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Abstract- Resonance instabilities in power systems can be assessed with the positive-net-damping stability criterion. This criterion is 

a review of the complex torque coefficients method but it does not provide the frequency of the closed-loop oscillatory modes. This 

paper presents an alternative approach of the positive-net-damping stability criterion for electrical resonance instability assessment. In 

this approach, resonance instabilities are identified in feedback systems derived from impedance-based equivalent circuits. The 

proposed approach allows characterizing the frequency of closed-loop oscillatory modes and identifying the physical and control 

parameters of the system that increase or reduce the damping of these modes. The extension of the proposed approach to study the 

stability of Single-Input Single-Output and Multiple-Input Multiple-Output feedback systems is analyzed and the approach is also 

compared with other stability methods in the literature. An example of an offshore wind power plant illustrates the theoretical study 

and compares the proposed approach with different methods for stability assessment. Time-domain simulations in PSCAD/EMTDC 

are shown to validate the stability study.  

Index Terms— Electrical resonance, voltage stability, voltage source converters. 

I.  INTRODUCTION 

Grid-connected voltage source converters (VSCs) are widely used in renewable energy conversion systems (variable speed 

wind turbines and photovoltaics) and energy storage systems to improve controllability in power systems (e.g., microgrids [1] 

and wind power plants (WPPs) [2], [3]). However, resonance instabilities can appear in poorly damped power systems due to 

interaction between VSC control and the grid. In general, these resonance instabilities can be classified in two categories [4]: (i) 

Harmonic resonance instabilities which approximately range from 0.75 to 2 kHz and are caused by negative dampings due to 

VSC time delay and current control dynamics. (ii) Near-synchronous resonance instabilities which approximately range from 50 

to 300 Hz and are caused by negative dampings due to current control dynamics and outer loop controls. The harmonic 

resonance instabilities are reported in different grid-connected VSC applications such as single-phase ac traction systems [6] and 

WPPs [7]. A number of methods to analyze resonance stability are reported in the literature [4], [8] − [19]. A good method is 

expected to have the following characteristics: (i) be simple to evaluate and compute, (ii) offer the possibility to assess stability 

from measurements and not requiring detailed knowledge of the system, (iii) provide enough information to understand 

physically instabilities and their causes and (iv) characterize the frequency of closed-loop unstable oscillatory modes.  
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The state space eigenvalue analysis (or closed-loop root study) and frequency domain methods are used to analyze the impact 

of system and control parameters on stability [8] − [13]. The Nyquist criterion and the phase and gain margin from the Bode 

diagram are the most used frequency domain methods to determine stability [9] − [13]. Other frequency domain methods are 

based on the impedance characterization of the system which allows considering the individual contribution that source and load 

subsystems have on the closed-loop stability [4], [9] − [20]. The passivity-based method ensures that a closed-loop system is 

stable if the real part of each subsystem is nonnegative for all frequencies [4], [13], [14]. This method imposes passivity on all 

system elements to achieve stability but the non-passivity of a subsystem does not necessarily mean that system is unstable. On 

the other hand, the following methods derived from the Nyquist criterion consider the stability contribution of each subsystem 

even when they are not passive: 

• The impedance-based stability criterion [10] − [12] evaluates the phase of the open-loop functions at frequencies where the 

open-loop magnitudes intersect. 

• The positive-net-damping stability criterion [19], [20] evaluates the net damping of the system at frequencies where the loop 

gain is greater than 1 as well as at frequencies of each open-loop resonance. This criterion is proposed by [20] to review the 

complex torque coefficients method [15] − [18] which is applied to study subsynchronous torsional interactions of turbine-

generator sets [15], [16]. 

The impedance-based stability criterion provides information on the frequency of the closed-loop oscillatory modes from the 

frequency of the open-loop magnitude intersection while the positive-net-damping stability criterion only provides information 

on the frequency range of these oscillatory modes. The positive-net-damping stability criterion focuses on the net damping (i.e., 

the sum of the source and load resistances or conductances) while the impedance-based stability criterion focuses on the phase 

margin of the source and load impedance ratio. A recent study based on the complex torque coefficients method investigates 

near-synchronous resonance instabilities in grid-connected VSC systems from the analysis of the damping at the closed-loop 

oscillatory modes [21]. The damping is also used in [22] to study stability in weak grid-connected VSC systems. The conclusions 

in [22] are graphically obtained from the damping evaluation with the phase of the system transfer function instead with the real 

part of this function. 

This paper presents and mathematically demonstrates an alternative approach to the positive-net-damping stability criterion for 

studying harmonic resonance instabilities in grid-connected VSC systems. This approach meets the advantages of the impedance-

based stability criterion (it allows characterizing the frequency of closed-loop oscillatory modes) and the positive-net-damping 

stability criterion (it allows identifying the physical and control parameters of the system that increase or reduce the damping of 

the closed-loop oscillatory modes). The approach is also compared analytically and numerically with other methods in the 
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literature. Moreover, the extension of the proposed approach to assess the stability of Single-Input Single-Output (SISO) and 

Multiple-Input Multiple-Output (MIMO) feedback systems derived from impedance-based equivalent circuits is discussed. An 

example of an offshore WPP illustrates the application of this criterion. The analytical and numerical results are validated by 

time-domain simulations in PSCAD/EMTDC. 

II.  GRID-CONNECTED VSC MODELING 

Fig. 1(a) presents a grid-connected VSC system where the grid can include the effect of other VSCs. The dq-frame PI-based 

current control of the VSC is explicitly illustrated with bold letters denoting the complex space vectors (i.e., x = xd + j·xq) [13]. 

These space vectors are related to the grid components of angular fundamental (synchronous) frequency ω1 = 2π· f1 by means of 

the corresponding transfer matrices. It must be noted that the converter model in this Section only represents the inner current 

control loop because the outers loops (e.g., the phase-locked loop, PLL, and the direct-voltage controller, DVC) do not affect 

harmonic resonance instabilities in the 0.75 kHz to 2 kHz frequency range due to their low bandwidths [4], [5]. It can be 

observed that the transfer matrices of the VSC models in [14] become the common diagonal matrices of the VSC inner current 

control loop for frequencies greater than the low bandwidths of the outer control loops. This assumption allows a VSC 

symmetrical model to be obtained which can be characterised with complex impedances or admittances. If outer loops are 

included, the system becomes nonlinear and VSCs must be represented by real vectors and transfer matrices leading to a two-

dimensional MIMO model [23].  

A.  VSC model 

The VSC current control model is obtained from the voltage balance across the converter filter, 

 1( ) ,f f fR L s jL ω+ + + = oi v v  (1) 

and the control law 

 ( )PI 1( ) ( ) ,fF s jL H sω= − + +ref refv i i i v  (2) 

where v and i are the grid voltage and current, vo is the converter output voltage, vref and iref are the converter voltage and current 
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Fig. 1. Grid-connected VSC system modeling: a) Grid-connected VSC system. b) Equivalent circuit. c) Closed-loop system. 
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reference and FPI(s) and H(s) are the transfer functions of the feedback PI controller and the grid voltage feedforward low-pass 

filter included in the control, 

 PI ( ) ( ) ,
fi

p

f

k
F s k H s

s s

α

α
= + =

+
 (3) 

with kp and ki being the PI controller proportional and integral gains, respectively, and αf (or ff = αf/(2π)) the low-pass filter 

bandwidth. Based on [14], the control design results in kp = αcLf and ki = αcRf where αc is the closed current control loop 

bandwidth which should verify αc ≤ 0.2·(2πfsw) with fsw being the converter switching frequency. The selection of the low-pass 

filter bandwidth is a compromise between the stability of the VSC output and the whole system stability [2], [13], [14], [22]. A 

small vale of this bandwidth is used to keep as narrow as possible the VSC non-passivity region and improve the VSC stability. 

On the other hand, a large value is required to improve dynamics during fast transients due to grid disturbances which affect 

stability of VSC terminal voltage. The recommended low-pass filter bandwidth is αf ≤ 0.1αc for normal-mode operation and 

αf ≥ αc for transient-mode operation [14]. If the VSC connects to a stiff bus, the feedforward low-pass filter design αf ≤ 0.1·αc 

ensures steady converter current output [14]. If VSC connects to a weak grid, the feedforward low-pass filter design αf ≥ αc 

ensures terminal voltage dynamics stability and avoid that voltage becomes unstable in case of grid disturbances [2], [22]. 

The voltage vo generated by the VSC is related to the converter-voltage reference vref considering the VSC time delay Td as 

follows [4]: 

 .dsT
e

−=o refv v  (4) 

This time delay is caused by the computation and the switching process and is approximately given by Td ≈ 1.5Ts with Ts = 1/fs 

and fs being the converter sampling frequency which is assumed twice the converter switching frequency [4]. Considering (4), the 

following relation between the grid voltage and current is obtained from (1) and (2): 
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Fig. 2. Study of the VSC equivalent impedance beahavior. 
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  ( ) ( ) ,vsc vscG s Y s= −refi i v  (5) 

with 

 PI

1 PI 1 1 PI 1

( ) 1 ( )
( ) ( ) ,

( ( ) ) ( ( ) )

d d

d d

sT sT

vsc vscsT sT
f f f f f f f f

e F s e H s
G s Y s

R L s jL e F s jL R L s jL e F s jLω ω ω ω

− −

− −

−
= =

+ + + − + + + −
 (6) 

where Gvsc(s) is the closed-loop transfer function and Yvsc(s) is the equivalent admittance of the VSC.  

Fig. 2 illustrates the frequency response of the positive-sequence VSC equivalent impedance in αβ-frame Zvsc(s) = 1/Yvsc(s) (6) 

with s = j(ω − ω1) [11] for the parameter values in Table I and four values of the low-pass filter bandwidth corresponding to 

normal-mode operation (αf = 0.01αc and αf = 0.1αc) and transient-mode operation (αf = αc and αf = 10αc). The frequency range 

of the harmonic resonance frequencies is also indicated in grey color [4]. It can be observed that for usual values of VSC 

parameters the VSC equivalent impedance presents a capacitive and an inductive behavior below and above the boundary 

frequency fb [12]. It can also be observed that the behavior above the boundary frequency fb is mainly inductive due to the low 

contribution of the VSC resistive behavior. Thus, the VSC equivalent impedance at harmonic resonance instability frequencies is 

mainly inductive [12] because these frequencies are greater than the boundary frequency [4], [5]. 

B.  Grid-connected VSC model 

Considering the above VSC model, the impedance-based equivalent circuit of the grid-connected VSC system is shown in 

Fig. 1(b), where the VSC is represented as a current source in parallel with the equivalent VSC admittance, and the grid 

(characterized as stiff − or ideal − voltage source vg in series with the grid equivalent impedance Zg(s)) is also modeled as a 

current source vg/Zg(s) in parallel with the grid equivalent admittance Yg(s) = 1/Zg(s). The resistive elements of the ac grids may 

be usually neglected compared to the reactive elements and the impedance Zg(s) is commonly characterized by reactances in 

harmonic resonance studies [12], [14], [21]. It must be noted that the grid and VSC transfer functions are in phase and dq 

coordinates, respectively, and they must be in the same frame in Fig. 1(b) to assess stability studies. For that, both transfer 

functions are expressed in αβ coordinates with bold letters denoting the space vectors and superscript s denoting the αβ-

TABLE I. VSC PARAMETERS 

   Switching frequency fsw 2.5 kHz 
Filter resistance Rf 0.0075 mΩ 
Filter inductance Lf 0.07 mH 
Filter capacitance Cf 1150 µF 
Closed-loop time constant d resistan1 ms 1 ms 
Voltage filter bandwidth ff = αf/2π 1.25 kHz 
PI control proportional gain kp = αc·Lf 0.07 
PI control integral gain ki = αc·Rf 0.0075 
Time delay Td = 1.5/fs 0.3 ms 

 

Page 5 of 46 Journal of Emerging and Selected Topics in Power Electronics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 6

frame (i.e., x
s = xα + j·xβ). The VSC closed-loop transfer function and equivalent admittance in (6) are transformed from dq 

coordinates to αβ coordinates by means of the frequency translation s → s − jω1 and the grid transfer function in phase 

coordinates is the same as in αβ coordinates [18], [23].  

The impedance-based equivalent circuit in Fig. 1(b) can also be represented as the closed-loop system in Fig. 1(c), [10], [11], 

which is obtained from the transfer function between the sources and the grid voltage v (or current i) as follows: 

 

( )

1 ( )1
( ) ( ) ,

( ) ( ) ( ) 1 ( ) ( )

t

g

vsc t

g g vsc vsc g

Z s

Y s
G s Z s

Z s Y s Y s Y s Y s

=

= + = =
+ +

s s
ref_eq

s
gs s

ref_eq ref

v i

v
i i

 (7) 

and it can be represented by the transfer function 

 
( )

( ) ( ) ( ) ( ),
1 ( )

M s
F s L s M s N s

L s
= =

+
 (8) 

where L(s) is the loop transfer function and 

 
1

( ) ( ) ( ),
( ) vsc

g

M s N s Y s
Y s

= =  (9) 

are the open-loop and feedback transfer functions, respectively.  

If the outer loops are considered in the VSC characterization, the VSC model in αβ- or dq-frame is a two-dimensional MIMO 

system because VSC must be represented by real vectors and transfer matrices. The impedance-based representation of the grid-

connected VSC system (8) becomes [23], 

 [ ]
1

( ) ( ) ( ) ( ) ( ) ( ),g vsc gF s I L s Z s L s Y s Z s
−

= + =  (10) 

where, considering αβ-frame, 

 

_ _ _

_ _ _

_ _ _ _

_ _ _ _

( ) ( ) ( ) 0
( ) ( )

( ) ( ) 0 ( )

( ) ( ) ( ) ( )( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

vsc vsc gs s
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vsc vsc g

vsc g vsc gs
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Y s Z s

Y s Y s Z s
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L s
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αα αβ αα

βα ββ ββ

αα αα αβ ββαα αβ

βα ββ βα αα ββ ββ

   
= =   
      

 
= = 
 

.


