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Abstract

Motivated by recent transmission electron microscopy (TEM) experiments on α–Ag2WO4,

the coalescence process of Ag nanoparticles (NPs) is investigated using molecular dy-

namics (MD) simulations. These Ag NPs are formed by irradiation of α–Ag2WO4

crystals by electrons from a TEM gun. This behavior can be considered as a clear

example of surface plasmon resonance (SPR), in which Ag NP coalescence processes

are controlled by dipole-dipole interaction forming larger clusters. The interactions

between Ag NPs along the coalescence processes are studied using MD simulations

with embedded atom method (EAM) effective potentials for Ag. With these choices of

methods coalescence is studied addressing different scenarios for the interacting NPs,

all possible to occur in experiments.

Keywords

plasmons, nanoparticles, coalescence, silver, molecular dynamics, computer simulations

Introduction

In the past 20 years, imaging and manipulation of structures, at atomic level, are mainly

fueled by the fast developments of new experimental techniques and computational meth-

ods. Irradiation with an electron beam is known to be an effective technique for changing or

modifying materials in the high vacuum system of the electron microscope. Electron miscro-

scopies provide a robust technique to observe static and dynamic structures at atomic and

nanoscale level, and also provoke both structural and chemical rearrangements.1

Recent advances in transmission electron microscopy (TEM) technology enables studies

of atomic scale processes involving from single atoms to nanoparticles and nanowires, yield-

ing novel nanostructures,2 especially for those that cannot be fabricated using conventional

chemical and physical methods. Therefore, these new applications that TEM has made can
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be considered as a versatile tool for materials engineering at the nanoscale. The above pro-

cesses were triggered by electron beam irradiation which allowed simultaneous fabrication

and observation in a convenient and, more importantly, direct manner. Jiang3 summarizes

a variety of beam damage phenomena relating to oxides in (scanning) transmission electron

microscopes, and underlines the shortcomings of currently popular mechanisms. In particu-

lar, very recently, Mannan et al.4 reported that electron-beam irradiation has been used to

fabricate nanoparticles and nanorods on Ag surfaces with nanometric precision under expo-

sure to the electron beam. Both high control over nanorod dimensions and high placement

accuracy have been demonstrated. This observation is a clear manifestation of an electron-

solid interaction and motivated by the recent discovery of the formation of Ag nanoparticles

(NPs) and nanowires due to the electron beam irradiation by a TEM gun on α–Ag2WO4

crystals,5,6 we investigate the nature of the formation mechanism under the guidance of

computer simulations. Reasons for the formation of these new structures have been given in

recent publications.7,8

Sintering and welding of metal nanorods and NPs have been investigated recently, both

experimentally9–11 and also computationally.12 For example, Grouchko et. al.13 have stud-

ied welding and coalescence processes of Ag nanostructures on Au and Au on Ag NPs

experimentally and with the aid of computer simulations. Other studies considered the im-

portant question of oriented attachment in Au NPs14 and coalescence process in Pd NPs.15

The present work interprets many scenarios of the interaction of Ag NPs emerging when

α–Ag2WO4 crystals are irradiated by an electron beam6,16,17

Both Ag and Au NPs, with diameters of less than 100 nm can be excited into surface

plasmon resonance (SPR) states due to a laser field. This is a very well known effect with

a wide range of applications dating from the IV century, the famous Lycurgus Cup being a

very striking example,18 in which Ag and Au NPs around 70 nm in diameter dispersed in

the glass reflect green light and transmit red light. TEM experiments have elucidated this

interesting effect. These metal NPs are also responsible for the beautiful coloring of many
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medieval windows in famous European churches. Au NPs, due to this plasmonic effect, have

also been used in a very promising application of cancer therapy.19

Electron beam spectroscopies have advantages in spatial resolution and accessibility to

areas of interest. In particular, the electron gun used for TEM imaging of nano-objects

such as NPs was demonstrated in TEM and in electron energy loss spectroscopy (EELS)

measurements to produce plasmonic effects similar to laser irradiation.20–23 The electron

beam carries an associated electric field that, for the correct frequency, similarly to the case

of laser light, excites SPR in the NPs. SPRs that appear in metal NPs are associated with

collective oscillations of free electrons and occur in the visible part of the electromagnetic

spectrum. A particular NP becomes a neutral dipole due to the SPR. The interaction of

nearby NPs occurs due to the neutral dipole-dipole interaction since this behavior is very

similar to bonding and anti-bonding dimer nodes in molecules. A dipole pair can be in the

dipole active mode, called bright mode, which corresponds to attractive interaction as well

as in the dark mode, which corresponds to a repulsive interaction.

