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INTRODUCTION

The term CAGD (Computer Aided Geometric Design) was coined by R Barn-

hill and R. Riesenfeld in 1974 when they organized a conference on that topic

at the University of Utah. This concept deals with the mathematical descrip-

tion of shape for use in computer graphics, numerical analysis, approximation

theory, data structures and computer algebra. Renaissance naval architects in

Italy were the firsts to use drafting techniques that involved conic sections. These

techniques were refined through the centuries, culminating in the use of B-splines.

At the end of the last century, CAGD focused its study of surfaces mainly

on the theory of rectangular surface or tensor product patches, introduced by

Coons and Bézier in the sixties.

This work is divided in two different parts. The first part is dedicated to a

review in rectangular Bézier surfaces. Given the set of points P = {Pi,j} ∈ R3,

where 0 ≤ i ≤ m and 0 ≤ j ≤ n, the rectangular Bézier surface of degree

n,m associated to P is defined as the polynomial surface given by −→x (u, v) :

[0, 1]× [0, 1]→ R3,

−→x (u, v) =
m∑
i=0

n∑
j=0

Bm
i (u)Bn

j (v)Pi,j.

The set of points P is called the control net of the Bézier surface and Bn
i (t) =(

n
i

)
ti(1− t)n−i is the ith Bernstein polynomial of degree n.

Figure 1: Example of Bézier surface

In [1], [3], [8], [9] and [10] the authors studied different methods to approach

the rectangular Bézier surface of minimal area among all other Bézier surfaces

with the same boundary curves.
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The second part of the work is dedicated to the study of minimal surfaces

for B-splines. The Bézier representation of surfaces has a main disadvantage,

the number of control points is directly related with the degree. Therefore, to

increase the complexity of the shape of the surface by adding control points

requires increasing the degree of the surface. This disadvantage is remedied with

the introduction of the B-spline (basis spline) representation.

A B-spline surface is surface defined by a set of control points {Pi,j}n,mi,j=0 and

two knot vectors U = (u0, u1, . . . , un−1, un, un+1, . . . , un+k), V = (v0, v1, . . . , vm−1,

vm, vm+1, . . . , vm+l) associated to each parameter u and v where ui ≤ ui+1 and

vj ≤ vj+1. The corresponding B-spline surface is given by

−→x (u, v) =
n∑
i=0

m∑
j=0

Ni,k(u)Nj,l(v)Pi,j,

where

Ni,1(t) =

{
1, for ti ≤ t ≤ ti+1,

0, otherwise

for k = 1, and

Ni,k(t) =
t− ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t
ti+k − ti+1

Ni+1,k−1(t),

for k > 1 and i = 0, 1, . . . , n.

Figure 2: Bicuadratic B-spline surface

More than one hundred years ago, one of the most famous problems in Geom-

etry was the Plateau problem. The problem of finding a surface that minimizes

the area with prescribed border was called the Plateau problem, after the Belgian

researcher Joseph-Antoine Ferdinand Plateau (1801-1883). When trying to solve

the problem one has to minimize the area functional, regrettably this functional
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is highly nonlinear. This is one of the reasons that left the problem unsolved for

more than a century. It was in 1931 when Douglas solved the problem by replac-

ing the area functional by the Dirichlet functional which was easier to manage

and has the same extremal under isothermal conditions.

In the case of Bézier surfaces, which are polynomial surfaces, it is possible to

state the same problem (see [8]): given the border, or equivalently the boundary

control points, the Plateau-Bézier problem consists on finding the inner control

points in such a way that the resulting Bézier surface is of minimal area among

all other Bézier surfaces with the same boundary control points.

The different methods we have studied throughout this notes to approach a

solution to the Plateau-Bézier problem can be classified in three categories:

1. Functional minimization: Given the boundary curves, we determine the

surface that minimizes some functionals among all the polynomial surfaces

with that given boundary. We have considered two functionals: the Dirich-

let functional and the Biharmonic functional. We conduct our study in

terms of Bézier surfaces, and these functionals, restricted to the space of

polynomials, turn into functions of the control points. Thus, the extremal

of a functional I among all rectangular Bézier surfaces can be computed

as the minimum of the real function

P → I(−→xP),

−→x P being the rectangular Bézier patch associated to the control net P .

2. PDE surfaces: A rectangular Bézier surface satisfying a partial differential

equation can be determined given some of its control points. The minimum

set of prescribed control points depends on the PDE under study, mainly

on the order of the PDE. In this notes we study the generation of rectan-

gular Bézier surfaces satisfying the Laplace equation and the biharmonic

equation. In the case of harmonic Bézier surfaces two boundary conditions

were required to construct the surface while for biharmonic Bézier surfaces

four boundary curves were needed as initial data.

3. Masks: Another way of building surfaces is by means of masks. A mask

is a set of coefficients that define any control point of a Bézier surface in
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terms of its neighbouring control points. Thus, the whole control net is

obtained as a solution of a linear system. The use of masks has its origin

in numerical methods to discretize and solve differential equations.

Let us introduce our work with a little more detail.

In the first chapter we introduce the concepts we shall use through the notes.

In Chapter 2, we study the way to generate harmonic surfaces given some

of their control points as initial data. Harmonic surfaces are the PDE surfaces

obtained as a solution of the equation ∆−→x (u, v) = 0 where ∆ denotes the har-

monic operator otherwise known as the Laplacian. Harmonic surfaces, which

have found their way into various application areas of CAGD such as surface

design, geometric mesh smoothing and fairing, are moreover related to surfaces

minimizing the area: an isothermal parametric surface is minimal if and only

if it is harmonic. The end of the chapter is dedicated to see some examples of

harmonic surfaces using B-splines.

Chapter 3 is dedicated to the study of biharmonic surfaces. A biharmonic

surface satisfies the PDE ∆2−→x (u, v) = 0 where ∆2 is the bilaplacian operator.

The term thin plate problem, which is used to refer to the biharmonic boundary

problem, comes from the physical analogy involving the bending of a thin sheet

of metal. In this chapter we shall see that any biharmonic rectangular Bézier

surface is fully determined by the boundary control points, that is, four boundary

curves. The end of the chapter is dedicated to see some results in biharmonic

surfaces using B-splines.

The last chapter is dedicated to the study of the Dirichlet functional and

the use of masks. As we have said before, the Dirichlet functional was used

to solve the Plateau problem. In this chapter we study the extremal of the

Dirichlet functional for rectangular Bézier surfaces and compare the obtained

results with harmonic and biharmonic surfaces and with surfaces associated to

different masks. Finally, we study the extremal of the Dirichlet functional for

B-splines.
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Chapter 1

Curves and surfaces in CAGD

For Computer Aided Geometric Design (CAGD) it is convenient to use sim-

ple representations of curves and surfaces involving elementary operations, as

addition and multiplication. Therefore, the most reasonable candidate at first

sight are the polynomial parameterizations. As it is well known, we can represent

polynomial curves of degree n as

c(t) = a0 + a1t+ . . .+ ant
n, t ∈ [0, 1],

where each coefficient ai is a point in the plane or space, depending on the

curve is flat or spatial. For example, the curve c(t) : [0, 1] → R2 of coefficients

a0 = (0, 1), a1 = (1, 0) and a2 = (1, 1) is parameterized by

c(t) = a0 + a1t+ a2t
2 = (0, 1) + (1, 0)t+ (1, 1)t2 = (t+ t2, t2 + 1).

This representation has the advantage of simplicity, however, it is not very prac-

tical. The interpretation of the coefficients is referred to the values of the curve in

the neighborhood of the starting point c(0) = a0. In fact, they are the derivatives

of the parametrization for t = 0 :

ai =
c(i)(0)

i!
.

Thereby it does not give us a clear idea of the overall behavior of the curve.

As it is common in CAGD, if we observe the curve from another point of view,

for example after a rotation, transformation or a deformation, the behavior of the

coefficients is varied. If we make a translation by a vector v, the coefficient a0 is

moved by the same vector, whereas the other coefficients are not affected. But if

we make a rotation centered at a0 occurs just the contrary, all coefficients except

9
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on a0, experience a rotation. As we see, the behavior of the coefficients under

affine applications is complex, because of all coefficients except on a0 (which is

a point) are vectors, since they are derivatives of the parametrization.

Therefore, it seems appropriate to use another polynomial basis where the

coefficients of the curve can be computed easily after an affine map.

1.1 The Bézier curves

1.1.1 The Bernstein polynomials

A different basis for polynomials of degree n is provided by the Bernstein

polynomials. These polynomials were used in approximation theory to demon-

strate the Weierstrass theorem of uniform approximation of continuous functions

by polynomials. Its construction is very simple from the Newton’s binomial:

(a+ b)n =
n∑
i=0

(
n

i

)
aibn−i,

where (
n

i

)
=

{
n!

i!(n−i)! , 0 ≤ i ≤ n,

0, otherwise.

Taking a = t and b = 1− t, we obtain:

1 = (t+ 1− t)n =
n∑
i=0

(
n

i

)
ti(1− t)n−i =

n∑
i=0

Bn
i (t),

where Bn
i (t) is the ith Bernstein polynomial of degree n.

Example 1.1.1 When n = 0 there is only one Bernstein polynomial:

B0
0(t) = 1 :

When n = 1 there are two,

B1
0(t) = 1− t, B1

1(t) = t :

When n = 2, the Bernstein polynomials are:

B2
0(t) = 1− 2t+ t2, B2

1(t) = 2t− 2t2, B2
2(t) = t2.

Let us have a look to some properties of the Bernstein polynomials:
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1. Polynomial basis: The set of Bernstein polynomials of degree n given by

{Bn
0 (t), Bn

1 (t), . . . , Bn
n(t)} is a basis of the vector space of polynomials of

degree ≤ n.

2. Recursion: Bernstein’s polynomials verify the following recursion formula:

Bn
i (t) = (1− t)Bn−1

i (t) + tBn−1
i−1 (t),

with B0
0(t) ≡ 1 and Bn

j (t) ≡ 0 when j /∈ {0, . . . , n}.

3. Partition of unity: As we have seen before, for n ≥ 0 and t ∈ [0, 1] :

n∑
i=0

Bn
i (t) = 1.

4. Non-negativity: Each Bernstein polynomial is non-negative within the in-

terval [0, 1]. For all t ∈ [0, 1],

Bn
i (t) ∈ [0, 1].

5. Symmetry: The next relation follows directly from the definition:

Bn
i (t) = Bn

n−i(1− t).

6. Interval end conditions:

Bn
i (0) = δ0

i , and Bn
i (1) = δni ,

for all i ∈ N, where δji is the Kronecker’s Delta function.

7. Area under the curve: The area under any Bernstein polynomial in the

interval [0, 1] is always the same for all polynomials of the same degree:∫ 1

0

Bn
i (t) =

1

n+ 1
,

for all i ∈ {0, . . . , n}.

8. Derivatives:
d

dt
Bn
i (t) = n(Bn−1

i−1 (t)−Bn−1
i (t)),

for any n, i ∈ N and having in mind that Bn
−1(t) = Bn−1

n (t) = 0.
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9. The polynomial Bn
i (t) has only one maximum in [0, 1], and this maximum

occurs at t = i/n.

10. Linear precision: The Bernstein polynomials satisfy:

n∑
i=0

i

n
Bn
i (t) = t.

Finally, let us see how a Bernstein polynomial can be written as a linear combi-

nation of Bernstein polynomials of higher degree.

Lemma 1.1.2 For any n > 0, k ∈ {0, . . . , n} and i ∈ {0, . . . , n − k} we have

that

Bn−k
i (t) =

k∑
l=0

(
n−i−l
k−l

)(
i+l
l

)(
n
k

) Bn
i+l(t).

Notice that, as we have said at the beginning of the chapter, we can write a

curve in the usual polynomial parameterization, so then it should be possible to

change the basis from Bernstein’s polynomial basis to the usual basis.

Lemma 1.1.3 For each n > 0 and i ∈ {0, 1, . . . , n} :

Bn
i (t) =

n−i∑
k=0

(−1)k
(
n

i

)(
n− i
k

)
tk+i.

Conversely we have the following Lemma.

Lemma 1.1.4 For each n > 0 and i ∈ {0, 1, . . . , n} :

ti =
n−i∑
k=0

(
k+i
i

)(
n
i

) Bn
i+k(t).

1.1.2 Definition and properties of the Bézier curves

In the following subsection we shall work in the plane, R2, but all definitions

and properties can be immediately generalized to higher dimensions.

Definition 1.1.5 (DeCasteljau’s algorithm) Given n+1 points P0, . . . , Pn ∈ R2,

we define the associated Bézier curve as α : [0, 1] → R2 given by α(t) = P n
0 (t),

where

P 0
i (t) = Pi

P r
i (t) = (1− t)P r−1

i (t) + tP r−1
i+1 (t),
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for r = 1, . . . , n and i = 0, . . . , n− r.

We shall call control polygon the polygon P given by the points P0, . . . , Pn and

these points are called control points.

The intermediate points in the DeCasteljau’s algorithm, P r
i (t), can be directly

obtained as:

P r
i (t) =

r∑
j=0

Br
j (t)Pi+j.

