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1. Introduction 

In a recent paper, Sudheesh Kumar et al. analysed, from different points of view, the 
phenomenon of cancellation in simply supported beams under constant moving loads 
[1]. This article presented some novel facts about this phenomenon that are of interest to 
scientists and engineers studying bridge dynamics as well as to researchers in 
disciplines related to the moving load problem. This paper provides corrected versions 
of certain results in reference [1]. For the sake of clarity, it is also organized in the same 
sections and subsections. 

2. Uniform beam with a single moving point load 

2.1. Forced vibration 

In the previously mentioned paper, Sudheesh Kumar et al. refer to an article by Museros 
et al. [2]. To facilitate understanding, some of the results presented in [2] are recalled. 
Regarding the mathematical expressions, response plots, etc., the notation in [1] is 



followed. Equations in reference [1] are mentioned as Eq. (N-1), whereas tables are 
referred to as Table N-1. Similarly, equations from [2] are labelled as Eq. (N-2), etc. 

 Eq. (5-1) provides the following solution to the problem of the forced motion of 
the mid-span section during the passage of the load, 0 ≤ � ≤ �/�: 
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where wstatic = 2P/�µLω12� is “the static deflection of the mid-span of the beam”. More 
specifically, wstatic represents the static deflection of the mid-span section due to the 
contribution of the fundamental mode. This magnitude is related to the static deflection 
of the nth mode (see Eq. (5-2)) as per 
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:;-(, = <static

�= .                                                  (2) 

The relation given by Eq. (2) has some practical implications, as shown further on. 

 The time-dependent modal amplitudes in Eq. (1) should be weighted by the 
mode shapes sin��?@/�� evaluated at mid-span (i.e. sin��?/2�) in order to rule out the 
even modes as well as to give the correct sign to the odd modes. Otherwise, the 
summation in Eq. (1) will yield incorrect results. At this point, it is convenient to 
remember that the mode shapes sin��?@/�� are considered to be nondimensional, 
whereas the modal amplitudes are measured in length units (meters). 

 The modal amplitudes are analysed in what follows. If extracted from the 
summation in Eq. (1), and in accordance with Eqs. (6-1) and (7-1), such modal 
amplitudes are 
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 Differentiation of Eq. (3) yields the modal velocity, and subsequent 
differentiation yields the modal acceleration: 
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 As can be observed, the evaluation of Eqs. (3) and (4) at � = 0 gives zero initial 
response and velocity for each modal amplitude. Conversely, Eq. (5) is not zero at � = 0 
unless  � = 0, i.e., when damping is present the modal acceleration does not satisfy the 
initial condition derived from the governing equation of motion (see Eq. (3-1)). Thus, 
Eq. (5-1) cannot be used for damped beams. 

 The correct solution to the modal equation of motion, which is valid both for 
damped and undamped beams, is [3, 4, 5] 
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where the critical undamped case (�� = 1,  � = 0) must be excluded. The solution to 
the critical case can be found, for instance, in references [2] and [6]. Accordingly, the 
correct modal velocity is 
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 Differentiation of Eq. (7) readily shows that 7D��0� = 0.  

  Both Eqs. (3) and (6) reduce to the same correct result when  � = 0. Therefore, 
many conclusions regarding undamped beams in reference [1] are correct. Conversely, 
the formulas related to damped beams are not valid. The corrected versions of these 
formulas are given below. 

 
2.2. Free vibration 

The modal amplitude and modal velocity at � = �/� are required to evaluate the free 
vibration. The exact values must be obtained from Eqs. (6) and (7) for a general damped 
beam: 
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Figs. (1) and (2) show the evolution of the (normalised) initial conditions of the 
free vibration. For the sake of conciseness, only the fundamental mode is shown. 

 

 

Figure 1. Normalised initial modal amplitude 7F�/7�,8. of the free vibration 
 �� = 1,  � = 0.15�.  Correct solution from Eq. (8a);  solution from  

Eq. (7a-1). 

