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Abstract. We study a 2-species Lotka-Volterra type differential system, modeling com-
petition between two species and having a coexistence equilibrium in the first quadrant.
In case that this equilibrium is of saddle type, its stable manifold divides the first quad-
rant into two zones. Then, depending on the zone where the initial condition lies, one of
the species will extinct and the other will go to an equilibrium. Using this separatrix we
introduce a measure to discern which species has more chance of surviving. This measure
is given by a non-negative real number κ, that we will call persistence ratio, that only
depends on the parameters of the system. In some cases, we can give simple explicit
expressions for κ. When this is not possible, we use several dynamical tools to obtain
effective approximations of it.

1. Introduction

In competition models two or more species struggle for a limited source, like food or
territory. Following Murray [15, Sec. 3.5], in this work we consider a simple 2-species
Lotka-Volterra competition model for which each species has logistic growth in absence of
the other. More specifically, we consider the quadratic differential system

ẋ =
dx

dt
= x(λ− α1x− α2y),

ẏ =
dy

dt
= y(µ− β1x− β2y),

(1)

where α1, α2, β1, β2, λ and µ are positive parameters and t ∈ R is the time. For short we
name X and Y the species with respective populations x and y.

We will study the case when the above system has an equilibrium p in the open first
quadrant which is of saddle type. Recall that this situation allows to show for this 2-species
model the so called Principle of competitive exclusion: when two species compete for the
same limited resources, one of them usually becomes extinct. System (1) is known to be a
good model for several kinds of species in competition, as shown in the classical works of
Gause and Leslie, see [10, 12].

To the best of our knowledge, there is not a quantitative version of this principle. The
aim of this paper is to fill this gap. We will introduce a non-negative real (even infinity)
number κ, that we will call persistence ratio, that will measure which of both species has
more chance of surviving and that depends only on the parameters of the model. As we
will see, the computation of this number relays on the knowledge of the expression of the
stable manifold of p, S =Ws(p), where p is a hyperbolic saddle in the open first quadrant.
Since for the most of the cases this manifold is not algebraic, this computation is not
easy. In this work we will approach κ by looking for algebraic approximations of S. These
approximations will be obtained following similar tools to the ones developed in [7, 8, 9].
For fixed values of the parameters of the model, an alternative approach for obtaining κ
would be to apply numerical methods to compute S. However, in this work, we center our
efforts in obtaining analytic results.

Next we introduce κ for system (1), in the case that it has a saddle point in the first
open quadrant. In fact, in this situation it can be seen that the system has two more
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Figure 1. Phase portraits in the first quadrant of the Poincaré sphere of system
(1) having a saddle in the open first quadrant. The separatrix S of the saddle is
presented in blue. Note that either (a) and (d), and (b) and (c), are equivalent
after swapping variables.

equilibria on the positive axes (0, µ/β2) and (λ/α1, 0) that correspond to extinction of the
first or the second species, respectively. The different phase portraits of system (1) having
a saddle in the first quadrant of the Poincaré disc are given in Figure 1, where the arc of
circle corresponds to the points at infinity. See [1, 11, 19] for more information about the
Poincaré compactification. In fact, phase portraits and integrability of general quadratic
Lotka-Volterra systems have been studied in many works, see for instance [2, 16, 17] and
the references therein.

Given any positive real number R > 0, consider the two areas

A+(R) = µL
(
{z0 ∈ [0, R]2 : ω(γz0) = (0, µ/β2)}

)
,

A−(R) = µL
(
{z0 ∈ [0, R]2 : ω(γz0) = (λ/α1, 0)}

)
,

where µL is the Lebesgue measure, γz0 is the orbit with initial condition z0 = (x0, y0) and
ω(γz0) is its ω-limit set. The persistence ratio of Y with respect to X is

κ[Y :X ] = lim
R→∞

κ[Y :X ](R), where κ[Y :X ](R) =
A+(R)

A−(R)
.

Note that we can also define κ[X :Y] = 1/κ[Y :X ]. We will see that the above limit always
exists, including infinity. Indeed when it is infinity it means that κ[X :Y] = 0. Note that it
is non-negative because it comes from a quotient of areas. When there is no confusion we
will simply write κ = κ[Y :X ] or κ(R) = κ[Y :X ](R).

If κ[Y :X ] > 1, then the “measure” of initial populations whose ω-limit is (0, µ/β2) is
bigger that the one for which the ω-limit is (λ/α1, 0). Thus species Y has more chances of
surviving than species X . If κ[Y :X ] < 1 then the converse happens.

Theorem 1. Consider the differential system (1). It has a saddle in the interior of the
first quadrant if and only if

α1

β1
<
λ

µ
<
α2

β2
.
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Moreover, in this situation the persistence ratio of Y with respect to X is:

κ[Y :X ] =



0 when
λ

µ
<
α2

β2
≤ 1,

α1(α2 − β2)
2β2(β1 − α1)− α1(α2 − β2)

< 1 when 1 <
α2

β2
<
β1
α1
,

1 when 1 <
α2

β2
=
β1
α1
,

2α1(α2 − β2)− β2(β1 − α1)

β2(β1 − α1)
> 1 when 1 <

β1
α1

<
α2

β2
,

∞ when
µ

λ
<
β1
α1
≤ 1.

Remark 1. The value κ = 0 corresponds to Figure 1(b); κ = ∞ corresponds to Figure
1(c); when κ ∈ R+ we are either in Figure 1(a) or 1(d), depending on the value of λ/µ.

After this theorem, the relation between the ratio of the interspecific and intraspecific
competition taxes of each species, that is β1/α1 for X and α2/β2 for Y, determines which
one has more chances of surviving: when the ratio of Y is bigger than the ratio of X , then
Y has more chances than X of surviving. This statement is coherent with the biological
interpretation of the taxes αj and βj , j = 1, 2, and shows again that the quadratic Lotka-
Volterra model is useful to capture and quantify the behavior of two species in competition.

Theorem 1 will be proved in Section 3 (see also Section 2.4). As we will see its proof does
not need to know the exact expression of S, but only its asymptotic behavior at infinity,
that is contained in the singularities of (1) at infinity. We will prove our result using a
simplified version of system (1), obtained by an adimensionalization procedure, see system
(2) and Theorem 5 in Section 2. We remark that our reparametrization of x, y and t is
slightly different to the one used in [15, Sec. 3.5].

