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Abstract

We study transmission power budget minimization of battery-powered nodes in a remote state estimation problem over
multi-hop wireless networks. Communication links between nodes are subject to fading, thereby generating random dropouts.
Relay nodes help to transmit measurements from distributed sensors to an estimator node. Hopping through each relay node
introduces a unit delay. Motivated by the need for estimators with low computational and implementation cost, we propose
a jump estimator whose modes depend on a Markovian parameter that describes measurement transmission outcomes over
a finite interval. It is well known that transmission power helps to increase the reliability of measurement transmissions, at
the expense of reducing the life-time of the nodes’ battery. Motivated by this, we derive a tractable iterative procedure, based
on semi-definite programming, to design a finite set of filter gains, and associated power control laws to minimize the energy
budget while guaranteeing an estimation performance level. This procedure allows us to tradeoff the complexity of the filter
implementation with performance and energy use.
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1 Introduction

Wireless communication technologies have considerably
improved in recent years in terms of reliability and
transmission rates. This has favored their use for control
and estimation purposes [5], replacing traditional wired
technologies. Wireless networks offer several advantages
in contrast to wired ones, such as ease of manoeuvre, low
cost and self-power. However, wireless links are subject
to channel fading that may lead to time-varying delays
and packet dropouts [14]. These network-induced issues
must be taken into account when designing networked
control systems.

Considering remote estimation over networks, Kalman
filter approaches may yield optimal performance (for lin-
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ear dynamical systems), but possibly at the expense of
notable implementation and computational complexity,
because the time-varying filter gain needs to be com-
puted at each instant in real-time (e.g. [24, 28]). Moti-
vated by offering low cost alternatives, we explore in this
work the use of precalculated gains that alleviate the
computing requirements [8,13,30]. As background to our
current work, the authors in [30] proposed a jump linear
estimator whose gains depend on the history of measure-
ment transmission outcomes. Estimation performance
improvement is achieved at the expense of increasing es-
timator complexity (i.e., storage demands and gain selec-
tion mechanism). Intermediate complexity approaches
were presented in [8, 13]. In [13] the authors employed
a gain dependency on the possible arrival instants and
delays for packetized measurements in a finite set, while
in [8] we also considered the multi-sensor case.

Recently, a great deal of attention has focused on
designing both the estimator and the transmission policy
(this could be regarded as a co-design problem [29])
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exploiting the relationship between transmission power
and dropouts [12,20]. Higher transmission power leads to
lower dropout probabilities, which improves estimation
performance. On the other hand, battery life-time is
of great importance as battery replacement can be
difficult and expensive, and transmission is often the
most power consuming task [10]. Some relevant works
on this topic include [17, 23, 27]. These works present
methodologies to minimize the estimation error using
a Kalman filter while limiting the energy use. These
works considered point-to-point communication, i.e.,
only two nodes (sensor and estimator) are concerned in
the data communication. However, e.g., due to the large
distance between transmitters and receivers or to the
presence of obstacles in the path, simple point-to-point
transmission through wireless fading channels may be
highly unreliable or extremely power consuming [16].

With the aim of improving measurement delivery and
reducing power budget, in this work we focus on multi-
hop wireless networks (see [16]) where some nodes
(usually called relays) consciously help to transmit the
information from the source to the final destination.
These topologies are based on the fact that node data
broadcasts are more likely to be acquired from nearby
nodes. In our recent articles [15, 22] we studied the
estimation (using a Kalman filter) and power control
problem through multi-hop fading networks. However,
these works neglected any transmission delay when
hopping through intermediate nodes. Delays can lead to
performance issues when estimating the states of a fast
dynamical system (for instance, communicating between
nodes through IEEE 802.15.4 networks will typically
take around 10 ms [11]). Motivated by this fact and in
the spirit of [26], in the current work we will assume that
hopping through each relay introduces an additional
unit delay on the data. While in [26] the authors
presented a two-hop network with two power levels
(direct transmission or transmission through relay),
here we analyze more general network topologies where
multiple relay nodes are present, leading to multiple
communication paths between sensors and the estimator
node (with different end-to-end delays) and transmission
success probabilities.

In this paper we study the transmission power budget
minimization of wireless self-powered nodes in a remote
state estimation problem for multi-sensor systems over
multi-hop networks. Wireless links are subject tofading
leading to random dropouts; hopping through each
intermediate node introduces an additional unit delay.
We describe this via a finite measurement outcome
parameter taken as a finite Markov chain and, based
on the network average behavior, we propose a jump
linear filter structure. As a difference w.r.t. [30], we use
convex optimization in the design of the filter, which
allows one to include constraints to fix the number of
gains of the jump filter and leads to a trade-off between
filter complexity (implementation and computational

burden) and estimation performance. We characterize
this compromise and give some insights on how to reduce
the filter complexity via Lagrange multipliers. We study
the co-design problem of minimizing the power budget
while guaranteeing a prescribed estimation performance.
Since this optimization is non-linear, we derive a
greedy algorithm that solves iteratively semi-definite
programming problems in order to obtain the set of filter
gains and the power transmission laws.

Notation : Let R and R≥0 denote respectively the real
and positive real numbers. For matricesA andB,A � B
means that the matrixA−B is negative semidefinite, and
A ≺ B means that the matrix A−B is negative definite.
The direct sum is represented as

⊕
, thus A

⊕
B is a

block diagonal matrix with A and B on its diagonal. For
a given finite set L, |L| denotes its cardinality. Expected
value and probability are denoted as E{·} and Pr{·}.
The operators

∨
,
∧

and ¬ represent respectively the
logical “or”, “and” and “not”.

2 Remote estimation over a multi-hop network

We consider a linear time invariant discrete-time system
defined by:

x[k + 1] = Ax[k] +Bw[k], (1)

ys[k] = cs x[k] + vs[k], (2)

where x[k] ∈ Rn is the system state, ys[k] ∈ R is the s-
th measured output (s = 1, . . . , ny), w[k] ∈ Rnw is the
state disturbance assumed to be a Gaussian signal of
zero mean and (known) covariance E{w[k]w[k]T } = W ,
and vs[k] ∈ R is the s-th sensor’s measurement noise
considered as an independent zero mean Gaussian signal
with (known) variance E{vs[k]

2} = σ2
s . For further

reference, we define y[k] , [y1[k] · · · yny
[k]]T . Also, we

assume the pair (A,C) to be detectable, where C =
[cT1 · · · cTny

]T .

