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ABSTRACT 

Craving has been considered one of the core features of addiction. It can be defined as the 

urge or conscious desire to use a drug elicited by the drug itself, drug-associated cues or 

stressors. Craving plays a major role in relapse, even after prolonged periods of abstinence, as 

well as in the maintenance of drug seeking in non-abstinent addicts. The circuitry of craving 

includes medial parts of the prefrontal cortex, ventral striatal zones, ventral tegmental area, 

ventral pallidum, and limbic regions. Interestingly, the cerebellum shows reciprocal loops 

with many of these areas. The cerebellum has been linked traditionally to motor functions but 

increasing evidence indicates that this part of the brain is also involved in functions related to 

cognition, prediction, learning, and memory. Moreover, the functional neuroimaging studies 

that have addressed the study of craving in humans repeatedly demonstrate cerebellar 

activation when craving is elicited by the presentation of drug-related cues. However, the role 

of cerebellar activity in these craving episodes remains unknown. Therefore, the main goal of 

this review is to provide a brief update on craving studies and the traditional neural basis of 

this phenomenon, and then discuss and propose a hypothesis for the function of the 

cerebellum in craving episodes. 

Keywords: Craving, cerebellum, memory, cue reactivity, prediction, expectations. 
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1. Introduction 

Craving is a very relevant concept in the addiction field as it has been hypothesized to 

underlie drug seeking and relapse in addicts (O'Brien et al., 1998). It has always referred to an 

urge or conscious desire to take a drug though such conceptualization has been a matter of 

debate. Indeed, there are some authors that consider that craving may also occur 

unconsciously (Miller & Gold, 1994; Berridge and Robinson, 1995). Despite this 

disagreement, the importance of pavlovian associations with craving was recognized from the 

very beginning (Wikler, 1948). It is now accepted that drug-associated stimuli evoke drug 

memories, triggering craving and relapse (Robinson and Berridge, 1993; Robbins et al., 2008; 

Pickens et al., 2011).  

Traditionally, craving has been associated with brain areas related to reward, motivation and 

memory, including prefrontal cortical areas (Grant et al., 1996); the striatum and ventral 

pallidum (Filbey et al., 2009; Wetherill et al., 2013); mesolimbic dopamine structures such as 

the ventral tegmental area (Goudriaan et al., 2013); and reward memory areas like the 

amygdala or the hippocampus (Kilts et al., 2001; Volkow et al., 2004).  

Addiction literature has not paid much attention to the cerebellum until recently (Miquel et 

al., 2009, 2016; Moulton et al., 2014).The cerebellum is a hindbrain structure that contains 

more neurons than the rest of the brain (Herculano-Houzel, 2009). This structure presents 

some organizational similarities with the cerebral cortex (Herrup, 2000).  During the last few 

decades, several findings have pointed to the possibility that other functions not linked to 

motor domains could require the cerebellum. Indeed, several studies have provided evidence 

of cerebellar involvement in some of the brain functions altered in addiction, such as memory 
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(Sacchetti et al., 2004), prediction (Blakemore and Sirigu, 2003), and executive control 

(Bellebaum and Daum, 2007; see Miquel et al., 2016 for a recent review). 

Animal studies show the cerebellum to be reciprocally interconnected with the brain areas 

traditionally related to addiction. As a matter of fact, the presence of dopaminergic synaptic 

components in the cerebellum of primates and rodents has been repeatedly demonstrated 

(Melchitzky and Lewis, 2000;	Carbo-Gas et al., 2014a). This finding is consistent with the 

observed reciprocal connections between the cerebellum and the ventral tegmental area 

(VTA), the main source of dopamine in the mesocorticolimbic system (Ikai et al., 1992). 