P0

P 1
0

P 2
0 P 3

0

P 2
1

P1 P 1
1 P2

P 1
2

P3

Figure 1.1: A cubic Bézier curve generated by DeCasteljau’s algorithm

Definition 1.1.6 Let α(t) be the Bézier curve defined by the control points

P0, . . . , Pn, then, for all t ∈ [0, 1],

α(t) =
n∑
i=0

Bn
i (t)Pi = Bn

0 (t)P0 + . . . Bn
n(t)Pn.

Notice that this definition is equivalent to the Casteljau’s algorithm when r = n.

As the Bézier curve is uniquely defined by its control polygon, sometimes it

is denoted by α[P0, P1, . . . , Pn](t).

Proposition 1.1.7 Let α[P0, P1, . . . , Pn](t) be a Bézier curve and let t0 ∈ [0, 1].

The arcs of the curve α, αe = α|[0,t0] and αd = α|[t0,1] are again Bézier curves.

The following properties characterize Bézier curves and most of them are conse-

quences of corresponding properties of Bernstein polynomials.
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1. Endpoint interpolation: The curve passes through the polygon endpoints:

P (0) = P0 and P (1) = Pn.

2. Symmetry: The polygons P0, P1, . . . , Pn and Pn, Pn−1, . . . , P0 describe the

same curve in different direction:

α[P0, P1, . . . , Pn](t) = α[Pn, Pn−1, . . . , P0](1− t),

for all t ∈ R.

3. Affine invariance: If an affine map, φ, is applied to the control polygon,

then the curve is mapped by the same map. More precisely

α[φ(P0), φ(P1), . . . , φ(Pn)](t) = φ(α[P0, P1, . . . , Pn](t)).

This is a consequence of the fact that linear interpolation is preserved by

affine maps.

4. Convex hull: The Bézier curve is always included in the convex hull of the

control points.

5. Variation diminishing: If a straight line intersects a planar Bézier polygon

m times, then the line can intersect the Bézier curve at most m times. For

higher dimensions, the straight line should be substituted by hipersube-

space.

6. Linear precision: If the control points {Pi}n−1
i=0 are evenly spaced on the

straight line between P0 and Pn, then the degree n Bézier curve is the

linear interpolant between P0 and Pn.

7. Pseudo-local control: Suppose we move the ith control point. The curve

changes the most in the vicinity of t = i/n. In fact, all the points on the

curve move in a direction parallel to the vector formed by the difference of

the old and new control point.

Let us see some properties related with derivatives of Bézier curves.
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Proposition 1.1.8 The derivative of a Bézier curve α[P0, P1, . . . , Pn](t) with

control points P0, . . . , Pn is again a Bézier curve of degree n − 1 with control

points n∆P0, . . . , n∆Pn−1, where ∆Pi = Pi+1 − Pi. This is,

α′(t) = n

n−1∑
i=0

Bn−1
i (t)∆Pi.

In particular, thanks to the endpoint interpolation property, we get

α′(0) = n∆P0 and α′(1) = n∆Pn−1.

8. Tangent lines at endpoints: The tangent lines at the endpoints of a Bézier

curve with control polygon P0, . . . , Pn, are determined by the vectors ∆P0

and ∆Pn−1.

In general, to compute higher order derivatives, we have to apply the previous

result iteratively:

α(r)(t) =
n!

(n− r)!

n−r∑
i=0

Bn−r
i (t)∆rPi,

where ∆rPi = ∆(∆r−1Pi).

Finally, let us see a lemma which provides us a method of basis conversion.

Lemma 1.1.9 Let α[P0, . . . , Pn](t) be a Bézier curve, then

α[P0, . . . , Pn](t) =
n∑
i=0

Qit
i,

where

Qi =

(
n

i

)
∆iP0,

for all i = 0, . . . , n.

1.2 B-spline curves

The Bézier representation of curves has two main disadvantages. First, the

number of control points is directly related with the degree. Therefore, to in-

crease the complexity of the shape of the curve by adding control points requires

increasing the degree of the curve. Second, changing any control point affects the

entire curve or surface, making design of specific sections very difficult. These
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disadvantages are remedied with the introduction of the B-spline (basis spline)

representation.

B-spline curves consists of many polynomial pieces and the system of formu-

lating a B-spline curve has the advantage that fewer control points are needed

for definition compared to the usual Bézier curves. This implies that B-spline

curves reduce calculation time when we are working with a computer.

An order k B-spline is formed by joining several pieces of polynomials of

degree k − 1 with at most Ck−2 continuity at the end points. The knot vector is

defined by

T = (t0, t1, . . . , tn−1, tn, tn+1, . . . , tn+k),

t0 ≤ t1 ≤ . . . ≤ tn+k and determines the parametrization of the basis function.

The values ti are called knots of the B-spline.

Given a knot vector T, the associated B-spline basis functions, Ni,k(t), are

defined as:

Ni,1(t) =

{
1, for ti ≤ t ≤ ti+1,

0, otherwise

for k = 1, and

Ni,k(t) =
t− ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t
ti+k − ti+1

Ni+1,k−1(t), (1.2.1)

for k > 1 and i = 0, 1, . . . , n. This equations have the following properties:

1. Positivity: Ni,k(t) > 0, for t ∈ [ti, ti+k] and Ni,k(t) = 0 otherwise.

2. Partition of unity:
∑n

i=0 Ni,k(t) = 1, for t ∈ [tk−1, tn+1].

3. Continuity: Ni,k(t) has Ck−2 continuity at each simple knot ti.

4. If ti = ti+k then Ni,k ≡ 0.

The derivative of the B-spline basis function is given by:

dNi,k(t)

dt
=

k − 1

ti+k−1 − ti
Ni,k−1(t)− k − 1

ti+k − ti+1

Ni+1,k−1(t).

The following theorem shows B-splines are a generalization of the Bernstein’s

polynomials.

Theorem 1.2.1 Given a knot vector of 2k knots T = (0, .(k)., 0, 1, .(k)., 1), then

the k order B-splines coincide with the Bernstein’s polynomial Bk−1
i (t) of degree

k − 1.
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Definition 1.2.2 Given the knot vector T = (t0, t1, . . . , tn−1, tn, tn+1, . . . , tn+k),

and {Di}ni=0 be the control points, a B-spline curve of order k and knot vector T

is defined as

α(t) =
n∑
i=0

Ni,k(t)Di,

for n ≥ k − 1 and ∀t ∈ [tk−1, tn+1]. In this context the control points are called

de Boor points.

The influence of the de Boor points is a consequence of the B-spline definition

and it can be determined by the following lemma.

Lemma 1.2.3 Let α(t) =
∑n

i=0 Ni,k(t)Di be a B-spline curve with associated

knot vector T = (t0, t1, . . . , tn−1, tn, tn+1, . . . , tn+k). Then the De Boor point Dj

has only influence on α(t) for tj < t < tj+k. In fact, the associated curve to a

given parameter t such that tr < t < tr+1 is completely determined by the de Boor

points Dr−(k−1), . . . , Dr.

The following image shows a cuadratic B-spline curve of control points (1, 2),

(1.5, 3), (3, 0), (4, 3.5), (5, 3) and knot vector T = (0, 0, 0, 1, 2, 3, 3, 3).

Figure 1.2: Cuadratic B-spline curve

A B-spline curve has the following properties:

1. Geometry invariance property: Partition of unity property of the B-spline

assures the invariance of the shape of the B-spline curve under translation

and rotation.
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2. End points geometric property: B-spline curves with knot vector of the

form

T = (t0, t1, . . . , tk−1︸ ︷︷ ︸
k equal knots

, tk, tk+1, . . . , tn−1, tn︸ ︷︷ ︸
n− k + 1 internal knots

, tn+1, tn+2, . . . , tn+k︸ ︷︷ ︸
k equal knots

),

are tangent to control polygon at their endpoints. In this case, the curve

is called clamped B-spline curve.

3. B-spline to Bézier property: By the previous property, it can be seen that

a Bézier curve of order k is a B-spline curve with no internal knots and the

end knots repeated k times. The knot vector is thus

T = (t0, t1, . . . , tk−1︸ ︷︷ ︸
k equal knots

, tn+1, tn+2, . . . , tn+k︸ ︷︷ ︸
k equal knots

),

where n+ k + 1 = 2k or n = k − 1.

In general, the derivative of a B-spline curve is again a new B-spline curve.

The first derivative of a B-spline curve is given by:

α′(t) = (k − 1)
n∑
i=1

Di −Di−1

ti+k−1 − ti
Ni,k−1(t).

To compute higher order derivatives, we apply the following formula:

α(j)(t) = (k − 1)(k − 2) . . . (k − j)
∑
i

D
[j]
i Ni,k−j(t),

where

D
[j]
i =

 Di, j = 0,
D[j−1]−D[j−1]

i−1

ti+k−j−ti
, j > 0.

1.3 The Bézier surfaces

The construction of a Bézier surface is very similar to the case of curves.

In fact, many of the tools and algorithms that we developed for the curves will

continue to be useful for surfaces.

As we have seen in the previous section a Bézier curve of control points

P0, P1, . . . , Pn can be defined as:

α(u) =
n∑
i=0

Bn
i (u)Pi.
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Now, if we allow the control points move throughout parameterized curves Pi(v),

α(u, v) =
n∑
i=0

Bn
i (u)Pi(v),

then the Bézier curves α(u, v0) of control points P0(v0), P1(v0), . . . , Pn(v0) de-

scribe a surface in R3. As it seems natural, we will interest that the vertices

Pi(v) move along Bézier curves of control points {Pi,0, . . . , Pi,n}.
As it occurs in the case of Bézier curves, there are two forms of Bézier surfaces.

Let us see the DeCasteljau’s algorithm for Bézier surfaces.

Definition 1.3.1 Given the points P = {Pi,j}0≤i,j≤n and the parameters (u, v) ∈
R3, we define

P r
i,j(u, v) = [1− u, u]

[
P r−1
i,j (u, v) P r−1

i,j+1(u, v)

P r−1
i+1,j(u, v) P r−1

i+1,j+1(u, v)

][
1− v
v

]
,

where P 0
i,j = Pi,j, r = 1, . . . , n and i, j = 0, . . . , n − r. Then, the Bézier surface

associated to {Pi,j}ni,j=0 is given by −→x (u, v) : [0, 1] × [0, 1] → R3, −→x (u, v) =

P n
0,0(u, v). The set of points P is called the control net of the Bézier surface.

The disadvantage of this algorithm is that the polynomial surface has always the

same degree n in both variables u and v. If we want to work with polynomial

surfaces varying degrees in each variable, we must introduce the notion of tensor

product of Bézier curves. This is the second possibility of definition of Bézier

surfaces.

Definition 1.3.2 Given the set of points P = {Pi,j}, where 0 ≤ i ≤ m and

0 ≤ j ≤ n, we define the Bézier surface associated to P as the parameterized

surface given by −→x (u, v) : [0, 1]× [0, 1]→ R3,

−→x (u, v) =
m∑
i=0

n∑
j=0

Bm
i (u)Bn

j (v)Pi,j.

The set of points P is called the control net of the Bézier surface.

Notice that this definition is equivalent to the Casteljau’s algorithm when m = n.

In the same way as Bézier curves, it is possible to represent a Bézier surface

by using as a basis the Bernstein polynomials or the usual basis.
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Figure 1.3: Example of a (n,m) = (2, 2) Bézier surface

Lemma 1.3.3 Let −→x (u, v) be a Bézier surface with control net {P n
k,`}nk,`=0 , then

−→x (u, v) =
n∑

k,`=0

Bn
k (u)Bn

` (v)P n
k,` =

n∑
i,j=0

ai,j
i!j!

uivj,

where ai,j = i!j!
(
n
i

)(
n
j

)
∆i,jP0,0.

Let us remark that ∆i,j denotes the difference operator

∆1,0Pi,j = Pi+1,j − Pi,j ∆0,1Pi,j = Pi,j+1 − Pi,j
∆i,jPi,j = ∆i−1,j(∆1,0Pi,j) ∆i,jPi,j = ∆i,j−1(∆0,1Pi,j).

The change from usual basis to Bézier control points is performed thanks to the

following lemma.

Lemma 1.3.4 Let −→x (u, v) =
∑n

i,j=0
ai,j
i!j!
uivj be a polynomial patch of degree ≤ n,

then as a Bézier patch its control points are

Pk,` =
k∑
s=0

∑̀
t=0

(
k
s

)(
`
t

)(
n
s

)(
n
t

) as,t
s!t!

,

for all k, ` = 0, . . . , n.

Let us see some properties that Bézier surfaces satisfy:

1. Bézier surfaces are polynomial surfaces.

2. Bézier surfaces are invariants under affine maps.
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3. As it occurs in Bézier curves, for 0 ≤ u, v ≤ 1 the Bernstein polynomials

Bm
i (u) and Bn

j (v) are non negative and verify the property of partition of

unity:
m∑
i=0

n∑
j=0

Bm
i (u)Bn

j (v) ≡ 1.

As a consequence, the Bézier surfaces are included in the convex hull of its

control net.