 

 

Figure 2. Normalised initial modal velocity 7AF�//#�7�,8.0 of the free vibration 
 �� = 1,  � = 0.15�.  Correct solution from Eq. (8b);  solution from  

Eq. (7b-1). 

 

Eq. (6-1) is the generic expression of the free vibration during interval � > �/�. This expression is valid, providing that the time is set to zero when the load 
departs from the beam: 
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where #N� = #��1 −  �� is the damped frequency. For damped beams, Eq. (7c-1) 
yields an inexact free vibration time-history since it is derived from Eqs. (7a-1) and (7b-
1). The correct expression is obtained by substitution of Eqs. (8) in Eq. (9) as follows: 
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In reference [1], the free vibration is subsequently transformed into Eq. (8-1), 
i.e.: 

7���� = Y�L*+(-(.sin�#N�� − Z��,                                       (11)                                

where the following relations hold: 

7F� = −Y�sin�Z��,                                                    (12a) 
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 The initial amplitude of the free vibration is represented by Xn. Following the 
transformation given by Eqs. (12), the initial conditions in Eqs. (8) can be combined to 
give the correct phase angle of the free vibration: 

tan�Z�� = − OP(
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 Since the amplitude Y� is a positive number by definition, Eqs. (12) provide the 
signs of the sine and cosine of Z�. Therefore, the true solution between the two angles 
in the interval B0,2?� that satisfy Eq. (13) can be unequivocally selected: the quadrant of 
the true solution is always conditioned by the signs of both 7F� and � �#�7F� + 7AF�� #N�⁄ . This selection of the “arctan” also defines the solution to be 
taken in [1], where Eq. (10-1) should read as follows: 
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However, as previously mentioned, Eq. (14) is only valid for undamped beams. 
Although Eq. (14) is a version of (10-1) with a corrected sign, it still does not yield the 
true phase angle in a damped beam for the fundamental mode (see Fig. (3)). The phase 
angles are given here as the solution of the inverse tangent functions located in the 
interval B0,2?�. 

The amplitude of the free vibration is obtained from Eqs. (12) as follows: 

Y� = )�7F��� + H+(-(OP(EOAP(
-Q( I� .                                      (15) 

 Since the initial conditions given in [1] are not valid for damped beams, one 
could expect Eq. (9-1) to be incorrect except for  � = 0. However, after some 
mathematical simplifications, the amplitude given by Eq. (15) turns out to have the 
same closed-form expression, regardless of whether the initial conditions are Eqs. (7a-1, 
7b-1) or Eqs. (8). Therefore Eq. (9-1) is correct, as well as its nondimensional version, 
Eq. (14-1). For the sake of completeness, the amplitude is repeated below: 
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Figure 3. Phase angle Z� of the free vibration �� = 1,  � = 0.15�.  
Correct solution from Eq. (13);  solution from Eq. (14). 

 

In what follows, a set of numerical values is adopted for purposes of illustration: h=220 
kN, �=20 m, i=15000 kg/m, j&=#&/2?=7 Hz,  �=0.15, �=120 m/s. Fig. (4) shows the 
end of the corresponding forced vibration time history and the beginning of the free 
vibration. For greater clarity, only the first modal amplitude 7&��� is plotted. The correct 
solution obtained from Eq. (6) gives rise to initial conditions of the free vibration as per 
Eqs. (8), with values 7F& = 6.82710 · 10*o m and 7AF& = −0.0213545 m/s. Therefore, � &#&7F& + 7AF&�/#N& = −4.80723 · 10*� m. The phase angle is then obtained from 
Eq. (13), where the signs of the sine/cosine are taken into account, according to Eqs. 
(12): Z& = 3.28267 rad. Finally, the amplitude is computed, based on  Eq. (9-1) or Eq. 
(16):  Y& = 4.85547 · 10*� m. 
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 The solutions given in reference [1] are also depicted in Fig. (4). In this case the 
initial conditions are 7F& = −1.08818 · 10*� m and 7AF& = −0.0198588 m/s. These 
values lead to � &#&7F& + 7AF&�/#N& = −4.73194 · 10*� m. Four free vibrations are 
shown in the figure, corresponding to four different phase angles derived from [1]. One 
of these vibrations features continuous displacement and velocity at � = �/� = 1/6 s, 
This curve corresponds to one of the solutions of the inverse tangent obtained from Eq. 
(14), particularly the one that satisfies the signs of the sine/cosine in Eqs. (12):  Z& = 2.91556 rad. The remaining three free vibration curves correspond to  Z& = 2.91556 + ? rad and to the two solutions obtained from Eq. (10-1). 

