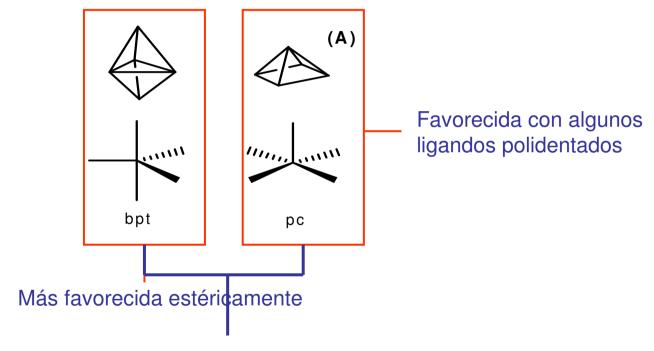

Número de coordinación 4:

Tetraédrico (Td) o cuadrado plano (D_{4h})

Balance entre propiedades estéricas y electrónicas

La geometría cuadrado pana se conoce desde los tiempos de Werner:

-El compuesto PtCl₂(NH₃)₂ tiene dos isómeros (si fuera Td sólo tendria uno)


Número de coordinación 4:

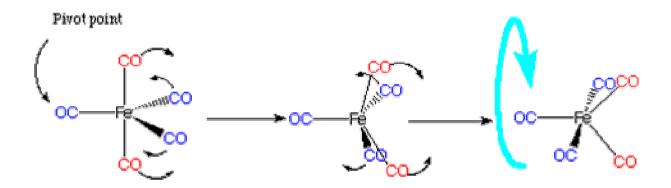
Cuadrado plano:

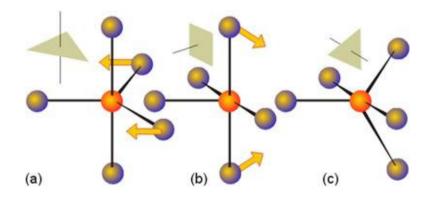
9	10	11
	N _C _ Ni _ CN 2-	
	NC CN	
	Ni(II)*	
Me₃P CI	CI_Pd CI 2-	
Me ₃ P PMe ₃	CI CI Pd(II)	
		_
Me ₃ P Ir CI	H ₃ N > Pt NH ₃ N	
OC PMe ₃	H ₃ N NH ₃	CI CI Au(III)

Número de coordinación 5:

- -Menos habitual que compuestos tetra- y hexa-coordinados
- -Geometrías habituales: bipirámide trigonal (**bpt**) y pirámide de base cuadrada (**pbc**)

Poca diferencia energética

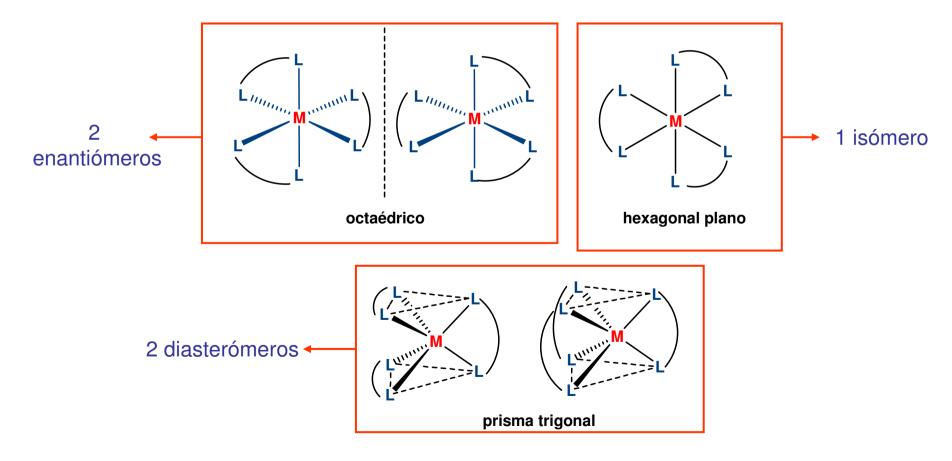

[Ni(CN)₅]³⁻ puede existir tanto como *bpt* como *pbc* en la misma estructura cristalina


Número de coordinación 5:

- -Menos habitual que compuestos tetra- y hexa-coordinados
- -Geometrías habituales: bipirámide trigonal (**bpt**) y pirámide de base cuadrada (**pbc**)

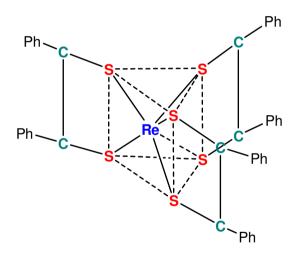
Número de coordinación 5:

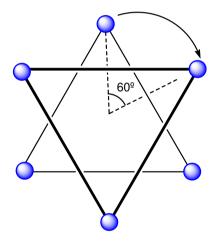
- -Los compuestos *bpt* con ligandos monodentados suelen ser fluxionales en disolución
- -Mecanismo de *pseudo-rotación de Berry* en [Fe(CO)₅]



Inorganic Chemistry-3rd Ed.. Shriver & Atkins. Oxford Uiversity Press. (1999) Oxford.

