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1. Introduction

In a recent paper, Sudheesh Kuretial. analysed, from different points of view, the
phenomenon otancellationin simply supported beams under constant moviagido
[1]. This article presented some novel facts altimistphenomenon that are of interest to
scientists and engineers studying bridge dynam&swall as to researchers in
disciplines related to the moving load problem.sTpaper provides corrected versions
of certain results in reference [1]. For the sakelarity, it is also organized in the same
sections and subsections.

2. Uniform beam with a single moving point load
2.1.Forced vibration

In the previously mentioned paper, Sudheesh Kwehat.refer to an article by Museros
et al.[2]. To facilitate understanding, some of the fesspresented in [2] are recalled.
Regarding the mathematical expressions, resporss, @tc., the notation in [1] is



followed. Equations in reference [1] are mentiomesdEq. (N-1), whereas tables are
referred to as Table N-1. Similarly, equations fri@hare labelled as Eg. (N-2), etc.

Eq. (5-1) provides the following solution to theplem of the forced motion of
the mid-span section during the passage of the bbadt < L /v:
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where witiic = 2 P/ (UL ?) is “the static deflection of the mid-span of theam”. More
specifically, wstaiic represents the static deflection of the mid-speatien due to the
contribution of the fundamental mode. This magretiglrelated to the static deflection
of thenth mode (see Eg. (5-2)) as per
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The relation given by Eq. (2) has some practicallications, as shown further on.

The time-dependent modal amplitudes in Eq. (1ukhde weighted by the
mode shapesin(nmx/L) evaluated at mid-spand. sin(nmr/2)) in order to rule out the
even modes as well as to give the correct signhéo ddd modes. Otherwise, the
summation in Eq. (1) will yield incorrect resultat this point, it is convenient to
remember that the mode shapgs(nmx/L) are considered to be nondimensional,
whereas the modal amplitudes are measured in lemgh (meters).

The modal amplitudes are analysed in what folloWfsextracted from the
summation in Eq. (1), and in accordance with Ed@sl)( and (7-1), such modal
amplitudes are
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qn(t) = {sin(K,wpt)

Differentiation of Eq. (3) vyields the modal velbgi and subsequent
differentiation yields the modal acceleration:
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As can be observed, the evaluation of Egs. (3)(dhdtt = 0 gives zero initial
response and velocity for each modal amplitude v€mely, Eq. (5) is not zero at= 0
unless(, = 0, i.e.,, when damping is present the modal acceleration doesatisfy the
initial condition derived from the governing equetiof motion (see Eq. (3-1)). Thus,
Eq. (5-1) cannot be used for damped beams.

The correct solution to the modal equation of wmatiwhich is valid both for
damped and undamped beams, is [3, 4, 5]
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where the critical undamped cas¢, = 1, , = 0) must be excluded. The solution to
the critical case can be found, for instance, feremces [2] and [6]. Accordingly, the
correct modal velocity is

. n, .
qn(t) = (1— Kz)zn_:t(zz K.)2 Knpw,{(1— K%)COS(annt) + 2¢n Ky sin(Kpwnt)
n nlin

_e—znwnt[L\/ij) sin(wpy/(1 — ¢)t) + (1 — K2)cos(w,/ (1 — {201} (7)

1_€n

Differentiation of Eq. (7) readily shows tht(0) = 0.

Both Egs. (3) and (6) reduce to the same coresttlt when(,, = 0. Therefore,
many conclusions regarding undamped beams in referfl] are correct. Conversely,
the formulas related to damped beams are not vahd. corrected versions of these
formulas are given below.