Fig. (4) shows that these four free vibration curves have the same modulus of 
their initial value. The sign of the initial value is positive for one pair of curves and 
negative for the other pair. This fact is a direct consequence of the relations between the 
solutions to Eq. (14) and Eq. (10-1). 

 

 

Figure 4. Forced and free vibration  7&���.  ��& = 0.4286,  � = 0.15�. Correct solution 
from Eqs:  (6), (9-1), (13); Other solutions:   (3), (9-1), (14);   (3),  

(9-1), ((14)+π);   (3), (9-1), ((10-1) and (10-1)+π). End of forced vibration:  

 

 Regarding the amplitudes given by Eqs. (14-1) and (15-1), it should be 
highlighted that the normalisation is carried out in Eq. (13-1) with respect to the static 
response of the first mode 2h/�t�#&��, whereas in reference [2], the amplitude is 
divided by 2h/�t�#��� (see the paragraph before Eq. (7-2)). The relation between them 
is given in Eq. (2), where the term �� arises. This term was not taken into account by 
the authors of reference [1] in their criticism following Eq. (15-1). 

 Moreover, the last sentence in section 2.2 from reference [1] states: “This 
distinction, regarding the modes, has not been made in reference [15] and hence, the 
reported cancellation speed ratios for the second mode have no meaning as there are no 
responses at all to cancel”. In reference [1], the authors purposely focused on the 
response at mid-span. In contrast, the approach in reference [2] targets both the 
contribution of even and odd modes. Both types of mode must be dealt with when it is 
necessary to predict the cancellation speeds of the lowest modes in an experimental test. 
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As is known, these speeds must be avoided in order to produce significant free 
vibrations and thus be able to more accurately measure the damping ratio of the first 
mode, second mode, etc. Thus, it is important to emphasise that the cancellation speeds 
of even modes definitely have a practical application when it comes to testing simply 
supported bridges (mainly for lowest frequency modes such as the second mode). 

3. Maxima and cancellations of free responses 

3.1. Conditions for maxima of free responses 

Reference [1] states that “The maximum dynamic response of a simply supported beam 
always occurs at its mid-span (i.e, at @ = 0.5 �)”. In light of the results presented in 
section 4.4 of reference [6], that statement seems to be quite adequate from a practical 
viewpoint though it cannot be regarded as a general conclusion. The true maximum 
response could take place at sections different from @ = 0.5 �. 

3.2. Conditions for cancellations of free responses 

In this section of reference [1], a formula is derived for the cancellation speeds of the 
nth (odd) mode that envisages the determination of values �� < 1. Eq. (21-1) and the 
sentence immediately below read: 

��v = �
�w*& ,                                                                 (17) 

“where x = i + y; i = 2� − 1 and y, x are positive integers”. The range of values of 
positive integers is y, x ≥ 1. However, as specified in the previous definitions, j depends 
on both n and i. It is indeed a positive integer, but is not independent, and its lowest 
value is 2. By substituting the definitions of j and m in Eq. (21-1), the result obtained is 
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where � = 2} − 1 (odd modes only), and y, } are positive integers. If the first four 
cancellations are computed for the first three odd modes from Eq. (18), the following 
values are obtained (see Table 1). 

 i = 1 i = 2 i = 3 i = 4 
n = 1 0.3333 0.2000 0.1429 0.1111 
n = 3 0.2727 0.2308 0.2000 0.1765 
n = 5 0.2632 0.2381 0.2174 0.2000 