Número de coordinación 6:

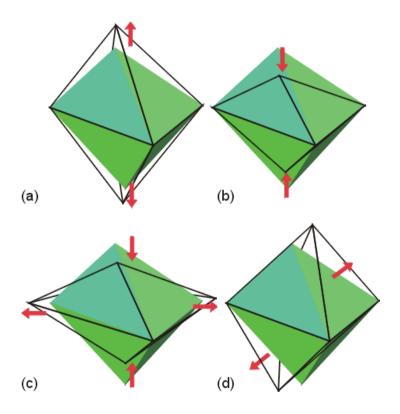

- -A pesar de todas las posibles geometrías, la mayoría de los compuestos hexacoordinados adoptan geometría octaédrica (o pseudo-octaédrica).
- -Coordinación de tres ligandos bidentados: Werner aisla 2 enantiómeros



Número de coordinación 6:

-En 1965 se descubrió un compuesto de Re con estructura prismática-trigonal:

$[Re{S_2C_2(C_6H_5)_2}_3]$



Transformación de octaedro en prisma trigonal

Número de coordinación 6:

-Los compuestos octaédricos pueden sufrir dos tipos de distorsión: trigonal y tetragonal

Figura. (a) y (b) son distorsiones tetragonales (D_{4h}) . (d) distorsión trigonal (D_{3d}) . (c) disorsión rómbica (D_{2d}) .

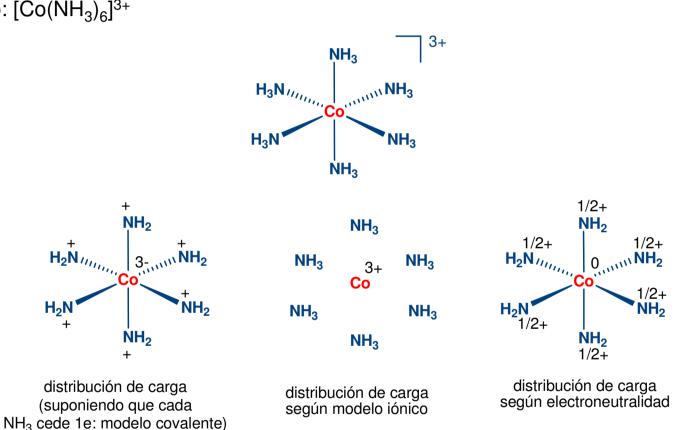
Índices de coordinación altos

-La difracción de RX ha permitido el estudio de compuestos con I.C. elevados (7-11)

- I.C.s elevados: metales de la izquierda de las series (Grupos 3-5)
metales de la 2ª y 3ª series
lantánidos y actínidos

Ligandos con baja polarizabilidad

La formación de enlaces favorece que la carga de cada átomo constituyente quede cerca de la electroneutralidad


Índices de coordinación altos

 H_2N

 NH_2

 NH_2

Ejemplo: $[Co(NH_3)_6]^{3+}$

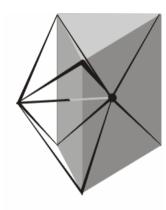
Número de coordinación 7

-Se podrían dar tres estructuras: octaedro monoapuntado, prisma trigonal monoapuntado bipirámide pentagonal.

-Las distorsiones pueden dificultar la determinación de la geometría de los compuestos

14 Capped octahedral complex

 $[TaCl_4(PMe_3)_3]$

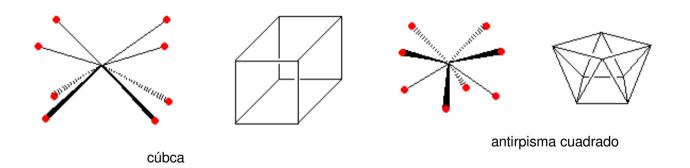


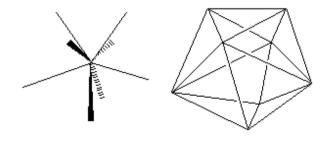
13 Pentagonal-bipyramidal complex, D_{5h}

 $[V(CN)_7]^{4-}$

 $[NbF_7]^{3-}$

 $[Nb(O)(ox)_3]^{3-}$

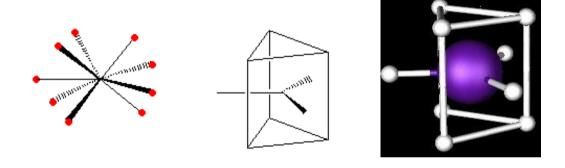

15 Capped trigonal prism


 $[TaF_7]^{2-}$

 $[NbF_7]^{2-}$

Número de coordinación 8

- -Metales pesados de los grupos 4-6 en e.o. +4 o +5.
- -Na₃[PaF₈], Na₃[UF₈] y [Et₄N]₄[U(NCS)₈] tienen estructura cúbica



dodecaedro

Número de coordinación 9

-La mayoría de los compuestos con i.c.= 9 tienen geometría de prisma trigonal triapuntado

 $[ReH_9]^{2-}$, $[TcH_9]^{2-}$.