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Abstract In this paper we propose and analyze a new family of nonlinear sub-
division schemes which can be considered non-oscillatory versions of the 6-point
Deslauries-Dubuc (DD) interpolatory scheme, just as the Powerp schemes are con-
sidered nonlinear non-oscillatory versions of the 4-point DD interpolatory scheme.
Their design principle may be related to that of the Powerp schemes and it is based
on a weighted analog of the Powerp mean. We prove that the new schemes reproduce
exactly polynomials of degree three and stay ’close’ to the 6-point DD scheme in
smooth regions. In addition, we prove that the first and second difference schemes are
well defined for each member of the family, which allows us to give a simple proof
of the uniform convergence of these schemes and also to study their stability as in
[19, 22]. However our theoretical study of stability is not conclusive and we perform
a series of numerical experiments that seem to point out that only a few members of
the new family of schemes are stable. On the other hand, extensive numerical test-
ing reveals that, for smooth data, the approximation order and the regularity of the
limit function may be similar to that of the 6-point DD scheme and larger than what
is obtained with the Powerp schemes.
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1 Introduction

Subdivision schemes are recursive processes used for the fast generation of curves
and surfaces in computer-aided geometric design, as well as an essential ingredient in
many multiscale algorithms used in data compression. In some applications, the given
data need to be retained at each step of the refinement process, which requires the use
of interpolatory subdivision schemes. The so-called Deslauries-Dubuc (DD hence-
forth) subdivision schemes [6] are a well known family of interpolatory subdivision
schemes which can be interpreted as a recursive application of a piecewise polyno-
mial interpolatory tool [10, 11]. A general setting by which a piecewise polynomial
interpolation technique can be used to provide the set of local rules that defines a
subdivision scheme has been described in [10]: Assuming that χl ⊂ χl+1 are two
nested grids on Rm, f l is a set of known data associated to the grid χl and I[x, ·] is a
piecewise polynomial reconstruction technique, new data associated to the grid χl+1

can be generated as follows

f l+1
i = I[xl+1

i , f l], for xl+1
i ∈ χl+1. (1)

This process allows to define a recursive subdivision scheme where sequences of
values on denser and denser meshes are obtained according to the set of local rules
derived from I[x, ·]. Clearly (1) leads to an interpolatory subdivision scheme if I
is an interpolatory reconstruction, i.e. I[xl

i , f
l] = f l

i , ∀xl
i ∈ χl . For m = 1 and a

binary refinement strategy, i.e. xl+1
2i = xl

i and χl+1\χl ≡ {xl+1
2j+1}j∈Z, we have

f l+1
2i = I[xl+1

2i , f l] = I[xl
i , f

l] = f l
i

f l+1
2i+1 = I[xl+1

2i+1, f
l]

(2)

so that values on a given mesh are ’copied’ at the same location on higher resolution
levels, while the interpolatory technique I[·, ·] specifies the local rules used for the
generation of new data values.

It is well known (see e.g. [9, 10]) that the DD subdivision schemes can be written
in the form (2) with I(·, ·) a Lagrange interpolatory reconstruction that considers
an interpolatory stencil centered around the evaluation point. In general, the use of
piecewise polynomial Lagrange interpolation based on a stencil that uses l points
to the left and r points to the right of the evaluation point leads to a linear (i.e.
data-independent) subdivision scheme that can be written as

(Sl,rf )2i = fi, (Sl,rf )2i+1 = ψl,r (fi−l , . . . , fi+r−1) =
r−1∑

j=−l

a
l,r
j fi+j , f ∈ l∞(Z)

(3)
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Fig. 1 Oscillatory behavior of DD schemes. For each scheme S, S∞f is the corresponding limit function

with mask coefficients a
l,r
j that can be computed from the interpolatory rule I[·, ·]

(see [9, 10]). It is well known that these schemes lead to a Gibbs-like oscillatory
behavior when applied to discrete data with large gradients (see Fig. 1) and several
nonlinear piecewise polynomial interpolatory techniques have been considered in
the literature, within this same framework, in an attempt to construct interpolatory
subdivision schemes that avoid undesired oscillations. Examples of such schemes are
the ENO-WENO subdivision schemes [10, 11, 14, 16] or the PPH scheme [2, 4].

The oscillatory behavior displayed in Fig. 1 is typical of data-independent subdi-
vision schemes based on Lagrange interpolation, which does not preserve the shape
properties of data with large gradients when the degree of the polynomial pieces
is larger than 1. ENO-WENO subdivision schemes manage to avoid the Gibbs-
like oscillatory behavior by selecting an appropriate stencil for the interpolatory
reconstruction [10, 11, 14, 16]. Other nonlinear interpolatory subdivision schemes,
like the Powerp schemes [17] or the shape-preserving schemes in [8], owe their
non-oscillatory character to the judicious use of certain nonlinear averages.

The aim of this paper is to design, and analyze, non-oscillatory 6-point schemes
that can be considered nonlinear analogs of the 6-point DD linear scheme, S3,3, in
the same sense as the Powerp schemes are considered nonlinear, non-oscillatory ver-
sions of S2,2, the 4 point DD subdivision scheme. For this, we shall use a weighted
nonlinear average defined in [23] which generalizes the Powerp mean defined in [15]
and used in the design of the Powerp schemes [17]. The new schemes proposed in
this paper can be written in the following general form

(SN f )n = (SLf )n + F(δf )n, ∀n ∈ Z, ∀f ∈ l∞(Z), (4)

where F : l∞(Z) → l∞(Z) is a nonlinear operator, δ : l∞(Z) → l∞(Z) is linear
and continuous and SL is a linear and convergent subdivision scheme. The Powerp
schemes and other related subdivision schemes considered in [1, 3, 22] can also be
written in the form (4), which allowed the authors to study their convergence and
stability by using the following results [1].

Theorem 1 Let SN be a nonlinear subdivision scheme which can be written in the
form (4).
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The scheme SN is uniformly convergent provided that F and δ satisfy the
following conditions:

C1. ∃M > 0 : ||F(f )||∞ ≤ M||f ||∞ ∀f ∈ l∞(Z)

C2. ∃L > 0, 0 < T < 1 : ||δSL
N (f )||∞ ≤ T ||δf ||∞ ∀f ∈ l∞(Z)

The scheme SN is (Lipschitz) stable, i.e. ∃C > 0 such that

‖Sj

N f − S
j

N g‖∞ ≤ C‖f − g‖∞ ∀f, g ∈ l∞(Z), ∀j ≥ 0, (5)

provided that F and δ satisfy the following conditions:

S1. ∃M > 0 : ||F(f ) − F(g)||∞ ≤ M||f − g||∞, ∀f, g ∈ l∞(Z)

S2. ∃L > 0, 0 < T < 1 : ||δ(SL
N (f ) − SL

N (g))||∞ ≤ T ||δ(f − g)||∞, ∀f, g ∈ l∞(Z)

Remark 2 If a scheme of the form (4) is convergent, the smoothness of the limit
functions S∞

N f , f ∈ l∞(Z), may be related to the smoothness of S∞
L f . In particular

it can be shown (see [12, 17]) that if SL is Cr− convergent1 then SN is at least Cs−
convergent with s = min{− log2(T )

L
, r}.