 
  

 (11) 

III.  PASSIVITY AND STABILITY OF GRID-CONNECTED VSCS 

Harmonic resonance can destabilize grid-connected VSCs due to VSC non-passivity [4], [13]. These instabilities can be 

investigated from the impedance-based closed-loop system in Fig. 1(c). This impedance-based system allows stability to be 
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assessed from a frequency-domain approach. Frequency domain methods for stability assessment must analyze the system 

response for positive- (s = jω, ω > 0) and negative- (s = −jω, ω > 0) sequence because the frequency response of F(jω) and 

F(−jω), ω > 0 may not be equal since F*(jω) may be different from F(−jω) (see example in Appendix A) [11], [23]. Passivity and 

stability analysis can be considered in the study.  

A.  Passivity 

According to [13], the closed-loop system defined by F(s) in (8) is passive if M(s) and N(s) are passive (i.e., M(s) and N(s) are 

stable, Re{M(jω )} ≥ 0, −∞ < ω < ∞, and Re{N(jω )} ≥ 0, −∞ < ω < ∞) because it is verified that F(s) is also passive, i.e., 

• F(s) is stable since −π ≤ arg{L(jω )} ≤ π, −∞ < ω < ∞, and therefore the Nyquist criterion is satisfied. 

• Re{F(jω )} ≥ 0, −∞ < ω < ∞. 

B.  Stability 

The passivity condition of grid-connected VSC systems can be reduced when only their stability is analyzed because F(s) in 

(8) is not necessarily unstable if M(s) and N(s) are not passive. For these cases, system stability can be studied in different ways: 

• Analyzing the state-space eigenvalues, the poles of F(s) or the roots of 1 + L(s) = Yg(s) + Yvsc(s) = 0. 

• Applying the Nyquist criterion to the loop transfer function L(s) for s = jω, −∞ < ω < ∞ or the phase and gain margin 

conditions from the Bode diagram to the loop transfer function L(s) for s = ±jω, ω > 0 [9] − [13], [21].  

• Applying the impedance-based stability criterion. This criterion evaluates the difference between the phase of the VSC and 

grid admittances Yvsc(±jω ), Ygrid(±jω ), ω >0 at frequencies where their magnitudes intersect [10] − [12].  

• Applying the positive-net-damping stability criterion in [19], [20] or the alternative approach to this criterion presented in the 

paper. These criteria evaluate the net-damping contribution of grid and VSC admittances at resonance frequencies (see the 

next Section).  

The impedance-based and positive-net-damping stability criteria allow analyzing stability considering the contribution of each 

system admittance. 

IV.  POSITIVE-NET-DAMPING STABILITY CRITERION 

The positive-net-damping stability criterion is proposed and strictly demonstrated for stability studies of SISO systems in [18] 

− [20]. It is applied to subsynchronous torsional interactions in [18] and two-terminal VSC-HVDC systems in [20]. Although this 

criterion is a powerful tool for stability assessment, it does not characterize the frequency of the closed-loop unstable oscillatory 

modes. A reformulation of the positive-net-damping criterion for harmonic resonance instabilities of SISO feedback systems is 
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presented to address the above drawback. This is analytically demonstrated in the frequency- and s-domains.  

A.  Study in the frequency-domain 

Considering that M(s) and N(s) are both stable, the closed-loop system defined by F(s) in (8) is asymptotically stable if the 

Nyquist curve of the loop transfer function L(s) = M(s)N(s) for s = jω, −∞ < ω < ∞ does not encircle the −1 point. In the 

literature, the analysis of the Nyquist criterion is conducted from the gain margin condition to prove the positive-net-damping 

stability criterion for SISO feedback systems [19]. The alternative approach of the positive-net-damping stability criterion in the 

paper is based on the impedance-based stability criterion [10] − [12] which evaluates the phase margin condition of the Nyquist 

criterion. In the following Subsections, the study of the positive-net-damping stability criterion based on the gain and phase 

margin conditions are presented. Although these criteria must be evaluated for the positive- (s = jω, ω > 0) and negative- 

(s = −jω, ω > 0) sequence [11], [12], [23], the study below is made considering only the positive sequence for sake of simplicity 

in the exposition. Nevertheless, the conclusions must also be applied for the negative-sequence. 

    1)  Positive-net-damping stability criterion from the gain margin 

The analysis of the Nyquist criterion from the gain margin means that L(s) must verify two necessary conditions at the same 

angular frequencyω : 

 { }Im ( ) ( ) 0,M j N jω ω =  (12) 

 ( ) ( ) 1.M j N jω ω > −  (13) 

Note that the M(jω)N(jω) value at the frequency of (12) is the cross point of the Nyquist curve L(s) with the real axis which 

should be on the right hand side of −1 for stability assessment, i.e. (13) may be hold. The above conditions lead to the theorem 

proposed in [19], which states that the closed-loop system F(s) in (8) is asymptotically stable if the net damping of the system is 

positive, i.e., Re{Yg(jω) + Yvsc(jω)} > 0, at the angular frequencies for which Im{M(jω)N(jω)} = 0 (i.e., at the angular frequencies 

where the Nyquist curve intersects with the real axis). This theorem allows system stability to be accurately assessed. Moreover, 

the positive-net-damping stability criterion is derived from the above theorem to avoid solving (12). This criterion states that the 

closed-loop system is asymptotically stable if the net damping of the system is positive for low frequencies where 

|M(jω)N(jω)| > 1, as well as in the neighborhood of each open-loop M(jω) and N(jω) resonance (i.e., in the neighborhood of the 

grid or VSC resonance). The conditions that replace the equation of the Nyquist curve intersection with the real axis in (12) are 

based on [18] and provide reasonable possibilities of stability for SISO feedback systems. However, they do not provide a clear 

relation between harmonic resonances of the grid-connected VSC system and stability (see Section V). The application of this 

criterion is not limited to an impedance representation of the grid and VSC as presented in [20].  
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    2)  Positive-net-damping stability criterion from the phase margin 

The analysis of the Nyquist criterion from the phase margin means that L(s) must verify the following two necessary 

conditions at the same angular frequencyω  [9] − [11]: 

 ( ) ( ) 1,M j N jω ω =  (14) 

 { }arg ( ) ( ) .M j N jπ ω ω π− ≤ ≤  (15) 

 Considering the frequency response of the positive-sequence grid and the VSC admittances in Fig. 1(b) as follows: 

 
1

( ) ( ) ( ) ( ) ( ) ( ),
( )g g g vsc vsc vsc

g

Y j G jB Y j G jB
Z j

ω ω ω ω ω ω
ω

= = + = +  (16) 

the loop transfer function L(s) = M(s)N(s) can be written as the following expression: 

 
( ) ( )

( ) ( ) ( ) ,
( ) ( )

vsc vsc

g g

G jB
L j M j N j

G jB

ω ω
ω ω ω

ω ω

+
= =

+
 (17) 

which combines the stability conditions with the admittances of the equivalent circuit in Fig. 1(b).  

The first phase margin condition (14) can be expressed as  

 
2 2

2 2 2 2

2 2

( ) ( ) ( )
( ) 1 ( ) ( ) ( ) ( ).

( ) ( ) ( )

vsc vsc vsc
g g vsc vsc

g g g

Y j G B
L j G B G B

Y j G B

ω ω ω
ω ω ω ω ω

ω ω ω

+
= = = ⇒ + = +

+
 (18) 

Considering the main reactive (inductive or capacitive) nature of the grid and VSCs at harmonic resonances (see Section II), 

Gi(ω) << Bi(ω) for i = g, vsc and (18) can be approximated as 

 ( ) ( ).g vscB Bω ω= ±  (19) 

The parallel resonance observed from the VSC current source in Fig. 1(b), neglecting the conductances Gg(ω ) and Gvsc(ω ) 

with respect to the susceptances Bg(ω ) and Bvsc(ω ) due to the main capacitive and inductive nature of the grid and VSCs at the 

harmonic resonances, can be expressed as  

 { }Im ( ) ( ) 0 ( ) ( ),g vsc g vscY j Y j B Bω ω ω ω+ ≈ ⇒ ≈ −  (20) 

which matches with the negative sign expression in (19). Thus, this parallel resonance is a particular case of the stability 

condition |M(jω )N(jω )| = 1. The parallel resonance can also be obtained from the parallel equivalent impedance Zt(jω) (7). Most 

resonance studies in grid-connected VSC systems consider VSC as an ideal current source and impose Bg(ω ) = 0 to characterize 
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parallel resonance [3]. However, Section VI shows that this approximation can provide inaccurate results.  

The second phase margin condition (15) can be expressed in terms of the imaginary part of M(jω )N(jω ) in the following two 

cases  

• Case #1: If ( ) 0,d L j dω ω >  

 { }0 arg ( ) : ( ) ( ) ( ) ( ) 0.g vsc vsc gL j G B G Bω π ω ω ω ω< < − >  (21) 

• Case #2: If ( ) 0,d L j dω ω <  

 { }arg ( ) 0 : ( ) ( ) ( ) ( ) 0.g vsc vsc gL j G B G Bπ ω ω ω ω ω− < < − <  (22) 

Imposing the parallel resonance relation (20), (21) and (22) can be rewritten as 

 
( )

( )

Case #1: ( ) 0 ( ) ( ) ( ) 0

Case #2 : ( ) 0 ( ) ( ) ( ) 0.

vsc g vsc

vsc g vsc

d L j d B G G

d L j d B G G

ω ω ω ω ω

ω ω ω ω ω

> ⇒ + >

< ⇒ + <
 (23) 

As demonstrated in the Appendix B, Case #1 is produced by inductive grid and capacitive VSC admittances (i.e., Bg < 0 and 

Bvsc > 0, respectively) and Case #2 is produced by capacitive grid and inductive VSC admittances (i.e., Bg > 0 and Bvsc < 0, 

respectively). Therefore, the condition in (23) is always satisfied if 

 ( ) ( ) ( ) 0,g vscG G Gω ω ω= + >  (24) 

where the conductance G(ω ) corresponds to the net-damping of the grid-connected VSC, the conductance Gg(ω ) is the grid 

damping and the conductance Gvsc(ω ) is the VSC damping. Therefore, grid-connected VSC systems are asymptotically stable if 

(24) holds at the angular frequency ω for which (20) holds. This result demonstrates an alternative approach for the positive-net-

damping stability criterion based on the gain margin condition [19]: grid-connected VSC systems are asymptotically stable if net 

damping G(ω ) is positive in a neighborhood of parallel resonances between the grid and VSC impedance. This demonstration 

can be extended to SISO feedback systems derived from impedance-based equivalent circuits if the equivalent resistances of the 

circuit are not significant compared to the reactances (i.e., the equivalent impedances of the circuit are mainly inductive or 

capacitive). Although the criterion is demonstrated for the positive-sequence (s = jω, ω > 0), it must also applied for the negative-

sequence (s = −jω, ω > 0). Note that, although the VSC could be considered as an ideal current source for parallel resonance 

determination, its representation as a Norton equivalent source is necessary to consider the VSC control influence on net 

damping, and therefore on electrical resonance instabilities. If the VSC is connected to a passive grid, grid damping Gg(ω ) is 

always positive and the converter control could be designed only by considering the passivity conditions of the VSC equivalent 
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admittance [4], [13], [14]. 

If the outer loops are considered in the VSC characterization, the VSC model in αβ- or dq-frame is a two-dimensional MIMO 

system (10) and the stability must be analyzed using the generalized Nyquist method (GNC) which extends the traditional 

Nyquist criterion to the eigenloci of the system return-ratio matrix (i.e., to the Nyquist curves of the eigenvalues of the loop gain 

transfer matrix) [9], [23]. These eigenvalues are obtained from the loop transfer function Ls(s) (11), 

 2

1,2

det ( ) ( ) 0 ( 1, 2)

( ) ( ) ( ) ( )
( ) ( ) ( ).

2 2

s s
i s I L s i

L s L s L s L s
s L s L s

αα ββ αα ββ
αβ βα

λ

λ

 − = = 

+ − 
⇒ = ± + 

 

 (25) 

The non-diagonal terms of the VSC transfer matrix function (11) are usually smaller than the diagonal terms [9], and therefore 

the non-diagonal terms of the loop transfer function L
s(s) can be neglected in front of the diagonal terms. Considering this 

approximation, the eigenvalues of the loop transfer function result as 

 1,2

1 _ _ 2 _ _

( ) ( ) ( ) ( )
( )

2 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).vsc g vsc g

L s L s L s L s
s

s L s Y s Z s s L s Y s Z s

αα ββ αα ββ

αα αα αα ββ ββ ββ

λ

λ λ

+ −
= ±

⇒ = = = =

 (26) 

In this case, the impedance-based and positive-net-damping stability criteria may be directly applied to the αα- and ββ-

components for stability assessment. Otherwise, there is not obvious relation between the GNC and the impedance-based- and 

positive-net-damping stability criteria and further analysis (out of the paper scope) should be made to extend the application of 

these criteria to MIMO systems. The above comments can also be applied to dq-frame.  

B.  Study in the s-domain 

The positive-net-damping stability criterion of harmonic resonance instabilities can also be demonstrated by analyzing the 

poles of F(s) or the roots of 1 + L(s) = 0 in (8). Considering that the dominant pole of the system is the poorly-damped pole 

related to the harmonic parallel resonance between the grid and the VSC [20] and that around this resonance the VSC has an 

inductive behavior and the grid has a capacitive behavior (see Section II and example in Section VI), the grid and VSC 

admittances in (16) can be expressed as follows: 

 
1 1

( ) ( ) ,
1 ( )g vsc

g g vsc vsc

Y s Y s
R C s R L s

≈ ≈
+ +

 (27) 

and the positive-sequence equivalent admittance observed form the VSC current source in Fig. 1(b) is 
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2 2 2 2

( )1 1
( ) ( ) .

( ) 1 ( ) ( )

g g vsc vsc
g vsc

g g vsc vsc g g vsc vsc

R j C R jL
Y j Y j

R j C R jL R C R L

ω ω
ω ω

ω ω ω ω

+ −
+ ≈ + = +

− + + +
 (28) 

The terms Rg
2 and Rvsc

2 can be neglected with respect to the terms 1/(Cgω )
2 and (Lvscω )

2 due to the main capacitive and 

inductive response of the grid and VSCs. Thus, the equivalent admittance can be approximated as 

 2
2

1
( ) ( ) ( ) .