Systematic experimental and theoretical studies of the production of Ag nanorods and

NPs upon electron irradiation of α–Ag2WO4 crystals under the TEM experiments have

opened a new avenue of interesting possibilities for the production of Ag NPs.5–8 The present

article continues the discussion of the formation of new Ag nanostructures presented in those

experiments with special emphasis on new effects of Ag NPs-NPs interactions caused by the

same process of electron gun irradiation of the α–Ag2WO4 crystals during imaging. In par-

ticular, experiments in refs16 show images of Ag NPs and their interactions forming other

larger Ag NPs. Faccin et al.17 argued that SPR understood from Mie theory and neutral

dipole interactions could be used to interpret and explain the observed effect. They also

used molecular dynamics (MD) simulations to discuss the experimental images.

The simulations analysis presented in Faccin et. al.17 focused on understanding the

experiments with interesting conclusions. The experiments produced many types of Ag NPs,

ranging from almost perfect Wulff shaped Ag NPs, spherical crystalline Ag NPs, as well as
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disordered or ordered Ag NPs with many defects. The focus of the present study is discussion

of the many scenarios that can be found in these kind of experiments with emphasis on the

question of how ordering affects coalescence, a recurring event in such experiments. In order

to give a brief connection with the experiments we show in the Supplementary Material (Fig

SM-1) a typical sequence of images of one of the coalescence events observed in our previous

research. This paper is organized as follows: next section describes the computational details,

followed by the section where results are presented and discussed. Finally, we summarize

our main conclusions.

Computational Details

We studied the interactions of Ag NPs that are attracted to each other in coalescence events.

The focus is a setup where Ag NPs are produced in very diverse forms, with sizes from 4 to

10 nm in diameter, ranging from crystalline ordered spherical fcc Ag NPs, and also partially

ordered (ordered Ag NPs with disordered regions and many stacking faults) spherical Ag

NPs. After producing these different types of Ag NPs we studied their interaction and

coalescence processes.

The present study, based on the experimental observations of our research group, is fo-

cused on the coalescence process due to the SPR neutral dipole formation. Ag NPs under the

presence of the TEM electron beam feel the associated electric field that induces the forma-

tion of SPRs. The Ag NPs become nano-dipoles and when pairs of these Ag NPs are oriented

in the so called bright mode, it corresponds to a case of attractive dipole-dipole interactions.

Ag NPs approach each other and start the contact to proceed with the coalescence processes.

In order to investigate the events that take place once the Ag NPs are produced in these

experiments, this work uses MD simulations performed using the LAMMPS package24–27

and the embedded atom model (EAM)28–31 with the parameterization for Ag from Sheng et

. al.32 These two choices, namely LAMMPS and EAM are appropriate since we are studying
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large NPs and MD in the LAMMPS version, with an EAM effective potential which gives

a description that is the closest to DFT one can obtain for systems of this size and time

scale. In particular the EAM choice32 for the Ag effective potential is quite accurate, well

documented and has been used extensively before.33–35

In the first simulation set, called crystalline ones, Ag NPs of spherical shape were cut from

the bulk structure and then relaxed at 0K; after relaxing, the structures were approached

to provide the initial point for sintering simulations; the dimer structures were then heated

to the reported temperatures. In the second set, called annealed ones, the previous set of

nanoparticles were heated to 1400K, which is over their fusion point, and then annealed to

300K along 1 ns resulting in structures with less order and stacking faults which are more

similar to real Ag NPs from the experiments we are attempting to discuss. After this process

the samples are ready to be the starting point for their respective sintering simulations. For

each set of simulations canonical ensemble MD simulations were used with Nosé-Hoover

thermostat chains.36–38 Visualizations were created using the VMD and Ovito packages39–41

and the common neighbor analysis (CNA) of Dana et al.42 The equations of motion were

integrated using a time step of 1 fs, which guaranteed negligible numerical deviations for the

total duration of the simulations, whose typical duration was 20 ns. This was long enough to

obtain equilibrated systems and to observe the processes that we discuss in the next section.

Results and Discussion

The studies reported in the present work involved the analysis of coalescence process of Ag

NPs of different sizes in the range of 4 to 10 nm. Therefore, we considered Ag NPs of 4.5

nm and 9.0 nm. In order to understand different aspects of these interactions we studied Ag

NPs of equal size, namely 4.5-4.5 nm and 9.0-9.0 nm. To study the effect of different sizes we

also studied interactions of Ag NPs with sizes of 4.5 and 9.0 nm. We performed simulations

of completely ordered Ag NPs as well as partially disordered Ag NPs. These simulations
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were performed at 500K. We also studied the final stages of these Ag NP-Ag NP coalescence

processes as function of temperature.