2.2.Free vibration

The modal amplitude and modal velocitytat L/v are required to evaluate the free
vibration. The exact values must be obtained frays. E6) and (7) for a general damped
beam:
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Figs. (1) and (2) show the evolution of the (noiised) initial conditions of the
free vibration. For the sake of conciseness, dmyfindamental mode is shown.
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Figure 1. Normalised initial modal amplitudg, /g, s: of the free vibration

(n=1,¢, = 0.15). — Correct solution from Eq. (8a);—  solution from
Eq. (7a-1).
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Figure 2. Normalised initial modal veloci%n/(wnqn,st) of the free vibration
(n=1,¢, = 0.15). — Correct solution from Eq. (8b);— solution from
Eq. (7b-1).

Eq. (6-1) is the generic expression of the freeratibn during interval
t > L/v. This expression is valid, providing that the timeset to zero when the load
departs from the beam:
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where wg, = w,/1 — % is the damped frequency. For damped beams, Egl)(7c
yields an inexact free vibration time-history sirices derived from Egs. (7a-1) and (7b-
1). The correct expression is obtained by subsgiiutf Egs. (8) in Eq. (9) as follows:
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In reference [1], the free vibration is subsequetthnsformed into Eq. (8-1),
ie.
@n(t) = Xne~nntsin(want — én), (11)
where the following relations hold:
Qon = —Xnsin(ey), (12a)
—qnw”Z‘;T%” = Xpcos(¢y). (12b)

The initial amplitude of the free vibration is repented byX,. Following the
transformation given by Egs. (12), the initial ctiimohs in Egs. (8) can be combined to
give the correct phase angle of the free vibration:

tan(g,) = —G"—) = —2n (13)
@dn

Since the amplitud#,, is a positive number by definition, Egs. (12) pdavthe
signs of the sine and cosine @f. Therefore, the true solution between the two esg|
in the interval[0,2) that satisfy Eq. (13) can be unequivocally setkdige quadrant of
the true solution is always conditioned by the sigof both q,, and
(CnwnGon + Gon)/wan- This selection of the “arctan” also defines tiwuson to be
taken in [1], where Eq. (10-1) should read as fedip

e_{nnn/Knsin<Z—z ,1—{%)
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However, as previously mentioned, Eq. (14) is owmblid for undamped beams.

Although Eg. (14) is a version of (10-1) with a mted sign, it still does not yield the
true phase angle in a damped beam for the fundahmide (see Fig. (3)). The phase
angles are given here as the solution of the ievemagent functions located in the
interval [0,21).

The amplitude of the free vibration is obtainedrr&gs. (12) as follows:

X = J(qn)? + (ntonton) (15)

Since the initial conditions given in [1] are nadlid for damped beams, one
could expect Eq. (9-1) to be incorrect except fgr= 0. However, after some
mathematical simplifications, the amplitude givey Bg. (15) turns out to have the
same closed-form expression, regardless of whétleanitial conditions are Egs. (7a-1,
7b-1) or Egs. (8). Therefore Eqg. (9-1) is corrast,well as its nondimensional version,
Eq. (14-1). For the sake of completeness, the anagliis repeated below:
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Figure 3. Phase angfg, of the free vibratiorin = 1, ¢, = 0.15).
— Correct solution from Eq. (13); solution from E#j4).

In what follows, a set of numerical values is a@opfor purposes of illustratio®=220
kN, L=20 m,m=15000 kg/mf;=w,/2n=7 Hz,{,=0.15,v=120 m/s. Fig. (4) shows the
end of the corresponding forced vibration time dngtand the beginning of the free
vibration. For greater clarity, only the first modanplitudeg, (t) is plotted. The correct
solution obtained from Eq. (6) gives rise to iditanditions of the free vibration as per
Egs. (8), with valueg,; = 6.82710 - 10~° m andq,; = —0.0213545 m/s. Therefore,
((1w1Go1 + Go1)/wa1 = —4.80723 - 10~* m. The phase angle is then obtained from
Eq. (13), where the signs of the sine/cosine atentanto account, according to Egs.
(12): ¢, = 3.28267 rad. Finally, the amplitude is computed, based on (Bl) or Eq.
(16): X; = 4.85547 - 10~* m.