Table 1. Nondimensional cancellation speeds derived from Eq. (21-1) 

 As can be observed, the values in Table 1 do not exactly correspond to the 
values in Table 1-1. Indeed, the former are a subset of the latter. The values in Table 1-1 
are correct cancellation values for odd modes such that �� < 1, but they cannot be 
obtained from Eq. (21-1). Therefore, this equation cannot be used for computing the 
cancellation speed ratios. Instead, for odd and even modes, Eq. (11-2) in reference [2] 
gives the correct results and is repeated below for completeness: 

��v~��~�� = �
�±�v > 0 ,     y ≥ 1.                                    (19) 



3.3. Conditions for cancellation of all modes (i.e., zero beam response) 

The new result presented in section 3.3 from reference [1] is of interest. Furthermore, it 
amends a statement in reference [2] that is not always true. More specifically, although 
there are cases when not all of the modes cancel simultaneously, it is indeed true that for 
certain velocities, the free response of all modes cancels, thus leading to a zero beam 
response (in undamped beams). 

 However, the mathematical proof given in Eqs. (28) should be completed. Eq. 
(28c-1) is equivalent to Eq. (20), which holds for any real speed, regardless of whether 
total cancellation takes place. Thus, Eq. (28c-1) is a necessary condition for cancellation 
of all modes, but it does not prove the occurrence of this type of phenomenon. This 
necessary condition appears in Eq. (4-2): 

�� = �G�
-(; = '�

�  .                                                         (20) 

Since reference [1] states that the condition for cancellation of odd modes is 
given by Eq. (21-1), what needs to be demonstrated is that for every mode n, particular 
values of j exist such that Eq. (20) is satisfied, and that real cancellation speeds thus 
exist for all odd modes. 

This result can be easily proven both for odd and even modes as follows. If the 
free vibration of all modes in an undamped beam is cancelled, then the free vibration of 
the fundamental mode must also vanish. Therefore, if one proves that any cancellation 
speed of the fundamental mode is also a cancellation speed for the rest of modes, the 
total zero beam response is demonstrated. 

According to Eq. (19), the ith cancellation speed of the first mode is always less 
than unity and is given by 

�& = &
&E�v  , y ≥ 1.                                                   (21) 

For the nth mode �� > 1�, if cancellation takes place at the same real speed then  �� < �& < 1 by virtue of Eq. (20). Thus in Eq. (19), the minus sign must be excluded 
and the jth cancellation speed is 

�� = �
�E�w  , x ≥ 1.                                                     (22) 

 According to Eq. (20), the values of i and j are related by the mode number n as 
per 

�� = '�
�  ⟹  �

�E�w = &
��&E�v� .                                         (23) 

 Therefore the jth cancellation order of the nth mode, corresponding to the same 
real speed as the ith cancellation order of the first mode, is 

x = �,�&E�v�*�
�  , � > 1, y ≥ 1.                                         (24) 

 It is fairly straightforward to prove that the numerator in Eq. (24) is always an 
even number greater than two. Thus, a positive integer value of j greater than one exists 



for each n and i value. This signifies that all free vibrations will vanish simultaneously 
when the first mode is cancelled. The corresponding nondimensional speeds for this 
phenomenon to occur are derived simply from the equations above: 

�� = &
��&E�v�  , � ≥ 1, y ≥ 1.                                           (25) 

Conclusions 

The free vibration response due to a point load moving along a simply supported 
Bernoulli−Euler beam was analysed in this paper. More specifically, this research 
presented the corrected versions of the initial conditions of the free vibration 
(displacement and velocity)  for damped beams, and also provided the corresponding 
phase angle. These results make it possible to reproduce the correct values of the 
response after the load has passed the beam. Furthermore, this paper also provided a 
complete proof of the existence of total cancellation speeds for undamped beams, and 
highlighted the mathematical formula for computing all the cancellations for any 
vibration mode. 
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