Crystalline ordered NPs interaction

We considered two sizes of equally sized crystalline Ag NPs, namely 4.5 nm and 9.0 nm NPs.

Figure 1 shows the evolution of two 4.5 nm Ag NPs along the coalescence process. The top

panel shows two sequences of images, the top images display the atomic form evolving, while

the bottom sequence shows a planar cut of the same snapshots using CNA analysis. First

images (a) (top and bottom) show the two Ag NPs before contact; the second image (b)

displays the images after starting the coalescence process and shows a disordered interface

produced by the contact of the Ag NPs; it also shows some stacking faults. The fact that

the Ag NPs were ordered before colliding is important since this helps healing the structure

back to the ordered structure. It is important to note that the stacking faults that were

also generated have large energy barriers and are difficult to transform back to fcc, in fact

the small stacking faults evolve, propagating all throughout the interface merging the two

previous Ag NPs. The disordered regions get well ordered in the process either transforming

into longer stacking faults or back into fcc. To make these statements more quantitative we

calculated the radial distribution function g(r) corresponding to the images from the top

panel, the g(r) corresponding to the snapshots are displayed at the bottom panel. These

curves show a first well ordered g(r), characteristic of a crystalline Ag NPs, (a). Upon

touching (b) a typical disordered function emerges. As the evolution unfolds (c and d) some

order is restored with the final g(r) (e) almost as ordered as the starting structures, as can

be seen from the CNA structure (e) with some remaining stacking faults.

Figure 2 shows the coalescence process of Ag NPs with sizes of 9.0 nm. In this case, due

to the larger particle size the disordered region that is formed during the collision is small

compared with the Ag NP with size of 4.5 nm, together with a small stacking fault that

evolves back into fcc and a larger staking fault. A comparison with previous results on Ag
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Figure 1: Simulation of the coalescence process of two 4.5 nm ordered Ag NPs at 500 K.
Top panel shows snapshots (a to e) of the structural evolution of the coalescence (upper
sequence) and the CNA plots (lower sequence) that depict how the structure evolves. From
ordered fcc NPs (green), during coalescence they form a disordered contact region (grey)
and some hcp stacking faults (red) that evolve reordering and propagating stacking faults.
Bottom panel shows the radial distribution function g(r).
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Figure 2: Simulation of the coalescence process of two ordered 9.0 nm Ag NPs at 500 K.
(a to d) (top line): structural evolution of the coalescence and (bottom line) the CNA plots
that depict how the structure evolves from ordered fcc NPs (green). During coalescence they
form a small disordered contact region (grey) and some hcp stacking faults (red) that evolve
reordering and propagating small stacking faults.

NPs of 4.5 nm NPs renders the appearance of a well ordered new structure with a smaller

stacking fault region. The g(r) (SM-2 shown in the Supplementary Material) shows that

after the first disorder formation (b) stacking fault formation and recovery of order occurs

but are all small effects. Ordered structures tend to restore order in the coalescence process.

This fact can be further inferred from the result of the different size NPs coalescence process.

Figure 3 presents the coalescence process of a 4.5 nm Ag NP with a 9.0 nm Ag NP. In this

case the fact that particles have different sizes causes an interesting event where as in the

previous cases a disordered interface region develops upon contact (b) with stacking faults

mostly in the small NP. Since order tends to drive order, the large ordered Ag NP drives

order into the smaller one with the result that the new particle gets well ordered in the

process. The g(r) (SM-3 displayed in the SM) shows the emergence of order within the final

structure.

The coalescence processes in ordered Ag NPs are very interesting but we do not think

that these types of processes take place in the experiments. The experimentally produced

Ag NPs due to electron beam irradiation by a TEM gun on α–Ag2WO4 crystals produces
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Figure 3: Simulation of the coalescence process of an ordered 4.5 nm Ag NP and a 9.0 nm
Ag NP at 500 K. Frames a to d display (top line) structural evolution of the coalescence
and (bottom line) the CNA plots that depict how the structure evolves from ordered fcc
NPs (green), during coalescence they form a small disordered contact region (grey) which
develops and some hcp stacking faults (red) that evolve reordering into a perfectly ordered
new particle.

more disordered structures.