The new schemes proposed in this paper share other features with the Powerp
schemes. For both families of schemes the linear operator in Eq. 4 can be considered
as δ = ∇2, where

(∇f )n = fn+1−fn, (∇m+1f )n = (∇mf )n+1−(∇mf )n, m ≥ 1, n ∈ Z,

and the subdivision schemes are defined by piecewise smooth functions that are
globally Lipschitz.

The paper is organized as follows: in Section 2 we provide an explanation of the
non-oscillatory character of the Powerp schemes which can be used as a design tool
to obtain new families of non-oscillatory 6-point interpolatory subdivision schemes.
These shall require a nonlinear analog of the Powerp mean, the Weighted Powerp,
proposed in [23]. The new families of 6-point schemes are defined and analyzed in
Section 3. In this section we examine the polynomial reproduction properties and
the existence of difference schemes, as well as the convergence and approximation
properties of the new families of schemes.

Section 4 is devoted to the issue of the stability of the new schemes. In Section
4.1 we study the Weighted Powerp mean, and its Generalized Gradient, an essen-
tial ingredient in the application of the theory developed in [19] for the study of the
stability of a nonlinear scheme. The limitations of this theory in the study of the sta-
bility of the proposed schemes are analyzed in Section 4.2. In Section 5 we study the
stability issue from a computational point of view, and also present several numeri-
cal examples that illustrate our theoretical results. We close in Section 6 with some
conclusions.

1For 0 < r ≤ 1, Cr− is the space of bounded continuous functions satisfying |F(x)−F(y)| ≤ C|x−y|r1 ,
∀r1 < r , ∀x, y ∈ R, |x − y| < 1, with C > 0 independent of x, y. For r > 1, r = p + β, p ∈ N,
0 < β ≤ 1, it is required that F (p) ∈ Cβ−.
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In addition, the relation between the Generalized Gradients of the piecewise
smooth functions that define a nonlinear scheme, and the contractivity of such
scheme is carefully explained in an Appendix to this paper.

2 Nonlinear averages and Non-oscillatory schemes

The Powerp interpolatory subdivision schemes [17, 19] are binary interpolatory sub-
division schemes for which the generation of new data values (at odd points) is given
by the following rule

(SHpf )2n+1 = ψHp (fn−1, fn, fn+1, fn+2) = 1

2
(fn + fn+1) − 1

8
Hp(∇2fn−1,∇2fn) (6)

where

Hp(x, y) = sgn(x) + sgn(y)

2

|x + y|
2

(
1 −

∣∣∣∣
x − y

x + y

∣∣∣∣
p)

(7)

is the so-called Powerp mean [15], a nonlinear function that satisfies (see [15, 17] for
details)

(a) Hp(x, x) = x, (b) min{|x|, |y|} ≤ |Hp(x, y)| ≤ min{max(|x|, |y|), pmin(|x|, |y|)}. (8)

It is straightforward to see that ψ2,2 in Eq. 3 can be written as

ψ2,2(fn−1, fn, fn+1, fn+2) = 1

2
(fn + fn+1)

− 1

8
ave 1

2 , 12
(∇2fn−1, ∇2fn), ave 1

2 , 12
(x, y) = 1

2
x + 1

2
y. (9)

The obvious similarity between Eq. 9 and Eq. 6 makes the Powerp schemes nonlinear
versions of the 4-point DD scheme. In addition, if f = (fi)i∈Z, fi = F(xi) with
F(x) a smooth convex function, and X = {xi} an h-uniform grid, it can be proven
that

||S2,2f − SHpf ||∞ = O(hp+2). (10)

This property is obtained from the following relation (see e.g. [17]), which holds for
x · y > 0, p ≥ 1

|ave 1
2 , 12

(x, y) − Hp(x, y)| = 1

2

|x − y|p
|x + y|p−1

. (11)

On the other hand, as shown in Fig. 2, the behavior of SHp when refining discrete
data with large gradients is quite different from that of S2,2. In what follows, we give
an explanation of the lack of oscillations observed in Fig. 2 which may be used to
design 6-point nonlinear analogs of S3,3, the 6 point DD scheme. The starting point
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Fig. 2 Non-oscillatory behavior of Powerp schemes, SHp , for p = 2, 3, compared to the 4-point DD
scheme, S2,2

in our construction is the following relation,

Sl,r = r − 1/2

l + r − 1
Sl,r−1 + l − 1/2

l + r − 1
Sl−1,r , l, r ≥ 1 (12)

which follows from Neville’s Algorithm for Lagrange interpolation (see e.g. [13]).
Moreover, it is not difficult to see that we can write, for l + r > 1

Sl,r = S1,1 + Ll,r ◦ ∇2, (13)

where Ll,r is a linear operator such that (Ll,rf )2n = 0, due to the interpolatory
property. For the two schemes below

(S2,1f )2n+1 = (S1,1f )2n+1 − 1

8
∇2fn−1, (S1,2f )2n+1 = (S1,1f )2n+1 − 1

8
∇2fn,

(14)
hence

(L2,1f )2n+1 = −1

8
fn−1 (L1,2f )2n+1 = −1

8
fn.

From Eq. 12, for l = 2, r = 2, we get

S2,2 = 1

2
S2,1 + 1

2
S1,2 = S1,1 + ave 1

2 , 12
(L1,2 ◦ ∇2,L2,1 ◦ ∇2) (15)

while for SHp in Eq. 6 we can write

SHp = S1,1 + Hp(L1,2 ◦ ∇2,L2,1 ◦ ∇2). (16)

Taking into account (15) and Eq. 16, the behavior of the S2,2 and SHp schemes
may be explained in terms of the interpolatory stencils associated to the schemes S2,1
and S1,2, shown in Fig. 4.

It is a well known fact that any Lagrange-type interpolatory technique suffers an
O(1) accuracy loss as soon as the interpolatory stencil crosses a discontinuity. The
data in Figs. 1-2 correspond to fi = F(xi), i ∈ Z, F(x) smooth except for an isolated
discontinuity θ ∈ (xm, xm+1). For these data

∇2fj = O(h2), j �= m − 1, m, ∇2fm−1 = O(1) = ∇2fm.