It is also natural to suppose that the total number of individuals x and y is bounded by
a constant, say R > 0, due to some ecological restrictions. In this situation, the relevant
ratio is no more κ but κ(R). When S is contained into an algebraic curve (see Theorem 2
below), we can exactly compute the ratio κ(R). From the results of Seidenberg [18, Thm
8], see also [4, Thm 13], it is not difficult to prove that when µ/λ ∈ R+ \ Q then all the
curves through the origin except the axes are non-analytic. In particular S is not contained
into an invariant algebraic curve. Hence, unfortunately in the most of the cases S is not
algebraic. In fact, based on the results of Moulin-Ollagnier [14], we can characterize all the
cases when S is algebraic.

Theorem 2. The families of systems (1) with µ ≥ λ having a saddle in the first quadrant
whose stable manifold S is contained into an invariant algebraic curve f(x, y) = 0 of degree
N satisfy one of the following sets of conditions:

(i) µ = λ, α1 − β1 < 0, α2 − β2 > 0, N = 1 and

f(x, y) = (α1 − β1)x+ (α2 − β2)y.

(ii) µ = 2λ, β1 = (2α1α2 − 3α1β2)/(α2 − 2β2), α2 > 2β2, N = 2 and

f(x, y) = y − β2
2λ

(
α1x

α2 − 2β2
− y
)2

.

(iii) µ = 3λ, α2 = 7β2/3, β1 = 5α1, N = 3 and

f(x, y) = y +
2y(3α1x− β2y)

3λ
− (3α1x− β2y)3

9β2λ2
.
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(iv) µ = 4λ, α2 = 9β2/4, β1 = 6α1, N = 4 and

f(x, y) = y +
y(8α1x− 3β2y)

4λ
+

3y(4α1x− β2y)2

16λ2
− (4α1x− β2y)4

64β2λ3
.

(v) µ = 3λ/2, α2 = 8β2/3, β1 = 7α1/2, N = 4 and

f(x, y) = y2 − (3α1x− 2β2y)2(3α1x+ 4β2y)

12β22λ
+

(3α1x− 2β2y)4

36β22λ
2

.

(vi) µ = 6λ, α2 = 13β2/6, β1 = 8α1, N = 6 and

f(x, y) = y +
y(12α1x− 5β2y)

6λ
+
y(54α2

1x
2 − 36α1β2xy + 5β22y

2)

18λ2

+
y(12α1x− 5β2y)(6α1x− β2y)2

108λ3
+

5y(6α1x− β2y)4

1296λ4
− (6α1x− β2y)6

7776β2λ5
.

Moreover:

(1) The families (i) and (ii) are Liouville integrable.
(2) The families (iii) to (vi) are rationally integrable.

The families not satisfying any of the above sets of conditions have a non-algebraic stable
manifold S.

Remark 2. In Theorem 2 we only study the case µ ≥ λ because the cases µ < λ and µ > λ
are equivalent, see Remark 3 below.

Section 4 is devoted to prove Theorem 2. In Section 5 we compute κ and κ(R) for some
of the cases of Theorem 2, that is when S is algebraic, see Figures 4 and 5.

As we conclude from Theorem 2, in the most of the cases it is necessary to obtain
algebraic approximations of S, bounding it above and below to approach κ(R). Then we
can compute the corresponding areas for both approximations. We call them A+

L (R), A−L (R)

for the lower bound; and A+
U (R), A−U (R) for the upper bound. We have

A+
U (R)

A−U (R)
< κ(R) =

A+(R)

A−(R)
<
A+

L (R)

A−L (R)
.

This may allow us to know whether κ(R) is greater or lower than one, see Sections 6 and
7 for specific examples. In fact, these sections are devoted to give algebraic bounds (above
and below) of the separatrix S.

In Section 6 we consider an example where all the parameters of the modified model
mentioned above (see system (2)) have fixed values. In Section 7 all these new parameters
but one are fixed. More concretely, in Section 6 we give a way to compute Padé-type
approximations of S of the form y = Rn(x), being Rn(x) a rational function of degree
n in the numerator and degree n − 1 in the denominator. As much as n increases, the
approximation of S is better. We study a specific sequence of rational functions that
approximate and bound S, for several values of n, and we compute and draw a bound of
the error. Finally we get an estimation of κ(R).

Finally, concerning Section 7, we succeed in computing a bound of S given by a rational
function such as in Section 6. The other bound is given by the quadratic function f(x, y) = 0
of Theorem 2(ii). An estimation of κ(R) is also provided.

2. Preliminaries

2.1. Reduction of the parameters. First of all we reduce the number of parameters of
system (1). After the change of variables (x, y) 7→ (λx/α1, λy/β2) and the change of time
dτ/dt = λ, system (1) becomes

ẋ = P (x, y) = x(1− x− ay),

ẏ = Q(x, y) = y(s− bx− y),
(2)
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where a = α2/β2, b = β1/α1, s = µ/λ > 0 and the dot represents the derivatives with
respect to τ .

Next lemma bounds the range of values of a, b and s.

Lemma 3. System (2) has a saddle in the first quadrant if and only if as > 1 and b > s.

Proof. System (2) has four finite singular points: one at the origin, two more on the axes,
located at (0, s) and (1, 0), and a fourth one. This happens for all values of the parameters.
The only finite singular point of system (2) which might be not on the axes is(

as− 1

ab− 1
,
b− s
ab− 1

)
.

The product of its eigenvalues is −(as − 1)(b − s)/(ab − 1). Hence the conditions for this
singular point to be a saddle in the first quadrant are

as− 1

ab− 1
> 0,

b− s
ab− 1

> 0, −(as− 1)(b− s)
ab− 1

< 0,

and that the eigenvalues are real. This happens if and only if as > 1 and b > s. Hence the
lemma follows. �

Remark 3. After the change of variables and time (x, y) 7→ (y/s, x/s), dτ/dw = s, system
(2) becomes

ẋ =x(1− x− by),

ẏ =y(1/s− ax− y),

where the dot means now derivative with respect to w. Hence it is equivalent to study the
case 0 < s < 1 and the case s > 1.