( )
vsc

g vsc g g g

vscvsc

R
Y j Y j R C j C

LL
ω ω ω ω

ωω

 
+ ≈ + + − 

 
 (29) 

Moreover, considering (27), 1 + L(s) can be written as 

 
21 ( ) ( ) 1

1 ( ) 1 .
( )

g g g vsc g g vsc

vsc vsc g vsc vsc

R C s C L s C R R s
L s

R L s C R L s s

+ + + +
+ = + =

+ +
 (30) 

The poles of (30) are  

 
2 2( ) ( ) 4

,
2

g g vsc g g vsc g vsc

g vsc

C R R C R R C L
s

C L

− + ± + −
=  (31) 

which, considering that Cg(Rg + Rvsc)
2 << 4Lvsc, can be approximated as 

 
1

.
2

g vsc

vsc g vsc

R R
s j

L C L

+
≈ − ±  (32) 

It can be observed that the parallel resonance condition in (29) matches with the imaginary part of the poles in (32). Moreover, 

according to (29), if (18) holds (i.e., if (29) is passive) at the resonance frequency, the poles have a negative real part: 

TABLE II. CHARACTERISTICS OF METHODS FOR STABILITY ASSESSMENT 
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2

( ) ( ) 0 0.
2( )

g vsc g vsc

g vsc

vscvsc

R R R R
G G

LL
ω ω

ω

+ +
+ = > ⇒ − <  (33) 

From this demonstration, it can be stated that the frequency at the parallel resonance observed from the VSC current source 

approximately matches with the frequency of the oscillations in case of instability. Thus, the alternative approach of the positive-

net-damping stability criterion based on the phase margin condition allows predicting the frequency of the closed-loop unstable 

oscillatory modes. It can be observed in (32) that a negative VSC resistance Rvsc may lead to a positive real part of the poles if 

|Rvsc| > |Rg| (i.e., to a system instability) which is correctly predicted with the negative value of the net damping Gg(ω) + Gvsc(ω) in 

(33). 

V.  COMPARISON OF STABILITY METHODS 

Fig. 3 shows the flowchart of the different methods for stability assessment of grid-connected VSC systems and Table II 

presents their main characteristics. The state space eigenvalue analysis (or closed-loop root study) is a useful tool to analyze the 

impact of system and control parameters on stability [8]. However, this method requires detailed information for all elements in 

the system (including physical and control parameters) and high-order dynamic models for large systems that could exceed the 

computation limits of the solvers due to the large amount of information to manage from these models which must be update 

every time if any of the system parameter changes. Moreover, this information is not always completely available limiting an 

adequate system modeling. On the other hand, frequency domain methods are used to identify the causes of instabilities with less 

 
 

System 
data 

System 
measurements 

State space 
equations 

Pole  pi 
evaluation 

Re{pi} < 0: S.C. 

Im{pi}: O.M. 

Transfer function 
 F(s) = M(s)/(1 + M(s)N(s)) 

Loop transfer function, 
M (±jω)N(±jω) 

Gm and γm: S.C. 

 |MN| = 1: O.M. 

Open-loop transfer functions, 
M(±jω) = 1/Yg(±jω)    N(±jω) = Yvsc(±jω) 

Yg & Yvsc passive: S.C. 

|Yg| = |Yvsc|: O.M. Im{1/Yg} = Im{Yvsc} = 0,  
|Yvsc/Yg| > 1  

γm = arg{Yvsc} − arg{Yg}: S.C. G = Re{Yg + Yvsc} > 0: S.C. 

Im{Yg + Yvsc} = 0: O.M. 

Frequency domain (s = ±jω, ω > 0) s domain 

Note:  

 S.C.: Stability criterion 
 O.M.: Oscillatory mode 

  Proposed approach 

State space eigenvalue 
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Close-loop root study 

Nyquist criterion 

Gm: Gain margin 
γm: phase margin 
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Impedance-based 

stability criterion 

Positive-net-damping 
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 Transfer function 
 F(s) = M(s)/(1 + M(s)N(s)) 

Impedance-based model 

 
Fig. 3. Flowcharts of stability methods in grid-connected VSC systems. 
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compute-intensive effort and less detailed system information [9] − [20]. These methods can be applied by using either 

simulations or system measurements if the system parameter information of analytical models is not available, which offers an 

advantage over the state space eigenvalue analysis. 

The Nyquist criterion and the Bode diagram are the most used frequency domain methods but these methods only show 

numerical results and they focus on the loop transfer function of the entire system which does not allow investigating separately 

the contribution of the source and load subsystems to the closed-loop stability [9] − [13]. This may limit the analysis of 

oscillations and instabilities caused by particular impedances or filters connected to the system even though the loop transfer 

function could be measured. These drawbacks are avoided with the frequency domain methods that analyze the individual 

contribution of the source and load subsystems from the open-loop transfer functions [4], [9] − [20]. Among these methods, the 

passivity-based method imposes passivity in each subsystem (i.e., Gg(ω) > 0 and Gvsc(ω) > 0, (16)) for ensuring the closed-loop 

system stability [4], [13], [14], while the impedance-based and the positive-net-damping stability criteria are less restrictive and 

do not impose this passivity condition because consider the contribution of each subsystem to stability assessment. As an 

example, the positive-net-damping stability criterion ensures the closed-loop system stability if Gg(ω) + Gvsc(ω) > 0 (24), and 

therefore a system could be stable even when VSCs are not passive (i.e., even with Gvsc(ω) < 0) if apply Gg(ω) > 0 and 

|Gg(ω)| > |Gvsc(ω)|. For all the previous comments, the impedance-based criterion [10] − [12] and the positive-net damping 

criterion based on the gain [19], [20] or phase margin conditions are useful tools for stability analysis offering several advantages 

in front of the other methods. Based on Fig. 3 and Table II, a comparison between the impedance-based and the positive-net-

damping stability criteria is presented below.  

According to (18), (19) and (20) and considering that the grid-connected VSC system resistances are smaller than the 

reactances, the impedance-based method condition |Yg(jω)| = |Yvsc(jω)| (i.e., the intersection of the grid and VSC admittances) is 

equivalent to the condition of the proposed positive-net-damping stability criterion Im{Yg(jω) + Yvsc(jω)} = 0 (i.e., the parallel 

resonances between the grid and VSC impedances) and both conditions provide the frequency of the oscillatory modes (see 

Subsection IV.B). Subsequently, the phase angle between the VSC and the grid admittance ratio (i.e., the phase margin of the 

loop transfer function, γm = arg{Yvsc(jω)} − arg{Yg(jω)}) in the impedance-based method and the net damping 

G(ω) = Gg(ω) + Gvsc(ω) (24) in the proposed positive-net-damping stability criterion are evaluated at the above frequency to 

analyze stability. The evaluation of the damping stability condition Gg(ω) + Gvsc(ω) > 0 is more practical than the evaluation of 

the phase margin condition γm = arg{Yvsc(jω)} − arg{Yg(jω)} because damping is directly related to system resistances which are 

a common parameter in electric power systems (negative or small values of system resistances at specific frequencies may lead to 

instability problems). Moreover, the damping can be analytically characterized with simpler expressions than the phase margin 
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because it is easiest handle mathematically the real part of the source and load impedance sum than the phase angle of the source 

and load impedance ratio. As an example, let assume that the grid is modeled as a capacitor Cg in parallel with the short-circuit 

resistance Rg and inductance Lg, and the VSC model (6) is determined neglecting the filter resistance (i.e., Rf = 0 and 

ki = αc·Rf = 0) and considering that |ω| >> {ω1, αf} at the analyzed frequencies [14]. The positive-sequence grid and VSC 

admittances can be written as 

 

( ) ( )

2 2 2

2 2 2 2

( )

cos( ) sin( )1
( ) ,

( ) 2 sin( ) 2 sin( )d

g g

g g

g g

c d c d
vsc j T

f c f c c d f c c d

R jL
Y j jC

R L

T T
Y j j

L j e L T L T
ω

ω
ω ω

ω

α ω α ω ω
ω

ω α ω α α ω ω ω α α ω ω
−

−
= +

+

−
≈ = +

+ + − + −

 (34) 

and the stability conditions of the proposed positive-net-damping stability criteria at the grid and VSC parallel resonances 

becomes 

 
( )2 2 2 2 2

cos( )
( ) ( ) 0,

2 sin( )

g c d
g vsc

g g f c c d

R T
G G

R L L T

α ω
ω ω

ω ω α α ω ω
+ = + >

+ + −
 (35) 

which is much easier to analytically handle and to physically relate with the system resistances that the stability condition of the 

impedance-based stability criterion because it is analytically complicated to determine the argument of Yvsc(jω)} and Yg(jω). 

Another example can be found in [22], where the influence of different VSC parameters is graphically analyzed from the VSC 

damping evaluated with the phase of the VSC transfer function but this study could be performed analytically if the VSC 

damping had been evaluated with the real part of the VSC transfer function. 

The positive-net-damping stability criterion based on the gain margin condition evaluates the net damping at the frequencies 

derived from the conditions Im{1/Yg(jω)} ≈ 0, Im{Yvsc(jω)} ≈ 0 and |Yvsc(jω)/Yg(jω)| > 1 (i.e., at the frequencies of the open-loop 

resonances and the loop gain greater than 1). Considering (16), these conditions can be expressed as 

 

{ }

2 2
2 2 2 2

2 2

1
Im 0 ( ) 0 Im ( ) 0 ( ) 0

( )

( ) ( )( )
1 ( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( )

g vsc vsc

g

vsc vscvsc
g g vsc vsc g vsc

g g g

B Y j B
Y j

G BY j
G B G B B B

Y j G B

ω ω ω
ω

ω ωω
ω ω ω ω ω ω

ω ω ω

  
≈ ⇒ ≈ ≈ ⇒ ≈ 

  

+
= > ⇒ + > + ⇒

+
f

 (36) 

which does match neither with the first gain margin condition (12) 

 { }
( ) ( )

Im ( ) ( ) Im 0 ( ) ( ) ( ) ( ) 0,
( ) ( )

vsc vsc
g vsc vsc g

g g

G jB
M j N j G B G B

G jB

ω ω
ω ω ω ω ω ω

ω ω

 + 
= = ⇒ − ≈ 

+  
 (37) 
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nor with the first phase margin condition (19), and therefore the frequencies obtained from (36) should not be strictly applied in 

the second gain and phase margin conditions (13) and (15) to derive the positive-net-damping stability criterion. Moreover, 

according to (19), the frequency of the oscillatory modes are not characterized by the conditions |Bg(ω)| ≈ 0 and |Bvsc(ω)| ≈ 0 in 

(36) and it may only be contained in the frequency range defined by |Bg(ω)| f |Bvsc(ω)|. This frequency range could be wide 

depending on the grid-connected VSC system [20]. As alternative, the proposed positive-net-damping stability criterion uses the 

frequency of the parallel resonances between the grid and VSC impedances. This parallel resonance condition is directly derived 

from (14), it is easy to determine from the impedance-based characterization of the system and approximately provides the 

frequencies of the oscillatory modes.  

According to the previous comparison, the positive-net-damping stability criterion proposed in the paper offers several 

advantages respect to the impedance-based and positive-net-damping stability criteria because it collects the best of them, i.e., 

the evaluation of the net damping, which is more practical than the phase angle between the VSC and the grid admittance ratio, 

at the parallel resonances between the grid and VSC impedances, which provides specific frequencies related with the oscillatory 

modes and it is easy to characterize. A recent work in [21] investigates near-synchronous resonance instabilities in grid-

connected VSC systems and the impact of PLL on the near-synchronous grid-connected VSC oscillations from the damping at 

the frequency of the closed-loop oscillatory modes (called as intrinsic oscillatory points). The intrinsic oscillatory points are 

found from a VSC model which only considers the PI controller. This model leads to a system equivalent impedance with a 

constant resistance (i.e., the equivalent resistance does not depend on the frequency) and the resonance condition can be directly 

applied to the imaginary part of the impedance without neglecting the resistance (20). The stability criterion is established from 

the net damping analysis of the system transfer function at the intrinsic oscillatory points obtained with the simplified VSC 
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Fig. 4. Offshore WPP system: a) WPP connection scheme. b) Single-line equivalent circuit. 
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model. This procedure results from the application of the complex torque coefficients method which is presented, but not strictly 

proof, to study subsynchronous torsional interactions of turbine-generator sets [15], [16]. This method is also used and 

mathematically analyzed in [17] and [18] presenting some cases where it does not correctly predict closed-loop oscillatory 

modes and instabilities of the torsional interactions. The proposed approach applies similar as the complex torque coefficients 

method but it is mathematically demonstrated and extends its application to assess harmonic resonance instabilities in SISO 

feedback systems and MIMO feedback systems with negligible non-diagonal terms of the loop transfer function (e.g., grid-

connected VSC systems). According to the proposed approach, the oscillatory modes are obtained from the parallel resonance 

between the grid and VSC admittances considering all the system and control parameters of the models. In this case, the 

resistance of the system equivalent impedance may depend on frequency, and the resonance condition can only be applied if 

resistances are smaller than reactances.  

VI.  APPLICATION  

Application of the different methods to study harmonic resonance instabilities is illustrated in an offshore WPP. The 

alternative approach of the positive-net-damping stability criterion is compared with the other methods. The application is an 

example of a grid with multiple VSCs. The connection of multiple VSCs may affect the frequency response of the grid changing 

the frequency range of its capacitive behavior (i.e., changing the frequency of the parallel resonances) and it may also affect the 

damping of the grid because the non-passive response of the connected VSCs at the studied frequencies may reduce the grid 

damping and worsen system stability. However, the above influence does not affect the stability approaches and the assumptions 

of these approaches as it can be verified in the next Subsections. 