Since

ave 1
2 , 12

(O(hr),O(hs)) = O(hmin(r,s)), r > 0, s > 0, 0 < h < 1, (17)
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Fig. 3 Gibbs-like oscillatory behavior of S1,2, S2,1 schemes

we get (see Fig. 4)

(S2,2f )2j+1 = (S1,1f )2j+1 + O(h2) j �∈ {m − 1, m, m + 1}, (18)

(S2,2f )2j+1 = (S1,1f )2j+1 + O(1) j ∈ {m − 1, m, m + 1}. (19)

The values (S2,2f )2j+1 are displayed as × in Figs. 1-2, and the O(1) perturbations
in Eq. 19 are clearly visible in Fig. 2 at the intervals adjacent to the one containing
the discontinuity. After repeated application of the subdivision scheme, they cause
the oscillations observed in the limit function, S∞

2,2f .
On the other hand, since min{|x|, |y|} ≤ |Hp(x, y)| ≤ pmin{|x|, |y|} for xy > 0,

we may write

(SHpf )2j+1 ≈ (S1,1f )2j+1 +
{

(L2,1 ◦ ∇2f )2n+1 j = m − 1
(L1,2 ◦ ∇2f )2n+1 j = m + 1

=
{

(S2,1f )2j+1 j = m − 1
(S1,2f )2j+1 j = m + 1.

Thus, the behavior of the SHp schemes at the intervals neighboring the singularity
is closer to the behavior of the Sl,r scheme, (l, r) = {(1, 2), (2, 1)}, which uses a
stencil that does not cross the singularity, see Figs. 2, 3 and 4, which is, ultimately,
the reason for the lack of oscillatory behavior.

We would like to proceed in a similar manner in order to limit the influence of
schemes with singularity-crossing stencils for the 6-point DD linear scheme. For S3,3
we may write

S3,3 = 1

2
S2,3 + 1

2
S3,2 = 1

2
(
3

8
S3,1 + 5

8
S2,2) + 1

2
(
3

8
S1,3 + 5

8
S2,2). (20)

The stencils associated to the schemes S2,3 and S3,2 would not allow to avoid
oscillations at all intervals neighboring a singularity in the data. On the other hand,

Fig. 4 � evaluation point, ◦ points in S2,2-stencil. Discontinuous lines: stencils for S1,2, S2,1
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Fig. 5 �: evaluation point, ◦ points in S3,3-stencil. Discontinuous lines: stencils for S2,2, S1,3 y S3,1

given the distribution of the stencils for S3,1, S1,3, S2,2 shown in Fig. 5, we conclude
that it might be possible to design non-oscillatory versions of the S3,3 scheme by
considering nonlinear analogs of the linear averages involved in Eq. 20 that allow
us to remain closer to the Sl,r scheme whose interpolatory stencil does not cross the
singularity. For the general weighted average expression

avea,b(x, y) := ax + by, 0 ≤ a, b ≤ 1, a + b = 1, (21)

we may consider theWeighted Powerp mean proposed in [23].

Definition 3 Weighted-Powerp mean [23]. Let be a > 0, b > 0 satisfying a+b = 1,
and p ≥ 1. Then, ∀x, y ∈ R.

Wp,a,b(x, y) := sgn(x, y) |ax + by|
(
1 − |x − y|p

(M + m
α
)(M + αm)p−1

)
, (22)

where M = max{|x|, |y|}, m = min{|x|, |y|}, α = max{a, b}/min{a, b},
sgn(x, y) = 1

2 (sign(x) + sign(y)).

It is proven in [23] that Wp,a,b(x, y) generalizes the Hp mean. Indeed, it can be
easily checked that

Wp,a,b(x, x) = x, Wp,a,b(x, y) = Wp,b,a(y, x), W
p, 12 , 12

(x, y) = Hp(x, y).

(23)

We recall next some of the properties of Wp,a,b(x, y) in Eq. 22. The reader is referred
to [23] for the proofs.

Proposition 4 The function Wp,a,b(x, y) in (22) satisfies the following properties.

(a) |Wp,a,b(x, y)| ≤ |ax + by| (b)
1

α
min{|x|, |y|} ≤ |Wp,a,b(x, y)| ≤ pαmin{|x|, |y|}. (24)
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3 6-point Nonlinear, Non-oscillatory schemes

Taking into account Eqs. 20 and 13, we can write

S3,3 = S1,1 + ave 3
8 , 58

(ave 1
2 , 12

(L1,3 ◦ ∇2,L3,1 ◦ ∇2),L2,2 ◦ ∇2), (25)

S3,3 = S1,1 + ave 1
2 , 12

(ave 3
8 , 58

(L1,3 ◦ ∇2,L2,2 ◦ ∇2), ave 3
8 , 58

(L3,1 ◦ ∇2,L2,2 ◦ ∇2). (26)

where it can easily be shown that

(L3,1f )2n+1 = − 1

16
(−fn−2 + 3fn−1), (L1,3f )2n+1 = − 1

16
(3fn − fn+1),

(L2,2f )2n+1 = − 1

16
(fn−1 + fn).

We may obtain two families of nonlinear 6-point schemes simply by replacing each
linear average by the appropriate nonlinear mean (recall that W

p, 12 , 12
= Hp).

SWHp,q = S1,1 + W
p, 38 , 58

(Hq(L1,3 ◦ ∇2,L3,1 ◦ ∇2),L2,2 ◦ ∇2), (27)

SHWq,p = S1,1 + Hq(W
p, 38 , 58

(L1,3 ◦ ∇2,L2,2 ◦ ∇2),W
p, 38 , 58

(L3,1 ◦ ∇2,L2,2 ◦ ∇2). (28)

Because of Eq. 24-(b), these schemes remain closer to the subdivision scheme with
the least oscillatory behavior, hence they are expected to display a non-oscillatory
behavior similar to that of the Powerp schemes, see Fig. 6.

In addition, since these subdivision schemes can be written as a nonlinear pertur-
bation of the monotone S1,1 linear scheme, many of their properties can be analyzed
with the same tools used in [19] for the Powerp schemes. We examine next the poly-
nomial reproduction properties of these families of nonlinear subdivision schemes
and the existence of difference schemes.
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Fig. 6 Non-oscillatory behavior of SWHp,q . For each scheme S: Crosses denote Sf . Lines denote S∞f
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3.1 Polynomial reproduction properties and difference schemes

Throughout this section, we denote by �k the set of polynomials of degree ≤ k, and
by 1 the constant sequence given by 1i = 1, i ∈ Z.

Proposition 5 The schemes SWHp,q , SHWq,p reproduce exactly �3.

Proof Since S3,1, S2,2 and S1,3 reproduce �3 exactly, we have that for P ∈ �3 and
f = P

∣∣
Z

(S3,1f )2n+1 = (S2,2f )2n+1 = (S1,3f )2n+1 = P(n + 1/2), ∀n ∈ Z

and, from Eq. 13, (L3,1(∇2f ))2n+1 = (L2,2(∇2f ))2n+1 = (L1,3(∇2f ))2n+1. Since
Wp,a,b(x, x) = x, ∀p, q ≥ 1

(SWHp,qf )2n+1 = (SHWq,pf )2n+1 = (S1,1f )2n+1 − (L2,2(∇2f ))2n+1
= (S2,2f )2n+1 = P(n + 1/2).

In the linear case, the relation between exact polynomial reproduction and the
existence of the associated difference schemes S[l] with S[0] = S, and ∇ lS = S[l]∇ l

is well known [20]. As observed in [19], offset invariance [18] is the right concept to
characterize the existence of difference schemes in the nonlinear case.