Striatal projections to the cerebellum have also been documented by means of virus tracing 

studies (Bostan et al., 2010). Limbic zones also seem to be functionally connected to the 

cerebellum. For example, basolateral amygdala inactivation prevents learning-induced 

cerebellar LTP (Zhu et al., 2011). Moreover, it is clear that the cerebellum is functionally 

associated with the prefrontal cortex (Kelly and Strick, 2003), as well as other motor and 

associative cortices (see Bostan et al., 2013; D’Angelo and Casali, 2013 for a review). Animal 

findings regarding cerebellar-cortical and cerebellar-subcortical connections have been 

confirmed in humans by neuroimaging studies. Notably, functional magnetic resonance 

imaging studies, including resting-state and task-related functional connectivity confirm 

cerebellar relationships between the cortical and subcortical areas involved in addiction, and 

specifically in craving. Concretely, co-activations and functional connections between 

cerebellum and cortical structures, such as dorsolateral prefrontal cortex (Habas et al., 2009; 

Leutgeb et al., 2016; Moulton et al., 2011; Sang et al., 2012), orbitofrontal cortex (Addis et 

al., 2016; Habas et al., 2009; Leutgeb et al., 2016), anterior cingulate cortex (Addis et al., 

2016; Moulton et al., 2011; Sang et al., 2012; Zeng et al., 2012), insula (Addis et al., 2016; 

Habas et al., 2009; Moulton et al., 2011; Sang et al, 2012), and inferior frontal gyrus (Addis et 

Con formato: Fuente:Sin Negrita
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al., 2016; Moulton et al., 2011; Tomasi and Volkow, 2011) have been reported. Other 

subcortical structures such as amygdala (Leutgeb et al., 2016; Sang et al., 2012; Zeng et al., 

2012), hippocampus (Onuki et al., 2015; Sang et al., 2012; Zeng et al., 2012), ventral 

tegmental area (Carnell et al., 2014; Etkin et al., 2009; Kline et al, 2016; Kwon et al., 2014),  

dorsal striatum (Moulton et al., 2011; Sang et al., 2012; Tomasi and Volkow, 2011), and 

ventral striatum (Cauda et al., 2011; Cservenka et al., 2014; Koehler et al., 2013) also have 

demonstrated to be connected to the cerebellum.  

In addition, there is growing evidence that addictive drugs induce direct effects on cerebellar 

functioning and plasticity. As an example, alcohol modifies Purkinje neuron firing rates 

(Freund and Palmer, 1997); and chronic exposure to this drug increases AMPA-dependent 

calcium signalling in these cells (Netzeband et al., 1999). It is noteworthy that cerebellar 

degeneration is a common feature in long-term alcoholics and has been linked to the 

emotional and cognitive deficits that these patients suffer (Fitzpatrick et al., 2008). 

Psychostimulants also affect the cerebellum. It has been demonstrated that cocaine-induced 

sensitization has a big impact on cerebellar plasticity, altering the balance of plasticity-related 

proteins (Vazquez-Sanroman et al., 2015ab). The direction of plasticity changes depends on 

the length of the withdrawal period that precedes a new drug exposure (Vazquez-Sanroman et 

al., 2015ab). Also, cocaine-induced preference conditioning selectively increases c-FOS 

expression (an early transcription factor which acts as a marker of neuronal activity) in the 

cerebellar cortex (Carbo-Gas et al., 2014ab).  

Numerous human neuroimaging studies have demonstrated activation in the cerebellum 

during the presentation of drug-associated cues (Anderson et al., 2006; Filbey et al., 2009; 

Grant et al., 1996). In almost every study, craving was elicited by the presentation of the cue. 
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Nevertheless, in the absence of causal studies about the cerebellum’s role in drug addiction, 

the functional significance of such cerebellar activation in craving episodes is unknown.   

Given the aforementioned findings, the main goal of the present work is to review evidence 

about the involvement of the cerebellum in craving and to propose a hypothesis for its role. 

First, we present the current neurobiological model of craving. Then, we discuss craving-

eliciting studies in which the activation of the cerebellum was shown. Finally, we suggest a 

working hypothesis to clarify the function cerebellar activation might play in the disturbing 

experience that craving assumes for an addict. We hope that the present review will help 

guide future experimental approaches to the subject. 