After this remark, we notice that we shall mainly work with the case s ≥ 1. In this case,
and after Lemma 3, and since b > s, in this case we shall have b > 1.

2.2. Singular points of the differential system (2). We recall that we are interested
in the case that system (2) has a saddle point in the open first quadrant. It is not difficult
to see that, in this situation, it has three more finite singular points, three nodes located
on the axes: one at the origin (a repeller), one on the x-axis (an attractor) and another one
on the y-axis (another attractor).

Moreover, system (2) has three singular points at infinity. They are located in the
directions x = 0, y = 0 and (b− 1)x− (a− 1)y = 0, because the characteristic polynomial
of system (2) at infinity is xy((b− 1)x− (a− 1)y), see [1, 11, 19]. Depending on the sign of
a−1 and b−1 we have different configurations at infinity, because the position of the third
singular point varies with a and b and changes the configuration of the infinite singular
points.

The following lemma studies the singular points at infinity of system (2) (see again [1,
11, 19] for the definition), which allows us to study the behavior at infinity of a polynomial
differential system, see Figure 1. We study only the case s ≥ 1. The case s < 1 may follow
afterwards easily after Remark 3.

Lemma 4. System (2) with s ≥ 1 has three singular points at infinity:

(i) A first singular point lays in the direction y = 0. It is a saddle.
(ii) A second singular point at infinity lays in the direction (b− 1)x− (a− 1)y = 0. If

a > 1 then it is a node. If a < 1 then it is a saddle. If a = 1 then it is in the
direction x = 0 and is a saddle-node.

(iii) There is another singular point, located in the direction x = 0. It is a saddle for
a > 1, a node for a < 1 and a saddle-node for a = 1.
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Proof. We deal with the case a = 1 at the end of the proof. Next we assume that a 6= 1.
After the change of variables (u, v) = (y/x, 1/x), that places the origin at the infinite
singular point located in the direction y = 0, system (2) becomes

u̇ = u(1− b+ (a− 1)u+ (s− 1)v), v̇ = v(1 + au− v).

On v = 0 (the line at infinity) we have two singular points, say u = 0 and u = (b−1)/(a−1).
The eigenvalues of the first one are 1 and 1 − b < 0, hence it is a saddle. For the second
one we have the eigenvalues (ab − 1)/(a − 1) and b − 1 > 0, so its behavior depends only
on the sign of a− 1, because ab− 1 > as− 1 > 0.

It remains to check the infinite singular point in the direction of x = 0, which cannot be
studied with the previous change of variables. So we use the change of variables (u, v) =
(x/y, 1/y), that places the origin at the infinite singular point located in the direction x = 0.
We get the system

u̇ = u(1− a+ (b− 1)u− (s− 1)v), v̇ = v(1 + bu− sv).

The eigenvalues at the origin are 1 and 1− a, hence its behavior depends only on the sign
of a− 1.

If a = 1 then there are two singular points: one in the direction y = 0, studied before,
and another one on the direction x = 0, with multiplicity two. It is easy to check that
it is a saddle-node. The behavior near this point in the first quadrant is the same as the
behavior near a node. �

In short, S is the separatrix of the saddle in the first quadrant corresponding to its stable
manifold. It joins the origin, the saddle and the corresponding singular point at infinity.
The other separatrix (the unstable manifold) joins the saddle with the two finite attractor
nodes of the system that are on the axes and is not of our interest here. See Figure 1.

2.3. Invariant algebraic curves. An algebraic curve f = 0 is invariant by a polynomial
differential system ẋ = P (x, y), ẏ = Q(x, y) if there exists a polynomial k ∈ C[x, y], called
the cofactor of f , such that

(P,Q) · ∇f = P
∂f

∂x
+Q

∂f

∂y
= kf. (3)

We note that the degree of k is lower than max{degP,degQ}. For the differential sys-
tem (2), equation (3) writes as

x(1− x− ay)
∂f

∂x
+ y(s− bx− y)

∂f

∂y
= (k0 + k1x+ k2y)f, (4)

where k(x, y) = k0 +k1x+k2y is the cofactor of f = 0. See [13] for more information about
this subject. Theorem 6 below provides all the invariant algebraic curves for the differential
system (2) that contain S.

2.4. Equivalent statements of Theorem 1 and Theorem 2. It is not difficult to see
that the equivalent versions of Theorems 1 and Theorem 2 for system (2) are the next two
results. We only need to use that a = α2/β2, b = β1/α1, s = µ/λ. Note that a and b are
the ratio between the interspecific and the intraspecific competition taxes introduced after
Theorem 1 and s is the quotient of the eigenvalues at the origin, hence it is natural to work
with them. After proving these two theorems, Theorems 1 and Theorem 2 stated in the
introduction follow. The proof of Theorem 5 is given in Section 3. The proof of Theorem 6
is deferred to Section 4.

Theorem 5. System (2) has a saddle in the interior of the first quadrant if and only if
as > 1 and b > s. Moreover, in this situation the persistence ratio of Y with respect to X
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is:

κ[Y :X ] =



0 when
1

s
< a ≤ 1,

a− 1

2(b− 1)− (a− 1)
< 1 when 1 < a < b,

1, when 1 < a = b,

2(a− 1)− (b− 1)

b− 1
> 1 when 1 < b < a

∞ when s < b ≤ 1.

Theorem 6. The families of systems (2) with s ≥ 1 having a saddle in the first quad-
rant whose stable separatrix S is contained into an invariant algebraic curve of degree N ,
f(x, y) = 0, satisfy one of the following sets of conditions:

(i) s = 1, a > 1, b > 1, N = 1 and

f(x, y) = (b− 1)x− (a− 1)y.

(ii) s = 2, b = (2a− 3)/(a− 2), a > 2, N = 2 and

f(x, y) = y − 1

2

(
x

a− 2
− y
)2

.

(iii) s = 3, a = 7/3, b = 5, N = 3 and

f(x, y) = y +
2

3
(3x− y)y − 1

9
(3x− y)3.

(iv) s = 4, a = 9/4, b = 6, N = 4 and

f(x, y) = y +
1

4
(8x− 3y)y +

3

16
(4x− y)2y − 1

64
(4x− y)4.

(v) s = 3/2, a = 8/3, b = 7/2, N = 4 and

f(x, y) = y2 − 1

12
(3x− 2y)2(3x+ 4y) +

1

36
(3x− 2y)4.