4. The coordinate curves are Bézier curves. The coordinate curves for u or

v constant are Bézier curves of degree n and m respectively. For v = v0

constant, we obtain:

−→x (u, v0) =
m∑
i=0

n∑
j=0

Bm
i (u)Bn

j (v0)Pi,j =
m∑
i=0

Bm
i (u)(

n∑
j=0

Bn
j (v0)Pi,j).

In other words, −→x (u, v0) is a Bézier curve of degree m and control points∑n
j=0B

n
j (v0)Pi,j for i =, 0, 1, . . . ,m. The same occurs for u = u0 constant.

5. The partial derivatives of a Bézier surface is again a Bézier surface:

∂

∂u
−→x (u, v) =m

n∑
j=0

m−1∑
i=0

Bm−1
i (u)Bn

j (v)∆1,0Pi,j,

∂

∂v
−→x (u, v) =n

m∑
i=0

n−1∑
j=0

Bn−1
j (v)Bm

i (u)∆0,1Pi,j,

where ∆1,0Pi,j = Pi+1,j − Pi,j and ∆0,1Pi,j = Pi,j+1 − Pi,j.

Partial derivatives of higher degree can be computed by the following formula:

∂r+s

∂ur∂vs
−→x (u, v) =

m!n!

(m− r)!(n− s)!

m−r∑
i=0

n−s∑
j=0

Bm−r
i (u)Bn−s

j (v)∆r,sPi,j,

where ∆r,sPi,j = ∆r,0(∆0,sPi,j) and:

∆r,0Pi,j =∆r−1,0Pi+1,j −∆r−1,0Pi,j,

∆0,sPi,j =∆0,s−1Pi+1,j −∆0,s−1Pi,j.

1.4 B-spline surfaces

The surface analogue of the B-spline curve is the B-spline surface. This is a

surface defined by a set of control points {Pi,j}n,mi,j=0 and two knot vectors U =
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(u0, u1, . . . , un−1, un, un+1, . . . , un+k) and V = (v0, v1, . . . , vm−1, vm, vm+1,. . . , vm+l)

associated to each parameter u and v where ui ≤ ui+1 and vj ≤ vj+1. The corre-

sponding B-spline surface is given by

−→x (u, v) =
n∑
i=0

m∑
j=0

Ni,k(u)Nj,l(v)Pi,j,

where Ni,k(u) and Nj,l(v) were defined in Equation 1.2.1.

Notice that as it occurs in Bézier surfaces, for u = u0 constant −→x (u0, v) is a

B-spline curve in v of knot vector V and control points qj =
∑m

i=0Ni,m(u0)Pi,j,

where 0 ≤ j ≤ n.

Some of the properties of the B-spline curves can be extended to surfaces,

such as:

1. Geometry invariance property.

2. End points geometric property.

3. B-spline to Bézier property.

Let us see an example, for U = (0, 0, 0, 1, 2, 2, 2) and V = (1, 1, 1, 2, 3, 3, 3) the

following image shows a bicuadratic B-spline surface of control points

(−15, 10, 15) (−5, 5, 15) (5, 5, 15) (15, 10, 15)

(−15, 5, 5) (−5, 10, 5) (5, 10, 5) (15, 5, 5)

(−15, 5,−5) (−5, 10,−5) (5, 10,−5) (15, 5,−5)

(−15, 10,−15) (−5, 5,−15) (5, 5,−15) (15, 10,−15)
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1.5 The Plateau-Bézier problem

The problem of finding a surface that minimizes the area with prescribed

border is called the Plateau problem, after the Belgian researcher Joseph-Antoine

Ferdinand Plateau (1801-1883). Such surfaces are characterized by the fact that

the mean curvature vanishes and, in some real problems, the interest comes from

the fact that minimal area means minimal cost of material used to build a surface.

In the case of Bézier surfaces, which are polynomial surfaces, it is possible to

state the same problem (see [8]): given the border, or equivalently the boundary

control points, the Plateau-Bézier problem consists on finding the inner control

points in such a way that the resulting Bézier surface is of minimal area among

all other Bézier surfaces with the same boundary control points.

Let −→x : U → S be a chart on a surface S ∈ R3 and E,F,G be the coefficients

of the first fundamental form given by:

E =< −→x u,
−→x u >, F =< −→x u,

−→x v > and G =< −→x v,
−→x v >,

where −→x u,
−→x v represent the first derivatives of −→x and <,> defines the dot

product of the vectors. The chart −→x is said to be isothermal when F = 0

and E = G.

As it is well known in the theory of minimal surfaces, if −→x is an isothermal

map then −→x is minimal iff ∆−→x = 0, where ∆ is the usual Laplacian operator

given by:

∆−→x (u, v) =

(
∂2

∂u2
+

∂2

∂v2

)
−→x (u, v).

In this case we say that S is a harmonic surface.

In the same way, the surfaces that satisfy the condition:

∆2−→x (u, v) = 0

are called biharmonic surfaces and the knowledge of the boundary and tangent

planes of these surfaces enables to fully determine the entire surface. In Chapters

2 and 3 we shall analyze the relation between minimal surfaces with harmonic

and biharmonic surfaces.

Finally, the area of the Bézier surface, S, is given by:

A(P) =

∫
R

‖−→x u ×−→x v‖dudv =

∫
R

(EG− F 2)1/2dudv,
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where R = [0, 1]× [0, 1].

As it also happens in the theory of minimal surfaces, the area functional is

highly nonlinear, so in order to find the minimal area associated to a boundary

curve, we must consider other possibilities. Let us recall that under isothermal

conditions the extremal of the functional area coincides with the extremal of the

Dirichlet functional in the general case:

D(P) =
1

2

∫
R

(‖−→x u‖2 + ‖−→x v‖2)dudv =
1

2

∫
R

(E +G)dudv.

So then, instead of minimizing the area functional, in Chapter 4 we shall work

with the Dirichlet functional.

There are other methods to find approximations to the solutions of the

Plateau–Bézier problem, for example, the use of masks. A simple way of cons-

tructing Bézier surfaces with prescribed boundary consists in generating the inner

control points by using a mask. Let us recall that a mask is a way of writing a

linear relation between one inner control point and its eight neighboring control

points. What one has to do is just to solve if possible a system of linear equations

whose matrix of coefficients has just a few non-vanishing entries. For example,

for an n×m Bézier surface, there are (n− 1)× (m− 1) linear equations and the

same number of inner control points. At the end of Chapter 4 we shall compare

the use of different masks.
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Harmonic surfaces

Throughout these notes we are thinking about different ways to address the

Plateau-Bézier problem. As we have stated in the previous chapter, the Plateau-

Bézier problem consists on finding the inner control points of a Bézier surface

with prescribed boundary in such a way that the resulting Bézier surface is of

minimal area among all other Bézier surfaces with the same boundary control

points.

The first attempt to solve this problem is related to harmonic surfaces which

satisfy the condition:

∆−→x (u, v) =

(
∂2

∂u2
+

∂2

∂v2

)
−→x (u, v) = 0,

where ∆ is the usual Laplacian operator. This operator has been widely used

in many application areas such as physics. It is associated with a wide range of

physical problems, for example gravity, electromagnetism and fluid flows.

Harmonic surfaces are related to minimal surfaces, i.e., surfaces that minimize

the area among all surfaces with prescribed boundary conditions. The relation

is as follows. Given a parametric surface patch −→x (u, v) satisfying the isothermal

conditions, i.e., < −→x u,
−→x u >=< −→x v,

−→x v >, and < −→x u,
−→x v >= 0, then the

surface it represents is minimal if and only if it is harmonic.

2.1 Harmonic tensor product Bézier surfaces

In terms of control points, the harmonic condition of a polynomial surface is

a linear system.

Theorem 2.1.1 ([8]) Given the control net in R3, {Pij}n,mi,j=0, the associated Bézier

surface −→x : [0, 1]× [0, 1]→ R3, is harmonic i.e. ∆−→x = 0, if and only if for any

25
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i ∈ {0, 1, . . . , n} and j ∈ {0, 1, . . . ,m} :

0 =bm,i,0 Pi+2,j + (bm,i−1,1 − 2bm,i,0)Pi+1,j + (bm,i−1,1 − 2bm,i−2,2)Pi−1,j

+ bm,i−2,2 Pi−2,j + bn,j,0 Pi,j+2 + (bn,j−1,1 − 2bn,j,0)Pi,j+1

+ (bn,j−1,1 − 2bn,j−2,2)Pi,j−1 + bn,j−2,2 Pi,j−2

+ (bm,i,0 − 2bm,i−1,1 + bm,i−2,2 + bn,j,0 − 2bn,j−1,1 + bn,j−2,2)Pi,j,

(2.1.1)

where, for i ∈ {0, 1, . . . , n− 2}

bn,i,0 = (n− i)(n− i− 1) bn,i,1 = 2(i+ 1)(n− i− 1) bn,i,2 = (i+ 1)(i+ 2),

and bn,i,k = 0 otherwise, and with the convention Pij = 0 if i /∈ {1, 2, . . . , n} and

j /∈ {1, 2, . . . ,m}.

Corollary 2.1.2 ([3]) A bicuadratic Bézier surface is harmonic iff

P01 =
1

2
(2P00 + P02 − 2P10 + P20),

P11 =
1

4
(P00 + P02 + P20 + P22),

P21 =
1

2
(P00 − 2P10 + 2P20 + P22),

P12 =
1

2
(−P00 + P02 + 2P10 − P20 + P22).

In the same way, for n = m = 3 we have the following corollary.

Corollary 2.1.3 ([3]) A bicubic Bézier surface is harmonic iff

P11 =
1

9
(4P00 + 2P03 + 2P30 + P33),

P21 =
1

9
(2P00 + P03 + 4P30 + 2P33),

P12 =
1

9
(2P00 + 4P03 + P30 + 2P33),

P22 =
1

9
(P00 + 2P03 + 2P30 + 4P33),

P10 =
1

3
(4P00 − 4P01 + 2P02 + 2P30 − 2P31 + P32),

P20 =
1

3
(2P00 − 2P01 + P02 + 4P30 − 4P31 + 2P32),

P13 =
1

3
(2P01 − 4P02 + 4P03 + P31 − 2P32 + 2P33),

P23 =
1

3
(P01 − 2P02 + 2P03 + 2P31 − 4P32 + 4P33).
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Figure 2.1: Bicuadratic harmonic surface

Let us recall that a Bézier surface can be written in two different ways depending

on the basis:

−→x (u, v) =
n∑

i,j=0

ai,j
i!j!

uivj =
n∑

k,`=0

Bn
k (u)Bn

` (v)P n
k,`.

The harmonic condition, in equation (2.1.1), with −→x written in the usual basis

of polynomials can be translated into a system of linear equations in terms of

the coefficients {ak,l}nk,l=0

ak+2,l + ak,l+2 = 0, k + l ≤ n− 1 (2.1.2)

with the convention ak,l = 0 if k+ l > n+ 1. Its solution is given in the following

lemma.

Lemma 2.1.4 ([10]) A polynomial function of degree n ≥ 2, −→x =
∑n

i,j=0
ai,j
i!j!
uivj

is harmonic if and only if

ak` = (−1)[
k
2 ] akmod 2,`+2[ k2 ], ∀k, ` (2.1.3)

that is,
a2`,j = (−1)` a0,2`+j

a2`+1,j = (−1)` a1,2`+j,

with the convention ak,` = 0 if k + ` > n+ 1. Therefore

1. If n is odd, then all coefficients {ak,`}nk=2,`=0 are totally determined by the

coefficients {a0,`, a1,`}n`=0.

2. If n is even, then all coefficients {ak,`}nk=2,`=0 and also a1,n, which vanishes,

are totally determined by the coefficients {a0,`}n`=0 and {a1,`}n−1
`=0 .
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The following proposition gives the Bézier version of the previous Lemma, but

not the explicit solution of the system in equation (2.1.1).

Proposition 2.1.5 ([10]) Let −→x be a harmonic Bézier patch of degree n with

control net {P n
k,`}nk,`=0, then

1. If n is odd, the control points in the inner rows {P n
k,`}

n−1,n
k=1,`=0 are determined

by the control points in the first and the last rows, {P n
0,`}n`=0 and {P n

n,`}n`=0.

2. If n is even, the control points in the inner rows and also the corner control

point P n
n,n are determined by the control points in the first and last rows,

{P n
0,`}n`=0 and {P n

n,`}n−1
`=0 .

If−→x is an n×n harmonic surface of even degree, from Lemma 2.1.4, the corner

coefficients, a0,n and an,0, coincide. Then, from the basis conversion formula in

Lemma 1.3.3 we have that ∆0,nP0,0 = ∆0,nPn,0.

Therefore, if n is even, the boundary control points {P n
0,`}n`=0 and {P n

n,`}n−1
`=0

determine the corner control point as follows

Pn,n = P0,n +
n−1∑
w=0

(
n

w

)
(−1)n−w(P0,w − Pn,w).