2. The circuitry of craving 

Research in both clinical and preclinical fields has provided knowledge about the brain areas 

and circuits that underlie the experience of craving.  The reinstatement/relapse models have 

been the major contributors to elucidating the brain areas involved in animal craving. These 

models, which are able to elicit craving-like behaviors after the extinction of drug seeking in 

experimental animals, appear valid because the same stimuli that elicit craving-like behaviors 

in animals (Spanagel et al., 1998, Sanchis-Segura et al., 2006), also provoke craving in 

humans (Jaffe et al., 1989; Sinha et al., 1999; Grant et al., 1996). Basically, findings about the 

underlying circuitry parallel those derived from human research (see Bossert et al., 2013 for a 

recent review).  

Brain correlates of human craving have been studied using the cue reactivity paradigm. Drug 

addicts are presented with drug-related cues under abstinence, while both craving levels and 

neurobiological parameters are evaluated (Carter and Tiffany, 1999). The frontal zones 

involved in craving seem to be the anterior cingulate cortex, orbitofrontal cortex, dorsolateral 

prefrontal cortex, and the inferior frontal gyrus (Grant et al., 1996; Bonson et al., 2002). The 
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anterior cingulate cortex, a brain area related to self-control (Tang et al., 2015) and to reward-

related cognitive processes (Shidara and Richmond, 2002) has been found to be active when 

drug-related cues are presented (Filbey et al., 2009; Myrick et al., 2004). Activity in the 

anterior cingulum seems to act as a predecessor of the onset of craving, being linked to the 

emotional response triggered by drug-related cues (Robbins et al., 2008; Wexler et al., 2001). 

Orbitofrontal cortex activity during craving episodes (Bonson et al., 2002) appears to be more 

related to salience attribution and expectation (Volkow and Baler, 2015). Also, consistent 

activation of the dorsolateral prefrontal cortex has been involved in the acquisition and 

storage of drug-conditioned memories, as well as in the formation of drug-related short-term 

working memory that drives behavior (Tang et al., 2015).  

When addicts are exposed to drug-related cues, the inferior frontal gyrus is also activated 

(Grant et al., 1996; Tomasi et al., 2014). This region exerts an inhibitory effect on drug 

seeking (Goldstein and Volkow, 2011; Tang et al., 2015). Importantly, craving suppression 

was inversely correlated with the activity of this prefrontal area (Volkow et al., 2010). 

Moreover, gray matter in this area correlated with striatal D2/D3 receptor availability in 

methamphetamine users (Morales et al., 2015).  

Subcortical activity during craving experience has been described in brain areas traditionally 

related to emotional memory and reward processing, including hippocampus (Volkow et al., 

2004), amygdala (Kilts et al., 2001), and ventral striatum (Filbey et al., 2009). Dorsal striatal 

activity, which can be associated with habitual behavior and its maintenance (Everitt and 

Robbins, 2016), has been reported to predict cocaine craving (Volkow et al., 2006). 

Furthermore, the activation of the insula encodes a prediction of the dynamic representation 

of interoceptive drug effects (such as the bitter taste or the local anaesthesia induced by 
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cocaine snorting) elicited by drug cues, which ultimately contributes partially to the conscious 

craving perception (Myrick et al., 2004; Naqvi and Bechara, 2009).  

Interestingly, activation of the cerebellum was a common finding in the aforementioned 

imaging studies (Anderson et al., 2006; Bonson et al., 2002; Filbey et al., 2009; Grant et al., 

1996; Kilts et al., 2001; Smolka et al., 2006; Tomasi et al., 2015). However, this region has 

been habitually overlooked probably because of the firmly established view of the cerebellum 

as a region exclusively committed to motor-related functions. Such highly ingrained views 

have hampered the conceptualization of this structure as a brain area with different functions 

from those classically described. In the forthcoming section, we will discuss these results in 

depth and suggest a working hypothesis for the role of the cerebellum during cue-induced 

craving.  