(vi) s = 6, a = 13/6, b = 8, N = 6 and

f(x, y) = y +
1

6
(12x− 5y)y +

1

18
(54x2 − 36xy + 5y2)y

+
1

108
(12x− 5y)(6x− y)2y +

5

1296
(6x− y)4y − 1

7776
(6x− y)6.

Moreover:

(1) The families (i) and (ii) are Liouville integrable.
(2) The families (iii) to (vi) are rationally integrable.

The families not satisfying any of the above sets of conditions have a non-algebraic stable
manifold S.

Notice that the cases s < 1 for which the separatrix S is algebraic can be studied similarly
by using Remark 3. Figure 2 illustrates the algebraic curves of Theorem 6.

3. Proof of Theorem 5

The first part of the theorem follows after Lemma 3. We prove the second part in the
case a, b > 1, the other cases may follow using the same arguments. We remind that system
(2) has an infinite singular point in the first quadrant in the direction (b−1)x−(a−1)y = 0,
which is where the manifold S passes through. This means that

lim
x→∞

y(x)

x
= m,
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Figure 2. Graph of the separatrices S and the saddle for all families (i)-(vi)
altogether (resp. black, red, pink, green, purple, blue). For family (i) we have set
a = b = 3. For family (ii) we have set a = 5/2.

where y(x) represents here S and m = (b − 1)/(a − 1) > 0. Moreover we have by the
l’Hôpital rule that

lim
x→∞

y′(x) = m,

which means that y(x) is invertible for x big enough.

If m ≤ 1, that is 1 < b ≤ a, then

κ = lim
R→∞

A+(R)

A−(R)
= lim

R→∞

R2 −
∫ R
0 y(x) dx∫ R

0 y(x) dx
= lim

R→∞

R2∫ R
0 y(x) dx

− 1.

Again using the l’Hôpital rule, we get

κ = lim
R→∞

A+(R)

A−(R)
= lim

R→∞

2R

y(R)
− 1 =

2

m
− 1 =

2(a− 1)− (b− 1)

b− 1
.

A0

R0

y(R0)

Figure 3. The region A0 in the case m > 1.

If m ≥ 1, that is 1 < a ≤ b, let R0 > 0 be some value for which y(x) is invertible for
x > R0. Let A0 be the area bounded by S, y = y(R0) and x = 0, see Figure 3. Then
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we can consider y−1(x) instead of y(x), m−1 instead of m and A−(R)/A+(R) instead of
A+(R)/A−(R) and apply the computations of the case m < 1. We obtain

κ = lim
R→∞

A+(R)

A−(R)
=

a− 1

2(b− 1)− (a− 1)
.

In the cases a ≤ 1 or b ≤ 1, we can apply similar arguments with m ∈ {0,∞}. Then the
theorem follows. �

4. Algebraic separatrices of system (2). Proof of Theorem 6

Proof of Theorem 6. From [14] (see also [3]) we get that system (2) having a saddle in the
first quadrant has no invariant algebraic curves of degree greater than six.

To obtain the invariant algebraic curves of given degree we must deal with the equa-
tion (4). When the cofactor is known, this is equivalent to a linear system of equations.
The use of standard techniques of the Darboux Theory of Integrability allow us to previ-
ously compute the cofactor in terms of the coefficients of the system and the degree of the
curve. Then, tedious but straightforward computations show that the only families having
an invariant algebraic curve of degree at most six joining the origin and the saddle in the
first quadrant (that is, containing S) are the ones provided by the theorem.

Concerning integrability, it is well-known that quadratic systems having three invariant
algebraic curves have a Darboux inverse integrating factor, V , see for instance [6, 13] for
more information about the inverse integrating factor, respectively and the Darboux Theory
of integrability. In particular, system (i) has the inverse integrating factor

V (x, y) = x
a
a−1 y

b
b−1
(
(b− 1)x− (a− 1)y

)− a+b−2
(a−1)(b−1) .

Similarly, system (ii) has the Darboux inverse integrating factor

V (x, y) = x2ya−1

((
x

a− 2
− y
)2

− 2y

)− 2a−3
2

.

Family First integral Expression of g

(ii)a=5/2 x2yf−2g−1 4− 4(2x+ y) + (2x− y)2

(iii) x3yf−2

(iv) x4yf−2g−1 16− 8(4x+ y) + (4x− y)2

(v) x3y2g−2 y2 + (3x−2y)(3x2+2xy+4y2)
4 − (3x−2y)3(x+y)

6 + (3x−2y)5
108

(vi) x6yf−2

Table 1. Rational first integrals of system (ii) with a = 5/2 and of systems (iii)-
(vi) of Theorem 6. In all cases f = 0 is the corresponding invariant algebraic curve
containing S.

In the specific case a = 5/2 system (ii) has a rational first integral, see Table 1. Indeed
Table 1 shows a rational first integral for each one of the systems (iii) to (vi). �

Remark 4. The numerator of all the first integrals in Table 1 has the form xpyq, for some
p, q ∈ N. See [5] for details about this fact.

Remark 5. We note that there is a subfamily of system (2) found in [14] having invariant
algebraic curves of arbitrary degree 2`, ` ∈ N (and, in particular, of degree greater than
six):

ẋ = x
(

1− x

2
+ y
)
, ẏ = y

(
−2`+ 1

2`− 1
− x

2
− y
)
, ` ∈ N.
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This system is not relevant for our study because it can be seen that it never has a saddle
in the first quadrant.

5. Computation of κ(R) when S is algebraic

In this section first we compute κ and κ(R), R > 0, for system (2) in case (ii) of
Theorem 6, when the separatrix S is contained into the quadratic algebraic curve F(x, y) =
(x/(a− 2)− y)2 − 2y = 0. Recall that in this situation we have s = 2, b = (2a− 3)/(a− 2)
and a > 2.

Let R > 0 and consider the square [0, R]2. We write S = {(x, h(x)) : x > 0} ⊂ {F = 0},
where

h(x) = 1 +
x

a− 2
−
√

1 +
2x

a− 2
.

See the blue curve in Figure 9 in Section 7.1, which we call the right branch of F = 0. Note
that h−1(y) = (a− 2)

(
y +
√

2y
)
.