Definition 6 [19] A binary subdivision operator S is offset invariant (OSI) for �k

if for each f ∈ l∞(Z) and any polynomial P(x) ∈ �m, m ≤ k there exists a
polynomial, Q, of degree < m such that

S(f + P
∣∣
Z
) = Sf + (P + Q)

∣∣
2−1Z

.

Schemes of the form (4) with δ = ∇k are offset invariant for �k−1. To check this,
let P(x) ∈ �k−1. Since ∇k(P

∣∣
Z
) = 0, we have ∀f ∈ l∞(Z)

SN (f + P
∣∣
Z
) = SL(f + P

∣∣
Z
) + F(∇kf ) = SL(f ) + P

∣∣
2−1Z

+ F(∇kf )

= SN (f ) + P
∣∣
2−1Z

.

It is proven in [19] that offset invariance for �k guarantees the existence of the
difference schemes S[l] for l ≤ k + 1. Thus the new families of nonlinear subdivision
schemes are offset invariant for �1, which guarantees the existence of the first and
second difference schemes. For the families in Eqs. 27-28, these schemes can be
easily computed by elementary means. Introducing the restriction operator (m < n)

χm,n : l∞(Z) → R
n−m+1, χm,n(f ) = (fm, fm+1, . . . , fn),

and the functions Ll,r : R4 → R

L3,1(x) = −x1+3x2, L2,2(x) = x2+x3, L1,3(x) = 3x3−x4, x = (x1, x2, x3, x4) ∈ R
4,

so that

(Ll,rf )2n+1 = − 1

16
Ll,r ◦ χn−2,n+1f, (l, r) = (1, 3), (3, 1), (2, 2),
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we can write ∀f ∈ l∞(Z),
{

(SWHp,qf )2n = fn

(SWHp,qf )2n+1 = (S1,1f )2n+1 + Gp,q ◦ χn−2,n+1∇2f
(29)

with

Gp,q(x) = − 1
16Wp, 38 , 58

(
Hq

(
L3,1(x), L1,3(x)

)
, L2,2(x)

)
. (30)

From Eq. 29, it can be easily deduced that
⎧
⎨

⎩

(SWH[2]
p,qw)2n = 2Gp,q ◦ χn−2,n+1w,

(SWH[2]
p,qw)2n+1 = wn

2
+ Gp,q ◦ χn−2,n+1w + Gp,q ◦ χn−1,n+2w.

(31)

We obtain a similar result for SHWq,p, substituting Gp,q by Rq,p

Rq,p(x) = − 1
16Hq

(
W

p, 38 , 58

(
L3,1(x), L2,2(x)

)
,W

p, 38 , 58

(
L1,3(x), L2,2(x)

))
. (32)

We remark that the new schemes reproduce exactly �3, however they are only
offset invariant for �1 and, hence, difference schemes S[k] do not exist for k > 2.

3.2 Convergence

As observed in [19, 22], the existence of difference schemes may be very helpful in
proving the convergence of a nonlinear scheme. Since δ = ∇2,

δSL = ∇2SSL−1 = S[2]∇2SL−1 = (S[2])L∇2, (33)

so that C2 in Theorem 1 is equivalent to the following condition

∃L > 0, 0 < T < 1 : ||(S[2])L(f )||∞ ≤ T ||f ||∞ ∀f ∈ l∞(Z). (34)

Theorem 7 The schemes SWHp,q and SHWq,p are uniformly convergent, for all
p, q ≥ 1.

Proof We shall check the conditions in Theorem 1. To check C1, we need to find a
uniform bound for the non-linear functions Gp,q and Rq,p in Eqs. 30, Eq. 32. Using
Eq. 24-(a) we get that ∀x ∈ R

4

|Gp,q(x)| ≤ 1

16
|3
8
Hq(L3,1(x), L1,3(x)) + 5

8
L2,2(x)| ≤ 11

64
‖x‖∞,

|Rq,p(x)| ≤ 1

16
|1
2

(
W

p, 38 , 58

(
L3,1(x), L2,2(x)

) + 1

2
W

p, 38 , 58

(
L1,3(x), L2,2(x)

)) | ≤ 11

64
‖x‖∞.

To check C2 we consider its equivalent formulation (34). For even indexes,

|(SWH[2]
p,qf )2n| ≤ 11

32 ||f ||∞, |(SHW[2]
q,pf )2n| ≤ 11

32 ||f ||∞,
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using the previously computed bounds. For odd components we get

max{|(SWH[2]
p,qf )2n+1|, (SHW[2]

q,pf )2n+1|} ≤ 1

2
||f ||∞ + 11

64

(
||f ||∞ + ||f ||∞

)
≤ 27

32
||f ||∞.

Hence,

max{‖SWH[2]
p,q‖∞, ‖SHW[2]

q,p‖∞} ≤ 27

32
< 1. (35)

Remark We notice that the bound in Eq. 35 implies that for S = SWHp,q, SHWq,p

and f ∈ l∞(Z) the limit function S∞f is at least Cβ− with β =
min{− log2

(
27
32

)
, 1} � 0.2540. This result appears to be suboptimal, since all

numerical evidence suggests that S∞f ∈ C1−.

3.3 Order of accuracy

The order of approximation of a subdivision scheme measures the approximation
properties of the recursive process when applied to discrete data coming from smooth
functions.

Definition 8 A convergent subdivision scheme S has approximation order r if

||S∞f 0 − F ||∞ ≤ Dhr (36)

when f 0
i = F(ih), i ∈ Z for any F(x) sufficiently smooth.

For a given subdivision scheme, the order of approximation after one iteration is
usually much easier to obtain.

Definition 9 Let S be a subdivision scheme that satisfies

max
i

|f 1
2i+1 − F(ih + h/2)| ≤ Chr, C < ∞ (37)

with f 1 = Sf 0 and f 0
i = F(ih), i ∈ Z for any F(x) sufficiently smooth. Then r is

called the order of approximation after one iteration of S.

Obviously, the order of approximation after one iteration of interpolatory subdi-
vision schemes based on Lagrange interpolation is at least as high as that of the
interpolatory reconstruction used in its design. We notice that Eq. 10 implies that the
order of approximation after one iteration of the Powerp schemes is at least 4, when
refining smooth convex functions and p ≥ 2, since

||SHpf −F |2−1hZ||∞ ≤ ||SHpf −S2,2f ||∞ +||S2,2f −F |2−1hZ||∞ = O(h4). (38)

For the schemes defined in this paper, we can also measure how close the new
schemes are to the 6-point DD scheme for smooth convex functions.
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Remark 10 We know that if fi = F(ih) and F(x) is smooth and convex, (∇2f )i do
not change sign. We can show, by straightforward Taylor expansions, that

(Ll,r∇2f )i = 2F ′′(xi)h
2+F ′′′(xi)h

3+O(h4) (l, r) ∈ {(1, 3), (3, 1), (2, 2)} (39)

hence we also expect that, for smooth convex functions and h small enough,
(Ll,r∇2f )i will not change sign either.