2.2 Generating function of harmonic Bézier sur-

faces

In the previous section, we have seen that we needed to change the polyno-

mial basis because we were unable to obtain harmonic surfaces in Bézier form

explicitly. Until now we had two options open to us in order to give a harmonic

surface in Bézier form:

1. Solve the linear system in equation (2.1.1), i.e. compute the whole control

net in terms of the given boundary control points.

2. Three steps. Compute the usual basis coefficients, ak,l, prescribed by the

given boundary control points a0,i, a1,i; Determine the ak,l that remain

unknown with the explicit solution in usual basis, Equation (3.1.2); and

finally come back to the Bézier basis.
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In this section we shall see a new method to solve the harmonic condition in

Bézier form by using a generating function. In general, a generating function is a

formal power series in one indeterminate, whose coefficients encode information

about a sequence an that is indexed by the natural numbers

g(an, t) =
∞∑
n=0

an t
n.

It can be proved that the only rectangular harmonic tensor product patch is

(n+ 1)× n, with even n. Hence, thanks to this additional row of control points

for the even case, we obtain the following result:

• If n is odd, given two rows of boundary control points {P n
0,`}n`=0 and {P n

n,`}n`=0,

there is a unique harmonic tensor product Bézier surface of degree n,

• if n is even, given two rows of boundary control points {P n
0,`}n`=0 and

{P n
n+1,`}n`=0, there is a unique harmonic tensor product Bézier surface of

degree n+ 1, n.

Thus, from now on, to avoid writing the same things twice with the only

difference being the parity of n, we will use the notation n(n + 1) to express the

fact that when n is odd, the choice is n, whereas when n is even then the choice

is n+ 1.

Once the degrees of the surfaces that we shall work with have been estab-

lished, the explicit formula we are looking for to compute the inner control points

as a linear combination of given boundary control points, for k = 0, . . . ,n(n + 1)

and ` = 0, . . . , n, is

P n
k,` =

n∑
i=0

λnk,`,i P
n
0,i +

n∑
i=0

µnk,`,i P
n
n(n+1),i,

where, in the limiting cases, we have

λn0,`,i = δi`, µn0,`,i = 0,

λnn(n+1),`,i = 0, µnn(n+1),`,i = δi`.
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Then we can write

−→x (u, v) =
∑n(n+1),n

k,`=0 B
n(n+1)
k (u)Bn

` (v)P n
k,`

=
∑n(n+1),n

k,`=0 B
n(n+1)
k (u)Bn

` (v)
(∑n

i=0 λ
n
k,`,i P

n
0,i + µnk,`,i P

n
n(n+1),i

)
=

∑n
i=0

(∑n(n+1),n
k,`=0 B

n(n+1)
k (u)Bn

` (v)λnk,`,i

)
P n

0,i

+
∑n

i=0

(∑n(n+1),n
k,`=0 B

n(n+1)
k (u)Bn

` (v)µnk,`,i

)
P n
n(n+1),i

and define

fni (u, v) :=
∑n(n+1),n

k,`=0 B
n(n+1)
k (u)Bn

` (v)λnk,`,i

gni (u, v) :=
∑n(n+1),n

k,`=0 B
n(n+1)
k (u)Bn

` (v)µnk,`,i.

Therefore,

−→x (u, v) =
n∑
i=0

fni (u, v) P n
0,i + gni (u, v) P n

n(n+1),i.

Since we assume that −→x (u, v) is harmonic, then fni and gni are harmonic

polynomials. Notice that functions fni and gni are related because the change of

variables (u, v)→ (1− u, v) implies that

fni (u, v) = gni (1− u, v).

Now, let us determine what type of boundary conditions are satisfied by the

harmonic functions fni and gni . Since

−→x (0, v) =
n∑
`=0

Bn
` (v)P n

0,` =
n∑
i=0

fni (0, v) P n
0,i + gni (0, v) P n

n(n+1),i,

then 
fni (0, v) = Bn

i (v),

gni (0, v) = 0.

Analogously, but using

−→x (1, v) =
n∑
`=0

Bn
` (v)P n

n(n+1),` =
n∑
i=0

fni (1, v) P n
0,i + gni (1, v) P n

n(n+1),i,

we get 
fni (1, v) = 0,

gni (1, v) = Bn
i (v).
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Now, we will determine the generating function for the sequence of polyno-

mials {gni }∞n=0,

gi(u, v, t) =
∞∑
n=0

gni (u, v)

n!
tn.

The generating function for the sequence of polynomials {gni }∞n=0 must satisfy

a pair of constraints.

First, notice that since all the terms of the sequence {gni }∞n=0 are harmonic

polynomials, the generating function is a harmonic function with polynomial

n-th derivatives,

gni (u, v) =
dn

dtn

∣∣∣
t=0
gi(u, v, t).

Second, the boundary conditions of the generating function:

gi(0, v, t) =
∑∞

n=0
gni (0,v)

n!
tn =

∑∞
n=0

0
n!
tn = 0

gi(1, v, t) =
∑∞

n=0
gni (1,v)

n!
tn =

∑∞
n=0

Bn
i (v)

n!
tn = (vt)i

i!
e(1−v)t.

For i = 0, we look for a harmonic function

g0(u, v, t) =
∞∑
n=0

gn0 (u, v)
tn

n!

the sequence terms gn0 (u, v) being polynomial harmonic functions and satisfying

the boundary conditions g0(0, v, t) = 0 and g0(1, v, t) = e(1−v)t.

A particular solution of this problem is

g0(u, v, t) =
sin (u t)

sin(t)
e(1−v)t,

but, in fact, it can be proved that it is the unique solution.

Now, if we define the operator

Di =
1

i+ 1

(
−t∂
∂t

+ (i+ t)Id

)
,

it is easy to check by induction that

gi+1(1, v, t) =
(vt)i+1

(i+ 1)!
e(1−v)t = Di

(
(vt)i

i!
e(1−v)t

)
= Di (gi(1, v, t)) .

Therefore, if the boundary conditions can be obtained by successive applica-

tion of the operators Di acting on an initial function, the same will happen with

the generating function:

gi+1(u, v, t) = Di(gi(u, v, t)), g0(u, v, t) =
sin (u t)

sin(t)
e(1−v)t.
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In addition, Di commutes with the Laplacian operator,
(
∂2

∂u2
+ ∂2

∂v2

)
, then,

since g0 is harmonic, so is gi, and moreover, thanks to the symmetry,

fi(u, v, t) = gi(1− u, v, t).

Therefore we arrive to the following proposition.

Proposition 2.2.1 ([1]) The harmonic surfaces generating function

gi(u, v, t) =
∞∑
n=0

gni (u, v)

n!
tn,

can be recursively defined by

gi(u, v, t) = Di−1(gi−1(u, v, t))

with

g0(u, v, t) =
sin (u t)

sin(t)
e(1−v)t, Di =

1

i+ 1

(
−t∂
∂t

+ (i+ t)Id

)
.

The following theorem shows what our interest is in the generating function.

Theorem 2.2.2 ([1]) The control net of a harmonic Bézier surface

−→x (u, v) =
n∑

k,`=0

P n
k,`B

n(n+1)
k (u)Bn

` (v)

is determined by two rows of boundary control points {P n
0,`}n`=0 and {P n

n(n+1),`}n`=0

as follows

P n
k,` =

n∑
i=0

λnk,`,i P
n
0,i +

n∑
i=0

µnk,`,i P
n
n(n+1),i,

λnk,`,i = µnn(n+1)−k,`,i and {µnk,`,i}
n(n+1),n
k,`=0 being the control points of the harmonic

polynomial

gni (u, v) =
dn

dtn

∣∣∣
t=0
gi(u, v, t).

The inner control points of a harmonic Bézier patch are determined from

boundary control points in the following way:

Proposition 2.2.3 ([1]) If n is odd, given two rows of boundary control points,

{P n
0,`}n`=0 and {P n

n,`}n`=0, the Bézier control net of an n × n harmonic patch is

defined explicitly in terms of them as follows

P n
k,` =

n∑
w=0

µnn−k,`,w P n
0,w +

n∑
w=0

µnk,`,w P n
n,w
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with µnk,`,w given by:

µnk,`,i =
∑̀
t=0

[ k−1
2 ]∑

s=0

[n−t
2 ]∑
r=s

(
k

2s+1

)(
`
t

)(
n

2r+t

)(
2r+t
i

)
(2r + t)!(

n(n+1)
2s+1

)(
n
t

)
(2s+ 1)! t! (2r − 2s)!

(−1)s+t−iBsin
2r−2s

and Bsin
1,2n = (−1)n−1(22n − 2)B2n, Bsin

1,2n+1 = 0 be the generalized Bernoulli num-

bers introduced in [2], Bn being the Bernoulli numbers.

If n is even, given two rows of boundary control points {P n
0,`}n`=0 and {P n

n+1,`}n`=0,

the Bézier control net of an (n + 1) × n harmonic patch is defined explicitly in

terms of them as follows,

P n
k,` =

n∑
w=0

µnn+1−k,`,w P n
0,w +

n∑
w=0

µnk,`,w P n
n+1,w.

Proposition 2.2.4 ([1]) If n is even, given the boundary control points {P n
0,`}n`=0

and {P n
n,`}n−1

`=0 , the corner control point is

Pn,n = P0,n +
n−1∑
w=0

(
n

w

)
(−1)n−w(P0,w − Pn,w),

and the whole Bézier control net of a harmonic n× n patch is defined explicitly

as follows

P n
k,` =

n∑
w=0

αnk,`,w P n
0,w +

n−1∑
w=0

βnk,`,w P n
n,w, (2.2.1)

where

βnk,`,w =
∑̀
t=0

[ k−1
2 ]∑

s=0

[n−t−1
2 ]∑
r=s

(
k

2s+1

)(
`
t

)(
n

2r+t

)(
2r+t
w

)
(2r + t)!(

n
2s+1

)(
n
t

)
(2s+ 1)! t! (2r − 2s)!

(−1)s+t−w Bsin
2r−2s.

αnk,`,w =
∑̀
t=0

[ k2 ]∑
s=0

(
`
t

)(
k
2s

)(
n

2s+t

)(
2s+t
w

)(
2s+t
t

)(
n
2s

)(
n
t

) (−1)3s+t−w

+
∑̀
t=0

[ k−1
2 ]∑

s=0

[n−t−1
2 ]∑
r=s

n+2r+t∑
m=2r+t

(
`
t

)(
k

2s+1

)(
m

2r+t

)(
n
m

)(
m
w

)
(2r + t)!(

n
2s+1

)(
n
t

)
(2s+ 1)! t! (2r − 2s)!

(−1)s−w+r+m+t
2

+1 Bsin
2r−2s.

Throughout this chapter we have seen three equivalent methods to solve the

harmonic condition:

1. First, to solve the harmonic condition ∆−→x (u, v) = 0 by taking derivatives

and solving the resulting system making the coefficients ukvl equal to zero.
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2. Second, to solve the harmonic equations in 2.1.1 in terms of Bézier control

points.

3. Third, to compute the scalars µnk,l,w that determine the inner control points.

The goal of this last method is to explicitly know the scalars that characterize

a harmonic control net, and then avoid the change of basis. Notice that, this

method is not the best one in terms of computation times, however, the harmonic

surfaces generating function, gi(u, v, t), a function that generalizes harmonic sur-

faces of all degrees, is a new tool for the study of harmonic functions.

2.3 B-spline harmonic surfaces

As we have said in the previous chapter, to increase the complexity of a surface

by adding control points requires increasing the degree. This disadvantage is

remedied with the introduction of B-splines surfaces. These kind of surfaces are

one of the most widespread methods in CAGD specially bicubic B-spline surfaces

because they have C2 continuity. Therefore it has sense to ask about harmonic

B-spline surfaces. However, since the Regularity theorem for harmonic functions

states that harmonic functions are infinitely differentiable, this case has no many

interesting because we always obtain a polynomial surface, a Bézier surface. Let

us see some examples.

For knot the vectors U = V = (0, 0, 0, 1, 2, 2, 2) and control points P2,2 =

(1, 2, 0), P2,3 = (1, 3, 0), P3,1 = (0, 1, 0), P3,2 = (0, 2, 0) and P3,3 = (0, 3,−0.5) we

obtain the polynomial surface

−→x (u, v) = (4− 2u,
1

2
(−2 + 4u− u2 + v2),−4.5 + 0.5u2 + u(1− 2v) + 5v − 0.5v2)

where u, v ∈ [0, 2]× [0, 2].

In the same way, by using bicubic B-splines, for the control points P4,1 =

(0, 0,−0.5), P4,2 = (1, 0, 0), P4,3 = (1.5, 0, 0), P4,4 = (2, 0,−0.5), P3,1 = (0, 1,−0.5),

P3,2 = (1, 1, 0), P3,3 = (1.5, 1, 0), P3,4 = (2, 1,−0.5) and knot vectors U =

(0, 0, 0, 0, 1, 2, 2, 2, 2) and V = (0, 0, 0, 0, 1, 2, 2, 2, 2), we obtain the following poly-
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Figure 2.2: Harmonic surface using bicuadratic B-splines

nomial surface

−→x (u, v) =
1

4
(20 + 3u2(2− 1.5v)− 6v − 6v2 + 1.5v3 + 3u(−8 + 6v), 24− 12u+

3u2(12 + 6(−2 + v)− 6v),−14− 3u3(−1− 0.5(−2 + v) + 0.5v)

+ 18v + 3v2 − 1.5v3 + 3u2(−7− 3(−2 + v) + 4.5v)+

3u(12− 6v − 3v2 + 0.5v3 − 0.5(16− 6v2 + v3))).