If h(R) ≤ R then we have A−(R) =
∫ R
0 h(s) ds and

κ(R) =
A+(R)

A−(R)
=
R2 −

∫ R
0 h(s) ds∫ R

0 h(s) ds
.

We compute A−(R):

A−(R) = R+
R2

2(a− 2)
− a− 2

3

((
1 +

2R

a− 2

)3/2

− 1

)
.

Hence

κ(R) =

R2 −R− R2

2(a−2) + a−2
3

((
1 + 2R

a−2

)3/2
− 1

)
R+ R2

2(a−2) −
a−2
3

((
1 + 2R

a−2

)3/2
− 1

) .

When R→∞, we have κ = 2a− 5.

If h(R) > R then A+(R) =
∫ R
0 h−1(s) ds and

κ(R) =
A+(R)

A−(R)
=

∫ R
0 h−1(s) ds

R2 −
∫ R
0 h−1(s) ds

.

We compute A+(R):

A+(R) =
a− 2

2

(
R2 +

4
√

2

3
R3/2

)
.

Hence,

κ(R) =

a−2
2

(
R2 + 4

√
2

3 R3/2
)

R2 − a−2
2

(
R2 + 4

√
2

3 R3/2
) .

When R→∞, we have κ = a−2
4−a .

Notice that the curve F = 0 intersects the straight line y = x either at the origin and at
(R?(a), R?(a)), where

R?(a) = 2

(
a− 2

a− 3

)2

> 0.

If a > 3 then we always have h(R) < R. If 2 < a ≤ 3 we have h(R) ≤ R if and only if
R ≤ R?(a). See Figure 4 for a detail of κ(R) in this case for several values of R.
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� � � � � �

�

�

�

�

Figure 4. Graph of κ(R) (red) and κ (blue) for case (ii) of Theorem 6 in function
of the parameter a, for R = 10i, i = 1, . . . , 6. Notice that at the value of a for which
R = R?(a), the function defining κ(R) changes. Moreover, as R increases, κ(R)
tends to κ. The dashed horizontal straight line corresponds to height 1.

Taking R→∞, we have h(R) > R for 2 < a < 3. Therefore we get

κ =



a− 2

4− a
< 1, when 2 < a < 3,

1, when a = 3,

2a− 5 > 1, when a > 3.

Notice that κ→ 0 when a→ 2 and κ→∞ when a→∞. See Figure 4 for a graph of κ.
Of course these results are coherent with the ones of Theorem 5. In fact, from this

theorem, when b > a (which in our situation is equivalent to 2 < a < 3, because b =
(2a− 3)/(a− 2)) we get

κ =
a− 1

2(b− 1)− (a− 1)

∣∣∣∣
b=(2a−3)/(a−2)

=
a− 2

4− a
.

Similarly, when b < a,

κ =
2(a− 1)− (b− 1)

b− 1

∣∣∣∣
b=(2a−3)/(a−2)

= 2a− 5.

The ratios κ(R) and κ can also be easily computed using the same arguments for sys-
tem (2) in all the other cases of Theorem 6. As an example, Figure 5 shows a numerical
plot of κ(R), based on the analytic expression of S, for all values of R < 100, for case (iii)
of Theorem 6. Notice that, by Theorem 5, in this case we have κ = lim

R→∞
κ(R) = 1/5.

6. Algebraic approximation of S for given values of the parameters

In this section we show with an example how to approximate and bound (above and
below) the invariant separatrix S by algebraic curves for given values of the parameters a, b, s
of system (2). We shall compute Padé-type approximations for bounding the separatrix S.

The Padé approximation is a type of rational approximation of smooth functions y =
F (x). Let F be represented by a power series, for example at the origin. Then the rational

function Rm,n(x) =
Pm (x)

Qn (x)
is said to be the (m,n)-Padé approximation of y = F (x) (or,

simply, the Padé approximation of y = F (x)) if Pm (x) is a polynomial of degree m, Qn (x)
is a polynomial of degree n, and

F (x)−Rm,n(x) = O
(
xm+n+1

)
.

Note that given m and n the Padé approximation is unique.
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� �� �� �� ���

�

�

Figure 5. Graph of κ(R) in case (iii) of Theorem 6. The dashed blue straight
line corresponds to κ = 1/5, to which the curve κ(R) tends as R→∞. Notice that
κ(R) = 1 for R ∼ 3.7114.

We shall construct two rational functions of degree n > 2 in the numerator and n − 1
in the denominator. They will not be (n, n − 1)-Padé approximations, strictly speaking,
because they will only approximate the Taylor series expansion of S up to order 2n − 3
(not 2n − 1). We shall leave three parameters free in order to get upper and lower global
approximations.

We explain now how to achieve the expression of the rational functions. We present an
algorithm to find them that can be applied to any n:

(1) We consider the rational curve y = Rn(x) =
∑n

i=0 aix
i/
∑n−1

i=0 bix
i, where ai, bi are

constants to be determined. We compute its power series expansion at the saddle
point. We remark that we want to have a good approximation of S at the saddle.

(2) We compute the power series expansion y(x) of S at the saddle from the equality
P (x, y(x))y′(x) − Q(x, y(x)) = 0. Of course this power series and the power series
of Rn(x) must be equal up to some order. Equaling the coefficients of both power
series, we can obtain all the ai and also b0, . . . , bn−4.

We notice that we assume the denominator of Rn(x) to have one degree less than
its numerator, because we want Rn(x) to be asymptotic to a straight line at infinity.
Recall that S is asymptotic to a straight line at infinity because its ω-limit is the
singular point at infinity in the first quadrant.

(3) The value of bn−3 is computed from the equation an/bn−1 = γ, with γ ∈ {(c +
1)/c, c/(c + 1)}, where c > 0 is a constant to be determined. This distinction
will provide us afterwards the two approximations y = Rn

1 (x) and y = Rn
2 (x),

respectively.

(4) After this constraint, we have lim
x→∞

Rn(x)
x = γx.

(5) We define MRni (x)
= [(P,Q) · (−(Rn

i )′(x), 1)]y=Rni (x)
. The values of bn−2, bn−1 and c

may be fixed in such a way that MRn1 (x)
> 0 and MRn2 (x)

< 0 on x > 0.

