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Abstract. Let A1, ..., Ak be function algebras (or more generally, dense subspaces of uniformly

closed function algebras) on locally compact Hausdorff spaces X1, ..., Xk, respectively, and let Y

be a locally compact Hausdorff space. A k-real-linear map T : A1 × ...×Ak −→ C0(Y ) is called a

multi-real-linear (or k-real-linear) isometry if

‖T (f1, ..., fk)‖ =

k∏
i=1

‖fi‖ ((f1, ..., fk) ∈ A1 × ...×Ak),

where ‖ · ‖ denotes the supremum norm. In this paper we study such maps and obtain generaliza-

tions of basically all known results concerning multilinear and real-linear isometries on function

algebras.

1. Introduction

Let X be a locally compact Hausdorff space and let C0(X) (resp. C(X) if X is compact) denote

the Banach space of complex-valued continuous functions defined on X vanishing at infinity, endowed

with the supremum norm ‖ ·‖. The classical Banach-Stone theorem gave the first characterization of

surjective linear isometries between C(X)-spaces as weighted composition operators ([3, 1]). Several

extensions of this theorem have been derived for different settings. Thus, Holsztyński ([6]) considered

the non-surjective version of the Banach-Stone theorem and showed that if T : C(X) −→ C(Y ) is a

linear isometry (not necessarily onto), then T can be represented as a weighted composition operator

on a nonempty subset of Y .

In [12], the authors proved, based on the powerful Stone-Weierstrass theorem, the following

bilinear version of Holsztyński’s theorem:

Let T : C(X) × C(Y ) −→ C(Z) be a bilinear (or 2-linear) isometry. Then there exist a closed

subset Z0 of Z, a surjective continuous mapping ϕ : Z0 −→ X × Y and a unimodular function

a ∈ C(Z0) such that T (f, g)(z) = a(z)f(πx(ϕ(z)))g(πy(ϕ(z))) for all z ∈ Z0 and every pair (f, g) ∈

C(X)× C(Y ), where πx and πy are projection maps.
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More recently, in [8], the authors provided a weighed composition characterization of multilinear

(k-linear) isometries on function algebras and extended the above results.

Another direction of extensions of the Banach-Stone theorem deals with its real-linear version,

motivated by the fact that, thanks to the Mazur-Ulam theorem [9], every surjective isometry between

two complex-linear function spaces is real-linear. Thus, in [4], Ellis considered two compact Hausdorff

spaces, X1 and X2, a uniform algebra M1 on X1 and a unital closed separating subspace M2 of

C(X2) such that the Šilov boundaries of M1 and M2 are X1 and X2, respectively, and proved that

if T : M1 −→ M2 is a surjective real-linear isometry, then there exist a clopen subset K of X2

and a homeomorphism ϕ : X2 −→ X1 such that T (f) = T (1)f ◦ ϕ on K and T (f) = T (1)f ◦ ϕ

on X2 \ K, where ·̄ denotes the complex conjugate. In [11], Miura generalized this result to non-

unital algebras and showed that if T : A −→ B is a surjective real-linear isometry between two

function algebras A and B, then there exist a homeomorphism ϕ : Ch(B) −→ Ch(A), a continuous

function ω : Ch(B) −→ T and a clopen subset K of Ch(B) such that T (f) = ωf ◦ ϕ on K and

T (f) = ωf ◦ ϕ on Ch(B) \K. More recently, in [10], the authors characterized surjective real-linear

isometries between complex function spaces satisfying certain separating conditions and extended

some previous results by a technique based on the extreme points. In [7], the non-surjective case is

treated based on a different technique.

In this paper we combine both approaches by dealing with k-real-linear isometries. Let A1, ..., Ak

be function algebras (or more generally, dense subspaces of uniformly closed function algebras) on

locally compact Hausdorff spaces X1, ..., Xk, respectively, and let Y be a locally compact Hausdorff

space. Here we study a k-real-linear map T : A1 × ...×Ak −→ C0(Y ) satisfying

‖T (f1, ..., fk)‖ =

k∏
i=1

‖fi‖ ((f1, ..., fk) ∈ A1 × ...×Ak),

which we call a multi-real-linear (or k-real-linear) isometry.

We also check, based on an example, how different these isometries can be from the other so far

studied cases.

2. Preliminaries

A function algebra A on a locally compact Hausdorff space X is a subalgebra of C0(X) which

separates strongly the points of X in the sense that for each x, x′ ∈ X with x 6= x′, there exists an

f ∈ A with f(x) 6= f(x′) and for each x ∈ X, there exists an h ∈ A with h(x) 6= 0. If X is a compact

Hausdorff space, each unital uniformly closed function algebra on X is called a uniform algebra on

X.

Let A be a function algebra on a locally compact Hausdorff space X, and let A stand for the

uniform closure of A. The unique minimal closed subset of X with the property that every function
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in A assumes its maximum modulus on this set, which exists by [2], is called the Šilov boundary

for A and is denoted by ∂A. The Choquet boundary Ch(A) of A is the set of all x ∈ X for which

δx, the evaluation functional at the point x, is an extreme point of the unit ball of the dual space

of (A, ‖ · ‖). So it is apparent that Ch(A) = Ch(A), and moreover, by [2, Theorem 1], Ch(A) is

dense in ∂A. It is said that x ∈ X is a strong boundary point (or weak peak point) for A if for every

neighborhood V of x, there exists a function f ∈ A such that ‖f‖ = 1 = |f(x)| and |f | < 1 on

X \ V . It is known that for each uniformly closed function algebra A, then Ch(A) coincides with

the set of all strong boundary points (see [13]). Meantime, a function f ∈ A is called a peaking

function if ‖f‖ = 1 and for each x ∈ X, either |f(x)| < 1 or f(x) = 1. If we fix x0 ∈ X, then PA(x0)

denotes the set of peaking functions f in A with f(x0) = 1. Moreover, for an element x0 ∈ X, we

set Vx0
:= {f ∈ A : f(x0) = 1 = ‖f‖}.

In the sequel, for each f ∈ C0(X), Mf := {x ∈ X : |f(x)| = ‖f‖} stands for the maximum

modulus set of f .