TABLE III.  200 MW OFFSHORE WIND POWER PLANT PARAMETERS  

   

Main grid 
Open-circuit voltage Uo 150 kV (50 Hz) 
Short-circuit power Ss 10000MVA 
Ratio XS/RS tanϕS 25 

HV/MV 
transformers 

Transformer ratio UNH/ UNM 150/33 kV 
Rated power SN 125 MVA 
Short-circuit impedance εcc 0.1 pu 
Ratio XT/RT tanϕT 25 

HV 
submarine 

cable 

Longitudinal π resistance RL 0.32 Ω/km 

Longitudinal π reactance XL 0.126 Ω/km 

Transversal π reactance XC 0.15·105 Ω·km 
Length DH  10 km 

MV submarine 
cable 

Transversal π reactance XC 0.14·105 Ω·km 
Length DM  1 km 

MV/LV 
transformer 

Transformer ratio UNM/ UNL 33/0.69 kV 
Rated power SN 5 MVA 
Short-circuit impedance εcc 0.05 pu 
Ratio XT/RT tanϕT 25 

WT 
Active power consumption PL 5 MW 
Displacement power factor λL ≈ 1.0 
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A.  Description 

A 200 MW offshore WPP with 25 type-4 WTs (i.e., full-scale VSC WTs) is studied according to Fig. 4(a). The WPP consists 

of five 5-WT strings (i.e., Nr = 5 and Nc = 5). The WTs are connected at 0.69 kV, which is stepped up to 33 kV for the collector 

system and to 150 kV for the export system with a group of two 125 MVA transformers in parallel. Type-4 WTs are equipped 

with two converters in back-to-back and harmonic filters are usually installed on the grid side of WT converters to mitigate 

frequency switching harmonics. Data of the VSC control and the WPP are shown in Table I and Table III, 

respectively. Instability problems can arise due to the interaction between the grid side VSC control of WTs and the WPP [7]. In 

order to analyze these problems, the WT VSC and the control are modeled as a Norton equivalent circuit (5) and the offshore 

WPP is modeled with the equivalent circuit in Fig. 4(b). In the examples, the HV and MV submarine cables are characterized as 

single concentrated parameter π circuits because they are short enough to be well represented for low frequencies. Moreover, the 

MV submarine cable model is simplified as the transversal capacitors of the cable because the longitudinal impedance is not 

significant compared with the inductance of the transformers. On the other hand, the LV submarine cables are omitted because 

their capacitance is very small and their longitudinal impedance can be included in the impedance of the MV/LV transformer.  

The Norton equivalent model (5) and the filter capacitance of the WTs are considered in the study.  

WPP stability is analyzed from WT51 (see Fig. 4(b)). In order to do that, the VSC WT equivalent admittance Yvsc(s) and the 

offshore WPP equivalent admittance Yg(s) observed from the analyzed WT must be determined to perform the stability studies. 

The former is obtained from (6) and the latter is calculated as follows: 

 

1

1

1

1

( ) ( )
( ) ( )

( ) ( )
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( ) ( )
( ) ( )

( ) ( )
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where 
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 (39) 

B.  Examples 

The effect that the VSC control parameters and passive components have on the stability is analyzed. As an example, the 

influence that the feedforward low-pass filter bandwidth ff = αf/(2π) (from 1.25 to 2 kHz) and the converter filter inductance Lf 

(from 0.07 to 0.15 mH) have on WP stability is studied. The WP stability is analyzed from WT51 (see Fig. 4(b)) when the 
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parameters ff = αf/(2π) and Lf of this WT are modified. Note that the VSC feedforward low-pass filter bandwidth is varied from 

αf = 7.85αc to αf = 11.9αc considering the low-pass filter design for transient-mode operation in weak grids. The grid and VSC 

transfer functions are in phase and dq coordinates, respectively, and they must be in the same frame to assess stability studies. 

According to Subsection II.A.2, both transfer functions are transformed to αβ-frame: the VSC transfer function by means of the 

frequency translation s → s − jω1 and the grid transfer function is the same as in phase coordinates [23].  

The state space eigenvalue analysis (or closed-loop root study) can be used to analyze the impact of system parameters on 

stability. Multiple poles are numerically obtained from the WPP transfer function and their analysis allows studying the system 

instabilities. Fig. 5 describes only the root locus of the poles related to instability. These poles are not exactly complex conjugate 

because the complex gain jLfω1 of the current feedforward in the control law (2) and the transformation of the VSC equivalent 

admittance from dq coordinates to αβ coordinates by means of the frequency rotation s → s − jω1 introduce complex 

components into the closed-loop transfer function F(s) in (8). These components may produce a different frequency response of 

F(jω) and F(−jω), ω > 0 since F*(jω) is different from F(−jω) (see example in Appendix A) [23]. The system becomes unstable 

when one of the poles moves to the positive side of the real axis, which is equivalent to a negative damping (see 

Subsection IV.B). As can be seen from Fig. 5, small values of low-pass filter bandwidth may lead to instability problems whereas 

large values of converter filter inductances may improve resonance stability. It can also be observed that filter bandwidth does 

not affect closed-loop oscillatory modes while high filter inductance slightly shifts closed-loop oscillatory modes to lower 

frequencies.  

This application of the frequency-domain methods is shown in Fig. 6 and Fig. 7. Only the frequency response of the positive-

sequence (s = jω, ω > 0) is analyzed because it is the first to cause the system instability (i.e., it is the less damped).  A stable and 

unstable example are illustrated modifying the low-pass filter bandwidth (ff = 1.9 to 1.25 kHz, respectively) when Lf = 0.07 mH. 

The Nyquist and Bode diagrams in Fig. 6(a) and Fig. 7(a) confirm the previous results on stability. For ff = 1.9 kHz, the Nyquist 

curve does not encircle the −1 point (nor the open-loop system has positive poles) and the Bode plot presents a phase margin 

equal to φm = 3.3º. For ff = 1.25 kHz, the Nyquist curve encircles the −1 point in clockwise direction and the Bode plot presents a 
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Fig. 5. Root locus of the offshore WPP poles related to the instability: a) Variation of feedforward low-pass filter bandwidth from 1.25 to 2 kHz when 
Lf = 0.07 mH. b) Variation of converter filter inductance from 0.07 to 0.15 mH when ff = 1.25 kHz. 
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phase margin equal to φm = −1.9º. Note that both methods focus on the loop transfer function L(s) = M(s)·N(s) (8) which does not 

allow investigate separately the contribution of the subsystems M(s) and N(s) to the closed-loop stability.  

The application of the alternative approach of the positive-net-damping stability criterion proposed in the paper is shown in 

Fig. 6(b) and Fig. 7(b). The frequency response of the equivalent impedance Zt(jω ) = (Yg(jω ) + Yvsc(jω ))
−1 (7) and the net 

damping factor G(ω ) shows that the system is stable for ff = 1.9 kHz because the Zt(jω ) parallel resonance at 1439 Hz is in the 

positive damping region. The system becomes unstable when ff = 1.25 kHz due to the negative damping at the Zt(jω ) parallel 

resonance (i.e., at 1430 Hz). These resonances are caused from the interaction between the inductive behavior of the VSC and 

the capacitive behavior of the grid at these frequencies (see Section II). The cause of the instability is a damping reduction in the 

VSC contribution because the boundary frequency of the negative damping region is decreased from 1496 Hz to 1381 Hz due to 

the low-pass filter bandwidth decrease [22]. According to the demonstration in Subsection IV.B, the frequency of the resonance 

matches with the closed-loop oscillatory modes of the poles in Fig. 5. Note that the alternative approach of the positive-net-

damping stability criterion combines the advantages of the eigenvalue analysis and Nyquist and Bode criteria: it is simple to 

evaluate, as the Nyquist and Bode criterion, and provides information about the cause of instability and the frequency of the 

oscillatory modes, as the eigenvalue analysis. Moreover, it allows considering the stability contribution of each subsystem. Time-

domain simulations in PSCAD/EMTDC are shown in Fig. 6(c) and Fig. 7(c) to validate the stability study. The stable 
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(ff = 1.9 kHz) and unstable (ff = 1.25 kHz) waveforms of the instantaneous voltages and currents at the WT51 PCC when this WT 

is connected at 0.2 s are plotted.  

C.  Comparison with other frequency-domain methods 

The alternative approach of the positive-net-damping stability criterion proposed in the paper is further analyzed in Fig. 8, 

where the unstable situation in Fig. 7 is represented by plotting the Bode diagram of |N(jω)| = |Yvsc(jω)|, 

|M(jω)| = 1/|Yg(jω)|, 1/|M(jω)| and |M(jω)N(jω)| (9). According to the demonstration in Subsection IV.A.2, the Zt(jω ) parallel 

resonance in Fig. 7 approximately corresponds to the frequency of point A in Fig. 8 where |M(jω )N(jω )| = 1 and the zero 

crossing point of the net damping factor G(ω ) in Fig. 7 approximately corresponds to point B in Fig. 8 where φMN = −180º. 

The impedance-based stability criterion [10] − [12] analyzes the system stability from the difference between the phases of 

Yvsc(jω) and Ygrid(jω) at the frequency of point C. This point corresponds to the intersection of the grid and VSC admittance 

magnitudes |Yg(jω)| and |Yvsc(jω)|, and the difference between the phases of Yg(jω) and Yvsc(jω) characterizes the phase margin of 

M(jω )N(jω ), i.e., φm = 180 − (89.8 −92.1) = −1.9º which identifies the system instability. Comparing the proposed positive-net-

damping stability criterion with the impedance-based stability criterion, the stability is evaluated at the same frequency for both 

methods (i.e., the frequency of the parallel resonance of Zt(jω ) at point A and the intersection frequency of |Yg(jω)| and |Yvsc(jω)| 

at point C). Also, the evaluation of the net damping factor sign is equivalent to determine phase margin of M(jω )N(jω ) from the 

difference between the phase of Yg(jω) and Yvsc(jω). However, the evaluation of net damping is more practical than the phase 

evaluation, because the resonance instabilities are related to a lack of damping  

The original positive-net-damping stability criterion in [19] analyzes the system stability from the net damping at the open-

loop N(jω) and M(jω) resonances and the frequencies where the loop gain |M(jω)·N(jω)| exceeds unity. In this case, N(jω) does 

not have any resonance, point D corresponds to the resonance frequency of M(jω) and the zone below point A corresponds to the 
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Fig. 8. Comparison of positive-net-damping stability criteria of the offshore WPP unstable example (Lf = 0.07 mH and ff = 1.25 kHz). 
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frequency range where |M(jω)·N(jω)| exceeds unity. The net damping at point D is positive because the phase of M(jω)·N(jω) is 

greater than −180º, and therefore the instability is not predicted by the open-loop transfer function M(jω). On the other hand, the 

net damping at frequencies below point A is negative because the phase between points A and B is smaller than −180º (grey area 

in Fig. 8) which predicts the system instability. It can be noted that in this example the positive-net-damping stability criterion in 

[19] assesses the instability of the example from the loop transfer function M(jω)N(jω) while the proposed positive-net-damping 

stability criterion assesses this instability from the grid and the VSC admittance contribution at the resonance of the closed-loop 

system. Comparing the two positive-net-damping stability criteria, both methods are simple to evaluate, but only the proposed 

positive-net-damping stability criterion always considers the contribution of each subsystem and provides information of the 

closed-loop oscillatory mode frequencies.  

VII.  CONCLUSIONS 

This paper proposes an alternative approach of the positive-net-damping stability criterion for assessing harmonic resonance 

instabilities. The proposed approach demonstrates mathematically the complex torque coefficients method from the evaluation of 

the phase margin condition at harmonic resonance frequencies and extends its application to SISO and MIMO feedback systems 

derived from impedance-based equivalent circuits (e.g., grid-connected VSC systems). This approach can be used if the reactive 

elements of the system are large compared to the resistive elements (e.g., at the frequencies of the harmonic resonance 

instabilities in grid-connected VSC systems). The stability criterion proposed in the paper is compared with those in the literature 

highlighting the following contributions:  

• It is simple to evaluate as the frequency domain methods. 

• It considers the stability contribution of each subsystem as the impedance-based and positive-net-damping stability criteria. 

• It provides an intuitive explanation and physical understanding of the instability phenomenon considering the net damping at 

electrical resonances as the positive-net-damping criterion. 

• It provides a clear relation between harmonic resonances of the grid-connected VSC system and stability. 

• It predicts the frequency of the instability oscillations. 

APPENDIX A 

RESONANCE FREQUENCY AND SYSTEM POLE EXAMPLE 

An example is presented to illustrate the different response of the VSC complex transfer function for the positive- and 

negative-sequences. 

Assuming Rf ≈ 0, ki = αc·Rf ≈ 0, H(s) ≈ 1 (i.e., the low-filter bandwidth is high to decouple VSC and grid dynamics [2]) and 

Page 22 of 46Journal of Emerging and Selected Topics in Power Electronics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 23

approximating the VSC time delay Td by a first-order transfer function [22] as 
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≈
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o refv v  (40) 

The VSC equivalent admittance (6) can be written in dq-frame as follows, 
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The frequency response of the VSC equivalent impedance for the positive- and negative-sequence is 
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and the resonance frequencies are 
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The poles and the resonance frequency in the αβ-frame become 
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It can be observed as the system poles are not complex conjugate and the resonance frequency is different for the positive- 

and negative-sequence due to the feedforward complex gains introduced in the current control loop (e.g., the feedforward term 

jLfω1i) and the frequency translations. 
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APPENDIX B 

INDUCTIVE AND CAPACITIVE BEHAVIOR STUDY 

Considering that Gi(ω ) << Bi(ω ) for i = g and vsc, (18) can be approximated as L(jω ) ≈ Bvsc(ω ) /Bg(ω ). Therefore, 
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d Bd B
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≈  (47) 

From (47), the two cases of the second stability condition, (21) and (22), can be identified with the following parallel 

resonance situations: 

• Case #1: Inductive behavior of the grid and capacitive behavior of the VSC, i.e.,  
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• Case #2: Capacitive behavior of the grid and inductive behavior of the VSC, i.e.,  
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The authors thank the reviewers for their comments and suggestions. Their exhaustive and relevant 

analysis of the paper has strongly contributed to improve the quality of this work. All modifications 

resulting from this review have been highlighted in the revised version of the paper using a red font. 

These modifications are detailed below. 

 

Comments from Editor and Reviewers and Our Responses 

 

Editor’s comments: 
 

Comment #1: As commented by multiple Reviewers, it is claimed in the manuscript that the "VSC 

behavior is mainly inductive" but no explicit justification of this assumption is presented in the 

manuscript. Thus, this issue should be further discussed, either by reference to relevant literature or by 

further elaborations by the authors. It should also be clarified when this assumption is valid, and what 

limitations this imposes on the application of the method presented in the manuscript. 