3. The cerebellum in craving 

The contemporary theories of addiction have raised the cardinal importance of drug-related 

conditioned cue memories to elicit conscious (craving) and unconscious (wanting) triggers of 

drug seeking (Robinson and Berridge, 1993). Interestingly, the vast majority of human 

imaging studies in which the cerebellum has been found to be active when craving is 

experienced were done by exposing addicts to drug-associated cues (Grant et al., 1996; 

Bonson et al., 2002; Kilts et al., 2001; Anderson et al., 2006; Filbey et al., 2009; Smolka et 

al., 2006; Tomasi et al., 2015). Similarly, animal research has demonstrated the selective 

activation of the cerebellum in rodents that express a preference towards cocaine-related cues 

(Carbo-Gas et al., 2014ab).  

To the best of our knowledge, the first report that pointed to the cerebellum as a putative part 

of the circuitry underlying drug-dependent memories and craving was published by Grant and 

colleagues in 1996. This was a 18-fluorodeoxyglucose positron emission tomography (PET) 

Con formato: Fuente:Sin Negrita
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study in which craving was elicited by presenting cocaine-related stimuli such as crack pipes, 

razorblades or actual cocaine plus a video in which the subject could see another person 

taking cocaine. Cerebellar activation when presenting the cocaine-related video and objects 

was prominently correlated with craving reports, although non-significant differences were 

found in such activation between cocaine abusers and control subjects. A subsequent study, 

which used a similar experimental setting but a PET scan with greater resolution, found 

significant differences in cerebellar activation in the posterior hemisphere, but no correlation 

with craving levels (Bonson et al., 2002).  Nevertheless, another fMRI study (Risinger et al., 

2005) showed again a correlation with craving scores, as well as with behavioral ratings of 

“high” and “rush”. Drug craving correlated with activity in the vermis (cerebellar culmen), 

whereas self-reports of “high” and “rush” were positively correlated with overlapping vermis 

zones but negatively with hemisphere activity. 

Regarding these data, one could think that cerebellar response might be more closely related 

to cocaine-induced positive affective states than to the motivation for drug seeking. 

Nevertheless, this conclusion was challenged by the substantial overlap in the cerebellum’s 

pattern of activation observed when patients were presented with cocaine-associated cues and 

when the same patients were exposed to anger-related stimuli (Kilts et al., 2001). Such an 

overlap was observed in the left hemisphere. The cues used in this study were personalized 

scripts built from patients’ reports of drug use and anger-related situations, which combined 

bodily sensations and the contextual details reported by the patients. Therefore, activity in the 

cerebellum during drug-related cue presentation cannot be exclusively linked to positive 

emotional states. 

In a recent study of cocaine abusers, cocaine-related videos elicited broad cerebellar 

activation of the posterior cerebellum including vermis and cerebellar hemispheres. Such 
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activation correlated with D2/D3 receptor availability in ventral and dorsal striatal zones 

(Tomasi et al., 2015), as well as with the valence attributed to the cues. These findings 

provide further evidence of functional relationships between the cerebellum and motivation-

related areas.  

Cerebellar responses have been shown to be independent of either stimulus-modality or drug 

specificity. Neuroimaging findings showed that presenting cocaine addicts with visual or 

auditory cues resulted in greater activity in the anterior and posterior vermis (Anderson et al., 

2006). In the same way, widespread activation of the vermis and cerebellar hemispheres was 

found when drug users were exposed to tactile marijuana cues (a pipe) (Filbey et al., 2009). 

Schneider and colleagues (2001) carried out a functional magnetic resonance imaging (fMRI) 

study in alcoholic patients and non-alcoholic matched controls in which they compared brain 

BOLD signals induced by an ethanol scent, before and after an antidepressant treatment. 

Imaging (fMRI) findings demonstrated greater activation of the vermis and hemispheres in 

alcoholics in response to the ethanol odor stimulation prior to the treatment. Olbrich et al. 

(2006) also used the smell of ethanol as a cue in a 15H20 PET study of alcoholic patients. This 

study showed significantly higher cerebellar blood flow in both the vermis and left 

hemisphere in alcoholics. Moreover, it is not only ethanol odor that is able to elicit craving 

and cerebellar activity. Presenting ethanol-related pictures to adolescent binge drinkers also 

promoted both craving and bilateral cerebellar activation including the vermis (Brumback et 

al., 2015).  