It should be noted that in the proof of our results we shall apply the following versions of Bishop’s

Lemma (see [3, Theorem 2.4.1]) adapted to the context of uniformly closed function algebras, which

can be obtained with exactly the same proofs as in [5, Lemma 2.3] and [14, Lemma 1].

Lemma 2.1. [5, Lemma 2.3] Let A be a uniformly closed function algebra on a locally compact

Hausdorff space X, f ∈ A and x0 ∈ Ch(A). If f(x0) 6= 0, then there exists a peaking function

h ∈ PA(x0) such that fh
f(x0)

∈ PA(x0).

Lemma 2.2. [14, Lemma 1] Assume that A is a uniformly closed function algebra on a locally

compact Hausdorff space X and f ∈ A. Let x0 ∈ Ch(A) and arbitrary r > 1 (or r ≥ 1 if f(x0) 6= 0),

then there exists a function h ∈ r‖f‖PA(x0) = {r‖f‖k : k ∈ PA(x0)} such that

|f(x)|+ |h(x)| < |f(x0)|+ |h(x0)|

for every x /∈Mh and |f(x)|+ |h(x)| = |f(x0)|+ |h(x0)| for all x ∈Mh. Consequently, ‖|f |+ |h|‖ =

|f(x0)|+ |h(x0)|.

Let us remark that Lemma 2.1 is a version of the multiplicative Bishop’s Lemma and Lemma 2.2

is the strong version of the additive Bishop’s Lemma.

3. Previous lemmas

LetA1, ..., Ak be function algebras (or more generally, dense subspaces of uniformly closed function

algebras) on locally compact Hausdorff spaces X1, ..., Xk, respectively. In this section we shall

prove some previous lemmas used in our main theorem (Theorem 4.1). First note that it is not

difficult to extend a k-real-linear isometry T : A1 × ... × Ak −→ C0(Y ) to a k-real-linear isometry
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T : A1 × ...×Ak −→ C0(Y ), where Ai is the uniform closure of Ai (i = 1, ..., k). So, without loss of

generality, we can assume each Ai (i = 1, ..., k) is a uniformly closed function algebra.

Lemma 3.1. Let (x1, ..., xk) ∈ Ch(A1)× ...× Ch(Ak) and (α1, ..., αk) ∈ Tk. The set

Iα1,...,αk
x1,...,xk

:= {y ∈ Y : y ∈MT (f1,...,fk) for all (f1, ..., fk) ∈ α1Vx1
× ...× αkVxk

}

is nonempty.

Proof. The proof is a modification of the proof of [7, Lemma 4.1]. Since for each (f1, ..., fk) ∈

α1Vx1×...×αkVxk
, the maximum modulus set of T (f1, ..., fk), MT (f1,...,fk), is a compact subset of the

one point compactification Y∞ of Y , it is enough to check that the family {MT (f1,...,fk) : (f1, ..., fk) ∈

α1Vx1
×...×αkVxk

} has the finite intersection property. For this purpose, let (f11 , ..., f
1
k ), ..., (fn1 , ..., f

n
k )

be members in α1Vx1
× ...× αkVxk

. Define

fi :=
1

n

n∑
j=1

f ji , i ∈ {1, ..., k}.

Clearly, (f1, ..., fk) ∈ α1Vx1 × ...× αkVxk
. Hence ‖T (f1, ..., fk)‖ = ‖f1‖...‖fk‖ = 1. Then there is a

point y0 ∈ Y such that

1 = |T (f1, ..., fk)(y0)| = 1

nk

∣∣∣∣∣∣
∑

1≤i1,...,ik≤n

T (f i11 , ..., f
ik
k )(y0)

∣∣∣∣∣∣ .
Since for each 1 ≤ i1, ..., ik ≤ n, f i11 ∈ α1Vx1

, ..., f ikk ∈ αkVxk
and ‖T (f i11 , ..., f

ik
k )‖ = 1, we conclude

that |T (f i11 , ..., f
ik
k )(y0)| = 1. In particular, y0 ∈

n⋂
i=1

MT (fi
1,...,f

i
k)

. Therefore
n⋂
i=1

MT (fi
1,...,f

i
k)
6= ∅, as

was to be proved. �

Lemma 3.2. Let (x1, ..., xk) ∈ Ch(A1)× ...×Ch(Ak), (α1, ..., αk) ∈ Tk and y ∈ Iα1,...,αk
x1,...,xk

. Let also

I and J be two disjoint sets with I 6= ∅ and I ∪ J = {1, ..., k}. If we assume that for each j ∈ J ,

hj ∈ αjVxj and for each i ∈ I, fi ∈ Ai with fi(xi) = 0, then T (F1, ..., Fk)(y) = 0, where Ft = ft if

t ∈ I and Ft = ht if t ∈ J .

Proof. Let us suppose, contrary to what we claim, that there exists y0 ∈ Iα1,...,αk
x1,...,xk

such that

T (F1, ..., Fk)(y0) 6= 0. Without loss of generality, we may assume that T (F1, ..., Fk)(y0) = eiθ,

where −π < θ ≤ π. Fix a constant r > 1. For each i ∈ I, we can choose, by Lemma 2.2, a peaking

function h′i ∈ Vxi
such that ‖|fi| + ri|h′i|‖ = ri, where ri = r‖fi‖. In particular, putting hi = αih

′
i

for each i ∈ I, we have ‖ ± fi + rihi‖ = ri and T (h1, ..., hk)(y0) = eiθ
′ ∈ T for some −π < θ′ ≤ π.
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We first assume that card(I) = 1. For simplicity, we can take I = {1}. We have

r = ‖ ± f1 + r1h1‖‖h2‖...‖hk‖ = ‖T (±f1 + r1h1, h2, ..., hk)‖

≥ |T (±f1 + r1h1, h2, ..., hk)(y0)| = | ± T (f1, h2, ..., hk)(y0) + r1T (h1, h2, ..., hk)(y0)|

= | ± eiθ + r1e
iθ′ | = | ± ei(θ−θ

′) + r1|,

and consequently, r1 ≥ max{|ei(θ−θ′) + r1|, | − ei(θ−θ
′) + r1|} > r1, which gives a contradiction.

Thereby, T (F1, ..., Fk)(y) = 0 for all y ∈ Iα1,...,αk
x1,...,xk

.