(6) Since the gradients (−(Rn
i )′(x), 1) of both curves y = Rn

i (x) point upwards and the
signs of MRn1

and MRn2
are constant and opposite, we know that we have achieved

our bounds. Moreover, they both are good approximations of S when we are close
enough to the saddle.

As an example we take a = b = 3 and1 s = 1567/807 ≈ 1.94. The saddle point is located
at (649/1076, 427/3228) ≈ (0.60, 0.13) and its eigenvalues are as well rational. We have
computed the expressions of Rn

1 (x) and Rn
2 (x) for n = 3, 4, 5, 6, 7. They are plotted in

Figure 6. For example, if n = 3 their expressions are

R
3
1(x) =

7(50269309450649849 − 386504357665189260x + 1899039830299867248x2 + 1102851944451753408x3)

380904(17785828334447 + 135116522993760x + 13511652299376x2)

1This value of s is fixed to avoid square roots during the computation. This idea will be also used in (7).
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Figure 6. Upper (red) and lower (blue) bounds of S when a = b = 3 and s =
1567/807 for n = 3, 4, 5, 6, 7. The separatrix lays in between. Note that larger
values of n provide better approximations of S.

and

R
3
2(x) =

7(−545098985687491711 + 5165387952606894600x + 57820543445825940528x2 + 6617111666710520448x3)

190452(4629262639604299 + 3648146120831520x + 364814612083152x2)
.

The series expansion of S at the saddle (x̄, ȳ) is

y(x) =
427

3228
+

21

59
(x− x̄) +

643986

4222453
(x− x̄)2 − 30401217673596

414904527457423
(x− x̄)3

+
5885322121483934626350

131809323613144994382199
(x− x̄)4 +O

(
(x− x̄)5

)
.

The corresponding power series of R3
1 and R3

2 coincide with this one up to order 2n−3 = 3.

We can compute an upper bound of the relative error εr for the different values of n.
This upper bound is computed as: ∣∣∣∣Rn

1 −Rn
2

Rn
2

∣∣∣∣ ,
where Rn

1 is the upper approximation of S and Rn
2 is its lower approximation, n > 2. They

are plotted in Figure 7. As we can see, the bigger n is, the lower the relative error is. We
notice that the relative error is not small for values of x close to zero, this is because the
denominator of the relative error is very small (close to zero). For these small values of x
one might use a bound of the absolute error, |Rn

1 −Rn
2 |, instead.

Table 2 shows the values A−L (10) and A−U (10) of the areas for the upper and lower bounds
of S for n = 3, 4, 5, 6, 7. They are drawn in Figure 8. From the relations

A+
U (10)

A−U (10)
≤ A+(10)

A−(10)
≤
A+

L (10)

A−L (10)

and using the bounds y = R7
1(x) and y = R7

2(x), we obtain

κ(10) ∈ (2.40919, 2.42485).

Hence in this example there is a bigger chance that the species X disappears.
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5 10 15

0.25

0.5

Figure 7. An upper bound of the relative error εr when approximating S, for
a = b = 3, s = 1567/807 and with n = 3, 4, 5, 6, 7. It is smaller as n increases.

n 3 4 5 6 7

A−U (10) 36.05 30.18 29.57 29.38 29.33

A−L (10) 27.08 28.22 28.25 28.93 29.20

Table 2. Areas below the upper and lower bounds of S for some values of n in a
square [0, 10]2.

0 1 2 3 4 5 6 7
n

28

30

32

34

36

Area

Figure 8. Areas below the upper and lower bounds of S for some values of n in
a square [0, 10]2.

7. Algebraic approximation of S when a parameter is not fixed

We can also approximate and bound S when one of the parameters is not fixed. We
study in this section the example with a = b = 3 fixed and s > 1 arbitrary. Since 1 < s < b,
this means that s ∈ (1, 3). Note that for s = 2, the separatrix S is just the algebraic curve
given in case (ii) of Theorem 6, called F = 0 in Section 5. For s = 1 we are in the situation
of item (i) of Theorem 6 and S is a straight line. When s = 3 the saddle collapses to the
node on the x axis.

So we shall distinguish in the process the cases 1 < s < 2 and 2 < s < 3. This distinction
appears in a natural way, as we shall see later on in Corollary 8.

7.1. First algebraic bound: the algebraic curve F = 0. We recall that F = 0 is
invariant by the flow of system (2) when s = 2, b = (2a − 3)/(a − 2) and a > 2, see again
case (ii) of Theorem 6. Solving F = 0 with respect to y we have

y = y(x) = 1 +
x

a− 2
±
√

1 +
2x

a− 2
,
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for x ≥ 1 − a/2. Note that although these expressions are not polynomial, of course they
provide the same set of points as the algebraic curve F = 0. Let

ha(x, y) = y −

(
1 +

x

a− 2
−
√

1 +
2x

a− 2

)
.

We note that F = 0 can be parameterized as

(x, y) =

((
(d2 − 1)δ + 2

)
δ,

(d2 − 1)2

2
δ2
)
, (5)

where d =
√

a
a−2 > 1. If δ > 0 then the parametrization gives a branch of F = 0 starting

at the origin and, as δ increases, going to infinity in the first quadrant. We call this branch
the right branch of F at the origin. Note that this right branch is ha(x, y) = 0 with x, y > 0
and it is, of course, S. Recall that ha(x, y) = 0 is the same curve y = h(x) defined in
Section 5.

If δ < 0 then we have the branch of F = 0 starting at the origin and, as δ decreases
from zero, passing through the second quadrant, crossing the y-axis at δ = −2/(d2 − 1)
and going to infinity in the first quadrant. We call this branch the left branch of F . See
Figure 9.

� � � � �

�

�

�

�

�

Figure 9. The algebraic curve F = 0. The right branch, which is of our interest,
is presented in blue. It corresponds to δ > 0 in the parametrization. The left
branch, given by δ < 0, is dashed.

When we replace a by its equivalent expression in terms of d into b = (2a − 3)/(a − 2)
we get b = (d2 + 3)/2. The following result holds.

Lemma 7. If either s 6= 2 and b = (d2 + 3)/2; or s = 2 and b 6= (d2 + 3)/2; or (s− 2)(d2 +
3− 2b) > 0; then the vector field associated to system (2) crosses the right branch of F = 0
always in the same direction.