 

The authors agree with the editor’s remark. The issue pointed out by the editor is used in several parts of 

Section IV but it is not explained and justified in detail. There are two assumptions related with the 

“mainly” inductive and capacitive behavior of the VSC and grid equivalent impedance (or admittance) 

which are used in the theoretical study of Section IV: 

  

- The first assumption considers that the VSC equivalent impedance behavior is inductive and the grid 

equivalent impedance behavior is capacitive at the harmonic frequencies. 

- The second assumption considers that the resistances (or conductances) of the VSC and grid 

equivalent impedance (or admittance) can be neglected compared to the inductive or capacitive 

reactances (or susceptances), and therefore the impedance behavior can be defined as mainly 

inductive or capacitive. 

 

Regarding the VSC equivalent impedance behavior, there are several studies that illustrate the mainly 

capacitive or inductive behavior of this impedance depending on the VSC filter elements and the 

frequency range [R2] − [R6], [12]. Fig. 5 in [R2] illustrates clearly that the equivalent impedance 

behavior of VSCs with L filter (i.e., the VSC configuration considered in the paper) is mainly capacitive 

between the fundamental frequency and the current loop crossover frequency while this behavior is 
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Fig. R1. Study of the VSC equivalent impedance beahavior: a) Real and imaginary parts of Zvsc(j(ω − ω1) [(R1) (in grey) and 

(6) in black]. b) Boundary frequency versus voltage feedforward low-pass filter bandwidth. 
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mainly inductive above the current loop crossover frequency. This is supported with experimental 

measurements in [R2] − [R4], [12]. The frequency range of the capacitive and inductive behavior of 

VSCs with LC filter is shown in [R5]. An exhaustive analytical study about the influence of the VSC 

control on the system harmonic response is developed in [R6] providing simplified analytical 

expressions of the VSC equivalent impedance for harmonic studies. According to [R6], an approximated 

expression of the positive-sequence VSC equivalent impedance in αβ-frame is presented for αf ≤ 2.5·αc 

and frequencies greater than the grid frequency f1 (the VSC filter resistance Rf and the integral gain ki of 

the PI controller are not considered in the expression), 

( )vsc 1 1 1 1 1

1

( ( )) ( ) cos ( ) ( 2 , 2 ),
f c

p f f d fZ j k L T jL f f
α α

ω ω α ω ω ω ω ω π ω π
ω ω

 
− ≈ + − + − − = = 

− 
 (R1) 

where Lf is the inductance of the VSC filter, kp = Lf·αc is the proportional gain of the PI controller, αc is 

the closed current control loop bandwidth, αf is the voltage feedforward low-pass filter bandwidth and Td 

is the VSC time delay. Fig. R1(a) compares the frequency response of the VSC equivalent impedance 

obtained from (R1) and from (6) using the VSC parameter values in Table I (see paper) and αf = αc (i.e., 

ff = αf/(2π) = 159 Hz). It can be observed that the VSC equivalent impedance presents a capacitive and an 

inductive behavior below and above the boundary frequency fb. Moreover, it can also be observed that the 

behavior above the boundary frequency is mainly inductive due to the low contribution of the VSC 

resistive behavior. At these frequencies, the equivalent impedance approximately matches with the VSC 

filter reactance. The boundary frequency fb is obtained by equating to zero the imaginary part of the VSC 

equivalent impedance (R1)  

 1 1

1

1
0 .

2

f c

b b f c

b

f f
α α

ω ω α α
ω ω π

− − = ⇒ = +
−

  (R2) 

Fig. R1(b) shows the boundary frequency for the current control loop time constant in Table I (i.e., for 

αc = 1/τc = 1000 rad/s) and αf ranging from 0.01·αc to 10·αc. The frequency range of the harmonic 

resonance frequencies is also indicated in grey color [R1], [R7]. It is observed that the harmonic 

resonance frequencies are above the boundary frequency and, according to Fig. R1(a), the behavior of 

the VSC equivalent impedance at these frequencies is mainly inductive. It is also noted that the lower 

boundary frequency fx of the negative damping region can be approximately determined from (R1),  

 { } ( )vsc 1 1 1

1 1
Re ( ( )) ( ) cos ( ) 0 .

4 4
p f f d x

d d

Z j k L T f f
T T

ω ω α ω ω− = + − = ⇒ = + ≈  (R3) 

This boundary frequency corresponds to the minimum of |Re{Zvsc(j(ω − ω))| in Fig. R1(a) and it is close 

to the harmonic resonance frequencies [14]. Although (R1) does not apply, the above conclusions are 

also true for the negative-sequence VSC equivalent impedance and for αf ≥ 2.5·αc. 

 

Regarding the grid equivalent impedance behavior, this impedance may present a capacitive or inductive 

behavior for different frequency ranges but, according to the above study, the VSC equivalent 

impedance is mainly inductive at harmonic resonance frequencies, and therefore these resonances are 

produced by the interaction with the capacitive behavior of the grid equivalent impedance. It is true that 

other resonances can appear due to the VSC capacitive and grid inductive behavior but these resonances 

are produced at near-synchronous frequencies which are lower than the boundary frequency fb. 

Moreover, the resistive elements of ac grids may be usually neglected compared to the reactive elements 

and the grid equivalent impedance is commonly characterized by reactances in harmonic resonance 

studies, i.e. the grid behavior can be considered mainly capacitive at the harmonic resonance frequencies 

[R2], [R3], [R8], [14].  

 

Considering the above comments, resistances are neglected in the paper to determine the harmonic 

resonance frequencies (comparison between (19) and (20) and characterize of the imaginary part of the 

poles in (32)). However, the contribution of these resistances must be considered when the damping of 
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the system is analyzed (analysis of the second phase margin condition (15) and characterization of the 

real part of the poles in (32)). 

 

According to the above analysis, the following modifications have been made in the paper: 

 

- The frequency range of the harmonic resonance instabilities analyzed in the paper is indicated in the 

Introduction to fix the scope of the proposed method: 

 

However, resonance instabilities can appear in poorly damped power systems due to interaction between 

VSC control and the grid. In general, these resonance instabilities can be classified in two categories [4]: 

(i) Harmonic resonance instabilities which approximately range from 0.75 to 2 kHz and are caused by 

negative dampings due to VSC time delay and current control dynamics. (ii) Near-synchronous 

resonance instabilities which approximately range from 50 to 300 Hz and are caused by negative 

dampings due to current control dynamics and outer loop controls. The harmonic resonance instabilities 

are reported in different grid-connected VSC applications such as single-phase ac traction systems [6] 

and WPPs [7]. 

 

- The VSC equivalent impedance behavior is analyzed at the end of Subsection II.A to show the mainly 

inductive behavior of VSCs at harmonic resonance frequencies. 

 

- The reactive nature of the grid equivalent impedance is commented in the presentation of Fig. 1(b): 

 

The resistive elements of the ac grids may be usually neglected compared to the reactive elements and 

the impedance Zg(s) is commonly characterized by reactances in harmonic resonance studies [12], [14], 

[21]. 

 

- The paragraphs below (18) (in Subsection IV.A.2) have been rewritten and the assumption about the 

mainly reactive (inductive or capacitive) nature of the grid and VSCs at harmonic resonances has 

been better explained: 

 

Considering the main reactive (inductive or capacitive) nature of the grid and VSCs at harmonic 

resonances (see Section II), Gi(ω) << Bi(ω) for i = g, vsc and (18) can be approximated as 

 ( ) ( ).g vscB Bω ω= ±   (19) 

The parallel resonance observed from the VSC current source in Fig. 1(b), neglecting the conductances 

Gg(ω ) and Gvsc(ω ) with respect to the susceptances Bg(ω ) and Bvsc(ω ) due to the main capacitive and 

inductive nature of the grid and VSCs at the harmonic resonances, can be expressed as 

 { }Im ( ) ( ) 0 ( ) ( ),g vsc g vscY j Y j B Bω ω ω ω+ ≈ ⇒ ≈ −   (20) 

which matches with the negative sign expression in (19). 

 

- The introductory sentence in Subsection IV.B has been reviewed to indicate that the study analyzes 

the harmonic resonance frequencies and, according to Section II, the VSC has an inductive behavior 

and the grid has a capacitive behavior at these frequencies:  

 

Considering that the dominant pole of the system is the poorly-damped pole related to the harmonic 

parallel resonance between the grid and the VSC [20] and that around this resonance the VSC has an 

inductive behavior and the grid has a capacitive behavior (see Section II and examples in Section VI), 

the grid and VSC admittances in (16) can be expressed as follows: 

 

- The limitations of the proposed approach are indicated in the demonstration of the positive-net-

damping stability criterion (Subsection IV.A.2):  

 

Page 28 of 46Journal of Emerging and Selected Topics in Power Electronics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 4

This demonstration can be extended to SISO feedback systems derived from impedance-based 

equivalent circuits if the equivalent resistances of the circuit are not significant compared to the 

reactances (i.e., the equivalent impedances of the circuit are mainly inductive or capacitive). 

 

These limitations are also indicated in the Conclusions: 

 

This approach can be used if the reactive elements of the system are large compared to the resistive 

elements (e.g., at the frequencies of the harmonic resonance instabilities in grid-connected VSC 

systems). 

 

Comment #2: In section V.A, the authors are showing a set of root locus plots that is claimed to result 

from a frequency transformation from the dq coordinates to the alpha-beta coordinates. It is briefly 

mentioned that this implies that the poles will not be complex conjugate, but that the same stability 

criteria as for regular eigenvalue analysis apply (i.e. instability in case of minimum one pole with real 

part higher than 0). However, no further explanation, justification or reference are presented with 

respect to the background or validity of the applied frequency transformation. Further discussions and 

explanations supported by appropriate literature is needed to justify the theoretical background for the 

applied method and the validity of the presented results. 

 

The following comments describe briefly the applied coordinate transformations and the frequency 

response studies on transfer functions. The detailed presentation can be found in [R6], [R9], [2]. 

 

Three-phase sinuosidal signals xa, xb and xc can be expressed as a complex space vector in stationary 

coordinates (or αβ-frame) with the coordinate transformation 

 ( )2 3 4 32
,

3

j j
b a b cx jx x e x e x

π π
α= + = + +sx   (R4) 

where the complex space vector x
s
 in αβ-frame is denoted with bold letters and the superscript s. A 

symmetrical three-phase system can be characterized in αβ-frame with complex transfer functions 

G
s
(s) = Gα(s) + jGβ(s) which are equal to the complex transfer function in phase coordinates. 

The complex space vector x
s
 = xα + j xβ in stationary coordinates (or αβ-frame) can be expressed in 

synchronous coordinates (or dq-frame) with the coordinate transformation 

 1 1 ,
j j

d qx jx e e
θ θ−= + = ⇔ =s sx x x x   (R5) 

where dθ1/dt =ω1 is the fundamental angular frequency of the three-phase sinusoidal signals. The 

complex transfer functions in dq-frame G(s) = Gd(s) + jGq(s) result from the frequency translation 

s → s + jω1 of the complex transfer function G
s
(s) in αβ-frame, i.e. 

G(s) = G
s
(s + jω1) ↔ G

s
(s) = G(s − jω1). 

The transfer function of unsymmetrical systems (e.g., the VSC model considering outer loops) can only 

be described in αβ- and dq-frame by real space matrices as  

 

( ) ( )( ) ( )
( ) ( ( ) ) ( ) ( ( ) ).

( ) ( ) ( ) ( )

dd dqs s s s

qd qq

G s G sG s G s
G s u G s i G s u G s i

G s G s G s G s

αα αβ

βα ββ

  
= = = =  

    
 (R6) 

where the αβ and dq complex space vectors are represented by real space vectors (denoted without bold 

letters) as x
s
 = [xα, xβ]

T
 (i.e. x

s
 = [xα, xβ]

T
 ↔ x

s
 = xα + j xβ) and x = [xd, xq]

T
 (i.e. 

x = [xd, xq]
T
 ↔ x = xd + j xq) with x = u, i.  

 

Frequency domain methods for stability assessment of closed-loop systems in αβ- or dq-frame must 

analyze the system response for positive- (s = jω, ω > 0) and negative- (s = −jω, ω > 0) sequence space 

vectors. This study is equivalent to analyze the frequency response for s = jω, −∞ < ω < ∞. Symmetrical 

closed-loop systems are modeled by complex transfer functions F(s) = M(s)/(1 + L(s)) where 
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L(s) = M(s)·N(s) is the transfer function of the loop system. In this case, the analysis of the frequency 

response for s = ±jω, ω > 0 (or for s = jω, −∞ < ω < ∞) is required because the frequency response of 

F(jω) and F(−jω), ω > 0 may not be equal since F
*
(jω) may be different from F(−jω) [R9]. According to 

the above comment, the evaluation of the Nyquist curve L(s) for s = jω, ω < 0 is necessary for applying 

Nyquist method because this curve may not be the mirror image of the Nyquist curve L(s) for s = jω, 

ω > 0 in the real axis [R3], [R9]. Also, the frequency response evaluation of the positive- (s = jω, ω > 0) 

and negative- (s = −jω, ω > 0) sequence complex transfer functions is necessary for applying the 

impedance-based stability criterion and the positive-net-damping stability criterion because both 

functions may not be equal [R2], [R3], [11]. This different frequency behavior of the complex transfer 

functions of symmetrical closed-loop systems is reflected in the poles of the system which may not be 

complex conjugate. Unsymmetrical closed-loop systems are modeled by real transfer functions as (R6) 

and the transfer function becomes F(s) = [I + L(s)]
−1

M(s) with L(s) = M(s)·N(s). In this case, the stability 

of the closed-loop system can be analyzed using the generalized Nyquist stability criterion (GNC) for 

s = jω, −∞ < ω < ∞ (see response to comment #1 of reviewer #2) where the analysis of the frequency 

response for s = jω, ω < 0 (or for s = −jω, ω > 0) is also required as in the symmetrical case [R5]. 