Now suppose that I = {1, 2}. Hence, from the previous part, we can conclude that

r1r2 = ‖ ± f1 + r1h1‖‖f2 + r2h2‖‖h3‖...‖hk‖

= ‖T (±f1 + r1h1, f2 + r2h2, h3, ..., hk)‖

≥ | ± T (f1, f2, h3, ..., hk)(y0) + r2T (f1, h2, h3, ..., hk)(y0)

+ r1T (h1, f2, h3, ..., hk)(y0) + r1r2T (h1, h2, h3, ..., hk)(y0)|

= | ± eiθ + r1r2e
iθ′ | = | ± ei(θ−θ

′) + r1r2|,

and so r1r2 ≥ max{|ei(θ−θ′)+r1r2|, |−ei(θ−θ
′)+r1r2|} > r1r2, a contradiction which implies that the

result is true when I = {1, 2}. Similarly, this result holds for all the other cases where card(I) = 2.

Now we can continue by induction: noting to the above explanation, let us assume that the result

is true for card(I) = l − 1 and 3 ≤ l ≤ k. We shall show that the result is held if card(I) = l. To

this end, we suppose that card(I) = l and I = {x1, ..., xl}, without loss of generality. If l < k, then

we get

r1r2...rl = ‖ ± f1 + r1h1‖‖f2 + r2h2‖...‖fl + rlhl‖‖hl+1‖...‖hk‖

= ‖T (±f1 + r1h1, f2 + r2h2, ..., fl + rlhl, hl+1, ..., hk)‖

≥ |T (±f1 + r1h1, f2 + r2h2, ..., fl + rlhl, hl+1, ..., hk)(z0)|

= | ± T (f1, ..., fl, hl+1, ..., hk)(y0) + r1r2...rlT (h1, ..., hk)(y0)|

= | ± ei(θ−θ
′) + r1...rl|,
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which is impossible as before. Therefore, T (f1, ..., fl, hl+1, ..., hk)(y) = 0 for all y ∈ Iα1,...,αk
x1,...,xk

. Now

if l = k, then I = {x1, ..., xk} and similarly,

r1r2...rk = ‖ ± f1 + r1h1‖‖f2 + r2h2‖...‖fk + rkhk‖

≥ |T (±f1 + r1h1, f2 + r2h2, ..., fk + rkhk)(y0)|

= | ± T (f1, ..., fk)(y0) + r1r2...rkT (h1, ..., hk)(y0)|

= | ± ei(θ−θ
′) + r1r2...rk|,

which again leads to a contradiction showing that T (f1, ..., fk)(y) = 0 for all y ∈ Iα1,...,αk
x1,...,xk

. �

Lemma 3.3. Let (x1, ..., xk) ∈ Ch(A1) × ... × Ch(Ak), (α1, ..., αk) ∈ Tk, and y ∈ Iα1,...,αk
x1,...,xk

. Then

there exists a unique λ ∈ T such that T (α1Vx1
× ...× αkVxk

) ⊆ λVy.

Proof. Let (f1, ..., fk), (g1, ..., gk) ∈ Vx1 × ... × Vxk
. Then (α1f1, ..., αkfk), (α1g1, α2f2, ..., αkfk) ∈

α1Vx1 × ... × αkVxk
and so |T (α1f1, ..., αkfk)(y)| = 1 = |T (α1g1, α2f2, ..., αkfk)(y)|. It is also clear

that
|T (α1f1, ..., αkfk)(y) + T (α1g1, α2f2, ..., αkfk)(y)|

2
= 1

because α1f1+α1g1
2 ∈ α1Vx1 . Hence,

T (α1f1, ..., αkfk)(y) + T (α1g1, α2f2, ..., αkfk)(y)

2
= eiθ

for some −π < θ ≤ π. Then since eiθ is an extreme point of the unit ball of C, it follows that

T (α1f1, ..., αkfk)(y) = T (α1g1, α2f2, ..., αkfk)(y). Continuing this process we get

T (α1f1, ..., αkfk)(y) = T (α1g1, α2f2, ..., αkfk)(y)

= T (α1g1, α2g2, α3f3, ..., αkfk)(y)

= ... = T (α1g1, ..., αkgk)(y).

Therefore, T (α1f1, ..., αkfk)(y) = T (α1g1, ..., αkgk)(y). Now, if we define λ := T (α1f1, ..., αkfk)(y)

for some (f1, ..., fk) ∈ α1Vx1 × ...×αkVxk
, then we conclude that T (α1Vx1 × ...×αkVxk

) ⊆ λVy. �

Lemma 3.4. Let (x1, ..., xk) and (x′1, ..., x
′
k) be distinct elements in Ch(A1) × ... × Ch(Ak), and

(α1, ..., αk) ∈ Tk. Then Iα1,...,αk
x1,...,xk

∩ Iα1,...,αk

x′
1,...,x

′
k

= ∅.

Proof. Contrary to what we claim, assume that there exists y0 ∈ Iα1,...,αk
x1,...,xk

∩ Iα1,...,αk

x′
1,...,x

′
k

. Since

(x1, ..., xk) and (x′1, ..., x
′
k) are distinct, the set L = {i : 1 ≤ i ≤ k, xi 6= x′i} is nonempty. For

each i ∈ L, we can choose a function gi ∈ Ai such that gi(xi) = 1 and gi(x
′
i) = 0, and then, by

Lemma 2.1, a peaking function hi ∈ PAi(xi) such that gihi ∈ PAi(xi). Now if we let fi = gihi for

every i ∈ L, then fi ∈ Vxi
with fi(xi) = 1 and fi(x

′
i) = 0. Moreover, for each j ∈ {1, ..., k} \ L, we
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can also choose a peaking function fj ∈ Vxj . On one side, since (α1f1, ..., αkfk) ∈ α1Vx1×...×αkVxk
,

|T (α1f1, ..., αkfk)(y0)| = 1. On the other side, by Lemma 3.2, T (α1f1, ..., αkfk)(y0) = 0, which is

impossible. Therefore, Iα1,...,αk
x1,...,xk

∩ Iα1,...,αk

x′
1,...,x

′
k

= ∅. �

Definition 3.5. For each (x1, ..., xk) ∈ Ch(A1)×...×Ch(Ak), let Ix1,...,xk
:=

⋂
α1,...,αk∈{1,i}

Iα1,...,αk
x1,...,xk

.