Similarly, the cerebellum of smokers showed higher levels of activation during the 

presentation of visual cues related to smoking paraphernalia or while watching images of 

other smokers (Smolka et al., 2006; McClernon et al., 2009). In this case, craving scores 
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correlated with the activity of a specific region in the vermis. Moreover, cerebellar response 

was observed under abstinence, but not in a satiated condition (McClernon et al., 2009).  

Additional evidence comes from opiate research. The presentation of heroin-related 

paraphernalia to addicts at different time points of withdrawal induced increased activity in 

the cerebellar vermis (Sell et al., 2000; Lou et al., 2012). Activation of the vermis was found 

in addicts that received methadone or abstinence-based treatment (Tabatabei-Jafari et al., 

2014). Furthermore, cerebellar activity might be a biomarker for heroin relapse. Indeed, 

heroin relapsers showed higher levels of activity in the vermis, especially the posterior part, 

compared to non-relapsers when heroin-related cues were presented (Li et al., 2014). 

Functional connectivity studies indicated increased connectivity between the cerebellum and 

several cortical zones in addicted patients presented with drug-related cues (Wang et al., 

2013). However, impairment in functional connectivity between frontal cortex, midbrain, 

anterior cingulate cortex and the vermis (Tomasi et al., 2010) and between cerebellum and 

nucleus accumbens has also been described (Froeliger et al., 2015). Remarkably, N-

acetylcysteine reversed such impairment and reduced craving scores (Froeliger et al., 2015). 

Additional studies suggest that the role of the cerebellum in processing reward-predicting 

cues seems to be shared with other compulsive-like disorders, such as binge eating disorder or 

obesity. Obese women showed higher functional connectivity between the midbrain/VTA and 

cerebellar hemispheres when they were exposed to highly caloric food cues (Carnell et al., 

2014). In a recent study from the same lab, binge eaters exhibited greater functional 

connectivity between the cerebellum and dorsal ACC during the presentation of food-related 

cues (Geliebter et al., 2016). Intriguingly, there is an overlap in the fMRI signal evoked by 

cocaine and food-related cues in the cerebellum, which suggests a general role of this region 

in the processing of conditioned reinforcing cues in people suffering from compulsive-like 



12 
 

disorders (Tomasi et al., 2015). It is feasible that brain reactivity to food cues in cocaine 

addicts could be mediated by the usual deficient nutritional conditions seen in these patients. 

Nevertheless, a recent fMRI study conducted in tobacco smokers also showed enhanced 

functional connectivity between the cerebellar vermis and the left supramarginal gyrus in 

smokers versus controls when they were presented with food cues (Garrison et al., 2016). 

Overall, these findings point to the cerebellum as part of the neural circuitry underlying 

abnormal reward reactivity in addicts or people with other types of compulsive-like disorders. 

Moreover, a recent meta-analysis (Noori et al., 2016) shows largely overlapping patterns of 

brain activation common to drug, food, sex and gambling cues including the cerebellum, 

which strongly supports the involvement of the cerebellum in motivation-related brain 

circuitry. 

Other brain function related to craving and addiction in which the cerebellum has been 

involved is salience. Salience could be described as the property of a stimulus that makes it 

differentially relevant from the others within an environment (Uddin, 2015). The attribution 

of salience to the surrounding environmental stimuli is an essential process for survival that 

allows individuals to perform adaptive behavioral responses to approach beneficial goals or 

avoid threatening ones (Borsook et al., 2013).  Of note, one of the most influential addiction 

theories posits that such disease is driven by the attribution of excessive incentive salience to 

drugs and drug-associated cues (Robinson and Berridge, 1993). Data showing cerebellar 

activations when salient stimuli or cues are presented no matter their valence point to the 

involvement of this structure in such process (Moulton et al., 2011; Killgore et al., 2003; 

Anderson et al., 2006). Moreover, resting-state functional connectivity studies have allowed 

to unravel a functional network termed as the “salience network”, which showed responsivity 

to salient events with independence of the sensory modality (Downar et al., 2002). Posterior 
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studies have confirmed functional connections between the cerebellum and the core 

components of this network, such as insula, anterior cingulate cortex and temporoparietal 

junction (Caulfield et al., 2015; Habas et al., 2009; Igelström et al., 2016; Moulton et al., 

2011; Shinn et al., 2015). 