Proof. The relative position of the flow of system (2) with respect to F = 0 is controlled
by the sign of function

MF =
[
(P,Q) · ∇F

]∣∣∣
F=0

=
[
PFx +QFy

]∣∣∣
F=0

. (6)

We next study the sign of MF . We shall prove that it does not vary for all x, y > 0.
Using the parametrization (5), we have

MF = −1

2
(d2 − 1)2δ2((d2 − 1)δ + 1)

[
2(s− 2) + ((d2 − 1)δ + 2)δ(d2 + 3− 2b)

]
.

Only the factor between brackets may change sign, the others have constant sign because
d > 1 and δ > 0. Note that this factor can be written as 2(s − 2) + (d2 + 3 − 2b)x and
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that x > 0. If s = 2 and d2 + 3 − 2b 6= 0, then the sign of MF varies only with the sign
of d2 + 3 − 2b. If d2 + 3 − 2b = 0, that is b = (d2 + 3)/2, and s 6= 2, then the sign of MF
varies only with the sign of s − 2. Finally if (s − 2)(d2 + 3 − 2b) > 0 then the expression
has constant sign. Then the lemma follows. �

Corollary 8. The following statements hold.

(i) If s = 2 and b 6= (d2 + 3)/2, then the stable manifold S of the saddle is either com-
pletely above or completely below the right branch of the parabola F = 0. Therefore,
we have an algebraic (upper or lower) bound of S.

(ii) If we use the expression h3(x, y) = y − (1 + x −
√

2x+ 1) = 0, with x, y > 0, of
the right branch of F = 0 in the case a = b = 3 and 1 < s < 3, then we have

Mh3 =
[
P (h3)x + Q(h3)y

]∣∣∣
h3=0

= (s − 2)y. Since y > 0, the function Mh3 does

not change sign for a given value of s. Therefore h3 = 0 is a bound of S which is
located either above or below it, depending on whether s > 2 or s < 2.

7.2. Second algebraic bound: a Padé approximation. As in the previous section we
shall distinguish the cases s > 2 and s < 2. Recall that the first bound is given by the
right branch of the parabola F = 0. To get the other bound we will use again Padé-type
approximations of S at the saddle point.

We shall use the change of parameters

s =
t2 − 24t+ 236

t2 + 92
, (7)

where t is a new parameter. We note that for any t ∈ (2, 6) we have a unique s ∈ (1, 2) and
for any t ∈ (−2, 2) we have a unique s ∈ (2, 3) satisfying the above relation. Moreover, for
t = 2 we have s = 2. This change of variables will make computations easier, because some
square roots will be avoided in the computations.

To obtain the Padé approximations of S we shall expand this manifold in power series
in a neighborhood of the saddle in the first quadrant, which is located at (x̄, ȳ) =

(
(3s −

1)/8, (3− s)/8
)
.

We start with the case 1 < s < 2. Using (7), we shall take t ∈ (2, 6).

Proposition 9. If a = b = 3 and 1 < s < 2, then the separatrix S of the saddle point (x̄, ȳ)
in the first quadrant of system (2) is bounded below by h3(x, y) = y− (x+1−

√
2x+ 1) = 0,

which is contained into the algebraic curve F = 0 with a = 3, and bounded above by the
(3, 2)-Padé approximation of S given by

R1 = y − r0(t)− r1(t)x+ r2(t)x
2 + r3(t)x

3

r1(t) + r4(t)x+ r3(t)x2
= 0,

where
r0(t) =− (235447552 + 2552603648t− 685009152t2 + 67418880t3 + 10464t4 + 33216t5

− 49936t6 + 3664t7 − 75t8)/
(
4
(
t2 + 92

))
,

r1(t) =2676800− 36990528t+ 2300016t2 + 117024t3 − 900t4 − 804t5 + 25t6,

r2(t) =
96

(
t2 + 92

) (
−4195520 + 10419136t− 758736t2 + 41760t3 + 4492t4 − 580t5 + 13t6

)
(t− 14)2 (t− 6)

,

r3(t) =
256

(
t2 + 92

)2 (−7664 + 2496t− 488t2 − 96t3 + 7t4
)

(t− 14)2 (t− 6)
,

r4(t) =4(t2 + 92)(−494793600− 73198656t− 1090144t2 − 1271120t3 + 190808t4 + 4276t5

− 994t6 + 25t7)/ ((t− 14)(t− 6)(t+ 2))

and 2 < t < 6.

Proof. The coordinates of the saddle point in the first quadrant, after changing s by t, are:

(x̄, ȳ) =

(
(t− 14) (t− 22)

4 (t2 + 92)
,
(t+ 10) (t+ 2)

4 (t2 + 92)

)
.
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To prove the proposition, we analyze the signs of MR1 and Mh3 , see (6). After Corollary 8,
we know that the algebraic curve is below the separatrix for 1 < s < 2. Indeed, Mh3 < 0.

We study now the sign of MR1 . After long and tedious calculations we obtain:

MR1 =
a0(t) + a1(t)x+ a2(t)x

2 + a3(t)x
3

(b0(t) + b1(t)x+ b2(t)x2)3
(x− x̄)4,

where ai(t) and bi(t) are some polynomials in t with rational coefficients that we do not
write. So for x 6= x̄ the sign of MR1 depends on the signs of these quadratic and cubic
polynomials. Using the Sturm algorithm, see [20], we can check that ai(t) > 0 for all
t ∈ (2, 6), i = 0, 1, 2, 3. Therefore, for x > 0 the cubic polynomial in the numerator of MR1

is positive when 2 < t < 6 and x 6= x̄.

The same argument shows that bi(t) > 0 for all t ∈ (2, 6), i = 0, 1, 2. So the quadratic
polynomial in the denominator of MR1 is positive when x̄ 6= x > 0 and 2 < t < 6.

Therefore MR1 > 0 in the region x̄ 6= x > 0 and 2 < t < 6. Taking additionally into
account that both gradients of h3 and R1 point upwards, the proposition follows. �

Figure 10 shows the algebraic bounds of S for some values of t. Note that when t tends
to 6 the upper bound tends to a straight line. Indeed, t = 6 implies s = 1, for which S is a
straight line, see item (i) in Theorem 6.