We should note that k-real-linear isometries behave differently from k-complex-linear isometries

with respect to these sets. More precisely, as seen in [8] and in all previous papers dealing with

1-complex-linear (not necessarily surjective) isometries starting with Holsztyński’s seminal paper

([6]), it is clear that Iα1,...,αk
x1,...,xk

= Iα
′
1,...,α

′
k

x1,...,xk for each k-complex-linear isometry T , given any αi, α
′
i ∈ T

(1 ≤ i ≤ k). However, as the next example shows, this equality is no longer valid for k-real-linear

isometries:

Example 3.6. Let T : C({x1})× C({x2})→ C({y1, y2}) defined by T (a+ ib, c+ id)(y1) := ac and

T (a + ib, c + id)(y2) := (a + ib)(c + id). It is apparent that T is a 2-real-linear isometry for which

I1,1x1,x2
= {y1, y2} and I1,ix1,x2

= {y2}.

In the complex-linear case, thanks to the above paragraph and Lemma 3.1, we infer that Ix1,...,xk
6=

∅ for each (x1, ..., xk) ∈ Ch(A1) × ... × Ch(Ak). However, the authors are unaware whether each

set Ix1,...,xk
is nonempty for (x1, ..., xk) ∈ Ch(A1) × ... × Ch(Ak) in the real-linear case. Hence we

continue under the assumption that for each (x1, ..., xk) ∈ Ch(A1)× ...× Ch(Ak), Ix1,...,xk
6= ∅. At

the final remark of this paper, we provide several conditions which yield the nonemptiness of such

sets.

Lemma 3.7. If y ∈ Ix1,...,xk
, α2, ..., αk ∈ {1, i} and (f1, ..., fk) ∈ Vx1× ...×Vxk

, then we have either

T (if1, α2f2, ..., αkfk)(y) = iT (f1, α2f2, ..., αkfk)(y),

or

T (if1, α2f2, ..., αkfk)(y) = −iT (f1, α2f2, ..., αkfk)(y).

A similar claim holds for the other indexes.

Proof. Let y ∈ Ix1,...,xk
, and put λi := T (if1, α2f2, ..., αkfk)(y) and λ1 := T (f1, α2f2, ..., αkfk)(y)

for simplicity. We have

|λ1 ± λi| = |T (f1, α2f2, ..., αkfk)(y)± T (if1, α2f2, ..., αkfk)(y)| = |T (f1 ± if1, f2, ..., fk)(y)|

≤ ‖T (f1 ± if1, , α2f2, ..., αkfk)‖ = ‖f1 ± if1‖‖f2‖...‖fk‖

= ‖f1‖|1± i| =
√

2.

7



Hence |λ1 ± λi| ≤
√

2, and since |λ1| = |λi| = 1, it follows easily that λ2i = −λ21. Conse-

quently, either T (if1, α2f2, ..., αkfk)(y) = iT (f1, α2f2, ..., αkfk)(y) or T (if1, α2f2, ..., αkfk)(y) =

−iT (f1, α2f2, ..., αkfk)(y). Analogously, a similar claim can be proved for the other indexes. �

Lemma 3.8. Given (x1, ..., xk) ∈ Ch(A1)× ...× Ch(Ak), we have Ix1,...,xk
=

⋂
α1,...,αk∈T

Iα1,...,αk
x1,...,xk

.

Proof. Clearly, Ix1,...,xk
⊇

⋂
α1,...,αk∈T

Iα1,...,αk
x1,...,xk

. To see the converse inclusion, let y ∈ Ix1,...,xk
, βj ∈

{1, i} and put αj = aj+ibj ∈ T, where aj , bj ∈ R and j ∈ {1, ..., k}. Given (f1, ..., fk) ∈ Vx1×...×Vxk
,

from the previous lemma it follows that

T (α1f1, β2f2, ..., βkfk)(y) = a1T (f1, β2f2, ..., βkfk)(y) + b1T (if1, β2f2, ..., βkfk)(y)

= (a1 ± ib1)T (f1, β2f2, ..., βkfk)(y),

and so |T (α1f1, β2f2, ..., βkfk)(y)| = 1. Consequently,

y ∈
⋂
{Iα1,β2,...,βk
x1,x2,...,xk

: α1 ∈ T, β2, ..., βk ∈ {1, i}}.

Now from the above argument and a discussion similar to the proof of the previous lemma we

conclude that

T (α1f1, α2f2, β3f3, ..., βkfk)(y) = a2T (α1f1, f2, β3f3, ..., βkfk)(y) + b2T (α1f1, if2, β3f3, ..., βkfk)(y)

= (a2 ± ib2)T (α1f1, f2, β3f3, ..., βkfk)(y),

which implies that y ∈
⋂
{Iα1,α2,β3,...,βk
x1,x2,x3,...,xk

: α1, α2 ∈ T, β3, ..., βk ∈ {1, i}}. Continuing this process,

finally we deduce that y ∈
⋂

α1,...,αk∈T
Iα1,...,αk
x1,...,xk

, as claimed. �

Definition 3.9. Let us define the set Y0 := {y ∈ Y : y ∈ Ix1,...,xk
for some xi ∈ Ch(Ai), i =

1, ..., k}.

Y0 is a non-empty set by our assumption after Example 3.6 and we can define a map ϕ : Y0 −→

Ch(A1)× ...× Ch(Ak) by

ϕ(y) := (x1, ..., xk),

if y ∈ Ix1,...,xk
for some (x1, ..., xk) ∈ Ch(A1) × ... × Ch(Ak). From Lemma 3.4, for any distinct

members (x1, ..., xk) and (x′1, ..., x
′
k) in Ch(A1)× ...×Ch(Ak) it follows that Ix1,...,xk

∩Ix′
1,...,x

′
k

= ∅

and ϕ is well-defined. It is clear that ϕ is surjective by our assumption after Example 3.6.