Disordered Ag NPs interaction

Ag NPs can be produced with different degrees of order and diverse shapes ranging from

spherical to well shaped Wulff constructions. The Ag NPs produced during the α–Ag2WO4

experiments are not ordered, instead they show ordered regions as well as disordered and

stacking fault regions. In order to learn how partially ordered Ag NPs evolve in coalescence

processes we produced partially ordered Ag NPs by heating the ordered Ag NPs over their

melting temperature and then annealed them back to 300K. These results are used for the

next computer experiments, where we repeat the same studies performed for the ordered Ag

NPs.

Figure 4 displays the coalescence of two partially ordered 4.5 nm Ag NPs. The top panel

shows the evolution of the structure similarly to the case of the ordered structures discussed

previously. The first left images (a) show the two Ag NPs before contacting, top images
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Figure 4: Simulation of the coalescence process of two partially ordered 4.5 nm Ag NPs at
500 K. Top panel shows snapshots (a to d) of the structural evolution of the coalescence
(upper sequence) and the CNA plots (lower sequence) that depict how the structure evolves.
During coalescence they form a disordered contact region (grey) and some hcp stacking faults
(red) . The new Ag NP evolves propagating stacking faults and reordering. Bottom panel
shows the radial distribution function g(r) of this evolution.
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shows the NP’s structure and bottom their CNA cut. It can be seen that the Ag NPs start

with ordered regions, disordered regions as well as many stacking faults. Upon contact they

produce a disordered interface with propagation of stacking faults at the interface. The

competition of disordered interface with surrounding stacking faults prevents healing to be

as effective as in the case of ordered Ag NPs. The new structure that started with partially

ordered structures again evolves to restore some of the order. This can be clearly seen in the

g(r) displayed at the bottom panel. In fact, as the size of the Ag NP increases the energy

barrier created by the stacking fault becomes so large that it will block the healing process,

leading to a disordered final stage.

Figure 5: Simulation of the coalescence process of two partially ordered 9.0 nm Ag NPs
at 500 K. Frames a to d display (top line) the structural evolution of the coalescence and
(bottom line) the CNA plots that depict how the structure evolves; during coalescence they
form an amorphous contact region (grey) and some hcp stacking faults (red) that evolve
reordering and healing some stacking faults.

The coalescence process of the larger Ag NPs, with 9.0-9.0 nm of size, is depicted in

12

Page 12 of 29

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 5. The initial partially ordered Ag NPs have large disordered regions and large

stacking fault regions. Upon contacting a large disordered interface develops. For these

NPs sizes the ordered fcc planes and the stacking fault regions force ordering reducing the

disordered interface more efficiently, with a final Ag NP much more ordered with crystalline

fcc and hcp regions. This recovery of order can clearly be seen in the g(r) shown in the

SM (SM-4). The case of different Ag NPs sizes in Fig. 6 ( 4.5-9.0 nm Ag NPs) shows a

Figure 6: Simulation of the coalescence process of two partially ordered Ag NPs of 4.5 nm
and 9.0 nm at 500 K. Frames a to c display (top line) structural evolution of the coalescence
and (bottom line) the CNA plots that depict how the structure evolves, during coalescence
they form an amorphous contact region (grey) and some hcp stacking faults (red) that evolve
reordering and healing some stacking faults.

disordered interface which in this case is not driven back to the ordered phases; the sintering

process promotes some ordering in both sides of the new combined Ag NP with reduction

of disordered regions. In the case of disordered Ag NPs the ordering is not as effective as

it was in the case of ordered Ag NPs discussed in Figure 3. Nevertheless, some order is

restored in the whole structure as well as ordering induced in what was the small Ag NP,

i.e. there is a restructuring of some fcc region with the suppression of some stacking faults.

This healing into order can be seen from the g(r) shown in the SM (SM-5). One strong
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trend in all these cases is the evolution of stacking faults and the recovery of order. This

particular simulation shows trends similar to the experimental sequence presented in the SM

(see SM-1) as a motivation for the present work.

Temperature effects

The previous discussion was for a fixed temperature similar to the experiments. The effect

of temperature in the sintering processes is also something worth investigating; therefore we

discuss here also thermal effects. The coalescence process of crystalline Ag NPs is presented

in Figures 7, 8 and 9. In Fig. 7 we present the evolution in temperature of the final stages

Figure 7: Temperature dependence of the coalescence process of two ordered Ag NPs of 4.5
nm.

of coalescence runs for temperatures from 300 K to 1200 K for Ag NPs of 4.5 nm of size.

The effect of temperature drives the coalescence process to form well-rounded Ag NPs for

high temperatures and is very effective at this size range. Fig. 8 shows the same sequence

for equal size 9.0 nm Ag NPs. In this case the temperature helps to evolve the coalescence

process but is less effective than the previous case. Fig. 9 presents the 4.5-9.0 nm Ag NP’s

coalescence. The temperature effect helps sintering where the smaller Ag NP tends to be

incorporated into the larger one. The temperature effect in the case of disordered NP’s
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Figure 8: Temperature dependence of the coalescence process of two ordered Ag NPs of 9.0
nm.