� � � � � ��
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�

�
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��

Figure 10. Graph of the right branch of F = 0 (red) and R1(x, y) (blues), for
x ∈ (0, 10) and random values t ∈ {2.1, 3, 4, 5, 5.9}.

A range of t corresponding to the values 2 < s < 3 is −2 < t < 2. We have the following
result, where the value of s∗ is given in Remark 6.

Proposition 10. If a = b = 3 and 2 < s < s∗ = 2.99999... < 3, then the separatrix S of
the saddle point (x̄, ȳ) in the first quadrant of system (2) is bounded above by h3(x, y) =
y − (x + 1 −

√
2x+ 1) = 0, which is contained into F = 0 with a = 3, and bounded below

by the (4, 3)-Padé approximation

R2 = y − r0(t) + r1(t)x+ r2(t)x
2 + r3(t)x

3 + r4(t)x
4

r4(t)(3x3 + 106x2 + 1)
= 0,

where ri(t) are certain polynomials of degree 17 in t, i = 0, 1, 2, 3, with rational coefficients
and

r4(t) = (t− 14)3
(
t2 + 92

)4 (
5t2 − 60t− 716

) (
t2 − 12t− 124

)2
.
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Proof. As in the previous result, we analyze the signs of MR2 and Mh3 . Again after Corol-
lary 8, we know that h3 = 0 is above S for 2 < s < 3. Indeed Mh3 > 0. Next we check the
sign of MR2 . We have

MR2 =
B(x, t)(x− x̄)4

r4(t)2 (3x3 + 106x2 + 1)3
,

where B(x, t) =
∑7

i=0 bi(t)x
i is a polynomial of degree 7 in x. Here the bi(t) are polynomials

in t of large degree with rational coefficients that we do not write. Usual arguments prove
that b3(t) > 0 and that bi(t) < 0, for i = 1, 2, 4, 5, 6, 7, −2 < t < 2. Moreover, the
polynomial b0(t) has a simple root at some value t = t? ≈ −1.999988..., so we restrict our
study to t? < t < 2, because MR2 is positive when x is close enough to zero if −2 < t < t?,
and we want it to be always negative for all x > 0. This value t? is a zero of the polynomial

− 32470258907025358962688− 1501056968874809016320t+ 4527643659681763979264t2

− 1061485622793312296960t3 + 140023272828998468608t4 − 15576502915830445056t5

+ 1590608240444014336t6 − 157044948711552000t7 + 17169730489332416t8

− 1734721741694272t9 + 126259806149072t10 − 5977555356768t11 + 174284624652t12

− 2847822604t13 + 19996445t14,

which is a factor of b0(t). The value of s∗ can be achieved from t∗.

We want to prove that MR2 < 0 for all x > 0, x 6= x̄, and for all t ∈ (t∗, 2),. It is easy to
check that its denominator is positive for −2 < t < 2 and x > 0. We claim that B(x, t) < 0
for all x > 0 and t? < t < 2.

To prove the claim we first note that B(0, t) < 0 for t ∈ (t?, 2) and that lim
x→∞

B(x, t) =

−∞, since b7(t) < 0 for all t ∈ (−2, 2). Now we compute the discriminant D(t) of the
polynomial B(x, t) with respect to x, see [21]. This discriminant is a polynomial of degree
312 in t. It vanishes for some values of t ∈ (t?, 2), but the number of positive zeros of
B(x, t) is always zero. This can be seen by using the method developed in [7, App. 2] that
allows to check the desired property taking a single (rational) value of t, say t̄, in each of
the subintervals (t?, 2) obtained after removing the zeroes of D. It turns out that each of
the polynomials B(x, t̄) constructed with the described procedure does not change sign for
x > 0 (it has either one or three negative zeros and the rest of zeros are complex). Hence
the claim follows, and therefore for x > 0, x 6= x̄, and t ∈ (t∗, 2), we have proved that
MR2 < 0.

Taking into account that both gradients of h3 and R2 point upwards, the proposition
follows. �

Figure 11 shows the algebraic bounds of S for some values of t. Note that when t→ −2
the upper bound tends to the x axis. Indeed, t = −2 means s = 3, for which the saddle in
the first quadrant collapses to the node on the x axis. Notice also that joining both Figures
10 and 11 we can see how our approximation of S moves from the straight line y = x (for
s = 1) to the straight line y = 0 (for s = 3). Recall that S is algebraic for 1 < s < 3 if and
only if s = 2, and in this case it coincides with F = 0.

Remark 6. The value s∗ in Proposition 10 comes from (7) applied to t?, which is given in
the proof of this proposition. It is very close to 3, which is the maximum value of s allowed,
since s < b = 3. Recall again that when s = 3 the saddle collapses to the node (1, 0) located
in the x-axis. The point is of saddle-node type when s = 3.

To end this section, we plot the estimation of κ(R) for R = 10 and t∗ < t < 6, that is
1 < s < s∗, see Figure 12. We notice that κ(10) lays, for all the values of t, between the
red and the blue curves. Hence the estimations of κ(10) for all possible values of s assure
that κ(10) > 1.
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Figure 11. Graph of the right branch of F = 0 (red) and R2(x, y) = 0 (blues),
for x ∈ (0, 10) and random values t ∈ {1.9, 1, 0,−1,−1.9}.

The ratio of areas of F = 0 is constant and equal to

40 + 1
3

(
21
√

21− 1
)

60 + 1
3

(
1− 21

√
21
) ∼ 2.539

for all t since F does not depend on t. Indeed this shows that κ > 1 when 2 < s < s∗

without needing the lower bound R2 = 0 of S.

We also remark that for t→ −2, that is, s→ 3, κ(R) takes large values. This is because
in the case s = 3 the saddle collapses to the node on the x axis, and hence the area below
S tends to 0 and therefore κ increases up to infinity as R → ∞. On the other side, for
t → 6, that is, s → 1, κ(R) approaches the value 1. This is because in the case s = 1 S is
the straight line y = x (see Theorem 6), for which A+(R) = A−(R), and so κ(R) → 1 as
R→∞.

Finally, note that there is a gap at t = 2, that is s = 2. This is because the algebraic
approximation different from the curve F = 0 changes from upper bound to lower bound,
so it changes from being above F = 0 to being below F = 0.
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