As observed in Lemma 3.8, we have Ix1,...,xk
=

⋂
α1,...,αk∈T

Iα1,...,αk
x1,...,xk

. Now let us define a map

Λ : Y0 × Tk −→ T by

Λ(y, (α1, ..., αk)) := λ

such that T (α1Vx1 × ... × αkVxk
) ⊆ λVy, where ϕ(y) = (x1, ..., xk). By Lemma 3.3, it is apparent

that Λ is a well-defined map.
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Definition 3.10. According to Lemma 3.7, Λ(y, (i, 1, ..., 1)) = ±iΛ(y, (1, 1, ..., 1)) for all y ∈ Y0.

Set K1 := {y ∈ Y0 : Λ(y, (i, 1, ..., 1)) = iΛ(y, (1, 1, ..., 1))} and, consequently, Y0 \ K1 = {y ∈ Y0 :

Λ(y, (i, 1, ..., 1)) = −iΛ(y, (1, 1, ..., 1))}. Analogously, for each j ∈ {2, ..., k}, we can define a subset

Kj of Y0.

We remark that it is not difficult to see each Kj , j ∈ {1, ..., k}, is a clopen subset of Y0.

Lemma 3.11. Let y ∈ Y0, ϕ(y) = (x1, ..., xk), hj ∈ Vxj (1 ≤ j ≤ k), and let also I be a non-empty

subset of {1, ..., k}. Assume that for each t ∈ I, ft = iht and for each t /∈ I, ft = ht. Then

T (f1, ..., fk)(y) = i1...ikT (h1, ..., hk)(y),

where

it =

 i y ∈ Kt,

−i y ∈ Y0 \Kt,

when t ∈ I and it = 1 when t /∈ I.

Proof. Put n = card(I). For n = 1, the result follows from Lemma 3.7.

Step 1. Suppose that n = 2. We may assume, without loss of generality, that I = {1, 2}. Lemma

3.7 shows that T (f1, ..., fk)(y) = ±iT (h1, f2, ..., fk)(y). Then T (f1, ..., fk)(y) = ∓T (h1, h2, f3, ..., fk)(y).

We claim that

T (f1, ..., fk)(y) =

 −T (h1, ..., hk)(y) y ∈ (K1 ∩K2) ∪ (Kc
1 ∩Kc

2),

T (h1, ..., hk)(y) y ∈ (K1 ∪K2) \ (K1 ∩K2).

Suppose, on the contrary, that y ∈ K1∩K2 and T (f1, ..., fk)(y) = T (h1, ..., hk)(y). Then taking into

account the k-real-linearity of T we have

T (ih1, (i+ 1)h2, h3, ..., hk)(y) = T (ih1, ih2, h3..., hk)(y) + T (ih1, h2, h3..., hk)(y)

= T (h1, ..., hk)(y) + iT (h1, ..., hk)(y)

= (1 + i)T (h1, ..., hk)(y)

= T (h1, (i+ 1)h2, h3, ..., hk)(y),

which implies that T ((i − 1)h1, (i + 1)h2, h3, ..., hk)(y) = 0 and it is a contradiction since it is not

difficult to see that on Ix1,...,xk
, |T ((i−1)h1, (i+1)h2, h3, ..., hk)(y)| = |(i−1)(i+1)| = 2, by Lemma

3.8. Hence this argument shows that T (f1, ..., fk)(y) = −T (h1, ..., hk)(y) for each y ∈ K1 ∩K2. The

other cases can be derived similarly and so the result holds for all the cases where card(I) = 2.

Step 2. Next, assume that the result is true for card(I) = l− 1 and 3 ≤ l < k, and we prove the

result for the case where card(I) = l. We suppose, with no loss of generality, that I = {1, ..., l}. Again
9



from Lemma 3.7, we conclude that T (ih1, ..., ihl, hl+1, ..., hk)(y) = ±iT (ih1, ..., ihl−1, hl, ..., hk)(y).

Then we have T (ih1, ..., ihl, hl+1, ..., hk)(y) = ±ii1...il−1T (h1, ..., hk)(y). We claim that

T (f1, ..., fk)(y) =

 ii1...il−1T (h1, ..., hk)(y) y ∈ Kl,

−ii1...il−1T (h1, ..., hk)(y) y ∈ Y0 \Kl.

Suppose, on the contrary, that y ∈ Y0\Kl and T (ih1, ..., ihl, hl+1, ..., hk)(y) = ii1...il−1T (h1, ..., hk)(y).

Then, we deduce that

T (ih1, ..., ihl−1, (i+ 1)hl, hl+1, ..., hk)(y) = T (ih1, ..., ihl−1, ihl, hl+1, ..., hk)(y)

+ T (ih1, ..., ihl−1, hl, hl+1, ..., hk)(y)

= ii1...il−1T (h1, ..., hk)(y) + i1...il−1T (h1, ..., hk)(y)

= i1...il−1(i+ 1)T (h1, ..., hk)(y).

On the other hand, we have

T (h1, ih2, ..., ihl−1, (i+ 1)hl, hl+1, ..., hk)(y) = T (h1, ih2, ..., ihl, hl+1, ..., hk)(y)

+ T (h1, ih2, ..., ihl−1, hl, hl+1, ..., hk)(y)

= −ii2...il−1T (h1, ..., hk)(y) + i2...il−1T (h1, ..., hk)(y)

= i2...il−1(−i+ 1)T (h1, ..., hk)(y).

Therefore, adding the above two expressions,

T ((i+ 1)h1, ih2, ..., ihl−1, (i+ 1)hl, hl+1, ..., hk)(y) = i2...il−1(i1i+ i1 − i+ 1)T (h1, ..., hk)(y),

and so

T ((i+ 1)h1, ih2, ..., ihl−1, (i+ 1)hl, hl+1, ..., hk)(y) =

 0 y ∈ K1,

(2− 2i)T (h1, ..., hk)(y) y ∈ Y0 \K1,

which is impossible because |T ((i+ 1)h1, ih2, ..., ihl−1, (i+ 1)hl, hl+1, ..., hk)(y)| = 2, by Lemma 3.8.

Thus from this argument we conclude that T (ih1, ..., ihl, hl+1, ..., hk)(y) = ii1...il−1T (h1, ..., hk)(y)

for each y ∈ Y0 \Kl. The other cases can be obtained in a similar way. So the result holds for all

cases where n = l.