Proposition 11 Let F : R → R a smooth function, and f = {F(ih)}i∈Z.
If (Ll,r∇2f )n have the same sign ∀n ∈ Z, (l, r) ∈ {(1, 3), (3, 1), (2, 2)}, and
|F ′′(x)| > ρ > 0, x ∈ R, then

||S3,3f − SWHp,qf ||∞ = O(hr ) = ||S3,3f − SHWq,pf ||∞, r = min{2p + 2, 3q + 2}.

Proof Notice that

(S3,3f )2n+1 − (SWHp,qf )2n+1 = − 1
16

(
ave 3

8 , 58

(
ave 1

2 , 12
(x, z), y

)
− W

p, 38 , 58

(
Hq(x, z), y

))

with

x := 3∇2fn−1 − ∇2fn−2, y := ∇2fn−1 + ∇2fn, z := 3∇2fn − ∇2fn+1.

Since F is a smooth function, the Taylor expansions in Eq. 39 show that x, y, z

are O(h2) and non-zero, provided that h is sufficiently small. Since (24)-(b) ensures
that Wp,a,b(O(hr), O(hs)) = O(hmin{r,s}), we have that Hq(x, z) = O(h2),
Wp,a,b(x, y) = O(h2) = Wp,a,b(y, z). We write

ave 3
8 , 58

(
ave 1

2 , 12
(x, z), y

)
− W

p, 38 , 58

(
Hq(x, z), y

) = Z1(x, y, z) + Z2(x, y, z)

with

Z1(x, y, z) := ave 3
8 , 58

(
ave 1

2 , 12
(x, z), y

)
−ave 3

8 , 58

(
Hq(x, z), y

) = 3
8 (ave 1

2 , 12
(x, z)−Hq(x, z))

Z2(x, y, z) := ave 3
8 , 58

(
Hq(x, z), y

) − W
p, 38 , 58

(
Hq(x, z), y

)
.

Notice that (using Taylor expansions, when necessary)

x − z = 3∇2fn−1 − ∇2fn−2 − 3∇2fn + ∇2fn+1 = −∇4fn−2 + ∇4fn−1 = ∇5fn−2 = O(h5)

x + z = 3∇2fn−1 − ∇2fn−2 + 3∇2fn − ∇2fn+1 = O(h2).

Hence, assuming without loss of generality that x, z ≥ 0, Eq. 7 leads to

Z1(x, y, z) = 3

16

|x − z|q
|x + z|q−1

= O(h3q+2).

For Z2(x, y, z), denoting s = Hp(x, z) and using Eq. 22, we get that (s, y > 0),

Z2(x, y, z) = ave 3
8 , 58

(s, y)−Wp,a,b(s, y) =
(
3

8
s + 5

8
y

) |s − y|p
(M + 3

5m)(M + 5
3m)p−1

(40)
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with M = max{s, y}, m = min{s, y}. Notice that s = O(h2), hence

ave 3
8 , 58

(s, y) = O(h2), M = min{s, y} = O(h2), m = max{s, y} = O(h2).

Moreover,

s − y = Hq(x, z) − y = x−2y+z
2 − 1

2
|x−z|q

(x+z)q−1 = O(h4) + O(h3q+2),

because

x − 2y + z = −∇2fn−2 + ∇2fn−1 + ∇2fn − ∇2fn+1 = ∇3fn−2 − ∇3fn = ∇4fn−2 = O(h4).

Since 4 < 3q + 2 for q ≥ 1, we may conclude that

Z2(x, y, z) = O(h2)O(h4p−2p) = O(h2p+2),

from which we deduce the desired result for the schemes SWHp,q .
For the SHWq,p family, we proceed in a similar way. Assume x, y, z > 0 and

write

(S3,3f )2n+1 − (SHWq,pf )2n+1 = − 1
16 (Y1(x, y, z) + Y2(x, y, z))

with

Y1(x, y, z) = ave 1
2 , 12

(
ave 3

8 , 58
(x, y), ave 3

8 , 58
(z, y)

)
− ave 1

2 , 12

(
W

p, 38 , 58
(x, y),W

p, 38 , 58
(z, y)

)
,

= 1

2
(ave 3

8 , 58
(x, y) − W

p, 38 , 58
(x, y)) + 1

2
(ave 3

8 , 58
(z, y) − W

p, 38 , 58
(z, y)))

Y2(x, y, z) = ave 1
2 , 12

(
W

p, 38 , 58
(x, y),W

p, 38 , 58
(z, y)

)
− Hq

(
W

p, 38 , 58
(x, y),W

p, 38 , 58
(z, y)

)
).

As before, it is easy to deduce that

x − y = −∇4fn−2 = O(h4), x + y = O(h2),

z − y = −∇4fn−1 = O(h4), z + y = O(h2).

Hence, for x, y, z ≥ 0, using Eq. 22 and proceeding as in Eq. 40 we get,

ave 3
8 , 58

(x, y) − W
p, 38 , 58

(x, y) = O(h2p+2) = ave 3
8 , 58

(z, y) − W
p, 38 , 58

(z, y).

Thus Y1(x, y, z) = O(h2p+2) (notice that the two terms of the 1
2 ,

1
2 average in Y1

have the same sign).
For Y2(x, y, z), we use that Wp,a,b : R2 → R is a Lipschitz function (see next

section), hence

|W
p, 38 , 58

(x, y) − W
p, 38 , 58

(z, y)| ≤ L|x − z| = O(h5) (41)

being L the Lipschitz constant of W
p, 38 , 58

. Then, defining u := W
p, 38 , 58

(x, y), v :=
W

p, 38 , 58
(z, y) and noticing u, v > 0 if x, y, z > 0 and u = O(h2) = v, we have,

using Eqs. 7 and 41,

Y2(x, y, z) = ave 1
2 , 12

(u, v)−Hq (u, v) = 1

2

|u − v|q
|u + v|q−1

= O(h5q)

O(h2q−2)
= O(h3q+2),

from which we deduce the desired result also for the schemes SHWq,p.
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Corollary 12 Under the same conditions as in the previous proposition

||SWHp,qf −F |2−1hZ||∞ = O(hr) = ||SHWq,pf −F |2−1hZ||∞, r = min{2p+2, 3q+2, 6}.

As shown in [5], the order of approximation of a stable subdivision scheme can
be deduced from its order of approximation after one iteration. The following result
from [5] holds for linear as well as nonlinear subdivision schemes and it serves also
as a motivation to study the stability of the nonlinear schemes under consideration.

Theorem 13 Let S be a convergent subdivision scheme whose approximation order
after one iteration is r ≥ 1. Then if S is stable, it has approximation order r .

In [19] it is shown that the Powerp schemes are stable subdivision schemes for
p < 3 and unstable for p ≥ 4, hence (38) and Theorem 13 ensure that the order of
approximation of the Powerp schemes is 4, when refining smooth convex functions,
for p < 3.

In the following section we examine the question of stability for the families of
schemes (27) and Eq. 28, in order to check whether or not similar conclusions can be
extracted for the new families of schemes presented in this paper.