In this work, we study the remote estimation of the
system states (1) where the received measurements
at the estimator node arrive through an unreliable
multi-hop wireless network with fading channels and
known topology. We assume that multiple sensors
sample the system outputs synchronously and send them
independently through the network to a centralized
estimator. In the interest of simplicity, we assume
that nodes work in a half-duplex mode with mutually
orthogonal wireless links, i.e., nodes cannot send and
receive at the same time and there is no interference
between them [16]. Moreover, we suppose that the nodes
access the communication channels with a time division
multiple access (TDMA) method using a predefined
protocol. Thus, we assume that nodes are time-driven
and synchronized. Here, we consider multi-hop wireless
networks that can be described via an acyclic directed
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graph 1 . This kind of routing has been extensively
studied in the literature, e.g. [2, 7] and is supported
by IEEE 802.15.4 transceivers. We denote the set
of network nodes by N = {N1, . . . , NM , NM+1} with
M > ny being the number of transmitter nodes.
N1 to Nny

are the sensor nodes, Nny+1 to NM are
the relay nodes and NM+1 refers to the estimator
node. While relay nodes are used to retransmit data,
sensors can only send their own samples. The network
topology is classified and ordered by layers depending
on the maximum number of hops (longest path) for
a transmission to arrive at the estimator from each
node. We assume that the number of different layers
is bounded by d̄ + 2 and thus, the maximum number
of hops is d̄ + 1. The set of nodes in the d-layer
is denoted byNd , {Na ∈ Nd : |(Na, NM+1)| = d} ⊂ N
where |(Na, NM+1)| stands for the maximum number of
hops fromNa to the estimator node. The 0-layer contains
only the estimator node, the (d̄+ 1)-layer includes only
sensor nodes, and all other layers may comprise either
relay nodes (intermediate nodes that help to retransmit
the data) or sensors.

At each instant k, a set of nodes (that transmit in
different frequency bands) aggregate all their available
measurements in a single time-stamped packet and
broadcast it once (without retransmissions) at the same
time. Only nodes within a lower layer will accept the
transmission (i.e, from d1-layer to d2-layer with d1 > d2),
establishing wireless links. The rest of the nodes in the
same or higher layers ignore the reception. Thus, a node
may receive multiple measurement packets from higher
layer nodes and may forward this information to various
lower layer nodes. We denote the entire set of wireless
links as I, and a single link as (Na, Nl) ∈ I. When the
dedicated transmission time slot is over, the following
set of nodes starts to transmit. After all nodes have
attempted to communicate (and before the sampling
period has passed), the estimator uses all the received
information at instant k to run the state estimation
algorithm to be presented in Section 4. While each sensor
transmits the current sampled output, each relay node
transmits at instant k only the acquired data at k − 1.
Whenever a relay node has nothing to retransmit, it frees
its channel.

Different from [19] and as in [26], the transmission proto-
col implies that communicating through each relay layer,
introduces an additional unit delay (equivalent to one
sampling period). Direct transmissions to the estimator
node do not incurs delays. Thus, a measurement being
transmitted at time k by sensor node Ns ∈ Nd+1 may
arrive at the estimator node with an end-to-end delay
of up to d time steps, depending on the number of in-
termediate layers visited. The estimator node discards
measurements already received.

1 Connections between nodes have a direction and each node
on a directed path is visited only once.
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Fig. 1. Multi-hop network.

Example 1 In the multi-hop wireless network of Fig. 1,
a measurement leaving N1 may reach the estimator
directly (one hop) or may hop twice if it is transmitted
through N3. Thus, d̄ = 1, with N2 = {N1, N2} (direct
transmission), N1 = {N3} (transmission through one
relay) and N0 = {N4} (estimator). If a measurement
y1[k] arrives directly at N4 (at time k) and also through
N3 (at time k+1), then the delayed measurement will be
discarded.

3 Transmission outcome model

To model the unreliable transmission through the
available wireless links (Na, Nl) ∈ I, we introduce the
following binary variable:

γa,l[k] =

{
1 if Nl receives a packet from Na at k,

0 otherwise.

(3)
Throughout the first part of this work, we assume that
each γa,l[k] is an i.i.d. stochastic process (the effects of
fading and power control will be explored in Section 6).
The probability of successfully acquiring a transmitted
packet is given by:

βa,l , Pr{γa,l[k] = 1}, a, l ∈ {1, . . . , }. (4)

We denote by τs[k] ∈ N the delay experienced by the
k-th measurement from sensor s (induced by hopping
in the network) when accepted at the estimator node.
Thus, τs[k] = d means that ys[k] is accepted, i.e., for the
first time received by the estimator at time k + d. The
instance τs[k] > d states that the measurement may still
be acquired with an induced delay greater than d. Since
the number of hops is bounded by d̄+ 1, the maximum
possible end-to-end delay is d̄, i.e., τs[k] ∈ {0, 1, . . . , d̄}.
Thus, τs[k] > d̄ means that ys[k] is lost.

Let us use Γk
s,d to enumerate the Boolean combinations

(logical “and” and “or” operations) of variables γa,l
that define the possible paths a measurement from
sensor Ns sent at time k may take to reach and be
accepted by the estimator node with a given delay d, i.e.,
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that define the possible paths a measurement from
sensor Ns sent at time k may take to reach and be
accepted by the estimator node with a given delay d, i.e.,
with τs[k] = d. The possible node-to-node transmission
outcomes leading to τs[k] > d are denoted by Γks,d and
can be obtained by the negation of the disjunction of the

corresponding Γks,d, i.e., Γks,d = ¬
(∨d

δ=0 Γks,δ

)
.

Example 2 Taking into account the network topology in
Fig. 1, Table 1 shows the different outcomes of the node-
to-node transmissions leading to each possible end-to-end
delay of a measurement sent at time k from sensor N1

(similar applies from sensor N2).

Table 1
Transmission outcomes from N1 in Fig. 1. ’×’ denotes
indifference occurrence of 1 or 0.