Figure 2.3: Harmonic surface using bicubic B-splines



36



Chapter 3

Biharmonic surfaces

Following a similar fashion to the harmonic case, let us now ask for the

conditions that a Bézier surface must fulfil in order to be biharmonic. Biharmonic

surfaces satisfies the condition:

∆2−→x (u, v) =

(
∂2

∂u2
+

∂2

∂v2

)2
−→x (u, v) = 0,

where ∆ is the usual Laplacian operator.

This equation is associated with a great variety of physical problems such

as tension in elastic membranes and the study of stress and strain in physical

structures. There are many mechanical problems concerning the bending of a

thin elastic clamped rectangular plate, and they can all be formulated in terms

of a two-dimensional biharmonic equation with prescribed values of the function

and its normal derivative at the boundary. Hence, the biharmonic boundary

problem is also known as the thin plate problem. From a geometric design point

of view, which is our field of interest, this operator has found its way into various

areas of application, such as surface design, geometric mesh, smoothing and

fairing.

3.1 Existence of biharmonic Bézier surfaces

As we have seen in Proposition 2.1.5, a harmonic Bézier surface of odd degree

is determined by two opposite rows of boundary control points. For the even case,

the inner rows and in addition a corner control point are determined by control

points in the first and last row.

The biharmonic case is similar to harmonic surfaces. In this case, the inner

control points are determined by the boundary control points for both even and

37
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odd degree. For a rectangular Bézier surface of degree n,m the boundary control

points are given by:

P00 P01 P02 . . . P0,m−1 P0m

P10 ∗ ∗ . . . ∗ P1m
...

...
...

...
...

...

Pn−1,0 ∗ ∗ . . . ∗ Pn−1,m

Pn0 Pn1 Pn2 . . . Pn,m−1 Pnm

Proposition 3.1.1 ([9]) Let −→x (u, v) =
∑n,m

k,l B
n
k (u)Bm

l (v)Pkl be a biharmonic

Bézier surface of degree n,m with control net {Pkl}n,mk,l=0. Then all the inner con-

trol points {Pkl}n−1,m−1
k=1,l=1 are determined by the boundary control points, {P0l}ml=0,

{Pnl}ml=0, {Pk0}nk=0 and {Pkn}nk=0.

Figure 3.1: Biharmonic surface generated by the boundary control points

In terms of control points, the biharmonic condition of a polynomial surface

is a linear system.

Theorem 3.1.2 ([9]) Given a control net in R3, {Pij}n,mi,j=0, the associated Bézier

surface, −→x : [0, 1] × [0, 1] → R3, is biharmonic, i.e, ∆2−→x = 0 if and only if for

any i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}
4∑

k=0

bn,i−k,k∆
4,0Pi−k,j+2

2∑
k,l=0

an,i−k,kam,j−l,l∆
2,2Pi−k,j−l+

4∑
l=0

bm,j−l,l∆
0,4Pi,j−l = 0,

(3.1.1)

where, for i ∈ {0, ..., n− 2}

ani0 = (n− i)(n− i− 1),

ani1 = 2(i+ 1)(n− i− 1),

ani2 = (i+ 1)(i+ 2),
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and anik = 0 otherwise, and for i ∈ {0, . . . , n− 4}

bni0 = (n− i)(n− i− 1)(n− i− 2)(n− i− 3),

bni1 = 4(i+ 1)(n− i− 1)(n− i− 2)(n− i− 3),

bni2 = 6(i+ 1)(i+ 2)(n− i− 2)(n− i− 3),

bni3 = 4(i+ 1)(i+ 2)(i+ 3)(n− i− 3),

bni4 = (i+ 1)(i+ 2)(i+ 3)(i+ 4),

and bnik = 0 otherwise.

Note that the first case where the biharmonic equation makes sense is for n =

m = 3. In this case, the solution of equation 3.1.1 is

P11 =
1

9
(−4P00 + 6P01 − 2P03 + 6P10 + 3P13 − 2P30 + 3P31 − P33),

P12 =
1

9
(−2P00 + 6P02 − 4P03 + 3P10 + 6P13 − P30 + 3P32 − 2P33),

P21 =
1

9
(−2P00 + 3P01 − P03 + 6P20 + 3P23 − 4P30 + 6P31 − 2P33),

P22 =
1

9
(−P00 + 3P02 − 2P03 + 3P20 + 6P23 − 2P30 + 6P32 − 4P33).

We can translate the biharmonic condition into a system of linear equations

of the form

ak+4,l + 2ak+2,l+2 + ak,l+4 = 0, k = 0, . . . ,m, l = 0, . . . , n, (3.1.2)

with ak,l = 0 if k > m or l > n. For k, ` > 1, we obtain that:

ak,` :=
1[

k
2

]
+
[
`
2

] ((−1)[
`
2 ]
[
k

2

]
ak+2[ `

2 ],` mod 2 + (−1)[
k
2 ]
[
`

2

]
ak mod 2,2[ k2 ]+`

)
.

Let us see now the necessary conditions for the existence of biharmonic sur-

faces. Let −→x (u, v) : [0, 1] × [0, 1] → R3 be the Bézier surface in the usual

polynomial basis:

−→x (u, v) =
n∑

i,j=0

ai,j
i!j!

uivj

with boundary curves:

−→x (0, v) =
n∑
j=0

pjv
j, −→x (1, v) =

n∑
j=0

qjv
j,
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−→x (u, 0) =
m∑
i=0

riu
i, and −→x (u, 1) =

m∑
i=0

siu
i,

with given coefficients pj, qj, ri, si. Without loss of generality we shall assume

that the degrees satisfy n ≤ m.

The given coefficients of the boundary curves have to satisfy

−→x (0, 0) = p0 = r0,
−→x (1, 0) = q0 =

m∑
i=0

ri,

−→x (0, 1) =
n∑
j=0

pj = s0, and −→x (1, 1) =
n∑
j=0

qj =
m∑
i=0

si.

The boundary curves −→x (0, v) and −→x (u, 0) determine the coefficients

pj = a0,j, j = 0, . . . , n, and ri = ai,0, i = 0, . . . ,m. (3.1.3)

The remaining two boundary curves −→x (1, v) and −→x (u, 1) determine sums of

the coefficients ai,j,

qj =
m∑
i=0

ai,j
i!j!

, j = 0, . . . , n, and si =
n∑
j=0

ai,j
i!j!

, i = 0, . . . ,m. (3.1.4)

In order to analyze the resulting conditions for the boundary curves we need to

distinguish between several cases, (see [7]).

Case 1: n is even

a) If m = n all coefficients ai,j with i+ j ≥ n+ 2 vanish. This does not imply

any conditions for the given boundary curves.

b) If m = n + 1 all coefficients with 2
[
i
2

]
+ j ≥ n + 2 vanish. This does not

imply any conditions for the given boundary curves.

c) If m = n + 2 all coefficients ai,j with i + j ≥ n + 3 vanish. In this case,

by 3.1.3 and 3.1.4 a biharmonic patch exists only if the given boundaries

satisfy rn+2 = sn+2 or equivalently,

∂n+2

∂un+2
−→x (u, v)|(0,0) =

∂n+2

∂un+2
−→x (u, v)|(0,1).
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d) If m ≥ n + 3, all coefficients ai,j with 2
[
i
2

]
+ j ≥ n + 3 vanish. Again

by 3.1.3 and 3.1.4 a biharmonic patch exists only if the given boundaries

satisfy rn+3 = sn+3 or equivalently,

∂n+3

∂un+3
−→x (u, v)|(0,0) =

∂n+3

∂un+3
−→x (u, v)|(0,1).

Moreover, due to ai,j = 0 for i = n+4, . . . ,m and j = 0, . . . , n, a biharmonic

patch exists only if the given boundaries satisfy ri = si = 0 or, equivalently,

∂i

∂ui
−→x (u, v)|(0,0) =

∂i

∂ui
−→x (u, v)|(0,1) = 0, (3.1.5)

for i = n+ 4, . . . ,m and m > n+ 3.

The following image shows the matrices of coefficients ai,j for n = 4. The gray

boxes correspond to coefficients which vanishes.
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0
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Subcase 1.1

0 1 2 3 4
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Subcase 1.3

0 1 2 3 4

0

1

2

3

4

5

6

7

m = 7

Subcase 1.4

0 1 2 3 4

0

1

2

3

4

5

6

7

8

m = 8

Subcase 1.4

Case 2: n is odd

a) If m = n all coefficients ai,j with 2
[
i
2

]
+ j ≥ n + 1 vanish. This does not

imply any conditions for the given boundary curves.

b) If m = n + 1 all coefficients ai,j with 2
[
i
2

]
+ j ≥ n + 3 vanish. This does

not imply any conditions for the given boundary curves.

c) If m ≥ n+2 all coefficients ai,j with 2
[
i
2

]
+j ≥ n+3 vanish. Due to ai,j = 0

for i = n+ 3, . . . ,m and j = 0, . . . , n, a biharmonic patch exists only if the

given boundaries satisfy 3.1.5 for i = n+ 3, . . . ,m and m > n+ 2.

The following image shows the matrices of coefficients ai,j for n = 5. The gray

boxes correspond to coefficients which vanishes.
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3.2 Biharmonic generating function problem

Until now, we have seen that if we wanted to solve the biharmonic condition,

we had two options:

1. Solve the linear system in equation (3.1.2), i.e. compute the whole control

net in terms of the given boundary control points.

2. Compute the unknown basis coefficients, ak,l by 3.1.2 and come back to the

Bézier basis.

As we have seen before, an inner control point of a biharmonic Bézier surface

can be expressed as a linear combination of the boundary control points, then

it has sense to ask about the biharmonic generating function as in the harmonic

case. Let us see the equations must be fulfilled in order to find the generating

function. Notice that, until now this problem is unsolved.

By Proposition 3.1.1, we can write

P n
k,` =

n∑
i=0

λnk,`,i P
n
0,i +

n∑
i=0

µnk,`,i P
n
n,i +

n∑
i=0

αnk,`,i P
n
i,0 +

n∑
i=0

βnk,`,i P
n
i,n

Then we can write

−→x (u, v) =
∑n

k,`=0B
n
k (u)Bn

` (v)P n
k,`

=
∑n

k,`=0B
n
k (u)Bn

` (v)
(∑n

i=0 λ
n
k,`,i P

n
0,i +

∑n
i=0 µ

n
k,`,i P

n
n,i

+
∑n

i=0 α
n
k,`,i P

n
i,0 +

∑n
i=0 β

n
k,`,i P

n
i,n

)
=

∑n
i=0

(∑n
k,`=0B

n
k (u)Bn

` (v)λnk,`,i

)
P n

0,i

+
∑n

i=0

(∑n
k,`=0B

n
k (u)Bn

` (v)µnk,`,i

)
P n
n,i

+
∑n

i=0

(∑n
k,`=0B

n
k (u)Bn

` (v)αnk,`,i

)
P n
i,0

+
∑n

i=0

(∑n
k,`=0B

n
k (u)Bn

` (v)βnk,`,i

)
P n
i,n
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and define
fni (u, v) :=

∑n
k,`=0 B

n
k (u)Bn

` (v)λnk,`,i

gni (u, v) :=
∑n

k,`=0 B
n
k (u)Bn

` (v)µnk,`,i

hni (u, v) :=
∑n

k,`=0 B
n
k (u)Bn

` (v)αnk,`,i

jni (u, v) :=
∑n

k,`=0 B
n
k (u)Bn

` (v)βnk,`,i.

Therefore,

−→x (u, v) =
n∑
i=0

fni (u, v) P n
0,i + gni (u, v) P n

n,i + hni (u, v) P n
i,0 + jni (u, v) P n

i,n.

Since we assume that −→x (u, v) is biharmonic, then fni , g
n
i , h

n
i and jni are

biharmonic polynomials. As in the harmonic case fni (u, v) = gni (1−u, v) and the

same occurs with hni and jni . Then, we can write:

−→x (u, v) =
∑n−1

i=0 f
n
i (u, v)P n

0,i + fni (1− u, v)P n
n,i + fni (v, u)P n

i,0

+fni (1− v, u)P n
i,n + (fn0 (u, v) + fn0 (v, u))P n

0,0

+(fnn (u, v) + fn0 (1− v, u))P n
0,n + (fn0 (1− u, v) + fnn (v, u))P n

n,0

+(fnn (1− u, v) + fn0 (1− v, u))P n
n,n.

The previous symmetries imply that, in fact, to solve the problem it would

be enough to compute fi control points, λk,l,i

P n
k,` =

n∑
i=0

λk,`,i P
n
0,i +

n∑
i=0

λn−k,n−`,n−i P
n
n,i +

n∑
i=0

λ`,k,i P
n
i,0

+
n∑
i=0

λ`,k,i P
n
i,n.