4 Stability of the 6-point nonlinear schemes

Theorem 1 establishes that stability follows from two facts: Lipschitz-continuity of
the operator F and contractivity of δSL

N , for some L > 0. When δ = ∇2 and SN is
offset invariant for �1 (the case of the new families of 6-point schemes), condition
S2 can be equivalently expressed as follows

∃ L > 0, 0 < μ < 1 : ||(S[2]
N )Lf − (S

[2]
N )Lg||∞ = μ||f − g||∞, ∀f, g ∈ l∞(Z).

(42)
We shall see next that the second difference schemes in Eq. 31 are defined by non-
linear functions that admit uniformly bounded Generalized Gradients. In [22], this
fact was used to show the stability of a nonlinear, monotonicity preserving, scheme
by expressing the contractivity condition (42) in terms of the Generalized Jacobian
of the scheme and using Corollary 24 in the Appendix (or see [19]). However, we
shall see that this technique does not seem to be as useful for the schemes considered
in this paper.

The first step is to show that the Weighted-Powerp mean (22) belongs to a spe-
cial class of continuous, piecewise smooth functions: the class of C1

pw(R2) functions.
Functions in this class are continuous, piecewise smooth and have uniformly bounded
directional derivatives except (maybe) at 0 ∈ R

m and across certain hyperplanes
separating regions of C1 smoothness. Directional derivatives along the separating
hyperplanes do, also, exist. For this class of functions it is possible to define a Gener-
alized Gradient using only the gradients on smooth regions. As the classical gradient
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for smooth functions, the linear map associated to any Generalized Gradient recov-
ers all directional derivatives that ’make sense’, and satisfies a chain rule property for
the composition with Lipschitz curves. We refer the reader to [19] or the Appendix
to this paper for the definition, and the main properties, of this class of functions.

4.1 The Weighted-Harmonic mean: Generalized Gradients

Property (24)-(a) implies that Wp,a,b(x, y) is a continuous function in R
2. It is

obviously differentiable in the interior of the sectors in R
2 separated by the three

hyperplanes H1 = {x = 0}, H2 = {y = 0}, H3 = {x = y}. As observed
in [19] (see also the Appendix) a Generalized Gradient for Wp,a,b(x, y) can be
defined using only the gradients in smoothness regions (see Eq. A.3), provided that
certain compatibility conditions are satisfied over the separating hyperplanes. Since
Wp,a,b(x, y) = −Wp,a,b(−x,−y), it is enough to consider the half plane y ≥ 0.
Then, the compatibility conditions (A.2) amount to showing that

lim
0�=x>y→0

∇Wp,a,b(x, y) · (1, 0) = 0, lim
0�=y>x→0

∇Wp,a,b(x, y) · (0, 1) = 0, (43)

lim
y>x �=0,(x,y)→(d,d)

∇Wp,a,b(x, y) · (1, 1) = (Wp,a,b(x, x))′ = 1, ∀d > 0, (44)

lim
0�=y<x,(x,y)→(d,d)

∇Wp,a,b(x, y) · (1, 1) = (Wp,a,b(x, x))′ = 1, ∀d > 0. (45)

To check these conditions, we first notice that Wp,b,a(y, x) = Wp,a,b(x, y), hence
it is enough to consider the gradients of the 1-homogeneous2 function (see Fig. 7)

φp,a,b(x, y) = (ax + by)

(
1 − (y − x)p

(y + 1
α
x)(y + αx)p−1

)
, α = max(a, b)/min(a, b).

A straightforward computation leads to

∇φp,a,b(x, y) = (y,−x)ρp,a,b(x, y) + (a, b)σp,α(x, y),

ρp,a,b(x, y) = α(α + 1)(y − x)p−1(ax + by)(x(α + p − 1) + y(α(p − 1) + 1))

(x + αy)2(αx + y)p
,

σp,α(x, y) = 1 − α(y − x)p

(x + αy)(αx + y)p−1
.

Since ∇φa,b is 0-homogeneous, for y > 0, ∇φa,b(x, y) = ∇φa,b(x/y, y/y) =
∇φa,b(t, 1), t = x/y, hence

∇φa,b(t, 1) = μp,a,b(t)(1, −t) + ηp,α(t)(a, b). (46)

with

2A function F is n-homogeneous if F(λx) = λnF (x), being x a vector and λ a scalar.
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Fig. 7 Wp,a,b(x, y) in its smoothness sectors

ρp,a,b(x, y) = μp,a,b(x/y), μp,a,b(t) := c1(1−t)p−1(at+b)(c2t+c3)

(t+α)2(αt+1)p

⎧
⎪⎨

⎪⎩

c1 = α(α + 1)
c2 = α + p − 1
c3 = α(p − 1) + 1

,

σp,α(x, y) = ηp,α(x/y), ηp,α(t) := 1 − α(1−t)p

(t+α)(αt+1)p−1 .

Clearly, the functions μp,a,b(t), tμp,a,b(t), are continuous in [0, 1]. Moreover,

lim
t→0

tμp,a,b(t) = 0, lim
t→0

μp,a,b(t) = c1bc3

α2
, lim

t→0
ηp,α(t) = 0,

lim
t→1

μp,a,b(t) = lim
t→1

tμp,a,b(t) =
{

c1(c2 + c3)/α
2 p = 1

0 p > 1
, lim

t→1
ηp,α(t) = 1.

Taking into account Fig. 7, we observe that the compatibility conditions (43), Eq. 44,
Eq. 45 follow from the fact that ∀p ≥ 1, ∀a, b ≥ 0, a + b = 1,

lim
0�=y>x→0

∇φp,a,b(x, y) · (0, 1) = lim
t→0

−tμp,a,b(t) + bηp,α(t) = 0,

lim
y>x,x,y→d �=0

∇φp,a,b(x, y) · (1, 1) = lim
t→1

(1 − t)μp,a,b(t) + (a + b)ηp,α(t) = 1.

In addition, ∇φa,b(x, y) is uniformly bounded in {(x, y) : y > x > 0} because
∇φa,b(t, 1) is bounded for 0 ≤ t ≤ 1. Hence, ∇Wp,a,b(x, y) is also uniformly
bounded for (x, y) in any region of smoothness and, thus, Wp,a,b(x, y) in Eq.
22 belongs to the space C1

pw(R2). From Corollary 19, Wp,a,b(x, y) is a Lipschitz
function. However, uniform bounds for ||DWp,a,b(x, y)|| depend on the parame-
ters p, a, b in a more involved way than for the Powerp averages. We illustrate the
required computations by examining the cases p = 1, 2.

Proposition 14 W1,a,b(x, y) admits a generalized gradient, which satisfies
∀(x, y) ∈ R

2

||DW1,a,b(x, y)||1 ≤ 1 + 2(c − d), c = max{a, b}, d = min{c, d} (47)
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Proof For p = 1,

μ1,a,b(t) = α(α + 1)(at + b)

(t + α)2
, η1,α(t) = 1 − α(1 − t)

t + α
= (1 + α)

t

t + α
.