4. The cerebellum’s role: craving or prediction? 

Overall, neuroimaging data have confirmed that the cerebellum is consistently activated when 

drug-associated cues are presented. However, there is no such consistency when correlational 

analysis between cerebellar activation and craving reports is performed. On the contrary, the 

available evidence does not point towards the cerebellum as being directly involved in the 

conscious experience of craving. Nevertheless, the possibility remains that several 

methodological factors could account for the variability found between studies. Variables 

such as the number of subjects, their age, gender, average amount of drug used, years of use, 

route of administration (especially in the case of cocaine) and duration of abstinence are not 

equivalent in the majority of studies. Differences in the neuroimaging techniques used, which 

include PET scans, fMRI scans and co-registrations of both images, might have also 

influenced the results. Despite this, drug-specific cerebellar activation does appear 

consistently, suggesting a role of the cerebellum in processing drug-related cues or in some 

cognitive process that takes place in parallel or very close in time to the conscious craving 

experience. In studies using visual cues, the vermis might be activated by smooth-pursuit eye 

movements (Tanabe et al., 2002). However, studies using other sensorial modalities also 

showed activation of the vermis (Schneider et al., 2001; Filbey et al., 2009).  Moreover, the 

activation of cerebellar regions has been described with almost every addictive drug 

(Anderson et al., 2006; Lou et al., 2012; Filbey et al., 2009; Schneider et al., 2001; Smolka et 
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al., 2006). Therefore, available evidence rules out the possibility that cue modality or drug-

specific brain modifications cause the cerebellar response.   

Expectation, a cognitive process that involves predictions of a particular future event or 

outcome before it occurs (Van de Meer and Redish, 2010), has been shown to act as a 

predictor of drug use (Stacy, 1995). It has also been proposed as being responsible for 

controlling craving and drug seeking elicited by drug-paired stimuli (Hogarth et al., 2007). 

Degrading expectations has been shown to be an effective method to extinguish cue-induced 

drug seeking in addicts (Hogarth et al., 2014). Remarkably, significant activation of the 

cerebellum was observed when subjects were faced with a cocaine-related interview that 

included recall of previous drug experiences (Wang et al., 1999). In the control interview, 

participants were asked to describe their genogram. These results shed light on the cerebellar 

role in drug-related memories given that although the control interview also required memory 

retrieval no significant changes in cerebellar activity were demonstrated. Moreover, the 

expected administration of methylphenidate evoked greater activation of the vermis and 

lateral cerebellum than unexpected administration (Volkow et al., 2003). When expected 

versus unexpected drug treatments were compared, a significant response was still found in 

the vermis and the thalamus, but the increase in the vermis could not be related to the 

reinforcing effects. Again, these findings point to a role for the cerebellum in prediction more 

than in the reward experience linked to drug administration.  

Therefore, a plausible explanation for the cerebellar response during cue-elicited craving 

might be the previously identified role of the cerebellum in prediction (Carbo-Gas et al., 

2014a; Miquel el al., 2016). This possibility is supported by theories on cerebellar function 

that involve this part of the brain in a generalized prediction process (Courchesne and Allen, 

1997; D’Angelo and Casali, 2013). Relationships between expectations and prediction 
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become evident when the former are defined as the latter. In fact, some authors consider 

expectations as one of the multiple prediction processes the brain accomplishes (Brown and 

Brüne, 2012). It is generally accepted that “forward controllers” perform prediction tasks. 