Figure 9: Temperature dependence of the coalescence process of two ordered Ag NPs of 4.5
nm and 9.0 nm.
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coalescence shows an evolution that follows similar behavior as in the case of ordered NPs

for the case of equal size 4.5 nm NP coalescence as can be observed in Fig. 10 . Figure 11

Figure 10: Temperature dependence of the coalescence process of two partially ordered Ag
NPs of 4.5 nm.

presents the temperature evolution of the 4.5-9.0 nm Ag NPs coalescence. In this case the

Figure 11: Temperature dependence of the coalescence process of two partially ordered Ag
NPs of 4.5 nm and 9.0 nm.

coalescence evolves more efficiently than in the case of ordered Ag NPs. The disordered Ag

NPs evolve more easily into coalescence since being partially disordered from the start makes

the effect of temperature more efficient when compared with the ordered case discussed in

Fig. 9.
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Conclusions

Motivated by the surprising experiments of Longo et al.5 where Ag NPs are produced in

vacuum as result of electron beam irradiation from TEM on α–Ag2WO4 crystals, our in-

tention with the present work has been to study in greater detail the coalescence processes

for Ag NPs using computer simulations. This represents an alternative to understand and

describe this behavior as a clear example of SPR, based on well defined physical entities

accessible from experiments. The same electron beam that produced these Ag NPs in the

first place made them nano-electrical dipoles due to the electron magnetic field interaction

forming SPR resonances in these NPs. Pairs of these neutral dipoles undergo interaction

similarly to dimers and leading to coalescence when the interactions are attractive or mov-

ing away when interacting repulsively. The attractive dipole-dipole interactions initiate the

coalescence processes experimentally observed by Longo et al .16 Computer simulations of

molecular dynamics were used to investigate these processes. For that goal we have consid-

ered a variety of different configurations of interacting Ag NPs using equal and different sizes

of Ag NPs. For the present study different degrees of order were considered, from crystalline

to defective Ag NPs. In addition, the effect of temperature in the coalescence process was

also investigated. Ordered Ag NPs tend to impose order, thus healing the disordered inter-

face and stacking faults (hcp planes) as well as fcc order is forced upon the new structure.

In the case of partially disordered Ag NPs, the recrystallization of disordered regions evolves

better for larger NPs. The size effect prevents these mechanisms in the small 4.5 nm Ag

NPs. As expected, temperature helps to develop the coalescence process and disordered Ag

NPs evolve faster to form the new merged Ag NPs.
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Graphical TOC Entry

Coalescence processes in silver nanoparticles can be induced by surface
plasmon ressonance phenomena. Trends and characteristics of these pro-
cesses, which are relevant to welding and assembly of nanostructures, are
discussed in this work.
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Supplementary Material to:

A Computational Modeling for the Ag Nanoparticles

Coalescence Process: A Case of Surface Plasmon Resonance.

SM-1

Figure SM-1. Sequence of snapshots of experiment of electron beam irradiation of α-

Ag2WO4. These two NPs, sizes 9 nm and 6 nm of radii, undergo a coalescence process

similar to some simulations performed in the present article.
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SM-2

Figure SM-2 The radial distribution function g(r) of the simulation of the coalescence 
process of two ordered 9.0  nm Ag NPs at 500 K. The g(r) labels correspond to the 
snapshots displayed in Fig-2. Insets display the initial (a) and the final (d) simulation 
snapshots.
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SM-3

Figure SM-3 The radial distribution function g(r) of the simulation of the coalescence 
process of a 4.5 and  9.0 nm ordered Ag NPs at 500 K. The g(r) labels correspond to 
the snapshots displayed in Fig-3. Insets display the initial (a) and the final (d) 
simulation snapshots.
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SM-4

Figure SM-4 The radial distribution function g(r) of the simulation of the coalescence 
process of two 9.0 nm disordered Ag NPs at 500 K. The g(r) labels correspond to the 
snapshots displayed in Fig-5. Insets display the initial (a) and the final (d) simulation 
snapshots.
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SM-5

Figure SM-5 The radial distribution function g(r) of the simulation of the coalescence 
process of a 4.5 and a 9.0 nm disordered Ag NPs at 500 K. The g(r) labels correspond 
to the snapshots displayed in Fig-6. Insets display the initial (a) and the final (c) 
simulation snapshots.
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