 

Although the editor’s remark is an important issue in stability analysis, the authors consider that the 

paper may not be focused on it because the aim of the work is the proposed approach for stability 

studies. Nevertheless, they agree with the editor that some explanations are needed to justify the study 

and results. According to the above comments and the previous presentation of the coordinate 

transformations and frequency response, the following changes have been made in the paper: 

 

- The frequency transformation of the grid-connected VSC system for stability assessment is clarified 

at the beginning of Subsection II.A.2: 

 

It must be noted that the grid and VSC transfer functions are in phase and dq coordinates, respectively, 

and they must be in the same frame in Fig. 1(b) to assess stability studies. For that, both transfer 

functions are expressed in αβ coordinates with bold letters denoting the space vectors and superscript s 

denoting the αβ-frame (i.e., x
s
 = xα + j·xβ). The VSC closed-loop transfer function and equivalent 

admittance in (6) are transformed from dq coordinates to αβ coordinates by means of the frequency 

translation s → s − jω1 and the grid transfer function in phase coordinates is the same as in αβ 

coordinates [18], [23]. 

 

- The application of the coordinate transformation for analyzing the WPP example in Subsection VI.B 

has also been clarified: 

 

The grid and VSC transfer functions are in phase and dq coordinates, respectively, and they must be in 

the same frame to assess stability studies. According to Subsection II.A.2, both transfer functions are 

transformed to αβ-frame: the VSC transfer function by means of the frequency translation s → s − jω1 

and the grid transfer function is the same as in phase coordinates [23]. 

 

- The description of the passivity and stability methods in Section III has been reviewed for pointing 

out the necessity of their evaluation for the positive- (s = jω, ω > 0) and negative- (s = −jω, ω > 0) 

sequence. The comments have been supported by reference [R9], [11]: 

 

Frequency domain methods for stability assessment must analyze the system response for positive- 

(s = jω, ω > 0) and negative- (s = −jω, ω > 0) sequence because the frequency response of F(jω) and 

F(−jω), ω > 0 may not be equal since F
*
(jω) may be different from F(−jω) (see example in Appendix A) 

[11], [23]. 
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- Although the demonstration of the positive-net-damping stability criterion in Subsection IV.A is 

made for the positive-sequence, it has been commented that the criterion must also be applied for the 

negative-sequence: 

 

Although these criteria must be evaluated for the positive- (s = jω, ω > 0) and negative- (s = −jω, ω > 0) 

sequence [11], [12], [23], the study below is made considering only the positive sequence for sake of 

simplicity in the exposition. Nevertheless, the conclusions must also be applied for the negative-

sequence. 

  

- A comment about the complex conjugate poles in Subsection VI.B has been included with a sentence 

supported by the reference [R9]:  

 

These poles are not exactly complex conjugate because the complex gain jLfω1 of the current 

feedforward in the control law (2) and the transformation of the VSC equivalent admittance from dq 

coordinates to αβ coordinates by means of the frequency rotation s → s − jω1 introduce complex 

components into the closed-loop transfer function F(s) in (8). These components may produce a different 

frequency response of F(jω) and F(−jω), ω > 0 since F
*
(jω) is different from F(−jω) (see example in 

Appendix A) [23]. 

 

An illustrative example has been included in Appendix A (see response to comment #10 of 

reviewer #3 for more details). 

 

- The stability study in Subsection V.B has only been made for the positive-sequence because it is the 

first to cause the system instability (note that the pole with positive imaginary part is the first to go 

into the negative side of the real axis, Fig. 5). This has been mentioned in the presentation of Figs. 6 

and 7: 

 

The application of the frequency-domain methods is shown in Fig. 6 and Fig. 7. Only the frequency 

response of the positive-sequence (s = jω, ω > 0) is analyzed because it is the first to cause the system 

instability (i.e., it is the less damped). 

 

If the editor and reviewers consider necessary, the authors are willing to extend the above explanations 

including more theoretical background about the coordinate transformations and the frequency response 

studies on transfer functions (e.g., in a new Appendix).  

 

Comment #3: In general, the literature review and contextualization of the presented approach should 

be further improved. In general, please consider the first comment of Reviewer 3. However, two 

particular issues should also be considered by the authors: 

 

During the review process, some new work has been published, which seems to be based on similar 

considerations as presented in the manuscript:  

 

C. Zhang et al, "Properties and Physical Interpretation of the Dynamic Interactions between Voltage 

Source Converters and Grid: Electrical Oscillation and Its Stability Control," in IET Power Electronics, 

early access, http://dx.doi.org/10.1049/iet-pel.2016.0475  

 

This work also seem consider the resistive part of the VSC impedance, which is neglected without further 

justification by the authors. Thus, when revising the manuscript, the authors should clarify their 

contribution also with respect to the most recently available publications. 

 

The authors think that the most important issue in the paper is to clarify the differences between the 

proposed method and previous work highlighting the contribution of the new approach.  
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For that, the Introduction has been rewritten to provide only an overview of the stability methods in the 

literature and Section V has been created for comparing exhaustively these methods. Moreover, a 

flowchart of the different methods is presented in Fig. 3 and their main caracteristics are summarized in 

Table II. The recent work in [R8] has also been included in the paper. It is compared with the proposed 

approach in Section V: 

 

A recent work in [21] investigates near-synchronous resonance instabilities in grid-connected VSC 

systems and the impact of PLL on the near-synchronous grid-connected VSC oscillations from the 

damping at the frequency of the closed-loop oscillatory modes (called as intrinsic oscillatory points). 

The intrinsic oscillatory points are found from a VSC model which only considers the PI controller. This 

model leads to a system equivalent impedance with a constant resistance (i.e., the equivalent resistance 

does not depend on the frequency) and the resonance condition can be directly applied to the imaginary 

part of the impedance without neglecting the resistance (20). The stability criterion is established from 

the net damping analysis of the system transfer function at the intrinsic oscillatory points obtained with 

the simplified VSC model. This procedure results from the application of the complex torque 

coefficients method which is presented, but not strictly proof, to study subsynchronous torsional 

interactions of turbine-generator sets [15], [16]. This method is also used and mathematically analyzed 

in [17] and [18] presenting some cases where it does not correctly predict closed-loop oscillatory modes 

and instabilities of the torsional interactions. The proposed approach applies similar as the complex 

torque coefficients method but it is mathematically demonstrated and extends its application to assess 

harmonic resonance instabilities in SISO feedback systems and MIMO feedback systems with negligible 

non-diagonal terms of the loop transfer function (e.g., grid-connected VSC systems). According to the 

proposed approach, the oscillatory modes are obtained from the parallel resonance between the grid and 

VSC admittances considering all the system and control parameters of the models. In this case, the 

resistance of the system equivalent impedance may depend on frequency, and the resonance condition 

can only be applied if resistances are smaller than reactances. 

 

The abstract has also been modified including the following paragraph: 

 

The proposed approach allows characterizing the frequency of closed-loop oscillatory modes and 

identifying the physical and control parameters of the system that increase or reduce the damping of 

these modes. The extension of the proposed approach to study the stability of Single-Input Single-Output 

and Multiple-Input Multiple-Output feedback systems is analyzed and the approach is also compared 

with other stability methods in the literature. 

 

 

Comment #4: 

 

As an example of analysis, the authors are considering various bandwidths for the low-pass filtering of 

the voltage feed-forward used in the control of the VSC. Issues related to the impact of the filtering of 

the voltage feed-forward have been recently discussed in the following publication: 

 

M. Zhao et.al. ,"Voltage Dynamics of Current Control Time-Scale in a VSC-Connected Weak Grid," in 

IEEE Transactions on Power Systems, vol. 31, no. 4, July 2016, 

https://doi.org/10.1109/TPWRS.2015.2482605 

 

Thus, the authors should also consider this manuscript as a reference, and comment on the results and 

approaches of their own results in this context. 

 

The reference commented by the editor, [R10], has been included in the paper because it allows 

understanding the use of grid voltage feedforward low-pass filters in VSCs and analyzing the impact of 

the low-pass filter bandwidth on system stability. Several comments based on [R10] ([22] in the paper) 
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have been written in Section II and Subsection VI.B to clarify the choice of the low-pass filter 

bandwidth and their influence on stability.  

 

Comments in Section II: 

 

The selection of the low-pass filter bandwidth is a compromise between the stability of the VSC output 

and the whole system stability [2], [13], [14], [22]. A small vale of this bandwidth is used to keep as 

narrow as possible the VSC non-passivity region and improve the VSC stability. On the other hand, a 

large value is required to improve dynamics during fast transients due to grid disturbances which affect 

stability of VSC terminal voltage. The recommended low-pass filter bandwidth is αf ≤ 0.1αc for normal-

mode operation and αf ≥ αc for transient-mode operation [14]. If the VSC connects to a stiff bus, the 

feedforward low-pass filter design αf ≤ 0.1·αc ensures steady converter current output [14]. If VSC 

connects to a weak grid, the feedforward low-pass filter design αf ≥ αc ensures terminal voltage 

dynamics stability and avoid that voltage becomes unstable in case of grid disturbances [2], [22]. 

 

Comments in Subsection VI.B: 

 

The WP stability is analyzed from WT51 (see Fig. 4(b)) when the parameters ff = αf/(2π) and Lf of this 

WT are modified. Note that the VSC feedforward low-pass filter bandwidth is varied from αf = 7.85αc to 

αf = 11.9αc considering the low-pass filter design for transient-mode operation in weak grids. 

 

… 

 

The cause of the instability is a damping reduction in the VSC contribution because the boundary 

frequency of the negative damping region is decreased from 1496 Hz to 1381 Hz due to the low-pass 

filter bandwidth decrease [22]. 

 

 

Reviewer #1 comments: 
 

 

Comment #1: Is it really true that the VSC behavior can be considered as mainly inductive? The 

proportional part of the current controller has the impact of a virtual resistor (at least for lower 

frequencies where the time delay effect is negligible). Is the behavior really mainly inductive also for a 

high P gain? Please consider this issue carefully, as several results hinge on the assumption. 
 

As the reviewer points out, the resistive behavior of the VSC equivalent impedance depends on the 

proportional gain kp of the PI controller (R1). However, the VSC behavior at harmonic resonance 

frequencies for usual values of kp (e.g., kp = αcLf where αc is the closed current control loop bandwidth 

[14]) can be considered mainly inductive as it is shown in Fig. R1 and discussed in the response to the 

editor’s comment #1. This has been clarified when Fig. 2 is commented in Subsection II.A: 

 

It can be observed that for usual values of VSC parameters the VSC equivalent impedance presents a 

capacitive and an inductive behavior below and above the boundary frequency fb. 

 

 

Comment #2: The bandwidths of the feedforward filter that are considered in Section V seem high. 

Please elaborate on their selection. 

 
This issue has been commented in Subsection VI.B and the high value of the feedforward filter 

bandwidth is justified:  
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The WP stability is analyzed from WT51 (see Fig. 4(b)) when the parameters ff = αf/(2π) and Lf of this 

WT are modified. Note that the VSC feedforward low-pass filter bandwidth is varied from αf = 7.85αc to 

αf = 11.9αc considering the low-pass filter design for transient-mode operation in weak grids. 

 

Moreover, the presentation of the feedforward low-pass filter bandwidth has been rewritten in Section II 

to justify better the data in the application (see response to the editor’s comment #4). The obtained 

results when the bandwidth is reduced have been also justified from [R10] in Subsection VI.B: 

 

The WP stability is analyzed from WT51 (see Fig. 4(b)) when the parameters ff = αf/(2π) and Lf of this 

WT are modified. Note that the VSC feedforward low-pass filter bandwidth is varied from αf = 7.85αc to 

αf = 11.9αc considering the low-pass filter design for transient-mode operation in weak grids. 

 

 

Comment #3: It seems that the method considers only the current control loop, whereas impact of the 

outer loops is disregarded. Please elaborate on this; what assumptions are made and how can the outer 

loops be taken into account? 

 

The reason of neglecting the outer loops and the consequences of including them into de model are 

pointed out when Fig. 1(a) is presented at the beginning of Section II: 

 

It must be noted that the converter model in this Section only represents the inner current control loop 

because the outers loops (e.g., the phase-locked loop, PLL, and the direct-voltage controller, DVC) do 

not affect harmonic resonance instabilities in the 0.75 kHz to 2 kHz frequency range due to their low 

bandwidths [4], [5]. It can be observed that the transfer matrices of the VSC models in [14] become the 

common diagonal matrices of the VSC inner current control loop for frequencies greater than the low 

bandwidths of the outer control loops. This assumption allows a VSC symmetrical model to be obtained 

which can be characterized with complex impedances or admittances. If outer loops are included, the 

system becomes nonlinear and VSCs must be represented by real vectors and transfer matrices leading to 

a two-dimensional MIMO model [23]. 

 

The procedure to address MIMO system stability from the positive-net-damping stability criterion is 

commented at the end of Subsection II.B and Subsection IV.A (see also response to comment #1 of 

reviewer #2). 

 

 

Comment #4: Explain in detail how your work differs from the related [17]  

 

The authors hope that Section V with Fig. 3 and Table II clarifies the reviewer concern. A comparison 

between the positive-net-damping stability criterion based on the gain margin condition and the positive-

net-damping stability criterion proposed in the paper is included in this Section:  

 

The positive-net-damping stability criterion based on the gain margin condition evaluates the net 

damping at the frequencies derived from the conditions Im{1/Yg(jω)} ≈ 0, Im{Yvsc(jω)} ≈ 0 and 

|Yvsc(jω)/Yg(jω)| > 1 (i.e., at the frequencies of the open-loop resonances and the loop gain greater 

than 1). Considering (16), these conditions can be expressed as 
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which does match neither with the first gain margin condition (12) 
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nor with the first phase margin condition (19), and therefore the frequencies obtained from (36) should 

not be strictly applied in the second gain and phase margin conditions (13) and (15) to derive the 

positive-net-damping stability criterion. Moreover, according to (19), the frequency of the oscillatory 

modes are not characterized by the conditions |Bg(ω)| ≈ 0 and |Bvsc(ω)| ≈ 0 in (36) and it may only be 

contained in the frequency range defined by |Bg(ω)| f |Bvsc(ω)|. This frequency range could be wide 

depending on the grid-connected VSC system [20]. As alternative, the proposed positive-net-damping 

stability criterion uses the frequency of the parallel resonances between the grid and VSC impedances. 

This parallel resonance condition is directly derived from (14), it is easy to determine from the 

impedance-based characterization of the system and approximately provides the frequencies of the 

oscillatory modes. 