The solutions given in reference [1] are also ckepl in Fig. (4). In this case the
initial conditions aregy; = —1.08818 - 10™* m and ¢,; = —0.0198588 m/s. These
values lead ta({;w1qo; + §o1)/wgq1 = —4.73194 - 10~* m. Four free vibrations are
shown in the figure, corresponding to four diffdrphase angles derived from [1]. One
of these vibrations features continuous displaceéraad velocity at = L/v =1/6s,
This curve corresponds to one of the solutiondefihverse tangent obtained from Eq.
(14), particularly the one that satisfies the sigiisthe sine/cosine in Egs. (12):
¢, = 291556 rad. The remaining three free vibration curves coroesp to
¢, = 2.91556 + m rad and to the two solutions obtained from Eq. (10-1).

Fig. (4) shows that these four free vibration csriave the same modulus of
their initial value. The sign of the initial valug positive for one pair of curves and
negative for the other pair. This fact is a diremhsequence of the relations between the
solutions to Eqg. (14) and Eq. (10-1).
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Figure 4. Forced and free vibratiap (t). (K; = 0.4286,(, = 0.15). Correct solution
from Eqs.—— (6), (9-1), (13); Other solutions: (®-1), (14);, —— (3,
(9-1), ((14)4n); (3), (9-1), ((210-1) and (10-1%y. End of forced vibration:.-- -

Regarding the amplitudes given by Eqgs. (14-1) &b8-1), it should be
highlighted that the normalisation is carried aqutdq. (13-1) with respect to the static
response of the first mod2P/(uLw?), whereas in reference [2], the amplitude is
divided by2P/(uLw?) (see the paragraph before Eq. (7-2)). The reldt@ween them
is given in Eq. (2), where the ternt arises. This term was not taken into account by
the authors of reference [1] in their criticismléoVing Eq. (15-1).

Moreover, the last sentence in section 2.2 froferemce [1] states: “This
distinction, regarding the modes, has not been nradeference [15] and hence, the
reported cancellation speed ratfos the second mode have no meaning as there are no
responses at all to cancéelln reference [1], the authors purposely focusedthe
response at mid-span. In contrast, the approacheference [2] targets both the
contribution of even and odd modes. Both types oflenmust be dealt with when it is
necessary to predict the cancellation speeds dbtixest modes in an experimental test.



As is known, these speeds must be avoided in ocmeproduce significant free
vibrations and thus be able to more accurately oreathe damping ratio of the first
mode, second mode, etc. Thus, it is important tphemsise that the cancellation speeds
of even modes definitely have a practical applarativhen it comes to testing simply
supported bridges (mainly for lowest frequency nsoslech as the second mode).

3. Maxima and cancellations of free responses
3.1.Conditions for maxima of free responses

Reference [1] states that “The maximum dynamicarese of a simply supported beam
always occurs at its mid-span (i.e,»at 0.5 L)". In light of the results presented in

section 4.4 of reference [6], that statement seenfie quite adequate from a practical
viewpoint though it cannot be regarded as a germmatlusion. The true maximum

response could take place at sections differem fre= 0.5 L.

3.2.Conditions for cancellations of free responses

In this section of reference [1], a formula is gted for the cancellation speeds of the
nth (odd) mode that envisages the determinationabfesk, < 1. Eq. (21-1) and the
sentence immediately below read:

i _"
“‘wWherej=m+i; m=2n—1 andi,j are positive integers”. The range of values of
positive integers i$,j = 1. However, as specified in the previous definitigrdepends
on bothn andi. It is indeed a positive integer, but is not ingleghent, and its lowest
value is 2. By substituting the definitionsjandmin Eq. (21-1), the result obtained is
_ n _ n _ n
T 2(m+i)-1 2Q2n-1+i)-1  4n+2i-3’