From N1 Γk
1,0 Γk

1,1 Γk1,0 Γk1,1

γ1,4[k] 1 0 0 0 0

γ1,3[k] × 1 × 0 ×

γ3,4[k + 1] × 1 × × 0

Considering the network model described above, the
available information at the estimator node at time k
are the pairs (ms,d[k], αs,d[k]) for all s = 1, . . . , ny and
d = 0, . . . , d̄, where

ms,d[k] = αs,d[k] ys[k − d] (5)

and αs,d[k] is a binary variable such that

αs,d[k] =

{
1 if ys[k − d] is received at time k,

0 otherwise.
(6)

When αs,d[k] = 1, the measurement sent at time k − d
from sensorNs has experienced a delay of τs[k−d] = d. If
ys[k−d] has not yet arrived at time k, then ms,d[k] = 0.
Since delayed copies (already received measurements
with a higher delay) are discarded, αs,d[k] is equal to
zero if αs,d−δ[k− δ] = 1 for some integer δ ∈ {1, . . . , d}.

Let us now introduce a vector θs,d[k] which models
the successful reception of ys[k − d] during the interval
{k − d, k − d+ 1, . . . , k}:

θs,d[k] =
[
αs,0[k − d] αs,1[k − d+ 1] · · · αs,d[k]

]
. (7)

In the following section, we will study how to design a
Markovian jump filter for the proposed network scenario.
Our estimator will allow us to explore trade-offs between
estimation performance and estimator complexity.

4 Markovian jump filter

To take into account the reception of delayed measure-
ments up to d̄ , we propose to use an aggregated model

x̄[k + 1] = Āx̄[k] + B̄w[k], (8)

with x̄[k] =
[
x[k]T · · · x[k − d̄]T

]T
and (Ā, B̄) appro-

priate augmented matrices.

4.1 Building the Markov chain

We denote by τ̄ ∈ N a parameter that allows to adjust
the length to look back in time. If τ̄ = d̄ we consider
all the possible delayed measurements. If τ̄ < d̄ we
narrow the historical interval to just take into account
acquired measurements with a delay lower than d̄, while
if τ̄ > d̄ we allow to look further back in time, even
if no measurements with a higher delay than d̄ will be
received. Then, concatenating vectors θs,d[k] in (7) for
d = 0, . . . , τ̄ and for all sensors, we have

θ[k] =
[
θ1,0[k] · · · θ1,d̄[k] θ2,0[k] · · · θny,τ̄ [k]

]
(9)

where θ[k] is a binary column vector, of length nθ =
(τ̄+1)(τ̄+2)

2 ny, representing the full set of measurements
successfully received from k − τ̄ to k and fulfilling the
conditions

τ̄∑

δ=d̄+1

αs,δ[t− δ + d] = 0, ‖θs,d[k]‖1 ≤ 1, (10)

where ‖θs,d[k]‖1 =
∑τ̄
δ=0 αs,δ[t− δ + d]. These condi-

tions describe the fact that measurements only arrive
with a delay up to d̄ and that delayed copies are dis-
carded. The possible occurrences of θ[k] lie within a fi-
nite set, i.e., θ[k] ∈ Θ = {ϑ0, ϑ1, . . . , ϑr} with 2

r =
(

(d̄+ 2)!(d̄+ 2)dτ̄−d̄e
)ny

− 1. (11)

Each ϑi (for i = 0, . . . , r) represents one of the
possible combinations of the historical measurement
transmission outcomes. From the definition of θ[k], and
taking into account the fact that the occurrences of
αs,d[k] depend on node-to-node transmission outcomes
(defined by γa,l[k], and which are assumed i.i.d., see (4)),
we can conclude that θ[k] is a homogeneous Markov
process (see [4]). We shall assume that it is ergodic.

Remark 3 θ[k] captures the measurement transmission
outcomes at times {k − τ̄ , . . . , k} where measurements

2 d·e is the operator that rounds its argument to the nearest
positive integer (including zero) towards infinity.
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with a delay up to d̄ are expected to be acquired. If the
probability of any measurement from sensor Ns to be
accepted by the estimator after d + 1 hops (with d ≤ d̄)
is zero, i.e., Pr{Γks,d} = 0, the Markov chain θ[k] is not
irreducible because the states containing the information
about measurements with delay d can never be reached
from any other state. In this case, we can perform a state
space reduction (by removing the infesible states) leading
to θ[k]′ ∈ Θ′ ⊂ Θ with |Θ′| < r, where Θ′ contains only
the reachable states. Thus, θ′[k] is irreducible. To ensure
ergodicity we must guarantee that θ[k]′ is aperiodic too.
Since θ[k]′ is irreducible we only need one aperiodic state
to imply that it is aperiodic [4]. Let us assume that the
estimator is constantly receiving measurements with the
same delay that makes θ[k]′ converge to a stationary
state, i.e., the period to return to itself is one, which
makes this state aperiodic. Therefore, θ[k]′ is ergodic.

The following result shows how to obtain the transition
probabilities of θ[k].

Lemma 4 The elements of the transition probability
matrix Λ = [pi,j ] of θ[k] with pi,j , Pr{θ[k] = ϑj

∣∣θ[k −
1] = ϑi} can be computed as:

pi,j = Pr {ϕ(k, j) ∧ ϕ(k − 1, i)} /Pr {ϕ(k − 1, i)} (12)

with

ϕ(k, j) =


 ∧

{s,d,δ}∈D1(ϑj)

Γk−ds,δ


∧


 ∧

{s,d}∈D2(ϑj)

Γk−ds,d


 ,

(13)

s = 1, . . . , ny, d = 0, . . . , τ̄ , δ = 0, . . . , d and

D1(ϑj) , {s, d, δ : θ[k] = ϑj , δ ≤ d̄, αs,δ[k − d+ δ] = 1},
D2(ϑj) , {s, d : θ[k] = ϑj , ‖θs,d[k]‖1 = 0}.

PROOF. ϕ(k, j) is a function returning the possible
followed paths by the measurements sent at times {k −
τ̄ , . . . , k} leading to the state θ[k] = ϑj . It is composed

of the conjunction for each path Γk−ds,δ when there is a

measurement with τs[k − d] = δ, which is imposed by

{s, d, δ} ∈ D1(ϑj), and those in Γk−ds,δ that imply the fact

that τs[k− d] > δ, which is imposed by {s, d} ∈ D2(ϑj).
Given the above, Pr{θ[k] = ϑj} can be rewritten in
terms of Pr{ϕ(k, j)} and applying the definition of
conditional probability, we obtain (12).