Since α = c/d, and a + b = c + d = 1, Eq. 46 becomes

∇φ1,a,b(t, 1) = c
at + b

(dt + c)2
(1, −t) + t

dt + c
(a, b).

If d = a ≤ b = c, we get

∇φ1,a,b(t, 1) = c

(dt + c)
(1,−t) + t

dt + c
(d, c) = (1, 0) ⇒ ||∇φ1,a,b(t, 1)||1 = 1.

If d = b ≤ a = c, after some algebraic manipulations (notice that c2 − d2 = c − d)
we get

∇φ1,a,b(x, y) = (1, 0) + c−d

(dt+c)2
(dt2 + 2ct − c,−t2) (48)

hence ||∇φ1,a,b(t, 1)||1 = 1 + c−d

(dt+c)2
(dt2 + 2ct − c + 1). This is an increasing

function in [0, 1], hence
1 ≤ ||∇φ1,a,b(0, 1)||1 ≤ ||∇φ1,a,b(t, 1)||1 ≤ ||∇φ1,a,b(1, 1)||1 = 1 + 2(c − d)

which proves the result.

Proposition 15 W2,a,b admits a generalized gradient that satisfies ∀(x, y) ∈ R
2

0 ≤ D1W2,a,b(x, y) ≤ 1

a
, 0 ≤ D2W2,a,b(x, y) ≤ 1

b
, ||DW2,a,b(x, y)||1 ≤ 1

d
. (49)

Proof We proceed as in Proposition 14. After straightforward manipulations we get

∇φ2,a,b(t, 1) = 1

(bt + a)2
(a, bt2).

Notice that D1φ2,a,b(t, 1) = a/(bt + a)2 is a decreasing function in [0, 1] while
D2φ2,a,b(t) = bt2/(bt + a)2 is increasing. Moreover, both components are positive,
hence ‖∇φ2,a,b(t)‖1 = D1φ2,a,b(t) + D2φ2,a,b(t) = (a + bt2)(bt + a)2, which is a
decreasing function. Hence we readily conclude

a ≤ D1φ2,a,b(t, 1) ≤ 1

a
, 0 ≤ D2φ2,a,b(t, 1) ≤ b, 1 ≤ ||∇φ2,a,b(t, 1)||1 ≤ 1

a
,

and we deduce (49) from the relations above and Fig. 7.

Remark 16 We may also obtain specific bounds for the components of
DW1,a,b(x, y), although the bounds are not as simple as for p = 2. It is easy to
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see that the function 1 + c−d

(dt+c)2
(dt2 + 2ct − c) is increasing and c−d

(dt+c)2
(−t2) is

decreasing in [0, 1]. Therefore ∀t ∈ (0, 1)

D1φ1,a,b(0, 1) ≤ D1φ1,a,b(t, 1) ≤ D1φ1,a,b(1, 1), D2φ1,a,b(1, 1) ≤ D2φ1,a,b(t, 1) ≤ D2φ1,a,b(0, 1)

d

c
≤ D1φ1,a,b(x, y) ≤ 1 + (c − d), −(c − d) ≤ D2φ1,a,b(x, y) ≤ 0, if a > b. (50)

From these bounds and Fig. 7, we may deduce general, uniform, bounds for the
components of DW1,a,b(x, y).

4.2 The Generalized Jacobian of the second difference schemes

Let us consider the family of schemes SWHp,q in Eq. 31. As specified in the
Appendix, in order to define a Generalized Jacobian of SWH[2]

p,q we need to justify
the existence of uniformly bounded Generalized Gradients for the function Gp,q in
Eq. 30, which satisfy the chain rule (A.10).

Proposition 17 Let γ : [a, b] → R
m be a Lipschitz curve. Then γ̃ = Gp,q ◦ γ :

[a, b] → R is also Lipschitz and

γ̃ ′(t) = DGp,q(γ (t))γ ′(t) a.e. in [a, b] (51)

where, ∀x ∈ R
4,

DGp,q(x) := − 1

16
DW

p, 38 , 58
(ξ)

(
DHq(ρ) 0
(0, 0) 1

)⎛

⎝
−1 3 0 0
0 0 3 −1
0 1 1 0

⎞

⎠ , (52)

with ρ = (L3,1(x), L1,3(x)), ξ = (H(L3,1(x), L1,3(x)), L2,2(x)).

Proof Notice that Gp,q = − 1
16Wp, 38 , 58

◦ψ ◦M where ψ : R3 → R
2 and M : R4 →

R
3 are as follows

ψ(x) = (Hq(x1, x2), x3), M =
⎛

⎝
−1 3 0 0
0 0 3 −1
0 1 1 0

⎞

⎠ .

Thus,

γ̃ = Gp,q ◦ γ = W
p, 38 , 58

◦ γ2, γ2 := ψ ◦ γ1, γ1 := M ◦ γ

Since γ : [a, b] → R
4 is Lipschitz, we have that a.e. in (a, b)

1. γ1 : [a, b] → R
3 is Lipschitz and γ ′

1(t) = Mγ ′(t),
2. γ2 : [a, b] → R

2 is Lipschitz and γ ′
2(t) = Dψ(γ1(t))γ

′
1(t), with (see Theorem

22 in the Appendix)

Dψ(x) =
(

DHq(x1, x2) 0
(0, 0) 1

)
, ∀x = (x1, x2, x3) ∈ R

3
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3. γ̃ = W
p, 38 , 58

◦ γ2 is Lipschitz (see Theorem 20 in the Appendix) γ̃ ′(t) =
DW

p, 38 , 58
(γ2(t))γ

′
2(t).

Collecting all of the above we have

γ̃ ′(t) = DW
p, 38 , 58

(ψ ◦ M ◦ γ (t))Dψ(M ◦ γ (t))Mγ ′(t), a.e.(0, 1)

so that Eq. 52 provides an adequate definition of a Generalized Jacobian ofGp,q .

Uniform bounds for the Generalized Jacobian DGp,q defined in Eq. 52 can be
readily computed. Since

DGp,q(x) = − 1
16DW

p, 38 , 58
(ξ)

(
−D1Hq (ρ) 3DHq (ρ) −D2Hq (ρ)

0 (1, 1) 0

)
,

ξ = (H(L3,1(x), L1,3(x)), L2,2(x)), ρ = (L3,1(x), L1,3(x)), we can write

16D1Gp,q(x) = D1Wp, 38 , 58
(ξ)D1Hq (ρ), 16D4Gp,q(x) = D1Wp, 38 , 58

(ξ)D2Hq (ρ),

16(D2Gp,q(x), D3Gp,q(x)) = −3D1Wp, 38 , 58
(ξ)DHq (ρ) − D2Wp, 38 , 58

(ξ)(1, 1).

Taking into account that (see [19])

0 ≤ D1Hq(x) ≤ q, 0 ≤ D2Hq(x) ≤ q, ||DHq(x)||1 ≤ q, ∀x ∈ R
2,

we have

||DGp,q (x)||1 ≤ 1

16

(
4|D1Wp, 38 , 58

(ξ)|·||DHq (ρ)||1+2|D2Wp, 38 , 58
(ξ)|

)
≤ q

4
|D1Wp, 38 , 58

(ξ)|+ 1

8
|D2Wp, 38 , 58

(ξ)|.