Step 3. Finally suppose that the result is true when card(I) = k− 1. We shall show the validity

of the result for the case where card(I) = k. By Lemma 3.7, we can see that T (ih1, ..., ihk)(y) =

±iT (ih1, ..., ihk−1, hk)(y), and so T (ih1, ..., ihk)(y) = ±ii1...ik−1T (h1, ..., hk)(y). We claim that

T (ih1, ..., ihk)(y) =

 ii1...ik−1T (h1, ..., hk)(y) y ∈ Kk,

−ii1...ik−1T (h1, ..., hk)(y) y ∈ Y0 \Kk.

10



Suppose, on the contrary, that y ∈ Kk and T (ih1, ..., ihk)(y) = −ii1...ik−1T (h1, ..., hk)(y). Then

T (ih1, ih2, ..., ihk−1, (i+ 1)hk)(y) = −ii1...ik−1T (h1, ..., hk)(y) + T (ih1, , ..., ihk−1, hk)(y)

= (−ii1...ik−1 + i1...ik−1)T (h1, ..., hk)(y),

and

T (h1, ih2, ..., ihk−1, (i+ 1)hk)(y) = i2...ikT (h1, ..., hk)(y) + i2...ik−1T (h1, ..., hk)(y)

= (i2...ik + i2...ik−1)T (h1, ..., hk)(y),

thus adding the above two relations we have

T ((i+ 1)h1, ih2, ..., ihk−1, (i+ 1)hk)(y) = i2...ik−1(−ii1 + i1 + i+ 1)T (h1, ..., hk)(y),

and consequently,

T ((i+ 1)h1, ih2, ..., ihk−1, (i+ 1)hk)(y) =

 i2...ik−1(2 + 2i)T (h1, ..., hk)(y) y ∈ K1,

0 y ∈ Y0 \K1,

which is impossible since |T ((i + 1)h1, ih2, ..., ihk−1, (i + 1)hk)(y)| = |(i + 1)2| = 2, by Lemma 3.8.

Therefore, T (ih1, ..., ihk)(y) = ii1...ik−1T (h1, ..., hk)(y) for all y ∈ Kk, as asserted. Similarly, for

every y ∈ Y0 \Kk we have T (ih1, ..., ihk)(y) = −ii1...ik−1T (h1, ..., hk)(y) . �

Lemma 3.12. Let y ∈ Y0 and (α1, ..., αk) ∈ Ck. Then

Λ(y, (α1, ..., αk)) = α∗1...α
∗
kΛ(y, (1, ..., 1)),

where, for each j ∈ {1, ..., k}, α∗j = αj if y ∈ Kj and α∗j = αj if y ∈ Y0 \Kj.

Proof. For each j ∈ {1, ..., k}, choose fj ∈ Vxj
. Let αj = aj + ibj , where aj , bj ∈ R. Since T is

k-real-linear, if y ∈ ∩kj=1Kj , then, from the preceeding lemma, it follows that

T (a1f1 + ib1f1, ...., akfk + ibkfk)(y) =
∑

cij∈{aj ,ibj},(1≤j≤k)

ci1 ...cikT (f1, ..., fk)(y)

= α1...αkT (f1, ..., fk)(y)

= α1...αkΛ(y, (1, ..., 1)),

and if y ∈ ∩kj=1(Y0 \Kj), similarly we have

T (a1f1 + ib1f1, ...., akfk + ibkfk)(y) =
∑

cij∈{aj ,−ibj},(1≤j≤k)

ci1 ...cikT (f1, ..., fk)(y)

= α1...αkT (f1, ..., fk)(y)

= α1...αkΛ(y, (1, ..., 1)).
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The other cases can be obtained similarly. �

Remark 3.13. We define the map ω : Y0 −→ T by

ω(y) := Λ(y, (1, ..., 1))

for all y ∈ Y0. Indeed, if (x1, ..., xk) = ϕ(y), then ω(y) = T (f1, ..., fk), where (f1, ..., fk) ∈ Vx1
× ...×

Vxk
. Moreover, by the above lemma, for all (α1, ..., αk) ∈ Ck we have

Λ(y, (α1, ..., αk)) = α∗1...α
∗
kω(y),

where, for each j ∈ {1, ..., k}, α∗j = αj if y ∈ Kj and α∗j = αj if y ∈ Y0 \Kj .

Lemma 3.14. Let y ∈ Y0 with ϕ(y) = (x1, ..., xk), and (f1, ..., fk) ∈ A1 × Vx2
× ...× Vxk

. Then

T (f1, ..., fk)(y) = ω(y)

 f1(x1) y ∈ K1,

f1(x1) y ∈ Y0 \K1.

A similar assertion holds for the other indexes.

Proof. If f1(x1) = 0, then from Lemma 3.2, T (f1, ..., fk)(y) = 0. Now assume that f1(x1) 6= 0. Hence

choosing h1 as a function in Vx1
, again by Lemma 3.2, we have T (f1 − f1(x1)h1, f2, ..., fk)(y) = 0,

and so

T (f1, ..., fk)(y) = T (f1(x1)h1, f2, ..., fk)(y).

Now, from the previous lemma, we infer that

T (f1, ..., fk)(y) =

 f1(x1)T (h1, f2, ..., fk)(y) y ∈ K1,

f1(x1)T (h1, f2, ..., fk)(y) y ∈ Y0 \K1,

as claimed. Similarly, the other cases can be concluded. �

4. Main result

LetA1, ..., Ak be function algebras (or more generally, dense subspaces of uniformly closed function

algebras) on locally compact Hausdorff spaces X1, ..., Xk, respectively. Let also recall here our

assumption after Example 3.6 that for each (x1, ..., xk) ∈ Ch(A1)× ...× Ch(Ak), Ix1,...,xk
6= ∅.