Remark 5 pi,j is calculated using the node-to-node
successful transmission probabilities in (4) since Γks,d and

Γks,d are determined by Boolean combinations of variables

γa,l. Note that when d > d̄ we have that Γks,d = Γk
s,d̄

.

Let us now define the measurement availability matrix
at time k as:

α[k] = ψ(θ[k]) ,
ny⊕

s=1




d̄⊕

d=0

αs,d[k]


 . (14)

The possible values of α[k] belong to a set of the form
α[k] ∈ Ξ = {η0, η1, . . . , ηq} with q = 2n̄y − 1 and where
ηi (for i = 1, . . . , q) denotes each possible combination.

Example 6 Consider the network topology in Fig. 1.
Let us show how to compute the transition probabil-
ity, when τ̄ = d̄ = 1, between the states θ[k − 1] =[
1 0 0 0 0 1

]T
and θ[k] =

[
0 1 0 1 0 1

]T
. θ[k] = ϑ4

models the situation that y1[k] is not acquired at time k
(i.e., τ1[k] > 0), y1[k − 1] was received at time k − 1
(i.e., τ1[k − 1] = 0), y2[k] is acquired time at k (i.e.,
τ2[k] = 0) and y2[k − 1] is received at time k (i.e.,
τ2[k−1] = 1). Similarly, θ[k−1] = ϑ3 corresponds to the
situation that τ1[k− 1] = 0, τ1[k− 2] > 1, τ2[k− 1] > 0,
and τ2[k − 2] = 1. Using expression (12), the transi-

tion probability is given by p3,4 = Pr{ϕ(k,4)∧ϕ(k−1,3)}
Pr{ϕ(k−1,3)}

where ϕ(k, 4) = Γk1,0 ∧ Γk−1
1,0 ∧ Γk2,0 ∧ Γk−1

2,1 and ϕ(k −
1, 3) = Γk−1

1,0 ∧ Γk−2
1,1 ∧ Γk−1

2,0 ∧ Γk−2
2,1 . Finally, consid-

ering the paths described in Table 1 and the node-to-
node successful transmission probabilities (4), we ob-
tain p3,4 = Pr{¬γ1,4[k] ∧ γ2,4[k] ∧ γ2,3[k − 1] ∧ γ3,4[k]}
= (1− β1,4)β2,4 β2,3 β3,4, see (3).

Finally, using vector m̄s[k] we express the availability of
the measurements at time k from sensor s sent from k−d̄
to k as m̄s[k] = [ms,0[k] · · · ms,d̄[k]]T , where ms,d[k] is
as defined in (5). Using α[k], we rewrite the received
measurement information at time k as:

m̄[k] = α[k]
(
C̄x̄[k] + v̄[k]

)
(15)

where m̄[k] = [m̄1[k]
T · · · m̄ny

[k]
T

]T , v̄[k] =

[v̄1[k] · · · v̄n̄y
[k]]T with v̄s[k] = [vs[k] · · · vs[k− d̄]], and

c̄s = [c̄s,0 · · · c̄s,d̄]T with c̄s,d = [01×n·d cs 01×n·(d̄−d)]
T

(and cs as defined in (2)) are the rows of matrix C̄.
In (15), v̄[k] is the measurement noise vector with

covariance E{v̄[k]v̄[k]T } = V =
⊕ny

s=1

(⊕d̄
d=0 σ

2
s

)
.

4.2 Proposed filter

We propose the state estimation algorithm

ˆ̄x[k] = Āˆ̄x[k − 1] + L[k](m̄[k]− α[k]C̄Āˆ̄x[k − 1]). (16)

When no measurement is available, the estimator is run
in open loop. Otherwise, the state estimation is updated
with the updating gain matrix L[k]. Considering (8)
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and (15)-(16), the dynamics of the estimation error,
defined as x̃[k] = x̄[k]− ˆ̄x[k], is

x̃[k] =(I − L[k]α[k]C̄)
(
Āx̃[k − 1] + B̄w[k − 1]

)

− L[k]α[k]v̄[k]. (17)

One of the aims of this work is to compute gain matrices
L[k] to obtain acceptable estimation performance while
requiring low computing and storage capabilities. Using
predefined gain filters [8,30] instead of Kalman filters [24]
helps to alleviate the on-line computational burden,
and also allows for dealing with e.g. uncertain systems.
The authors in [30] illustrated that the Kalman filter
gains depend on the history of sensor availability. In
the current work we extend results in [30] to include
multisensor transmission and delayed measurements.
Thus, we propose to adapt the gains to θ[k] such as:

L(θ[k]) =

{
0 if ψ(θ[k]) = 0,

Li if θ[k] = ϑi, ψ(ϑi) 6= 0.
(18)

We will compute the gain matrices off-line leading to the
finite set

L(θ[k]) ∈ L = {L0, . . . , Lr}. (19)

Remark 7 We measure the filter complexity by the
number of different stored gains in L, i.e., by |L| . Notice
from (18) that L(θ[k]) = 0 is repeated r0 = (r + 1)/(d̄+
2)ny − 1 times. Thus, |L| is at most |L| = r+ 1− r0. For
fixed values of τ̄ and d̄, we can further reduce the filter
complexity by imposing equality constraints over the set
L, e.g. by setting Li = Lj for some i 6= j. This will be
explored in the sequel.

5 Filter design

To design the filter, we first note that the Markov chain
{θ[k]} has a stationary distribution (due to ergodicity)
that satisfies π = πΛ, where π = [π1, . . . , πr] and
πi = Pr{θ[k] = ϑi} are the probabilities of being at a
given state. Based on this, the next result characterizes
the evolution of the state estimation error covariance
matrix.