 

 

Reviewer #2 comments: 
 

 

Comment #1: The method and results are presented for SISO system. However, the grid tied VSCs are 

MIMO system in terms of the impedance since the impedances are positive-negative sequence 

impedance in sequence domain [1] and dq-impedance in dq-frame [2].  When the impedance based 

analysis is carried out by checking the Nyquist criterion, the stability analysis is performed for MIMO 

Nyquist criteria. How this issue can be addressed in the positive net damping stability method. 

  
The MIMO systems are introduced at the end of Subsection II.B:  

 

If the outer loops are considered in the VSC characterization, the VSC model in αβ- or dq-frame is a 

two-dimensional MIMO system because VSC must be represented by real vectors and transfer matrices. 

The impedance-based representation of the grid-connected VSC system (8) becomes [23], 

 
1

( ) ( ) ( ) ( ) ( ) ( ),s s s s s s
g vsc gF s I L s Z s L s Y s Z s

−
 = + =    (10) 

where, considering αβ-frame, 
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  (11) 
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The procedure to address the MIMO system stability from the positive-net-damping stability criterion is 

commented at the end of Subsection IV.A.2: 

 

If the outer loops are considered in the VSC characterization, the VSC model in αβ- or dq-frame is a 

two-dimensional MIMO system (10) and the stability must be analyzed using the generalized Nyquist 

stability method (GNC) which extends the traditional Nyquist criterion to the eigenloci of the system 

return-ratio matrix (i.e., to the Nyquist curves of the eigenvalues of the loop gain transfer matrix) [9], 

[23]. These eigenvalues are obtained from the loop transfer function L
s
(s) (11), 

 2

1, 2

det ( ) ( ) 0 ( 1, 2)

( ) ( ) ( ) ( )
( ) ( ) ( ).

2 2

s s
i s I L s i

L s L s L s L s
s L s L s

αα ββ αα ββ
αβ βα

λ

λ

 − = = 

+ − 
⇒ = ± + 

 

  (25) 

The non-diagonal terms of the VSC transfer matrix function (11) are usually smaller than the diagonal 

terms [9], and therefore the non-diagonal terms of the loop transfer function L
s
(s) can be neglected in 

front of the diagonal terms. Considering this approximation, the eigenvalues of the loop transfer function 

result as 

 
1, 2

1 _ _ 2 _ _

( ) ( ) ( ) ( )
( )

2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).vsc g vsc g

L s L s L s L s
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αα ββ αα ββ

αα αα αα ββ ββ ββ

λ

λ λ

+ −
= ±

⇒ = = = =

 (26) 

In this case, the impedance-based and positive-net-damping stability criteria may be directly applied to 

the αα- and ββ-components for stability assessment. Otherwise, there is not obvious relation between 

the GNC and the impedance-based- and positive-net-damping stability criteria and further analysis (out 

of the paper scope) should be made to extend the application of these criteria. The above comments can 

also be applied to dq-frame. 

 

 

Comment #2: PLL is used to synchronize VSC with the grid frequency. The control system shown in fig. 

1 (a) is based on dq-frame control which should have a PLL. 

 

The reviewer is true but the outer control loops as the phase-locked loop (PLL) are not considered in the 

study. The reason of the outer control loops disregarding (e.g., the PLL) is pointed out when Fig. 1(a) is 

presented at the beginning of Section II: 

 

It must be noted that the converter model in this Section only represents the inner current control loop 

because the outers loops (e.g., the phase-locked loop, PLL, and the direct-voltage controller, DVC) do 

not affect harmonic resonance instabilities in the 0.75 kHz to 2 kHz frequency range due to their low 

bandwidths [4], [5]. 

 
 

Comment #3: In Section IV.B authors assumed that the grid impedance is capacitive. This assumption 

is not true for all the cases. The authors should clearly identify when the assumption is valid. Similar, 

the VSC impedance is assumed to be inductive and is represented by a simple RL circuit in the analysis. 

The reviewer believes, this assumption is not also true. Authors can have a look on the impedance 

analysis of grid tied VSC [1,2]. 

 

[1] M. Cespedes and J. Sun, "Impedance Modeling and Analysis of Grid-Connected Voltage-Source 

Converters," in IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1254-1261, March 2014 

[2]B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli and Z. Shen, "Analysis of D-Q Small-Signal 

Impedance of Grid-Tied Inverters," in IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 675-

687, Jan. 2016 
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It is true that the VSC and grid equivalent impedances can be capacitive or inductive depending on 

frequency but the VSC equivalent impedance behavior at harmonic resonance frequencies is mainly 

inductive, and therefore the harmonic resonance is produced by a capacitive grid equivalent impedance 

(see response to editor’s comment #1). For this reason, the VSC inductive and grid capacitive behavior 

is assumed in the study of the system poles in Subsection IV.B.  

  

 

Comment #4: The theoretical analysis is based on the ratio of the grid and VSC impedance. In figs. 4(b) 

and 5 (b), the stability analysis has been carried out based on the total impedance. The total impedance 

has not been defined in the paper which makes the reviewer confused in understanding the analysis 

 

The impedance Zt(jω) has been defined in (7). It is the parallel equivalent impedance of the grid and 

VSC impedances which allows identifying the frequency of the harmonic parallel resonance between the 

grid and VSC impedances (see demonstration in response to comment #1.c of reviewer #4). This has 

been indicated below (20):   

 

The parallel resonance can also be obtained from the parallel equivalent impedance Zt(jω) (7). 

Reviewer #3 comments: 
 

 

Comment #1: The most important comment to the paper is to write more clear how the proposed 

method distinguishes from previous work. Both the abstracts and introduction give some hints, but do 

not write explicitly what is the core contribution of the paper. The information gathered from by the 

proposed method seems to be identical to the information obtained with a Nyquist plot, apart from 

another kind of stability margin (damping vs. phase or gain margin). If this is the case, the author 

should put more emphasis on explaining why the damping is a better measure of stability margin 

 
Fig. 3 and Table II in Section V have been included to clarify the reviewer concern. A comparison 

between the Nyquist criterion and the other methods is included in this Section: 

 

The Nyquist criterion and the Bode diagram are the most used frequency domain methods but these 

methods only show numerical results and they focus on the loop transfer function of the entire system 

which does not allow investigating separately the contribution of the source and load subsystems to the 

closed-loop stability [9] − [13]. This may limit the analysis of oscillations and instabilities caused by 

particular impedances or filters connected to the system even though the loop transfer function could be 

measured. These drawbacks are avoided with the frequency domain methods that analyze the individual 

contribution of the source and load subsystems from the open-loop transfer functions [4], [9] − [20]. 

 

 

Comment #2: Based on the above comment it is suggested to provide a description of the proposed 

method either in list or flowchart format. Then the reader does not have the read the paper in detail to 

understand the contribution 

 

The authors agree with the reviewer suggestion. Fig. 3 and Table II in Section V have been included to 

compare the different methods and understand the contribution of the proposed approach.  

 

 

Comment #3: Page 1: “A good method should not require detailed knowledge of the system”. Then it is 

argued that the frequency-domain methods do not require detailed information. This is true as long as 

the impedance is obtained by simulation or measurements, but most publications, including the paper 

under review, is based on analytical models. Then, detailed system information is in fact needed. The 

authors should rephrase the introduction based on this discussion, or argue better if they disagree. 
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A comparison between the state-space eigenvalue analysis and the frequency domain methods is 

included in Section V: 

 

The state space eigenvalue analysis (or closed-loop root study) is a useful tool to analyze the impact of 

system and control parameters on stability [8]. However, this method requires detailed information for 

all elements in the system (including physical and control parameters) and high-order dynamic models 

for large systems that could exceed the computation limits of the solvers due to the large amount of 

information to manage from these models which must be update every time if any of the system 

parameter changes. Moreover, this information is not always completely available limiting an adequate 

system modeling. On the other hand, frequency domain methods are used to identify the causes of 

instabilities with less compute-intensive effort and less detailed system information [9] − [20]. These 

methods can be applied by using either simulations or system measurements if the system parameter 

information of analytical models is not available, which offers an advantage over the state space 

eigenvalue analysis. 

 

As the reviewer comment, most publications use frequency domain methods from analytical models. 

However, there are also some publications that assess stability problem by means of system 

measurements highlighting the advantages of these methods with respect to state space eigenvalue 

analysis [R2] − [R5], [11]. The authors think that the works based on analytical models are most 

common because researchers cannot easily access measurements. 

 

 

Comment #4: There seems to be an error in (11). Right hand side is a complex number, which cannot 

be compared to “-1”. Perhaps the author meant to take the absolute value of the left-hand side, i.e. 

requiring that the minor loop gain is outside the unit circle? 

 
Note that the paragraph above (12) and (13) comments that both conditions must be verify at the same 

frequency. Therefore, M(jω)N(jω) is a real number at the frequency of the condition 

Im{M(jω)N(jω)} = 0. In particular, the M(jω)N(jω) value at this frequency is the cross point of the 

Nyquist curve L(s) with the real axis A short sentence has been written below (13) to explain better the 

meaning of (12) and (13): 

 
Note that the M(jω)N(jω) value at the frequency of (12) is the cross point of the Nyquist curve L(s) with 

the real axis which should be on the right hand side of −1 for stability assessment, i.e. (13) may be hold. 

 

 

Comment #5: Page 12: The equivalent impedance Zt(jw) is not defined in the paper as far as the 

reviewer can tell (maybe he is mistaken). It is important to define this impedance since it is used to 

explain the proposed method. The reviewer expects this impedance to be the sum of grid and converter 

impedance, but he is not sure 

 
The impedance Zt(jω) has been defined in (7). It is the parallel equivalent impedance of the grid and 

VSC impedances which allows identifying the frequency of the harmonic parallel resonance between the 

grid and the VSC impedances (see demonstration in response to comment #1.c of reviewer #4). This has 

been indicated below (20).   

 

 

Comment #6: In some equations (e.g. (18)), the sum of converter and grid admittance is used to analyze 

stability, while in Fig. 4 and 5 it seems that the sum of impedance is used to analyze stability. Which sum 

should be applied when using the proposed method: impedance, admittance or both? Will both sums 

give the same result? 
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The authors hope that the response to comment #5 answers this reviewer remark. 

 

 

Comment #7: Why is the legend in Fig 5b including both Zt and Zg when there is only one impedance 

curve? Similarly, both G and Gvsc when there is only one damping factor curve 

 

The mistake has been corrected. 

 

 

Comment #8: The sentence “However, the evaluation of net damping is more practical than the phase 

evaluation, because the resonance instabilities are related to a lack of damping” and similar sentences 

are used several places in the paper. It is used to argue that the proposed method is more convenient 

than the impedance-based stability criterion. Can the authors elaborate better what they mean by 

“practical” in this respect? It is not made clear for the reviewer that the proposed method is 

advantageous compared with the impedance-based stability criterion. In his opinion, the phase margin 

is also a clear and intuitive measure of stability margin. 

 
It is true that phase margin is as clear and intuitive as damping to evaluate system stability. Authors refer 

to other idea with the term “practical” but they did not present correctly this idea. This issue has been 

clarified in Section V: 

 

The evaluation of the damping stability condition Gg(ω) + Gvsc(ω) > 0 is more practical than the 

evaluation of the phase margin condition γm = arg{Yvsc(jω)} − arg{Yg(jω)} because damping is directly 

related to system resistances which are a common parameter in electric power systems (negative or small 

values of system resistances at specific frequencies may lead to instability problems). Moreover, the 

damping can be analytically characterized with simpler expressions than the phase margin because it is 

easiest handle mathematically the real part of the source and load impedance sum than the phase angle of 

the source and load impedance ratio. As an example, let assume that the grid is modeled as a capacitor 

Cg in parallel with the short-circuit resistance Rg and inductance Lg, and the VSC model (6) is 

determined neglecting the filter resistance (i.e., Rf = 0 and ki = αc·Rf = 0) and considering that 

|ω| >> {ω1, αf} at the analyzed frequencies [14]. The positive-sequence grid and VSC admittances can 

be written as 

( ) ( )

2 2 2

2 2 2 2

( )

cos( ) sin( )1
( ) ,

( ) 2 sin( ) 2 sin( )d

g g

g g

g g

c d c d
vsc j T

f c f c c d f c c d

R jL
Y j jC

R L

T T
Y j j

L j e L T L T
ω

ω
ω ω

ω

α ω α ω ω
ω

ω α ω α α ω ω ω α α ω ω
−

−
= +

+

−
≈ = +

+ + − + −

 (34) 

and the stability condition of the proposed positive-net-damping stability criteria at the grid and VSC 

parallel resonances becomes 

 

( )2 2 2 2 2

cos( )
( ) ( ) 0,

2 sin( )

g c d
g vsc

g g f c c d

R T
G G

R L L T

α ω
ω ω

ω ω α α ω ω
+ = + >

+ + −
  (35) 

which is much easier to analytically handle and to physically relate with the system resistances that the 

stability condition of the impedance-based criterion because it is analytically complicated determined the 

argument of Yvsc(jω)} and Yg(jω). Other example can be found in [22], where the influence of different 

VSC parameters is graphically analyzed from the VSC damping evaluated with the phase of the VSC 

transfer function but this study could be performed analytically if the VSC damping had been evaluated 

with the real part of the VSC transfer function. 
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Comment #9: Equations (27) and (28) are useful, but several assumptions are made in order to derive 

them. It is suggested to structure this section better, so it will be easier to understand when the equations 

are valid 

 
The authors hope that the explanation to editor’s comment #1 will contribute to clarify the assumptions 

in Subsection IV.B. Nevertheless, they are willing to structure this Subsection better if the reviewer 

considers necessary yet. 

 

 

Comment #10: In Fig 3 – a frequency shift is performed in order to obtain the state space model. Does 

this mean the state space model is in alpha betta coordinates? If the state space model was analyzed in 

the dq domain, it is expected that the eigenvalues are complex conjugate. The eigenvalues in Fig 3 are 

not complex conjugate. In the understanding of the reviewer, the system should have the same 

eigenvalues regardless of modeling domain – can the authors please elaborate on this and/or suggest a 

reference where state-space modeling is performed in phase domain coordinates? 

 
The frequency transformation of the grid-connected VSC system for stability assessment is clarified in 

Subsection II.A.2 and Subsection VI.B (see response to the editor’s comment 2). 

 

References [R2] and [11] characterize the impedance-based model of the grid-connected VSCs in phase 

and dq-frame analyzing the differences between them. 