Theorem 4.1. Suppose that T : A1 × ... × Ak −→ C0(Y ) is a k-real-linear isometry. Then there

exist a nonempty subset Y0 of Y , a continuous surjective map ϕ : Y0 −→ Ch(A1) × ... × Ch(Ak),

(possibly empty) clopen subsets K1, ....,Kk of Y0 and a unimodular continuous function ω : Y0 −→ T

such that for all (f1, ..., fk) ∈ A1 × ...×Ak and y ∈ Y0,

T (f1, ..., fk)(y) = ω(y)

k∏
j=1

fj(πj(ϕ(y)))∗,
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where πj is the jth projection map and for each j ∈ {1, ..., k}, fj(πj(ϕ(y)))∗ = fj(πj(ϕ(y))) if y ∈ Kj

and fj(πj(ϕ(y)))∗ = fj(πj(ϕ(y))) if y ∈ Y0 \Kj.

Proof. Let Y0 be the set introduced in Definition 3.9. Fix (x1, ..., xk) ∈ Ch(A1)× ...× Ch(Ak) and

hj ∈ Vxj for each j, j = 1, ..., k. Then for each j, j = 1, ..., k, we can define a real-linear isometry as

follows:  Tj : Aj −→ C0(Y )

Tj(f) := T (h1, ..., hj−1, f, hj+1, ..., hk).

According to [7], there exist a nonempty subset Yj of Y , a subset Kj of Yj , a continuous surjective

map ϕj : Yj −→ Ch(Aj) such that, for each fj ∈ Aj ,

Tj(fj)(y) = T (h1, ..., hk)(y)

 fj(ϕj(y)) y ∈ Kj ,

fj(ϕj(y)) y ∈ Yj \ Kj .

Namely, Yj ⊇
⋃

x′
j∈Ch(Aj)

Ix1,...,x′
j ,...,xk

and if y ∈ Ix1,...,x′
j ,...,xk

, then ϕj(y) = x′j .

Let (f1, ..., fk) ∈ A1 × ...×Ak and y ∈ Ix1,...,xk
. From the description of Tj , it easily follows that

y ∈ Kj if y ∈ Kj , and y /∈ Kj if y /∈ Kj , where Kj is the clopen subset of Y0 introduced in Definition

3.10. We now claim that

T (f1(x1)h1, f2, h3, ..., hk)(y) = f1(x1)∗T2(f2)(y),

where f1(x1)∗ = f1(x1) if y ∈ K1, and f1(x1)∗ = f1(x1) if y ∈ Y0 \ K1. First note that the

k-real-linearity of T yields

T (f1(x1)h1, f2, h3, ..., hk)(y) = Ref1(x1)T (h1, f2, h3, ..., hk)(y) + Imf1(x1)T (ih1, f2, h3, ..., hk)(y).

On the other hand, by Lemma 3.2, T (ih1, f2−f2(x2)h2, h3, ..., hk)(y) = 0 and so, using the preceding

remark, we deduce that

T (ih1, f2, h3, ..., hk)(y) = T (ih1, f2(x2)h2, h3, ..., hk)(y)

= Ref2(x2)T (ih1, h2, ..., hk)(y) + Imf2(x2)T (ih1, ih2, h3, ..., hk)(y)

= ω(y)



iRef2(x2)− Imf2(x2) = iT2(f2)(y) y ∈ K1 ∩K2,

iRef2(x2) + Imf2(x2) = iT2(f2)(y) y ∈ K1 \K2,

−iRef2(x2) + Imf2(x2) = −iT2(f2)(y) y ∈ K2 \K1,

−iRef2(x2)− Imf2(x2) = −iT2(f2)(y) y ∈ Y0 \ (K1 ∪K2).

Now combining the latter relations implies that

T (f1(x1)h1, f2, h3, ..., hk)(y) =

 T2(f2)(y)(Ref1(x1) + iImf1(x1)) = T2(f2)(y)f1(x1) y ∈ K1,

T2(f2)(y)(Ref1(x1)− iImf1(x1)) = T2(f2)(y)f1(x1) y ∈ Y0 \K1,

as claimed.
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Similarly, T (f1, f2(x2)h2, h3, ..., hk)(y) = f2(x2)∗T1(f1)(y), where f2(x2)∗ = f2(x2) if y ∈ K2, and

f2(x2)∗ = f2(x2) if y ∈ Y0 \K2. Now using again Lemmas 3.2 and 3.14, Remark 3.13 and the above

two equations it follows that

0 = T (f1 − f1(x1)h1, f2 − f2(x2)h2, h3, ..., hk)(y)

= T (f1, f2, h3, ..., hk)(y)− T (f1(x1)h1, f2, h3, ..., hk)(y)

− T (f1, f2(x2)h2, h3, ..., hk)(y) + f1(x1)∗f2(x2)∗T (h1, ..., hk)(y)

= T (f1, f2, h3, ..., hk)(y)− f1(x1)∗T2(f2)(y)− f2(x2)∗T1(f1)(y) + f1(x1)∗f2(x2)∗T (h1, ..., hk)(y)

= T (f1, f2, h3, ..., hk)(y)− f1(x1)∗T (h1, ..., hk)(y)f2(x2)∗

− f2(x2)∗T (h1, ..., hk)(y)f1(x1)∗ + f1(x1)∗f2(x2)∗T (h1, ..., hk)(y)

= T (f1, f2, h3, ..., hk)(y)− f1(x1)∗f2(x2)∗T (h1, ..., hk)(y),

where, as above, fj(xj)
∗ = fj(xj) if y ∈ Kj , and fj(xj)

∗ = fj(xj) if y ∈ Y0 \Kj .

Thus T (f1, f2, h3, ..., hk)(y) = T (h1, ..., hk)(y)f1(x1)∗f2(x2)∗. By continuing this process and

applying Lemma 3.2, we finally see that

0 = T (f1 − f1(x1)h1, ..., fk − fk(xk)hk)(y)

= T (f1, ..., fk)(y)− T (h1, ..., hk)(y)f1(x1)∗...fk(xk)∗,

thereby, T (f1, ..., fk)(y) = T (h1, ..., hk)(y)f1(x1)∗...fk(xk)∗, where fj(xj)
∗ = fj(xj) if y ∈ Kj , and

fj(xj)
∗ = fj(xj) if y ∈ Y0 \Kj .