Now, let us determine what type of boundary conditions should satisfied the

biharmonic function fni . Since

−→x (0, v) =
n∑
`=0

Bn
` (v)P n

0,` =
n∑
i=0

fni (0, v)P n
0,i + fn0 (v, 0)P n

0,0 + fn0 (1− v, 0)P n
0,n,

then 
fni (0, v) = Bn

i (v),

fn0 (0, v) + fn0 (v, 0) = Bn
0 (v),

fnn (0, v) + fn0 (1− v, 0) = Bn
n(v).
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Then fni (0, v) = Bn
i (v). In the same way, but using

−→x (1, v) =
n∑
`=0

Bn
` (v)P n

n,i =
n∑
i=0

fni (0, v)P n
n,i + fnn (v, 1)P n

n,0 + fnn (1− v, 1)P n
n,n,

we obtain 
fn0 (0, v) + fnn (v, 1) = Bn

0 (v),

fnn (0, v) + fnn (1− v, 1) = Bn
n(v).

Finally, by computing −→x (u, 0) and −→x (u, 1) we obtain the conditions:
fni (0, u) = Bn

i (u),

fn0 (0, u) + fn0 (u, 0) = Bn
0 (u),

fnn (0, u) + fn0 (1− u, 0) = Bn
n(u)

and 
fn0 (0, u) + fnn (u, 1) = Bn

0 (u),

fnn (0, u) + fnn (1− u, 1) = Bn
n(u).

From these conditions we obtain that fni (1, v) = fni (u, 0) = fni (u, 1) = 0.

As in the harmonic case, to determine the generating function for the sequence

of polynomials {fni }∞n=0,

fi(u, v, t) =
∞∑
n=0

fni (u, v)

n!
tn

it would be sufficient to find the initial condition f0(u, v, t) because ∆2 commutes

with

Di =
1

i+ 1

(
−t∂
∂t

+ (i+ t)Id

)
,

where fi(u, v, t) = Di−1(fi−1(u, v, t)). In this case, we have that

fi(0, v, t) =
∞∑
n=0

fni (0, v)

n!
tn =

∞∑
n=0

Bn
i (v)

n!
tn =

(vt)i

i!
e(1−v)t.

For i = 0, we look for a biharmonic function

f0(u, v, t) =
∞∑
n=0

fn0 (u, v)
tn

n!
,

where f0(0, v, t) satisfies the previous condition. However, by the previous con-

ditions it has not jet possible to determine f0(u, v, t) and therefore until now the

problem of finding the generating function for biharmonic surfaces is unsolved.
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3.3 B-spline biharmonic surfaces

As we have seen in the previous chapter, B-spline harmonic surfaces had no

many interesting because we always obtain a Bézier surface. Unlike the harmonic

case, biharmonic B-spline surfaces are not Bézier surfaces. In [5] the authors

study biquadratic B-splines for biharmonic surfaces. Let us see how they obtain

the inner controls point as a linear combination of the boundary control points.

Given the knots U = (u0, u1, . . . , un+3) and V = (v0, v1, . . . , vm+3) in which

ui ≤ ui+1, vj ≤ vj+1, for U let

hi = ui+1 − ui, αi =
hi

hi−1 + hi
, βi =

hi
hi + hi+1

.

Note that αi+1 + βi = 1. Thus they introduce B-spline basis function as

Bi(u) =


bi,2(ti(u)), u ∈ [ui, ui+1),

bi+1,1(ti+1(u)), u ∈ [ui+1, ui+2),

bi+2,0(ti+2(u)), u ∈ [ui+2, ui+3),

0 u /∈ [ui, ui+3),

where

ti(u) =
u− ui
hi

and

bi,0(t) =αi(1− t)2,

bi,1(t) =βi−1(1− t)2 + 2(1− t)t+ αi+1t
2,

bi,2(t) =βit
2.

For knot V, denote similar notations with a bar on the top.

Given the control points P = {Pi,j}n,mi,j=0, then the biquadratic B-spline surface

is
−→x (u, v) =

n∑
i=0

m∑
j=0

Bi(v)Bj(v)Pi,j,

where u ∈ [u2, un+1] and v ∈ [v2, vm+1].

As −→x (u, v) is biquadratic, then biharmonic condition is equivalent to the

following,

∆2−→x (u, v) =

(
∂2

∂u2
+

∂2

∂v2

)2
−→x (u, v) =

∂4−→x (u, v)

∂u2∂v2
= 0.
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The biharmonic condition only relates to second order derivatives along u and v

direction respectively. Note that b′′i,k(t), k = 0, 1, 2 is constant,

b′′i,0(t) =2αi,

b′′i,1(t) =2βi−1 + 2αi+1 − 4,

b′′i,2(t) =2βi.

If we denote

ci,k =
1

2
b′′i,k(t), cj,k =

1

2
b
′′
j,k(t),

then

ci,0 =αi, cj,0 =αj,

ci,1 =− (αi + βi), cj,1 =− (αj + βj),

ci,2 =βi, cj,2 =βj.

Thereupon

B′′i (u) =



2
h2i
ci,2, u ∈ [ui, ui+1),

2
h2i+1

ci+1,1, u ∈ [ui+1, ui+2),

2
h2i+2

ci+2,0, u ∈ [ui+2, ui+3),

0 u /∈ [ui, ui+3).

Knots U and V divide the surface −→x (u, v) into nm patches and −→x (u, v) has C1

continuity between the patches because of the continuity of biquadratic B-spline

basis function. For a patch on [ui, ui+1]×[vj, vj+1], applying biharmonic condition

we have

∂2−→x (u, v)

∂u2∂v2
=

i∑
k=i−2

j∑
l=j−2

B′′kB
′′
l Pk,l = 0,

hence we can obtain the inner control points as following

Pi−1,j−1 =− 1

ci,1cj,1
(ci,0cj,0Pi,j + ci,0cj,1Pi,j−1

+ ci,0cj,2Pi,j−2 + ci,1cj,0Pi−1,j

+ ci,1cj,2Pi−1,j−2 + ci,2cj,0Pi−2,j

+ci,2cj,1Pi−2,j−1 + ci,2cj,2Pi−2,j−2) .
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Let us see some examples for the cuadratic and the bicubic case. For the knot

vectors U = (0, 0, 0, 1, 2, 2, 2), V = (0, 0, 0, 1, 2, 2, 2) and boundary control points

(−15,−2, 15) (−5, 5, 15) (5, 5, 15) (15,−2, 15)

(−15, 5, 5) ∗ ∗ (15, 5, 5)

(−15, 5,−5) ∗ ∗ (15, 5,−5)

(−15,−2,−15) (−5, 5,−15) (5, 5,−15) (15,−2,−15)

we obtain that the inner control points are given by P1,1 = (−5, 12, 5), P1,2 =

(5, 12, 5), P2,1 = (−5, 12,−5) and P2,2 = (5, 12,−5).

The biharmonic surface using bicuadratic B-splines is given by:

−→x (u, v) =


A(u, v), 0 ≤ u < 1 and 0 ≤ v < 1,

B(u, v), 1 ≤ u < 2 and 0 ≤ v < 1,

C(u, v), 0 ≤ u < 1 and 1 ≤ v < 2,

D(u, v), 1 ≤ u < 2 and 1 ≤ v < 2,

where

A(u, v) =(−5(3− 4v + v2),−2 + 14u− 7u2 + 14v − 7v2, 5(3− 4u+ u2)),

B(u, v) =(−5(3− 4v + v2),−2 + 14u− 7u2 + 14v − 7v2, 5− 5u2),

C(u, v) =(5(−1 + v2),−2 + 14u− 7u2 + 14v − 7v2, 5(3− 4u+ u2)),

D(u, v) =(5(−1 + v2),−2 + 14u− 7u2 + 14v − 7v2, 5− 5u2).

Figure 3.2: Biharmonic surface using bicuadratic B-splines

Notice that, as we have said before, the resulting surface is not a Bézier

surface. In this example, the lines −→x (u, 0) and −→x (u, 1) join patches with C1

continuity. The same occurs with −→x (0, v) and −→x (1, v).
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Let us see an example for the bicubic case. For the knot vectors U =

(0, 0, 0, 0, 1, 2, 2, 2, 2), V = (0, 0, 0, 0, 1, 2, 2, 2, 2) and boundary control points

(0, 0, 0) (1, 0, 0.5) (2, 0, 0) (3, 0, 0.5) (4, 0, 0)

(0, 1, 0.5) ∗ ∗ ∗ (4, 1, 0.5)

(0, 2, 0) ∗ ∗ ∗ (4, 2, 0)

(0, 3, 0.5) ∗ ∗ ∗ (4, 3, 0.5)

(0, 4, 0) (1, 4, 0.5) (2, 4, 0) (3, 4, 0.5) (4, 4, 0)

we obtain

P1,1 = (1, 1, 1), P1,2 = (2, 1, 0.5), P1,3 = (3, 1, 1),

P2,1 = (1, 2, 0.5), P2,2 = (2, 2, 0), P2,3 = (3, 2, 0.5),

P3,1 = (1, 3, 1), P3,2 = (2, 3, 0.5), P3,3 = (3, 3, 1).

Figure 3.3: Biharmonic surface using bicubic B-splines

As in the previous example, the resulting surface is not a Bézier surface. In

this case, the lines −→x (u, 0) and −→x (u, 1) join patches with C2 continuity. The

same occurs with −→x (0, v) and −→x (1, v).



Chapter 4

The Dirichlet approach to the
Plateau-Bézier problem

When trying to solve the Plateau problem, one has to minimize the area

functional but this functional is highly nonlinear. This is one of the reasons that

left the Plateau problem unsolved for more than a century. It was in 1931 when

Douglas obtained the solution minimizing the Dirichlet functional instead of the

area functional. This was easier to manage and has it one important property:

both functionals have the same extremals for isothermal surfaces.

In this chapter, we shall compute the extremal of the Dirichlet functional for

the Plateau-Bézier problem which gives an approximation to the extremal of the

area functional.

There are other methods to find approximations to the solutions of the

Plateau–Bézier problem. For example, the use of masks that we shall study

at the end of the chapter.

4.1 The Dirichlet functional

Let P = {Pij}m,ni,j=0 be the control net of the Bézier surface:

−→x (u, v) =
m∑
i=0

n∑
j=0

Bm
i (u)Bn

j (v)Pij.

The area of the Bézier surface is given by:

A(P) =

∫
R

||−→x u ∧ −→x v||dudv =

∫
R

(EG− F 2)
1
2dudv,

where R = [0, 1]× [0, 1] and E,F,G are the coefficients of the first fundamental

form of −→x given by E =< −→x u,
−→x u >, F =< −→x u,

−→x v > and G =< −→x v,
−→x v > .

49
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As we have pointed out before, the area functional is highly nonlinear, so if

we want to find the minimal surface associated to a given boundary, we shall

start by studying instead the Dirichlet functional which is given by:

D(P) =
1

2

∫
R

(||−→x u||2 + ||−→x v||2)dudv =

∫
R

E +G

2
dudv.

Let us recall that:

(EG− F 2)
1
2 ≤ (EG)

1
2 ≤ E +G

2
.

Then, for any control net, P , A(P) ≤ D(P). Notice that the equality in the

previous expression is given under isothermal conditions, i.e. for E = G and

F = 0. Also, both functionals have a minimum in the Bézier case (see [8]).

In fact, both functionals have the same extremal in the isothermal case. But

this main property is no longer true in general, what we shall obtain instead is

that the Dirichlet extremals are an approximation to the extremals of the area

functional, i.e., the resulting Bézier surface does not minimize area, but its area

is close to the minimum.

4.1.1 Relation with harmonic patches

The Dirichlet functional can be defined for just Bézier (or polynomial) patches,
−→x P : [0, 1]× [0, 1]→ R3, being P the associated control net. Or it could also be

considered in the unrestricted case, i.e. for arbitrary patches, −→x .

In the unrestricted case, the extremals of the Dirichlet functional are given

by differentiable patches verifying its Euler-Lagrange equation, ∆−→x = 0, i.e. by

harmonic patches. In general, we have that:

D(−→x ext) ≤ D(−→x Pext

) = D(Pext),

where −→x ext is the extremal of the Dirichlet functional in the unrestricted case,

Pext is the control net extremal of the Dirichlet functional in the restricted poly-

nomial case and −→x Pext
is its associated Bézier patch. Therefore if a polynomial

patch is harmonic, then it is an extremal of the Dirichlet functional both in the

unrestricted and the restricted case.

In addition, let us remark that when the boundary conditions are polyno-

mial curves, the Dirichlet extremal for the unrestricted case is not necessarily a

polynomial in general.
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Theorem 4.1.1 ([8]) Let P = {Pij}n,mi,j=0 be the control net of a Bézier surface. If

the associated Bézier patch −→x is harmonic, then it is an extremal of the Dirichlet

functional from among all the Bézier patches with the same boundary.

Obviously, the converse, in general is not true, not all extremal patches of the

Dirichlet functional in the restricted case are harmonic patches i.e. a polynomial

extremal of the Dirichlet functional is not harmonic in general.