 

The stability study must provide the same conclusions regardless of the frame but the poles of the system 

may change. According to this, the authors present two illustrative examples: 

 

Example 1: 

 

Consider the equivalent impedance transfer function of a capacitor in parallel with an RL impedance in 

phase domain and their corresponding poles, 

 

2

1,22 2

1
( )

1
( ) ( ) .

1 21 4

R Ls
R Ls R RCsu Z s i Z s s

L LCCLs RCs LR Ls
Cs

+
+

= = = ⇒ = − ± −
+ ++ +

 (R7) 

If the transfer function is expressed in dq-frame by means of the frequency translation s → s + jω1, the 

poles are 

 

2

1, 2 1 2

1
.

2 4

R R
s j

L LCL
ω= − − ± −   (R8) 

It can be observed as the system poles depend on the frame due to the frequency translation. It can also 

be observed that the poles in dq-frame are not complex conjugate. This translation shifts the frequency 

response of the admittances (or impedances). 

 

Example 2: 

 

Assuming Rf ≈ 0, ki = αc·Rf ≈ 0, H(s) ≈ 1 (i.e., the low-filter bandwidth is high to decouple VSC and grid 

dynamics [2]) and approximating the VSC time delay Td by a first-order transfer function [R10], 

 
1

,
1dT s

≈
+

o refv v   (R9) 

The VSC equivalent admittance (6) can be written in dq-frame as follows, 
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and the poles of the admittance are 
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  (R11) 

where 
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The frequency response of the VSC equivalent impedance for the positive- and negative-sequence is 

  
1

1( ) ( ) ,
f c

vsc vsc f

d d

L
Z j Y j jL

T T

α
ω ω ω ω

ω
−  

± = ± = ± ± − 
 

  (R13) 

and the resonance frequencies are 
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It can be observed as the system poles (R12) are not complex conjugate and the resonance frequency 

(R14)  is different for the positive- and negative-sequence due to the feedforward term jLfω1i.  

The poles and the resonance frequency in the αβ-frame are 

 

1 1
1 2
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1 1

2 2 2 2

.
2 2

r i r i

d d

c

d

s j s j
T T

T

ω ω
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  (R15) 

 

In general, the poles are not complex conjugate due to the frequency translations and the feedforward 

complex gains introduced in the current control loop (e.g., the feedforward term jLfω1i). It is also true for 

the difference between the positive- and negative-sequence resonance frequencies.  

 

A comment about the complex conjugate poles in Subsection VI.B has been included on the basis of the 

previous analysis:  

 

These poles are not exactly complex conjugate because the complex gain jLfω1 of the current 

feedforward in the control law (2) and the transformation of the VSC equivalent admittance from dq 

coordinates to αβ coordinates by means of the frequency rotation s → s − jω1 introduce complex 

components into the closed-loop transfer function F(s) in (8). These components may produce a different 

frequency response of F(jω) and F(−jω), ω > 0 since F
*
(jω) is different from F(−jω) (see example in 

Appendix A) [23]. 

 

Moreover, Example 2 has been included in Appendix A to illustrate the comment in Subsection VI.B. 

 

 

Page 41 of 46 Journal of Emerging and Selected Topics in Power Electronics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 17

Comment #11: As far as the reviewer can see, there is no discussion on the validity of the proposed 

method in case the system is dq unbalanced as defined in [R1]. Such unbalances are introduced by e.g. 

PLL, DC-link voltage controller, active/reactive power controllers and synchronous machine saliency. 

The authors should mention this aspect, or argue if they believe the method is correct even under such 

unbalances. 

 

[R1] L. Harnefors, "Modeling of Three-Phase Dynamic Systems Using Complex Transfer Functions and 

Transfer Matrices," in IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 2239-2248, Aug. 

2007. 

 

The MIMO systems are introduced at the end of Subsection II.B and the procedure to address the MIMO 

system stability from the positive-net-damping stability criterion is commented at the end of 

Subsection IV.A.2 (see the response to comment #1 of reviewer #2). 

  

 

Reviewer #4 comments: 
 

 

Comment #1: This paper claimed that the main advantage of the proposed alternative positive-net-

damping stability criterion over the existing positive-net-damping criterion was that the proposed 

criterion could provide the frequency of the closed-loop oscillatory modes. However, the reviewer is not 

convinced by the explanation in this paper. 

 

#1.a: The existing positive-net-damping criterion checks the net damping for low frequencies where 

|M(jw)N(jw)|>1, as well as the neighborhood of each open-loop M(jw) and N(jw) resonance, while the 

proposed criterion checks the net damping in the neighborhood of parallel resonances between the grid 

and VSC impedance. Both criteria require the impedances of the VSC Yvsc(jw) and the grid Yg(jw) in 

the full frequency range. According to the comparison presented in Section V-C, it seems that all 

frequency-domain methods including the impedance-based stability methods are equivalent and they 

require the same impedance information for stability assessment. The only difference is that these 

impedance-based stability methods assess the stability from different points of view. Therefore, the 

reviewer thinks that the proposed criterion is an alternative method but not a method with a significant 

advantage. 

 

It is true that all frequency domain methods require the same impedance information for stability 

assessment and they analyze stability from different points of view. However, the methods have 

different disadvantages or advantages depending on the point of view. In particular, the proposed 

approach offers several advantages respect to the impedance-based and positive-net-damping stability 

criteria because it collects the best of them, i.e., the evaluation of the net damping (more practical than 

the phase angle between the VSC and the grid admittance ratio) at the parallel resonances between the 

grid and VSC impedances which provides specific frequencies related with the oscillatory modes and it 

is easy to characterize. The authors hope that Section V with Fig. 3 and Table II allows clarifying the 

reviewer concern. 

 

 

#1.b: The existing positive-net-damping criterion can still identify the unstable oscillatory resonance 

frequency as the frequency range where the net damping is negative and |M(jw)N(jw)|>1 or as the 

frequency of each open-loop M(jw) and N(jw) resonance. For example, according to Section V-C, the 

resonance frequency can be identified in the frequency range between points A and B. Although it may 

not tell the exact unstable resonance frequency, it can provide the approximate frequency range. 

 

A comparison between the positive-net-damping stability criterion based on the gain margin condition 

and the positive-net-damping stability criterion proposed in the paper is made in Section V. The 
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frequencies characterized from the different conditions and their applications to assess stability are 

discussed in this Section (see response to comment #4 of reviewer #1). 

 

 

#1.c: The proposed method checks the parallel resonances, and the frequency of the parallel resonance 

with negative net damping is approximately the frequency of the closed-loop oscillatory mode. The 

frequencies of parallel resonances are determined by Yvsc(jw) and Yg(jw), which is not specifically 

revealed by the proposed method 

 

The reviewer concern has been discussed in Section V (see response to comment #4 of reviewer #1). 

The authors hope that it clarifies this issue. 

 

Also note that the frequency of the parallel resonance between the grid and the VSC admittances is 

identified in Fig. 6(b) and Fig. 7(b) with the parallel equivalent impedance Zt(jω) (defined in (7)). 

Considering the frequency response of the grid and the VSC admittances as (16), this parallel resonance 

can be obtained as (20) or it can also be obtained from the parallel equivalent impedance, 

  
{ }

2 2

( ) ( ) ( ( ) ( ))
Im ( ) Im 0

( ( ) ( )) ( ( ) ( ))

( ) ( ) 0.

g vsc g vsc

t

g vsc g vsc

g vsc

G G j B B
Z j

G G B B

B B

ω ω ω ω
ω

ω ω ω ω

ω ω

 + − + 
= = 

+ + +  

⇒ + ≈

  (R16) 

The resonance of the grid and VSC admittances (i.e., Im{1/Yg(jω)} ≈ Bg(ω) = 0 and 

Im{Yvsc(jω)} ≈ Bvsc(ω) = 0 in (36)) may not match with (20) or (R16).  

 

 

Comment #2: There are some concerns about the derivation of the proposed method 

 
#2.a: In Section IV-A-2, the derivation is based on the assumption that the grid and VSC are mainly 

inductive or capacitive. However, this assumption is mainly true for the high frequency range above the 

VSC controller bandwidth. Is this derivation also true for the instability caused by the interactions of 

control loops of multiple VSCs? 

 

As the reviewer comment, the assumption about the grid and VSC impedance behavior is true at 

frequencies of the harmonic resonance instabilities (see response to the editor’s comment #1). The 

assumptions of the study are also true independently of the VSCs connected in the system. A short 

sentence about this issue has been written in the presentation of the Section VI to explain the influence 

of multiple VSC connection on stability and the validity of the stability methods in these cases:   

 

This application is an example of a grid with multiple VSCs. The connection of multiple VSCs may 

affect the frequency response of the grid changing the frequency range of its capacitive behavior (i.e., 

changing the frequency of the parallel resonances) and it may also affect the damping of the grid because 

the non-passive response of the connected VSCs at the studied frequencies may reduce the grid damping 

and worsen system stability. However, the above influence does not affect the stability approaches and 

the assumptions of these approaches as it can be verified in the next Subsections. 

 

 

#2.b: In Section IV-B, the admittance Yvsc(s) of the VSC is approximated as 1/(Rvsc + Lvsc*s). Due to 

the impact of the VSC controller loop, Rvsc might not be always positive. Therefore, the analysis 

regarding Equation (29) might not be correct. 

 

The result of the damping stability condition is according with the pole stability criterion in (33) 

although the VSC resistance Rvsc may be negative. A sentence has been written at the end of 
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Subsection IV.B to illustrate the relation between the damping condition of the positive-net-damping 

stability criterion and the pole stability criterion: 

 

It can be observed in (32) that a negative VSC resistance Rvsc may lead to a positive real part of the poles 

if |Rvsc| > |Rg| (i.e., to a system instability) which is correctly predicted with the negative value of the net 

damping Gg(ω) + Gvsc(ω) in (33). 

 

 

Comment #3: There are some typos as follows. A proofread of the manuscript is suggested. 

 
(1) In Line 10 on Page 5, “1+L(s)=Yg(s) + Yvsc(s)” is not correct. 

(2) In Line 45 on Page 12, Zt(jw) is not defined. 

(3) In Line 15 on Page 15, the positions of “inductive” and “capacitive” should be exchanged. 

(4) Equation (30) on Page 11 overlooked the Zcm connected to WT51. 

 

The manuscript has been reviewed and the corrections of the above issues have been made.  

 

 

Comment #4: Some details are needed to avoid confusion 

 

#4.a: It is better to provide the detailed parameters of the system in Section V, including the physical 

and controller parameters of the WTs and the line parameters. 

 
The VSC control data and the WPP data are provided in Table I and Table III, respectively. 

 

 

#4.b: It is better to describe the resonance frequency in the unstable case presented in Fig. 5. 

 

The authors apologise but they do not understand the reviewer comment. The resonance frequency is 

described in the paper for the stable and unstable cases. A sentence indicating that these parallel 

resonances are due to the interaction between the inductive behavior of the VSC and the capacitive 

behavior of the grid has been included in the example: 

 

These resonances are caused from the interaction between the inductive behavior of the VSC and the 

capacitive behavior of the grid at these frequencies. The cause of the instability is a damping reduction 

in the VSC contribution because the boundary frequency of the negative damping region is decreased 

from 1496 Hz to 1381 Hz due to the low-pass filter bandwidth decrease [22]. 

 

However, the authors fear that this is not the aim of the reviewer comment. In this case, they are willing 

to modify the parallel resonance presentation if the reviewer considers necessary. 

 

#4.c: In Section V-B, are the changes of the feedforward low-pass filter bandwidth and filter inductance 

for all WTs or just for WT51? 

 
The changes are made just for WT51. It has been indicated in the example: 

 

The WP stability is analyzed from WT51 (see Fig. 4(b)) when the parameters ff = αf/(2π) and Lf of this 

WT are modified. 

 

#4.d: In Line 47 on Page 6, why do “they not provide a clear relation”? What is the “clear relation” 

revealed by the proposed method?. 
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The positive-net-damping stability criterion derived from the gain margin condition does not have a 

clear relation between electrical resonances of the grid-converter VSC systems and stability because this 

criterion provides a range of frequencies instead a specific frequency for analyzing stability. This issue 

has been discussed in the Section V (see response to comment #4 of reviewer #1). The authors hope that 

it clarifies this concern. 

 

 

Reviewer #5 comments: 
 

 

Comment #1: What’s the difference between the passivity mentioned in [10], and the positive-net-

criterion mentioned in [15]? 

 
The authors hope that the comments in Section V clarify this issue:  

 

Among these methods, the passivity-based method imposes passivity in each subsystem (i.e., Gg(ω) > 0 

and Gvsc(ω) > 0, (16)) for ensuring the closed-loop system stability while the other three methods are less 

restrictive and do not impose this passivity condition because consider the contribution of each 

subsystem to stability assessment. As an example, the positive-net-damping stability criterion ensures 

the closed-loop system stability if Gg(ω) + Gvsc(ω) > 0 (24), and therefore a system could be stable even 

when VSCs are not passive (i.e., even with Gvsc(ω) < 0) if apply Gg(ω) > 0 and |Gg(ω)| > |Gvsc(ω)|. 

 

 

Comment #2: What is the exact expression of traditional positive-net damping criterion, and what’s the 

equation of the new positive-net damping criterion? 

 

The authors hope that Fig. 3 clarifies the reviewer concern. Note that both methods evaluate the net 

damping G(ω) (24) at different frequencies. The traditional positive-net-damping stability criterion at the 

frequencies of the open-loop resonances (Im{1/Yg(jω)} ≈ 0 and Im{Yvsc(jω)} ≈ 0) and the loop gain 

greater than 1 (|Yvsc(jω)/Yg(jω)| > 1). The proposed positive-net-damping stability criterion at the 

frequencies of the parallel resonances between the grid and VSC impedances 

(Im{Yg(jω) + Yvsc(jω)} ≈ 0). 

 
 

Comment #3: The equation (11) seems inaccurate, since the left hand side is a complex number. 

 
As it is commented in the response to comment #4 of reviewer #3, this issue has been clarified below 

(13): 

 

Note that the M(jω)N(jω) value at the frequency of (12) is the cross point of the Nyquist curve L(s) with 

the real axis which should be on the right hand side of −1 for stability assessment, i.e. (13) may be hold. 
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