K: (18)
wheren = 2k — 1 (odd modes only), and k are positive integers. If the first four
cancellations are computed for the first three odutles from Eqg. (18), the following
values are obtained (see Table 1).

i=1 i=2 i=3 i=4
n=1 0.3333 0.2000 0.1429 0.1111
n=3 0.2727 0.2308 0.2000 0.1765
n=>5 0.2632 0.2381 0.2174 0.2000

Table 1. Nondimensional cancellation speeds deffineed Eq. (21-1)

As can be observed, the values in Table 1 do rattly correspond to the
values in Table 1-1. Indeed, the former are a duifdbe latter. The values in Table 1-1
are correct cancellation values for odd modes sbehK, < 1, but they cannot be
obtained from EqQ. (21-1). Therefore, this equatamnot be used for computing the
cancellation speed ratios. Instead, for odd andh evedes, Eqg. (11-2) in reference [2]
gives the correct results and is repeated belowdopleteness:

n .
Kfancel = —i >0, =1 (19)



3.3.Conditions for cancellation of all modése., zero beam resporjse

The new result presented in section 3.3 from refed1] is of interest. Furthermore, it
amends a statement in reference [2] that is naaydwrue. More specifically, although
there are cases when not all of the modes cameltaineously, it is indeed true that for
certain velocities, the free response of all motkescels, thus leading to a zero beam
response (in undamped beams).

However, the mathematical proof given in Egs. (28puld be completed. Eq.
(28c-1) is equivalent to Eq. (20), which holds &my real speediegardless of whether
total cancellation takes place. Thus, Eq. (28 H necessary condition for cancellation
of all modes, but it does not prove the occurreoicéhis type of phenomenon. This
necessary condition appears in Eq. (4-2):

nmv K,

K, = (20)

wnl n

Since reference [1] states that the condition famcellation of odd modes is
given by Eqg. (21-1), what needs to be demonstrigtétat for every moda, particular
values ofj exist such that Eqg. (20) is satisfied, and that oancellation speeds thus
exist for all odd modes.

This result can be easily proven both for odd arehemodes as follows. If the
free vibration of all modes in an undamped beacaigelled, then the free vibration of
the fundamental mode must also vanish. Therefbxaea proves that any cancellation
speed of the fundamental mode is also a cancellapeed for the rest of modes, the
total zero beam response is demonstrated.

According to Eq. (19), thegh cancellation speed of the first mode is alwags |
than unity and is given by

1
142i’

K, i>1. (21)

For thenth mode(n > 1), if cancellation takes place at the same realdspiesn
K, < K; <1 by virtue of Eg. (20). Thus in Eq. (19), the mirgign must be excluded
and thgth cancellation speed is

K,=——,j>1. (22)

n+2j

According to Eq. (20), the values ioAndj are related by the mode numiveas
per

K1 n 1
— - = — .
n n+2j n(1+2i)

(23)

Therefore thgth cancellation order of theth mode, corresponding to the same
real speed as thth cancellation order of the first mode, is
. n?(1+2)-n

jE————"n>1ix1 (24)

It is fairly straightforward to prove that the namator in Eq. (24) is always an
even number greater than two. Thus, a positivegertgalue of greater than one exists



for eachn andi value. This signifies that all free vibrations ianish simultaneously
when the first mode is cancelled. The correspondiogdimensional speeds for this
phenomenon to occur are derived simply from theaggns above:

K,=—— n>1i>1. (25)

n(1+2i) ’
Conclusions

The free vibration response due to a point load ingpvalong a simply supported
Bernoull-Euler beam was analysed in this paper. More spadifi this research
presented the corrected versions of the initial ddmns of the free vibration
(displacement and velocity) for damped beams, asd provided the corresponding
phase angle. These results make it possible tomdape the correct values of the
response after the load has passed the beam. foottee this paper also provided a
complete proof of the existence of total cancallatspeeds for undamped beams, and
highlighted the mathematical formula for computialy the cancellations for any
vibration mode.
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