Theorem 8 ( [9]) Let Pj [k] = E{x̃[k]x̃[k]T |θ[k] = ϑj}
(with j = 1, . . . , r) be the modal state estimation error
covariance matrix updated at time k with information
θ[k] = ϑj. We then have:

Pj [k] =

r∑

i=0

pi,j
πi
πj

(
Fj(ĀPi[k − 1]ĀT + B̄WB̄T )FTj

)

+

r∑

i=0

pi,j
πi
πj
XjV X

T
j (20)

with Fj = I − Lj ψ(ϑj)C̄ and Xj = Ljψ(ϑj).
Furthermore, the expected value of the state estimation
error covariance matrix is given by:

E{x̃[k]x̃[k]T } =

r∑

j=0

Pj [k]πj . (21)

The above theorem defines a recursion on the
modal covariance matrices in (20), that we write as

Pj [k] = Ej{P[k − 1]} where P[k] , (P0[k], . . . , Pr[k])
and Ej{·} is the linear operator over all the modal co-
variance matrices that gives (20). Thus, we write the
full recursion (for j = 0, . . . , r) as P[k] = E{P[k − 1]}
where E{·} , (E0{·}, . . . ,Er{·}). To compute a steady
state solution, one must address the problem of finding
a set of filter gains that satisfy the Riccati equation
E{P[k]} = P[k]. When the filter gains are allowed
to jump with all the states of the Markov chain, [30]
and [13] show how to obtain their explicit values. How-
ever, the methods in [13,30] do not consider cases where
the filters share the same gain for different modes of the
Markov chain (i.e, Li = Lj for some i 6= j). Thus, [13,30]
do not allow us to explore the trade-offs between storage
complexity and estimation performance. To overcome
this issue, we adopt the following alternative optimiza-
tion problem:

minimize
L,P

T {P} s.t. E{P} − P � 0 (22)

with P , (P0, . . . , Pr), T {P} = tr
(∑r

j=0 Pjπj

)
and

where E{P} − P � 0 denotes that Ej{P} − Pj � 0 for
all j = 1, . . . , r. We showed in [9] that the feasibility
of problem (22) is a sufficient condition to guarantee
the boundedness of E{x̃[k]x̃[k]T }. The iteration P[k] =
E{P[k − 1]} converges to the unique positive semi-
definite solution P for the given L, obtained both
from (22) (similar arguments can be found in [6]). Let
us now state some necessary conditions which must be
satisfied in order for (22) to have a solution.

Theorem 9 For problem (22) to have a solution, the
transition probabilities of θ[k] (and thus the node-to-node
successful transmission probabilities in (4)) must fulfill
the following constraints

pjj · ρ(Ā)2 − 1 ≤ 0, ∀j : ψ(ϑj) = 0, (23a)

pjj · ρ(Āi)
2 − 1 < 0, ∀j : ψ(ϑj) = ηi, i ∈ ND, (23b)

where pij are the probabilities defined in (12), ρ(Ā)
denotes the spectral radius of matrix Ā, ND is the
set of reception scenarios ηi from which (Ā, ηiC̄) is
non-detectable, and ρ(Āi) is the spectral radius of the
unobservable subspace of Ā from the reception scenario
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ηi
3 .

PROOF. A necessary condition for the constraint
in (22) to hold is pj,j(I − Lj ψ(ϑj)C̄)ĀPjĀ

T (I −
Lj ψ(ϑj)C̄)T − Pj � 0 for all j = 0, . . . , r, see (20).
i) When ψ(ϑj) = 0, we have that pj,jĀPjĀ

T −
Pj � 0. Then, a necessary condition for the existence
of a solution is (23a). ii) Following the elimination
lemma [25], the existence of matrices Lj and Pj such
that the strict inequality holds, is equivalent to the
existence of a matrix Pj with ψ(ϑj) = ηi such

that (ηiC̄Ā)⊥
T (
pjj(Ā)TPjĀ− Pj

)
(ηiC̄Ā)⊥ � 0 where

(ηiC̄Ā)⊥ is a basis for the null space of (ηiC̄Ā), thereby
containing a basis of the unobservable subspace from
reception scenario ηi. Thus, a necessary condition for the
existence of the filter is (23b).

5.1 Complexity vs performance

We can reduce the storage complexity of the filter by
reducing the measurement outcome history τ̄ taken into
account or by imposing the same filter gain for different
states θk at the cost of a worst performance. The aim is
to obtain the lower number of different filter gains that
lead to a given prescribed filter performance T {P}. In
order to share a filter gain for a couple of states one must
set constraints like Li − Lj = 0 for some i 6= j over L.
Thanks to the convergence property P = E{P}, we can
rewrite problem (22) with the corresponding equality
constraints as

minimize
L,P

T {E{P}} s.t. Li = Lj , i 6= j. (24)

One can solve the previous optimization problem for
all the possible pairings and then choose the shares
that guarantee the prescribed performance with the
lower number of different gains. This procedure is highly
consuming and other approaches must be explored.
Here we address the problem by first solving the
unconstrained problem and then look for recursively the
new pair that can share the gain without affecting too
much the achieved performance. Each possible equality
constraint to be added in the problem will not affect at
the same level the achieved performance T {P}, so only
one of the pairings will be kept for further recursions
while the desired performance is still satisfied.

Remark 10 Problems (22) and (24) can be rewritten
as a linear matrix inequality (LMI) optimization prob-
lem that is solved iteratively, e.g., using the SeDuMi

3 Note that Āi = OT ĀO, where O =

ker

([
(ηiC̄)T (ηiC̄Ā)T · · · (ηiC̄Ā

n−1)T
]T)

is the unob-

servable subspace.

solver [31]. Details are omitted for brevity but can be
found in [9]. In the general case, each iteration has
VD = n(d̄ + 1)(n(d̄ + 1) + 1)(r + 1) + nny(d̄ + 1)2|L|
decision variables and r + 1 sparse LMIs. The latter
can be combined into a single LMI of size up to VM =
(n(4r + 5) + ny) (d̄+1)(r+1). Then, the computational
complexity of SeDuMi is in O(V 2

DV
2.5
M +V 3.5

M ). Note that
not only the storage requirements are reduced when im-
posing equality constraints over L, but also the off-line
computational complexity to obtain a solution is allevi-
ated.