Consider ϕ as introduced after Definition 3.9. Now let us recall the unimodular function ω :

Y0 −→ T defined in Remark 3.13; that is, if y ∈ Y0 then ω(y) := T (h1, ..., hk)(y), where hj ∈

PAj
(πj(ϕ(y))). Besides, from the above argument, it follows that if y ∈ Y0 with ϕ(y) = (x1, ..., xk)

and (f1, ..., fk) ∈ A1 × ...×Ak, then

T (f1, ..., fk)(y) = ω(y)

k∏
j=1

fj(xj)
∗ = ω(y)

k∏
j=1

fj(πj(ϕ(y)))∗,

that is,

T (f1, ..., fk)(y) = ω(y)

k∏
j=1

fj(πj(ϕ(y)))∗

where fj(πj(ϕ(y)))∗ = fj(πj(ϕ(y))) if y ∈ Kj and fj(πj(ϕ(y)))∗ = fj(πj(ϕ(y))) if y ∈ Y0 \Kj .

Next we prove that ϕ is continuous. Suppose that y0 ∈ Y0, ϕ(y0) = (x1, ..., xk) and U1 × ...× Uk
is a neighborhood of (x1, ..., xk) in Ch(A1) × ... × Ch(Ak). For each j, j = 1, ..., k, there is a

neighborhood U ′j of xj in Xj with Uj = U ′j ∩Ch(Aj). Choose a peaking function fj ∈ Vxj
such that
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|fj | < 1
2 on Xj \ U ′j (j = 1, ..., k). Then |T (f1, ..., fk)(y0)| = 1. Set

V := {z ∈ Y0 : |T (f1, ..., fk)(z)| > 1

2
}.

Clearly, V is a neighborhood of y0 such that ϕ(V ) ⊆ U1 × ... × Uk because if z ∈ V and ϕ(z) =

(x′1, ..., x
′
k), then

1

2
< |T (f1, ..., fk)(z)| =

k∏
j=1

|fj(x′j)| ≤ |fj(x′j)| (j = 1, ..., k).

Hence x′j ∈ Uj and so (x′1, ..., x
′
k) ∈ U1 × ...× Uk. Therefore, ϕ is continuous.

To complete the proof, it suffices to check the continuity of ω. Let y0 ∈ Y0. Then y0 ∈ Ix1,...,xk

for a unique (x1, ..., xk) in Ch(A1)× ...×Ch(Ak). For each j, j = 1, ..., k, choose a peaking function

fj ∈ PAj
(xj) and take

Uj := {x ∈ Ch(Aj) : fj(x) 6= 0}.

Then U = U1 × ...×Uk is a neighborhood of (x1, ..., xk) in Ch(A1)× ...×Ch(Ak) and consequently

ϕ−1(U) is a neighborhood of y0. We have

ω(y) =
T (f1, ..., fk)(y)∏k
j=1 fj(πj(ϕ(y)))∗

(y ∈ ϕ−1(U)),

where fj(πj(ϕ(y)))∗ = fj(πj(ϕ(y))) if y ∈ Kj and fi(πi(ϕ(y)))∗ = fj(πj(ϕ(y))) if y ∈ Y0 \Kj . So

taking into account that Kj is a clopen subset of Y0, from the continuity of the functions T (f1, ..., fk),

fj ◦ πj ◦ ϕ and fj ◦ πj ◦ ϕ we conclude that ω is continuous at y0. �

It should be noted that if T is a k-linear-isometry, then, as mentioned before Example 3.6, we have

Iα1,...,αk
x1,...,xk

= Iα
′
1,...,α

′
k

x1,...,xk for all (α1, ..., αk), (α′1, ..., α
′
k) ∈ Tk and (x1, ..., xk) ∈ Ch(A1) × ... × Ch(Ak),

and furthermore, Kj = Y0 for all j ∈ {1, ..., k}. So we can obtain immediately the main result in [8]

as follows:

Corollary 4.2. Suppose that T : A1 × ...× Ak −→ C0(Y ) is a k-linear isometry. Then there exist

a nonempty subset Y0 of Y , a continuous surjective map ϕ : Y0 −→ Ch(A1) × ... × Ch(Ak), and a

unimodular continuous function ω : Y0 −→ T such that

T (f1, ..., fk)(y) = ω(y)

k∏
j=1

fj(πj(ϕ(y)))

for all (f1, ..., fk) ∈ A1 × ...×Ak and y ∈ Y0, where πj is the jth projection map.

Remark 4.3. As announced after Example 3.6, we provide several conditions each of which implies

the nonemptiness of the sets Ix1,...,xk
:
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• Given (x1, ..., xk) ∈ Ch(A1) × ... × Ch(Ak), there exists (f1, ..., fk) ∈ Vx1 × ... × Vxk
such

that
⋂

(α1,...,αk)∈{1,i}k
MT (α1f1,...,αkfk) 6= ∅.

Let us give an explanation to see Ix1,...,xk
6= ∅ in this case. Consider y in the above

non-empty intersection. Given (α1, ..., αk) ∈ {1, i}k and (g1, ..., gk) ∈ Vx1
× ... × Vxk

, then

from Lemma 3.2 we have T (α1f1 − α1g1, f2, ..., fk)(y) = 0, and so |T (α1g1, f2, ..., fk)(y)| =

|T (α1f1, f2, ..., fk)(y)| = 1. This argument yields y ∈ Iα1,1,...,1
x1,x2,...,xk

. Then again by using

Lemma 3.2 (twice) we get

|T (α1g1, α2g2, f3, ..., fk)(y)| = |T (α1g1, α2f2, f3, ..., fk)(y)|

= |T (α1f1, α2f2, f3, ..., fk)(y)| = 1,

and consequently, y ∈ Iα1,α2,1,...,1
x1,x2,x3,...,xk

. By continuing this process, finally it is concluded that

y ∈ Iα1,...,αk
x1,...,xk

. Therefore, Ix1,...,xk
6= ∅.

• Given (x1, ..., xk) ∈ Ch(A1) × ... × Ch(Ak), there exists (f1, ..., fk) ∈ Vx1
× ... × Vxk

such

that all the functions |T (α1f1, ..., αkfk)|, (α1, ..., αk) ∈ {1, i}k, peak at the same points.

• In the unital case,
⋂

(α1,...,αk)∈{1,i}k
MT (α1,...,αk) 6= ∅.

• In the surjective case when k = 1 (see [7, Corollary 3.11]).
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