That is, brain circuits which are able to recruit forward models in order to accomplish these 

predictive functions. A forward model can be defined as an internal representation of the 

world that allows a subject to make predictions of the action outcomes (Van der Meer and 

Redish, 2010). The way it is supposed to work may consist of providing a representation of 

the functioning of a specific system in response to a particular environmental setting with 

specific demands using internal memory. Indeed, the cerebellum is thought to act as a forward 

controller (Ito, 2008). It is able to estimate the new state of the system regarding the 

environmental demands from the inputs of the current state. The predictive function of the 

cerebellum seems to be shared with several other brain cortical and subcortical areas, such as 

striatal zones (Tanaka et al., 2004), parietal lobes (Blakemore and Sirigu, 2003), and 

prefrontal cortices, especially the orbitofrontal cortex (Eppinger et al., 2015).  The cerebellum 

would be in charge of fast, unconscious predictions, whereas cortical areas would be 

responsible for conscious, slower ones (Blakemore and Sirigu, 2003). Accordingly, the 

cerebellum would be involved in unconscious predictions of drug availability triggered by the 

presentation of the cue while monitoring the internal state under withdrawal. It would then 

create an anticipatory virtual scenario (D’Angelo and Casali, 2013) that would be crucial for 

selecting the appropriate response. In this case, cue exposure would trigger a cerebellum-

generated prediction of drug availability. This prediction will activate the preparation of the 

brain networks that are required to trigger drug seeking and taking behaviors. This 

explanation might account for the lack of consistent correlations found between conscious 

craving reports and cerebellar activation, given that this task would take place at a 
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subconscious level. Furthermore, this working hypothesis might explain the specific cFos 

expression found in the cerebellum of rodents expressing a preference for a cocaine-paired 

odor cue that was not observed when the animal did not acquire this conditioned response 

(Carbo-Gas et al., 2014ab). A recent neuroimaging study that monitored brain activity during 

reward anticipation showed 4 active nodes encompassing broad cerebellar areas including the 

vermis (Jia et al., 2016). Nevertheless, the authors of the study did not propose a specific 

hypothesis for the cerebellar activity, as no correlation with performance in 

neuropsychological tests was found.  

As we reported in the previous section, the activation of the cerebellum was not uniform, and 

different patterns have been found. Indeed, very few studies have shown an involvement of 

the anterior cerebellum (Anderson et al., 2006; Filbey et al., 2009), whereas activation in the 

posterior cerebellum has been a common finding (Anderson et al., 2006; Bonson et al., 2002; 

Filbey et al., 2009; Kilts et al., 2001; Li et al., 2014; Olbrich et al., 2006; Schneider et al., 

2001; Tomasi et al., 2015; Wang et al., 2013), even in the few studies that show activity in the 

anterior lobe. This is consistent with the sensory vs cognitive/affective dichotomy proposed 

for the cerebellar anterior-posterior lobes (Stoodley and Schmahmann, 2010). Also, with the 

theories that conceive craving as basically a cognitive phenomenon (Tiffany, 1999; 

Kozlowski and Wilkinson, 1987). 

Within the posterior lobe, most studies report activation of the cerebellar vermis (Anderson et 

al., 2006; Filbey et al., 2009; Li et al., 2014; Schneider et al., 2001, Tomasi et al., 2015). This 

is consistent with the results coming from animal models, which show the cerebellar vermis is 

activated when animals are exposed to a drug-paired olfactory cue (Carbo-Gas et al., 2014ab). 

In fact, other non-drug rewards or their expectation, even aversive stimuli, have the capacity 

to evoke activity in the vermis (Casey et al., 2000; Martin-Solch et al., 2001; Miyagawa et al., 
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2007; Rogers et al., 1999). Additionally, there are several reports which indicate that the 

cerebellar vermis is connected with the dopamine circuitry. Studies in rodents (Carbo-Gas et 

al, 2014a, Ikai et al., 1992), monkeys (Melchitzky and Lewis, 2000), and humans (Anderson 

et al., 2006) are indicative of dopaminergic synaptic components and transmission in the 

cerebellum across species. This evidence is accompanied by the fact that the cerebellar vermis 

has demonstrated to be linked to limbic and reward-related structures, such as amygdala 

(Sang et al., 2012; Yu et al., 2016), hippocampus (Sang et al., 2012), as well as ventral 

tegmental area (Rogers et al., 2011; Etkin et al., 2009; Kline et al, 2016; Kwon et al., 2014) 

and both dorsal (Tomasi and Volkow, 2011) ventral striatal zones (Cauda et al., 2011; 

Koehler et al., 2013). Accordingly, this part of the cerebellum could be able to integrate the 

incoming information from all these brain areas, which would encode the primary emotional 

and motivational aspects of the cue, to guide the response. 