In Chapter 2, we saw the conditions that a control net must satisfy for the

associated Bézier surface in order to be harmonic. We saw that for n odd, the

inner rows are determined by the control points in the first and las rows. For

example, if n = m = 3, we obtained

P00 P01 P02 P03

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
P30 P31 P32 P33

where,

P10 =
1

3
(4P00 − 4P01 + 2P02 + 2P30 − 2P31 + P32),

P20 =
1

3
(2P00 − 2P01 + P02 + 4P30 − 4P31 + 2P32),

P13 =
1

3
(2P01 − 4P02 + 4P03 + P31 − 2P32 + 2P33),

P23 =
1

3
(P01 − 2P02 + 2P03 + 2P31 − 4P32 + 4P33).

Then, only those configurations of the boundary control points that verify such

relations can produce extremals of the Dirichlet functional of the restricted case

which are harmonic. The same occurs when n is even.

4.1.2 Extremals of the Dirichlet functional

Let us see a proposition that gives the condition a control net, P , must satisfy

in order to be an extremal of the Dirichlet functional. Notice that we will simply

compute the points where the gradient of a real function defined on R3(n−1)(m−1)

vanishes. In other words, what we are studying are the critical points of the

function, P → D(−→x P), where −→x P denotes the Bézier patch associated to the

control net P .
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Proposition 4.1.2 ([8]) A control net, P = {Pi,j}n,mi,j=0, is an extremal of the

Dirichlet functional with prescribed border if and only if

0 =
n2

(2m+ 1)(2n− 1)

(
n− 1

i

)(
m

j

) n−1,m∑
k,l=0

Akni

(
m
l

)(
2m
j+l

)∆1,0Pkl

+
m2

(2m− 1)(2n+ 1)

(
n

i

)(
m− 1

j

) n,m−1∑
k,l=0

(
n
k

)(
2n
i+k

)Almj∆0,1Pkl,

for any i ∈ {1, . . . , n− 1} and j ∈ {1, . . . ,m− 1} where Akni is defined by

Akni =
ni− nk − i

(n− i)(2n− 1− i− k)

(
n−1
k

)(
2n−2
i+k−1

) .
Corollary 4.1.3 ([8]) A squared control net, P = {Pij}n,ni,j=0, is an extremal of

the Dirichlet functional with prescribed border if and only if

0 =

n−1,n∑
k,l=0

(
n
l

)(
2n
j+l

)Ck
ni∆

10Pkl +

n,n−1∑
k,l=0

(
n
k

)(
2n
i+k

)C l
mj∆

01Pkl,

for any i, j ∈ {1, . . . , n− 1}, where Ck
ni = (n−1)i−nk

i+k

(n−1
k )

(2n−2
i+k )

.

Let us see some particular cases. For example, for n = m = 2 there is just

one equation corresponding to the inner control point P11.

Proposition 4.1.4 ([8]) A biquadratic Bézier surface is an extremal of the Dirich-

let functional with prescribed border if and only if

P11 =
1

8
(3P00 − P01 + 3P02 − P10 − P12 + 3P20 − P21 + 3P22).

In the following image we have taken:

P00 P01 P02

P10 P11 P12

P20 P21 P22

(0, 0, 0) (1, 0, 1) (2, 0, 0)

(0, 1, 1) P11 (2, 1, 1)

(0, 2, 0) (1, 2, 1) (2, 2, 0)

In this case P11 = (1, 1,−1/2).

If n = m = 3, there are four equations corresponding to the inner control

points P11, P12, P21, P22.
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Figure 4.1: Extremal biquadratic Bézier surface of the Dirichlet functional

Proposition 4.1.5 ([8]) A bicubic Bézier surface is an extremal of the Dirichlet

functional with prescribed border if and only if

P11 =
1

78
(48P00 − 22P01 + 24P02 − 22P10 + 15P13 + 24P20 − 4P23

+ 15P31 − 4P32 + 4P33),

P12 =
1

78
(24P01 − 22P02 + 48P03 + 15P10 − 22P13 − 4P20 + 24P23

+ 4P30 − 4P31 + 15P32),

P21 =
1

78
(15P01 − 4P02 + 4P03 + 24P10 − 4P13 − 22P20 + 15P23

+ 48P30 − 22P31 + 24P32),

P22 =
1

78
(4P00 − 4P01 + 15P02 − 4P10 + 24P13 + 15P20 − 22P23

+ 24P31 − 22P32 + 48P33).

In the following image we have taken:

P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

(0, 0, 0) (1, 0,−0.5) (2, 0,−0.6) (3, 0, 0)

(0, 1, 1) P11 P12 (3, 1, 1)

(0, 2, 1) P21 P22 (3, 2, 1)

(0, 3, 0) (1, 3,−0.5) (2, 3,−0.6) (3, 3, 0)

In this case P11 = (1, 1, 0.057), P12 = (2, 1, 0.09), P21 = (1, 2, 0.05) and P22 =

(2, 2, 0.09).

Let us recall that, as we have said before, a minimum of the Dirichlet func-

tional with prescribed border always exists. In fact, it is possible to prove the

uniqueness.
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Figure 4.2: Extremal bicubic Bézier surface of the Dirichlet functional

Theorem 4.1.6 ([10]) The Dirichlet extremal is unique.

Finally, the following theorem gives a method to reach the minimal area with

prescribed boundary by a sequence of Bézier surfaces which are Dirichlet ex-

tremals.

Theorem 4.1.7 ([10]) Let −→x : [0, 1] × [0, 1] → R3 be an isothermal chart of a

surface of minimal area among all surfaces with the same boundary. Let −→y n be

the Dirichlet extremal of degree n with boundary defined by the exterior control

points of the control net Pn = {−→x ( i
n
, j
n
)}ni,j=0. Then,

lim
n→∞

A(−→y n) = A(−→x ).

4.1.3 The biharmonic functional

In a similar fashion to the harmonic functional or Dirichlet functional, the

biharmonic functional is defined as

B(−→x ) =
1

2

∫
R

(‖−→x uu‖2 + 2‖−→x uv‖2 + ‖−→x vv‖2)dudv,

where = [0, 1]× [0, 1].

As the extremal of the Dirichlet functional in 4.1.2, the extremals of the

biharmonic functional can also easily be computed. Again, as with the harmonic

case what we are studying are the critical points of the function P → B(−→x P),

where −→x P denotes the Bézier patch associated with the control net P .
To present our comparative study here we discuss several examples of bihar-

monic Bézier surfaces. For each example the results are presented in a tabulated

form.
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As a first example we take the catenoid which is parameterized by −→x (u, v) =

(cosh(v) cos(u), cosh(u) sin(u), v), u ∈ [0, π], v ∈ [0, argcosh(2)], and it is a min-

imal surface. In this example, the boundary curves are degree 5 Bézier curves

approximations to the boundary curves of the catenoid.

In this case, we obtain:

Figure 4.3: The catenoid surface

The following table compares different functionals for a Dirichlet extremal

surface, biharmonic surface and biharmonic extremal surface.

Functional Catenoid Dirichet extremal Bihar. surface Bihar. extremal

Area 7.51007 8.31778 7.77847 7.79836

Dirichlet 7.51007 9.18563 9.82239 9.88235

Biharmonic 10.8828 113.941 89.2635 86.1143

Notice that the equality between the area and the value of the Dirichlet

functional for the catenoid is a consequence of the fact that for isothermal pa-

rameterizations, the area and the harmonic functional agree. In this case the

better approximation to the true area is the biharmonic surface.

As a second example we take the same boundary control points as in Figure

4.2 and we obtain the following values:

Functional Dirichlet extremal Bihar. surface Bihar. extremal

Area 10.6264 10.7184 10.6466

As can be noted, in this example we found that the smaller area was obtained

for the surface corresponding to the Dirichlet extremal.
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We can see that there is no better choice. Depending on the boundary con-

trol points, i.e., the boundary curves, an approximation method is better than

another.

4.2 The use of masks

Another way of building surfaces is by means of masks. A mask is a set of

coefficients that define a control point of a Bézier surface in terms of its neigh-

boring control points. Thus, the whole control net is obtained as a solution of a

linear system. The use of masks has its origin in numerical methods to discretize

and solve differential equations. One way of obtaining an approximated solution

to a differential equation is by performing its finite difference discretization, and

then the discrete solutions can be represented by masks. In [4], G. Farin and

D. Hansford present a new class of control net generation schemes based on a

special kind of masks that they call permanence patches. These masks have the

following form

α β α

β • β

α β α

where β = 1/4 − α. We denote this mask by Mα. They are called permanence

patches because the case α = −1/4 gives the control net generation scheme used

to generate Coons patches which satisfy the permanence principle (see [4]).

This mask implies that, in general, we can write:

Pi,j = β(Pi−1,j+Pi,j−1+Pi,j+1+Pi+1,j)+α(Pi−1,j−1+Pi−1,j+1+Pi+1,j−1+Pi+1,j+1).

For example, for n = m = 2 :

P00 P01 P02

P10 P11 P12

P20 P21 P22

the inner control point P11 is given by:

P11 =β(P01 + P10 + P12 + P21) + α(P00 + P02 + P20 + P22)

=α(P00 + P02 + P20 + P22 − (P01 + P10 + P12 + P21))

+
1

4
(P01 + P10 + P12 + P21).
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In this section we study different masks by applying different guiding princi-

ples also related with surfaces of minimal area.

1. The discrete Laplacian mask

It can be found in [4] that the mask M0 is the discrete form of the Laplacian

operator. Such a mask is used in the cited reference to obtain control nets

resembling minimal surfaces that fit given boundary polygons.

For α = 0 (and therefore β = 1/4), we obtain:

Pij =
1

4
(Pi+1,j + Pi−1,j + Pi,j+1 + Pi,j−1).

Note that M0(Pij) is the center of gravity of the four neighboring points of Pij,

which are not at the corners.

Should also be noted that what we would really obtain is an approximation

of a harmonic control net, but not, in principle, an approximation of a harmonic

Bézier patch.

2. The harmonic mask

Instead of discretizing the Laplacian operator, let us demand that, at least

at one point, the Laplacian of the patch vanishes. So, we are not doing an

approximation to a harmonic control net. What we are trying to do is to transfer

the harmonic condition of the patch into a condition on the control net.

Proposition 4.2.1 ([8]) The Bézier patch −→x , associated to a biquadratic control

net, P = {Pi,j}2,2
i,j=0, verifies ∆−→x (1

2
, 1

2
) = 0 if and only if

P11 = M1/4(P11).

3. The Dirichlet mask

The third mask is given by the Dirichlet equations for n = m = 2.

Proposition 4.2.2 ([8]) A biquadratic control net, P = {Pij}2,2
i,j=0, is an ex-

tremal of the Dirichlet functional with prescribed border if and only if

P11 = M3/8(P11).
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The Dirichlet mask corresponds to the value α = 3/8 and notice that coincides

with the results obtained in Proposition 4.1.4 for n = m = 2.

The obvious question then is to determine which mask is the best, or even

more generally, whether there is or not a better mask. The answer is negative.

The highly nonlinearity of the area functional makes the dependence of the min-

imal surface from the boundary conditions highly nonlinear too. So, one cannot

expect a mask, i.e., a linear expression, to be able to give a good approximation

in all cases. This means that, depending on the boundary control points a mask

is better than another.

Let us see some different examples depending on the grade of a Bézier surface.

We start the comparison by studying some examples in the biquadratic case.

Example 4.2.3 Taking the same boundary control points as in Figure 1.1. for

a Bézier surface of degree n, the following figure shows an example of boundary

conditions and the three Bézier surfaces obtained by the different masks. The

resulting areas are

Mask Area

α = 0 4.5505

α = 0.25 4.23649

Dirichlet extr. 4.19972

Figure 4.4: Left, the discretization of the Laplacian operator (α = 0). Center,
the harmonic mask (α = 0.25). Right, the Dirichlet mask (α = 0.375)

In this example the approximation given by the Dirichlet mask is better that the

other two masks.
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There is one interesting case. As we have seen before, we can write:

P11 = Mα(P11) =α(P00 + P02 + P20 + P22 − (P01 + P10 + P12 + P21))

+
1

4
(P01 + P10 + P12 + P21).

=α(M1/4(P11)−M0(P11)) +
1

4
M0(P11).

So, if the configuration of the boundary control points of a biquadratic con-

trol net is such that both centers of gravity are located at the same point, i.e.

M1/4(P11) = M0(P11), then the central point P11 does not depend on α. There-

fore, for such a configuration of the boundary, any mask will define the same

Bézier surface.

Let us have a look at the behavior of the masks comparing with the Dirichlet

extremal for rectangular Bézier surfaces. The next example corresponds to a

Bézier surface of degree n = 2, m = 3.