The previous procedures are highly time consuming, as
one must solve a huge number of optimization problems
to decide which pairing is the less harmful to filter
performance. Here we try to reduce that time by means
of analyzing which pairing (constraint) to be added
is less harmful for the achieved performance, and we
measure this by means of the sensitivity of the w.r.t.
the constraint to be added. For a fixed τ̄ (a simple
rule is to set it to d̄), let us assume that we have fixed
Li − Lj = 0 (other gain equality constraints could
already have been included), and let us quantify the the
effect of perturbing this equality over T {P}. The method
of Lagrange multipliers tackles this problem by defining
the Lagrange functional

Λ(L,P, λ) = T {E{P}}+ vec(λ)Tvec(Li − Lj) (25)

and solving the homogeneous equations resulting from
the partial derivatives w.r.t (L, P, λ), where vec(·) is the
vectorization operator. It is known that the resulting
value of λ quantifies the effect of modifying the new
constraint Li = Lj on the achievable cost index [3]. In
this case, we obtain:

λ =

r∑

q=0

πqZqC̄
T (Mi −Mj) +K

r∑

q=0

πq (Yi,q − Yj,q)

(26)
with

K =

r∑

q=0

Zq[k − 1]C̄T (Mi +Mj)

(
r∑

q=0

Yj,q + Yi,q

)−1

,

Mi =
∑

i∈K
pq,iψ(ϑi)

T , Zq = ĀP̄qĀ
T + B̄WB̄T ,

Yi,q =
∑

i∈K
pq,iψ(ϑi)Xqψ(ϑi)

T , Xq = C̄ZqC̄
T + V

where K is a set containing the index of the states ϑi
that already share Li (similarly with Lj) and P̄q is
the modal covariance of the state ϑq obtained with the
additional constraint Li = Lj . As we want to avoid
the complete computation of the optimization problem
before choosing a pairing, P̄q is not available. In order to
make use of this information just for pairing purposes,
we can approximately quantify the Lagrange multipliers
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using the modal covariance P̄q obtained in a previous
step, free of this constraint. With this, a lower time
consuming iterative procedure to decrease the filter
complexity is as follows: (i) Solve initially the problem
(unconstrained or with any arbitrarily fixed pairings)
and store the covariance P̄q; (ii) For all the couple of
possible pairings to be added, compute the lagrange
multipliers (26) using the previous matrices P̄q; (iii) Fix
the additional gain equality constraint that leads to the
lowest value ‖λ‖2 for further iterations and return to
step (i). The algorithm stops when performance T {P}
in step (i) exceeds the prescribed value, and then one
must remove the last pairing to guarantee the prescribed
performance. The algorithm also stops when the number
of different gains is acceptable for implementation issues.
This idea is further explored in Section 8.

6 Transmission over fading channels

So far, we have assumed that the node-to-node successful
transmission probabilities in (4), used to compute the
predefined estimator gains, were known and time-
invariant. However, in wireless networks with fading
channels, the probability of successfully acquiring at
Nl a transmitted packet from Na depends on the
fading channel gain ha,l[k] ∈ Ωa,l ⊂ R≥0 and on the
transmission power ua[k] ∈ [0, ū] as per (cf., (4))

Pr{γa,l[k] = 1|ha,l[k] = h, ua[k] = u} = fa,l(hu) (27)

where the function fa,l is monotonically increasing and
differentiable, and depends on the modulation scheme
employed, e.g., see [18].

Let us aggregate in vector Ha[k] ∈ Ωa the outgoing
fading channel gains from node Na, i.e., Ha[k] =
[ha,l[k] · · · ha,m[k]]T with Ωa = Ωa,l×· · ·×Ωa,m where
{(Na, Nl), . . . , (Na, Nm)} ⊂ I. Assuming that each node
Na knows 4 Ha[k]. We shall focus on local power control
policies of the form

ua[k] = κa(Ha[k]), (28)

where κa : Ωa → [0, ū] is a parameterized and
integrable function over Ωa. To use the model in (4)
one could seek to control the power to reach the same
constant successful transmission probability at each
instant (which might not be achieved). Alternatively,
βa,l can also be treated as the average behavior of the
communication channel over an infinity-time window.
For further references we denote by Ua the set that
contains the parameters of κa(·). We shall next show
how to retrieve these values.

4 This can be attained in practice by means of channel
estimation algorithms, see references in [20,22].

6.1 Network average behavior

The fading in channel (Na, Nl) is a stochastic process
that might be correlated with other channels (represent-
ing some spatial correlation [1]) and that we assume to
have a time-invariant disitribution. With this, we de-
note by ga(Ha) the joint probability density function of
Ha[k] = Ha which is considered to be known. Then, we
can compute the transmission probability βa,l defined
in (4) using:

βa,l =

∫

Ωa

ga(Ha) fa,l (ha,l κa(Ha)) dHa. (29)

Remark 11 Typically, IEEE 802.15.4 transceivers
have a finite number of predefined discrete power lev-
els [21, 27]. One way to implement this using (28) is to
use a piecewise constant policy wherein each of the power
levels is used in different ranges of fading gain values.

7 Co-design

Transmitter nodes are often self-powered, and thus, pre-
serving battery life is an important concern. Motivated
by this, we will next show how to compute off-line the
parameters that define the power control policies in (28)
and a set of filter gains guaranteeing the performance of
the estimator. Our aim is to guarantee a certain estima-
tion performance γP so that the network transmission
power usage is minimized. Let us characterize the power
budget by:

J(U) =

M∑

a=1

µaE{ua} (30)

where µa ∈ R and the expected value (average) of the
transmission power of each node Na is:

E{ua} =

∫

Ωa

ga(Ha)κa(Ha)dHa. (31)

Then, the synthesis problem can be formulated as:

minimize
L,P,U

J(U)

subject to T {P} ≤ γP , E{P} − P � 0, (29),

ua[k] ∈ [0, ū], ∀a = 1, . . . ,M.

(32)

This is a nonlinear optimization problem, as the average
node-to-node transmission probabilities (29), which are
employed in deriving the transition probabilities of θ[k],
depend on the power control strategies. This kind of
problem can be tackled, for instance, by brute force using
a gridding approach, by means of heuristic optimization
with genetic algorithms, or by implementing a greedy
algorithm. As a fast way to obtain a possibly suboptimal
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solution, in this work we propose the use of a greedy
algorithm. A greedy algorithm is a tree search where
at each step only the branch that locally optimizes
the problem fulfilling some heuristic is explored, in the
hope that this choice will lead to a globally optimal
solution. Thus, this kind of algorithm never comes back
to previous incumbent solutions to change the search
path, and globally optimal solutions are not guaranteed.
Nonetheless, often good solutions will be found. The
proposed greedy algorithm is as follows:

Step 1. Set i← 0. For a given ū, chooseM sets of power
control parameters U0

a , a = 1, . . . ,M to maximize
each power transmission E{ua}. For given constants

µa, define index J0 ,
∑M
a=1 µaE{u0

a}. Choose a small
positive parameter value ξ.

Step 2. Set i← i+ 1 and J i ← J i−1 − ξ. For a = 1 to
M repeat Step 3, then go to Step 4.