On the other hand, activity in the posterior cerebellar hemispheres has also been repeatedly 

found (Bonson et al., 2002; Filbey et al., 2009; Li et al., 2014; Risinger et al., 2005; Schneider 

et al., 2001; Tomasi et al., 2015). The cerebellar hemispheres seem to be involved in a wide 

variety of cognitive tasks, including language processing (Desmond et al., 1998; Frings et al., 

2006; McDermott et al., 2003; Tieleman et al., 2005), working memory (Desmond et al., 

1997; Salmi et al., 2010), and other executive functions (Schall et al., 2003; Blackwood et al., 

2004). Remarkably, the posterior cerebellar hemispheres are functionally connected to 

different areas within the prefrontal cortices (Addis et al., 2016; Habas et al., 2009; O’Reilly 

et al., 2009). Moreover, like the prefrontal cortices, the lateral regions of cerebellar 

hemispheres are the most recent parts to evolve (Ito, 2008). Hence, it is likely that the most 

recently evolved parts of the brain are responsible for processing aspects related to specialized 

higher order cognitive functions involved in craving, such as interpretation of the cue, 
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conscious memory processes or exerting control over craving itself or drug seeking behavior. 

In this case, and given that the different cerebellar areas are thought to perform a common 

computational function (D’Angelo and Casali, 2013), the cerebellar hemispheres could also 

provide a quick integration of the incoming, more cognitive information and, together with 

the integration of emotional and motivational aspects of the cue performed by the cerebellar 

vermis, would be able to provide the aforementioned prediction. 

 Still, this remains a hypothesis that needs to be tested and further studies are required to shed 

light on the issue. For instance, to the best of our knowledge there have been no animal 

experiments assessing the role of the cerebellum in cue- or drug-induced reinstatement, and 

thus reversible inactivation of cerebellar zones before the reinstatement test are recommended 

to provide causal evidence on the role of the cerebellum in the neurobiology of craving. To 

test the hypothesis that cerebellar activity reflects the functioning of a forward model that 

leads to predictions and expectations of drug availability, additional human imaging studies 

would be useful as well. Studies combining temporary modifications of cerebellar activity by 

means of transcranial magnetic stimulation together with masked and unmasked drug-related 

cue exposure would also be useful to assess the role of the cerebellum in these paradigms. 

Presentation of drug-related cues below the awareness threshold while monitoring cerebellar 

activity would also be useful to further verify this hypothesis. Similarly, an extinction 

experiment re-exposing subjects to the same cue setting repeatedly would allow the 

cerebellum’s function in drug-induced memories to be elucidated. It is assumed that forward 

models are able to adapt to changing environmental demands (D’Angelo and Casali, 2013). 

Therefore, repeated exposure to the same cue setting without receiving the drug would affect 

the described activation pattern in the cerebellum. If this were the case, deactivation of the 

cerebellum should be found when not predicting the drug as available in that setting. It is 
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possible, however, that cerebellar activity might persist with different activity patterns, given 

that some recent studies have pointed to a role for the cerebellum in extinction learning 

(Kattoor et al., 2014; Utz et al., 2015).  

In conclusion, craving is a state that every addict has experienced and that contributes to the 

maintenance of drug seeking and taking behavior as well as to relapse.  The cerebellar 

activation found in cue reactivity paradigms might involve prior processing of the conscious 

craving experience that implies the use of drug-induced cue memories to recruit forward 

models which lead to unconscious prediction of drug as available. This prediction would then 

lead to expectations of drug availability under the control of inferior medial prefrontal 

regions. Ultimately, they would be used to prepare the organism to perform the necessary 

actions to ensure drug taking. Characterization of the neural basis of this prediction process 

would also be helpful in order to develop strategies to block cue-induced expectation of drug 

availability by reducing the brain activation accompanying it, which may lead to a new 

therapeutic option to treat addictive disorders. 
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