Example 4.2.4 In this example, for the first surface we have taken the same

boundary control points as in Figure 1.2, for the second surface we have taken:

(0, 0, 2) (1, 0, 1) (2, 0, 1) (3, 0,−1)

(0, 1, 1) P11 P12 (3, 1.25, 1)

(0, 2, 1) P21 P22 (3, 1.75, 1)

(0, 3,−1) (1, 3, 1) (2, 3, 1) (3, 3, 2)

Figure 4.5: Different boundary conditions for n = m = 3 and the associated
Bézier surface. The drawn surfaces are Dirichlet extremals
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We obtain the following values for the areas:

Mask Left Right

α = 0 10.6425 11.2214

α = 1/4 10.6310 11.1774

α = 3/8 10.6289 11.2303

Extremal Dirichlet 10.6264 11.1891

In this case we can see that in the left example the minimum of the area is

provided by the extremal of Dirichlet functional. However, in the second example

the mask α = 1/4 is the best approximation.

As we have said before, there is no best choice, but the examples and the-

oretical arguments point out that when the first fundamental form, IFF, of the

Bézier surface at the corners (at these points the IFF depends on just the bound-

ary conditions) is close to being isothermal, i.e. E = F and G = 0, then the

Dirichlet extremal is a better approximation than the ones obtained by the use

of masks.

In the opposite case, suppose that the first fundamental form of the Bézier

surface at the corners is far from being isothermal. Then, since we are making

a mistake starting, the results obtained by the use of a mask can be better than

the result obtained by the Dirichlet extremal.

In [8] we can find different examples where, depending on the boundary con-

ditions and for n = m = 4 the minimum of the area is provided by other masks.

Example 4.2.5 In this example, for each of the images we have taken the bound-

ary control points:

(0, 0, 0) (1, 0, 1) (2, 0, 1) (3, 0, 0)

(0, 1, 0) P11 P12 (3, 1, 0)

(0, 2, 0) (1, 2, 1) (2, 2, 1) (3, 2, 0)

(0, 0, 0) (1, 0, 1) (2, 0, 1) (3, 0, 0)

(0, 1, 1) P11 P12 (3, 1, 1)

(0, 2, 0) (1, 2, 1) (2, 2, 1) (3, 2, 0)

We have obtained the following values:

Mask Left Right

α = 0 6.68046 6.74866

α = 1/4 6.42351 6.70932

α = 3/8 6.38108 6.70057

Dirichlet extr. 6.37128 6.76700
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Figure 4.6: Different boundary conditions for n = 2, m = 3 and the associated
Bézier surface. The drawn surfaces are Dirichlet extremals

In this example we can see that in the first example the approximation given

by the extremal Dirichlet is better than the masks. However, in the second

example, the best approximation is given by the mask α = 3/8.

4.3 The extremal of the Dirichlet functional for

B-splines

As we have seen in the previous chapters, in some cases is useful to work

with B-splines. As for biharmonic surfaces, we can ask about the extremal of the

Dirichlet functional for B-splines surfaces. Remember that for the knot vectors

U = (u0, u1, . . . , un+p) and V = (v0, v1, . . . , vm+q) associated to each parameter u

and v the corresponding B-spline surface of control points {Pi,j}n,mi,j=0 is given by

−→x (u, v) =
n∑
i=0

m∑
j=0

Ni(u)Nj(v)Pi,j.

For an unknown basis coefficient Pi,j = (x1
i,j, x

2
i,j, x

3
i,j) we have

∂−→x
∂u

=
∑
i,j

N ′i(u)Nj(v)Pi,j,
∂−→x
∂v

=
∑
i,j

Ni(u)N ′j(v)Pi,j,

∂

∂xti,j

(
∂−→x
∂u

)
= N ′i(u)Nj(v)et,

∂

∂xti,j

(
∂−→x
∂v

)
= Ni(u)N ′j(v)et,

where et denotes the t-th vector of the canonical basis, i.e., e1 = (1, 0, 0), e2 =

(0, 1, 0) and e3 = (0, 0, 1).

Remember that the Dirichlet functional is given by:

D(P) =
1

2

∫
R

(||−→x u||2 + ||−→x v||2)dudv =
1

2

∫
R

(< −→x u,
−→x u > + < −→x v,

−→x v >)dudv.
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Therefore, for an interval Ω = [a, b]× [a, b]

∂D(P)

∂xti,j
=

∫
Ω

(<
∂−→x u

∂xti,j
,−→x u > + <

∂−→x v

∂xti,j
,−→x v >)dudv

=

∫
Ω

(N ′i(u)Nj(v) < et,−→x u > +Ni(u)N ′j(v) < et,−→x v >)dudv

=

∫
Ω

N ′i(u)Nj(v)
∑
k,l

N ′k(u)Nl(v) < et, Pk,l > dudv

+

∫
Ω

Ni(u)N ′j(v)
∑
k,l

Nk(u)N ′l (v) < et, Pk,l > dudv

=
∑
k,l

< et, Pk,l > (Ei,kGj,l +Gi,kEj,l),

where

Ei,k =

∫ b

a

N ′i(u)N ′k(u)du, Gi,k =

∫ b

a

Ni(u)Nk(u)du.

Then we have the following proposition.

Proposition 4.3.1 A control net P = {Pi,j}n,mi,j=0 of a B-spline is an extremal of

the Dirichlet functional with prescribed border if and only if

0 =
∑
k,l

(Ei,kGj,l +Gi,kEj,l)Pi,j,

where

Ei,k =

∫ b

a

N ′i(u)N ′k(u)du, Gi,k =

∫ b

a

Ni(u)Nk(u)du,

for i, j = 1, 2, . . . , n− 1.

Let us see some examples. For a biquadratic B-spline of knot vectors U =

(0, 0, 0, 1, 2, 2, 2), V = (0, 0, 0, 1, 2, 2, 2), n = 3 and boundary control points:

(−15,−2, 15) (−5, 5, 15) (5, 5, 15) (15,−2, 15)

(−15, 5, 5) ∗ ∗ (15, 5, 5)

(−15, 5,−5) ∗ ∗ (15, 5,−5)

(−15,−2,−15) (−5, 5,−15) (5, 5,−15) (15,−2,−15)

we obtain P1,1 = (−15
2
, 13

4
, 15

2
), P1,2 = (15

2
, 13

4
, 15

2
), P2,1 = (−15

2
, 13

4
,−15

2
) and

P2,2 = (15
2
, 13

4
,−15

2
). Figure 4.7 shows the corresponding bicuadratic B-spline

surface.

For bicubic B-splines of knot vectors U = (0, 0, 0, 0, 1, 2, 2, 2, 2) and V =

(0, 0, 0, 0, 1, 2, 2, 2, 2), and n = 4, the Figure 4.8 shows the bicubic B-spline surface
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Figure 4.7: Surface obtained by the extremal of Dirichlet functional using
bicuadratic B-splines

for the boundary control points:

(0, 0, 1) (1, 0, 0) (2, 0,−1) (3, 0, 0) (4, 0, 1)

(0, 1, 0) ∗ ∗ ∗ (4, 1, 0)

(0, 2,−1) ∗ ∗ ∗ (4, 2,−1)

(0, 3, 0) ∗ ∗ ∗ (4, 3, 0)

(0, 4, 1) (1, 4, 0) (2, 4,−1) (3, 4, 0) (4, 4, 1)

Figure 4.8: Surface obtained by the extremal of Dirichlet functional using bicubic
B-splines

In this case, the inner control points are given by

P1,1 =
(

3719
5469

, 3719
5469

, 29
141

)
, P1,2 =

(
3929
5469

,− 82
141

)
, P1,3 =

(
18157
5469

, 3719
5469

, 29
141

)
,

P2,1 =
(

3929
5469

, 2,− 82
141

)
, P2,2 =

(
2, 2,− 19

1833

)
, P2,3 =

(
17947
5469

, 2,− 82
141

)
,

P3,1 =
(

3719
5469

, 18157
5469

, 29
141

)
, P3,2 =

(
2, 17947

5469
,− 82

141

)
, P3,3 =

(
18157
5469

, 18157
5469

, 29
141

)
.

In [6] the authors give an algorithm to compute the extremal of the Dirichlet

functional from a Multiresolution Analysis point of view (MRA), where they
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prove the existence and the unique solution for linear and bicuadratic cardinal

B-spline. Let us see how they study the extremal in the MRA case.

The theory of MRA provides the possibility to represent a function f with

different degrees of accuracy by means of projection onto a nested sequence of

approximation spaces {Vn}n∈Z, V ⊆ Vn+1. For a given sequence of subspaces

{Vn}n∈Z, we say {Vn} forms a MRA for L2(R) of square integrable functions, if

the following conditions are satisfied:

Vn ⊆ Vn+1, n ∈ Z;
⋃
n

Vn = L2(R);
⋂
n

Vn = {0}.

Any compactly supported refinable function φ ∈ L2(R) with φ̂ 6= 0 will generate

an MRA {Vn}, where Vn = span(φ(2nx− k), k ∈ Z), φ̂ is the Fourier transform

of φ.

The simplest refinable function is B-spline. The B-spline Bm of order m is

compactly supported function Cm−2(R) with length of support being m. If the

separation xr+1− xr, where r is any integer, between the successive knots in the

set of knot vectors is a constant, the spline is called a cardinal spline. The set of

integers Z = {. . . ,−2,−1, 0, 1, 2, . . .} is a standard choice for the set of knots of

a cardinal spline. For this kind of knots, they use B2(x) and B3(x) respectively

as the refinable function φ(x) :

B2(x) =

{
1− |x|, x ∈ [−1, 1],

0, x /∈ [−1, 1],

and

B3(x) =


1
2
x2, x ∈ [0, 1],

1
2
(−3 + 6x− 2x2), x ∈ [1, 2],

1
2
(3− x)2, x ∈ [2, 3],

0, x ∈ [0, 3].

The different refinement levels are given respectively by:

φ
(2)
n,k(x) = 2

n
2B2(2n(x+ 1)− k), x ∈

[
−1 +

k − 1

2n
,−1 +

k + 1

2n

]
, k ∈ Z.

φ
(3)
n,k(x) = 2

n
2B3(2nx− k), x ∈

[
k

2n
,
k + 3

2n

]
, k ∈ Z.

Define

Ṽ (2)
n =span{h(2)

i (u)h
(2)
i (v), i, j = 1, 2, . . . , 2n+1 − 1},

Ṽ (3)
n =span{h(3)

i (u)h
(3)
i (v), i, j = 1, 2, . . . , 3(2n+1 − 1)},
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where h
(2)
i (u) = φ

(2)
n,i(u), h

(2)
j (v) = φ

(2)
n,j(v) and h

(3)
i (u) = φ

(3)
n,i(u), h

(3)
j (v) = φ

(3)
n,j(v).

In the paper, the authors prove that for a given n, finding gn ∈ Ṽn such that

gn = arg minĝ∈V̂nD(ϕ+ g̃), (4.3.1)

where ϕ(u, v) is a parametric smooth surface with the same boundary curves as

f, implies that

lim
n→∞

D(ϕ+ gn) = D(f).

Then, the general solution of 4.3.1 can be expressed in the form

g =
∑
i,j

Pi,jhi(u)hj(v),

where hi(u)hj(v) are the corresponding functions in Ṽ
(2)
n or Ṽ

(3)
n for B-spline of

order 2 or 3 respectively. By making the gradient of the functional D(ϕ + g)

vanish, they derive the solution of 4.3.1 as follows.

Theorem 4.3.2 ([6]) For the given boundary control points {Pi,0}ni=0, {Pi,n}ni=0

and {P0,j}nj=0 {Pn,j}nj=0, the function g =
∑

i,j Pi,jhi(u)hj(v) is the solution of

4.3.1 if and only if for any i,j,∑
k,l

Pk,l(Ei,kGj,l +Gi,kEj,l) = −(Ai,j +Bi,j),

where

Ei,k =

∫ b

a

h′i(u)h′k(u)du Gi,k =

∫ b

a

hi(u)hk(u)du,

and

Ai,j =

∫
Ω

h′i(u)hj(v)ϕududv Bi,j =

∫
Ω

hi(u)h′k(v)ϕvdudv,

where Ω = [a, b]× [a, b].

It should pointed out that this result is equivalent to our method for the linear

and cuadratic case. However, since we are using B-spline basis of any degree,

we obtain a more general result. We have been able to compute higher degree

B-splines.



Bibliography 66



Bibliography

[1] Arnal, A. and Monterde, J., Genrating harmonic surfaces for interative de-

sign, Comput. Aided Geom. Design, 67, 1914-1924 (2014).

[2] Bland́ın, H. and Dı́az, R. R. Compositional Bernoulli numbers, African Di-

aspora Journal of Mathematics, 7, (2), 119-134 (2008).

[3] Cosin, C. and Monterde, J. Bézier surfaces of minimal area, Lecture Notes

in Computer Science series, 2330, 72-81 (2002).

[4] Farin, G. and Hansford, D., Discrete Coons patches, Comput. Aided Geom.

Design, 16, 691-700 (1999).

[5] Han, X. and Han, J., Representation of piecewise biharmonic surfaces using

biquadratic B-splines, Journal of Comp. and Apl. Mathematics, 290, 403411

(2015).

[6] Hao, Y., Li, C. and Wang, R. , An approximation method based on MRA

for the quasi-Plateau problem, BIT Numer Math, 53, 411-442 (2013).
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