Step 3. Set U im ← U i−1
m for all m 6= a with m =

1, . . . ,M . Obtain U ia as the power control parameter
set resulting from the optimization problem

maximize
Ua

∏

l : (Na,Nl)∈I
βa,l

subject to J i −
M∑

m=1
m 6=a

µmE{uim} − µaE{uia} = 0,

ua[k] ∈ [0, ū], ∀a = 1, . . . ,M.
(33)

with βa,l as defined in (29). If this problem has no
solution, then set γa ← ∞. Otherwise, compute
the transition probabilities given in (12) and check
conditions (23). If they are not fulfilled, then set
γa ← ∞. Otherwise solve optimization problem (22)
including the corresponding gain equality constraints
leading to the desired |L|. If the problem is infeasible,
then set γa ← ∞. Otherwise, store Pa, La and set
γa ← T {Pa}.

Step 4. Set a← arg min
a

γa. If γa ≤ γP , then set U im ←
U i−1
m for all m 6= a; store U i = {U i1, . . . ,U iM}, Pi = Pia

and Li = Lia, and go to Step 2. Otherwise, exit with
the best solution found in iteration i− 1.

The algorithm starts in Step 1 by considering the
most favorable power control policy, i.e., where the
probabilities of receiving packets are highest (higher
transmission powers). Then, at each iteration (Step
2, 3 and 4) it tries to reduce the power budget (30)
while the feasibility of the problem (32) is preserved,
see Fig. 2. Each time it can be reduced, in Step 3,
we first translate the effect of the reduction of the
power budget to a single node. This leads to as many
power transmission policies (control parameters U ia ) as
there are nodes. To obtain the new power control law
characterized by U ia, we solve (33) where we only modify
the transmission policy of Na such that the successful

transmission rate is maximized, whilst fulfilling the new
power budget 5 . Then, with the new set of power control
parameters U ia for Na and the already existing U im, the
algorithm computes the transition probabilities of the
reception scenario model θ[k] and verifies the fulfillment
of the filter existence necessary conditions developed in
Theorem 9. If the latter hold, then we design the state
estimator by solving (22) including the predefined gain
equality constraints. Once this has been done for the
M nodes, in Step 4 the proposed heuristic selects the
solution with the lowest estimation performance index
γa, i.e., the solution that generates a larger future search
space. The algorithm ends when all the obtained γa are
higher than the prescribed upperbound γP .

define index J0 ,
∑M

a=1 µaE{u0a}. Choose a small
positive parameter value ξ.

Step 2. Set i← i+ 1 and J i ← J i−1 − ξ. For a = 1 to
M repeat Step 3, then go to Step 4.

Step 3. Set U i
m ← U i−1

m for all m 6= a with m =
1, . . . ,M . Obtain U i

a as the power control parameter
set resulting from the optimization problem

maximize
Ua

∏

l : (Na,Nl)∈I
βa,l

subject to J i −
M∑

m=1
m 6=a

µmE{uim} − µaE{uia} = 0,

ua[k] ∈ [0, ū], ∀a = 1, . . . ,M.
(33)

with βa,l as defined in (29). If this problem has no
solution, then set γa ← ∞. Otherwise, compute
the transition probabilities given in (12) and check
conditions (23). If they are not fulfilled, then set
γa ← ∞. Otherwise solve optimization problem (22)
including the corresponding gain equality constraints
leading to the desired |L|. If the problem is infeasible,
then set γa ← ∞. Otherwise, store Pa, La and set
γa ← T {Pa}.

Step 4. Set a← argmin
a

γa. If γa ≤ γP , then set U i
m ←

U i−1
m for allm 6= a; store U i = {U i

1, . . . ,U i
M}, P i = P i

a

and Li = Lia, and go to Step 2. Otherwise, exit with
the best solution found in iteration i− 1.

The algorithm starts in Step 1 by considering the most
favorable power control policy, i.e., where the probabilities
of receiving packets are highest (higher transmission
powers). Then, at each iteration (Step 2, 3 and 4) it tries
to reduce the power budget (30) while the feasibility of
the problem (32) is preserved, see Fig. 2. Each time it
can be reduced, in Step 3, we first translate the effect of
the reduction of the power budget to a single node. This
leads to as many power transmission policies (control
parameters U i

a ) as there are nodes. To obtain the new
power control law characterized by U i

a, we solve (33)
where we only modify the transmission policy of Na

such that the successful transmission rate is maximized,
whilst fulfilling the new power budget 5 . Then, with the
new set of power control parameters U i

a for Na and
the already existing U i

m, the algorithm computes the
transition probabilities of the reception scenario model
θ[k] and verifies the fulfillment of the filter existence
necessary conditions developed in Theorem 9. If the latter
hold, then we design the state estimator by solving (22)
including the predefined gain equality constraints. Once
this has been done for theM nodes, in Step 4 the proposed
heuristic selects the solution with the lowest estimation
performance index γa, i.e., the solution that generates a

5 The optimization problem (33) can be solved using non-
linear optimization algorithms (e.g., fmincon of MATLAB).

larger future search space. The algorithm ends when all
the obtained γa are higher than the prescribed upperbound
γP .

Initialize

i← i + 1,

Ji ← Ji−1 − ξ
set a = 0

a← a + 1

a ≤ M?

Ui
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m , m 6= a

Ui
a = arg(32)
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1 . . . ,Ui

M},
P = Pa, Li = Li

a

yes

Solution
is i − 1

no

Fig. 2. Greedy algorithm flow diagram.

Remark 12 The associated Lagrange multiplier of

tr
(∑r

j=0 Pjπj

)
≤ γP is non-negative by definition,

which means that lower power budgets can only be ob-
tained by degrading estimation performance.

Remark 13 The filter storage complexity is supposed to
be a priori fixed in the previous algorithm. To enable the
decision on which states of θ[k] share the same gain, we
can modify Step 3 by including an iterative procedure that
adds at each step a new equality gain constraint Li = Lj

such that the correspondent Lagrange multiplier (26) is
at a minimum (in the sense of ‖λ‖2) until the constraint
on |L| is reached.

8 Numerical studies

We consider the following (unstable) system

A =

[
1.05 −0.1
0.74 1.05

]
, B =

[
0.01 0.13

0.01 0.08

]
, C =

[
0.53 0.39

0.72 0.35

]
.

The state disturbance and sensor noise covariances are

W =

[
0.26 −0.003
−0.003 0.25

]
,

[
σ2
1

σ2
2

]
=

[
0.0086

0.0079

]
.
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Remark 12 The associated Lagrange multiplier of

tr
(∑r

j=0 Pjπj

)
≤ γP is non-negative by definition,

which means that lower power budgets can only be ob-
tained by degrading estimation performance.

Remark 13 The filter storage complexity is supposed to
be a priori fixed in the previous algorithm. To enable the
decision on which states of θ[k] share the same gain, we
can modify Step 3 by including an iterative procedure that
adds at each step a new equality gain constraint Li = Lj
such that the correspondent Lagrange multiplier (26) is

5 The optimization problem (33) can be solved using non-
linear optimization algorithms (e.g., fmincon of MATLAB).
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at a minimum (in the sense of ‖λ‖2) until the constraint
on |L| is reached.

8 Numerical studies

We consider the following (unstable) system

A =

[
1.05 −0.1

0.74 1.05

]
, B =

[
0.01 0.13

0.01 0.08

]
, C =

[
0.53 0.39

0.72 0.35

]
.

The state disturbance and sensor noise covariances are

W =

[
0.26 −0.003

−0.003 0.25

]
,

[
σ2

1

σ2
2

]
=

[
0.0086

0.0079

]
.

Measurements are acquired through the multi-hop net-
work in Fig. 1 that may induce up to a unit delay in
the end-to-end transmission. Thus, the number of states
of the Markov chain θ[k] is |Θ| = ((1 + 2)!)

2
= 36

(see (11)). Nodes transmit using BPSK modulation
(see [20]) with b = 4 bits and a transmission power
bounded by ū = 10. We consider correlated fading chan-
nels with h1,4[t] = (h1,3[t] + h3,4[t])/100 and h2,4[t] =
(h2,3[t] + h3,4[t])/10 where h1,3[t], h2,3[t], h3,4[t] follow
an independent exponential distribution (Rayleigh fad-
ing) with means h̄1,3 = 1, h̄2,3 = 0.3 and h̄3,4 =
0.5. We denote the estimation performance index
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lects the covariance corresponding to x[k]− x̂[k|k]. First,
let us assume that each node uses a constant power
u1[k] = u2[k] = u3[k] = 5. Under this scenario, the pres-
ence of a relay helps to improve the performance index
obtained while solving (22) (without gain equality con-
straints) from γ = 0.112 to γ? = 0.037, where γ? was
retrieved with 33 different gains. In this case, the estima-
tion performance index obtained with the Kalman filter
is γKal = 0.034 (where γKal = tr(CxE{x̃[k]x̃[k]T }CTx ),
which is 7% lower. However, the Kalman filter needs
to execute up to 976 floating-point operations at every
time instant, while the off-line method only requires at
most 64 (independent of the gain grouping strategy).
We can further reduce the filter complexity (storage re-
quirements) using the results in Section 5.1 where we
sequentially impose the gain equality constraint leading
to a minimum deterioration of γ, i.e., the one with the
smallest associated Lagrange multiplier in the sense of
‖λ‖2. Fig. 3a explores the achieved trade-offs showing
that the proposed decision rule leads to the best estima-
tion performances. Also, we notice that we can reduce
the filter complexity from 33 to 14 different gains with-
out affecting the estimation performance index.
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shows that at the expense of only a 10% deterioration of
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budget by 25%. Note that, for the given example, power
control strategy C2 only reduces the power budget by up
to 4% with respect to C1 at the expense of requiring the
value of the channel fading gain at each instant.
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are introduced while hopping through relay nodes. We
introduced a finite Markovian process that captures the
network behavior by keeping track of a finite number of
measurement transmission outcomes. Using the average
network behavior, we conceived a jump filter whose com-
plexity can be selected as a trade-off between storage re-
quirements and estimation performance. To keep the net-
work operation power-efficient, we designed power poli-
cies and filter gains to minimize the power budget while
guaranteeing a certain estimation error performance in-
dex. The design is carried out with an iterative proce-
dure based on semi-definite programming. Numerical re-
sults suggest that: 1) intermediate relays help to reduce
the power budget for prescribed estimation performance,
2) increasing estimator complexity allows in general for
power savings, and 3) not too many different filter gains
are needed to achieve similar estimation performance
than Kalman filter approach while offering a much lower
computational burden. Future research may include de-
sign of topology reconfiguration methods and distributed
power control strategies.

10

(a) Estimation performance vs. filter complexity, where
γ? = 0.037.

Measurements are acquired through the multi-hop net-
work in Fig. 1 that may induce up to a unit delay
in the end-to-end transmission. Thus, the number of
states of the Markov chain θ[k] is |Θ| = ((1 + 2)!)2 =
36 (see (11)). Nodes transmit using BPSK modulation
(see [20]) with b = 4 bits and a transmission power
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different. For that purpose, we focus on constant (C1)
and saturated inverted channel gain (C2) transmission
power policies (see [20]). Strategy C2 is implemented
using the information of the realizations h1,3[t], h2,3[t]
and h3,4[t] whereas C1 only uses statistical information.
Fig. 3b shows that at the expense of only a 10%
deterioration of the best estimation performance, we can
reduce the power budget by 25%. Note that, for the
given example, power control strategy C2 only reduces
the power budget by up to 4% with respect to C1 at the
expense of requiring the value of the channel fading gain
at each instant.

9 Conclusions

In this work we developed a model for multi-hop
networked estimation with fading channels. Random
dropouts are generated due to fading links, while
delays are introduced while hopping through relay
nodes. We introduced a finite Markovian process that

10



captures the network behavior by keeping track of a
finite number of measurement transmission outcomes.
Using the average network behavior, we conceived a
jump filter whose complexity can be selected as a
trade-off between storage requirements and estimation
performance. To keep the network operation power-
efficient, we designed power policies and filter gains
to minimize the power budget while guaranteeing
a certain estimation error performance index. The
design is carried out with an iterative procedure
based on semi-definite programming. Numerical results
suggest that: 1) intermediate relays help to reduce the
power budget for prescribed estimation performance,
2) increasing estimator complexity allows in general
for power savings, and 3) not too many different
filter gains are needed to achieve similar estimation
performance than Kalman filter approach while offering
a much lower computational burden. Future research
may include design of topology reconfiguration methods
and distributed power control strategies.
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