As observed in the Appendix, the bi-infinite matrix with the following non-zero
entries ∀n ∈ Z

(DSWH[2]
p,q(w))[2n,n−2:n+1] = 2DGp,q(χn−2,n+1w),

(DSWH[2]
p,q (w))[2n+1,n−2:n+2] = 1

2 (0, 0, 1, 0, 0) − (DGp,q(χn−2,n+1w) + DGp,q(χn−1,n+2w))

(53)

defines a Generalized Jacobian of the second difference scheme. Then,

‖D(SWH[2]
p,q)[2n,:](w)‖1 ≤ q

2
|D1Wp, 38 , 58

(ξ)| + 1

4
|D2Wp, 38 , 58

(ξ)|, (54)

‖D(SWH[2]
p,q)[2n+1,:](w)‖1 ≤ 1

2
+ ‖D(SWH[2]

p,q)[2n,:](w)‖1. (55)

The strategy advocated in [22] for establishing stability relies on the relations
(A.19), Eq. A.20 and Corollary 24, in the Appendix. The desired contractivity prop-
erty (42) follows from the ability to find a uniform bound for products of Generalized
Jacobians of the second difference scheme.

Taking into account the bounds obtained previously for the generalized gradient of
the function Wp,a,b(x, y) for p = 1, 2 (these bounds are optimal for p = 2) and the
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known (optimal) bounds for Hq(x, y), we display in Table 1 the values of the bound
in Eq. 54 for 1 ≤ p, q ≤ 2.

Since (S represents any scheme in the family)

||DS[2]||∞ = max
n

{||(DS[2])[2n,:]||1, ||(DS[2])[2n+1,:]||1},

from Eq. 54, Eq. 55 and the results in Table 1, we cannot ensure ||DS[2]||∞ < 1
for any member of our family of schemes, or, equivalently, we cannot ensure the
contractivity of the second difference scheme.

As observed in [22], the technique described in the Appendix will be success-
ful when the 1-norm of some row of the Generalized Jacobian is strictly uniformly
bounded by 1. In this case, and by carefully considering the form of the matrix prod-
ucts, it may be possible to arrive at products of Generalized Jacobians whose norms
are strictly bounded by 1. Taking into account the bounds in Table 1, it seems that
this strategy might only be feasible for p = q = 1, because such case is the only
one where Eq. 54 is strictly bounded by 1. Since the task of obtaining theoretically
bounds for products of Generalized Jacobian is very involved, we examine the issue
numerically in the following section.

5 Numerical experiments

In this section we carry out a series of numerical experiments that illustrate the the-
oretical developments of the previous sections. We consider first the issue of the
stability of the new schemes, from a numerical perspective. In addition, we also
consider the smoothness of limit functions, as well as the approximation order of
the non-oscillatory 6-point schemes, comparing the numerical results with those
obtained for the Powerp schemes.

5.1 Stability

To examine the question of stability for each chosen subdivision scheme, S, we
compute the quantities C

j
S(h) for each j ≥ 1, 0 < h < 1,

C
j
S(h) ≈ sup

f 0
sup

‖θ‖∞=1

1

h
‖Sj (f 0 + hθ) − Sj (f 0)‖, h > 0. (56)

For the computation we consider a sufficiently large set of sequences f 0 = {f 0
i }

and perturbation sequences θ = {θi}, with components randomly chosen from the
set {−1, 0, 1} (hence ‖θ‖∞ = 1). We notice that if S is Lipschitz stable, Cj

S(h) ≤ C,

Table 1 Bounds of
||D(SWH[2]

p,q )[2n,:]||1 p\q 1 2

1 13/16 21/16

2 52/30 92/30
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Fig. 8 Plot of CL
S (h), with respect to h for L = 10, S = SWHp,q for several values of p, q

∀j ≥ 1, ∀h > 0, so that any deviation with respect to this behavior may be considered
a sign of the instability of the scheme.

Figure 8 displays C10
S (h) as a function of h, for S = SWHp,q and various values

of p, q. The plots in Fig. 8 seem to indicate that the scheme SWHp,q is not stable for
p + q > 3.

As observed in Theorem 1, Lipschitz stability follows from the contractivity of
an appropriate power of the second difference scheme, which is a condition that can
also be examined numerically. For h = 10−7, the smallest value of h considered in
Fig. 8, we compute

T
j
S (h) ≈ sup

f 0
sup

‖θ‖∞=1

1

h
‖(S[2])j (f 0 + hθ) − (S[2])j (f 0)‖, h > 0, (57)

in order to check if the hypothesis S2, in its equivalent formulation (42), is fulfilled.
In Fig. 9 we display the values of T

j
S (h) for 1 ≤ j ≤ 6. We clearly notice that

∃L ≥ 1 such that T L
S (h) < 1 for S = SWHp,q , (p, q) = (1, 1), (1, 2), a behav-

ior that would be obtained if these schemes were stable. On the other hand, T
j
S (h)

appears to grow with j for p + q ≥ 4 indicating that condition (42) is not fulfilled.
We also observe that the T

j
S does not grow for S = SWH2,1, but it does not appear

to become smaller than one, an indication that condition (42) is only a sufficient
condition for stability.

Table 2 summarizes the observations that might be deduced from our testing pro-
cess. The same experiments were performed for the SHWq,p family, with similar
results.
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Fig. 9 Plot of (T
[2]
S (h))j with respect to j for S = SWHp,q , h = 10−7 and several values of p, q
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Table 2 Stability perspective
on SWHp,q and SHWq,p . �
suspected stability. × unstability

q\p 1 2 3

1 � � ×
2 � × ×
3 × × ×

5.2 Smoothness of the limit function

In Section 3.2 we have shown that the schemes proposed in this paper are convergent,
i.e. S∞f 0 is a continuous function ∀f 0 ∈ l∞(Z) for S = SWHp,q, SHWq,p. The
regularity of the limit function obtained from Theorem 1 (see Remark 10) seems
to be much smaller than what is observed in practice. In this section we perform a
numerical study of the regularity of the proposed schemes based on the following
observations (see [5]): Let us assume that f (x) = S∞f 0 ∈ Cr−, S an interpolatory
subdivision scheme, and r = l + β, l ∈ N, 0 ≤ β < 1. Then,

f (l)(xk
i+1) − f (l)(xk

i ) ≈ C(xk
i+1 − xk

i )β = Ch
β
k .

Since f k
i = f (xk

i ), and f (l)(xk
i ) ≈ ∇ lf k

i /(hk)
l = 2lk∇ lf k

i /h0, we have

f (l)(xk
i+1) − f (l)(xk

i ) ≈ 2lk(∇ lf k
i+1 − ∇ lf k

i )/h0 = 2lk∇ l+1f k
i /h0.

Hence, we expect that

2lk∇ l+1f k
i

2l(k+1)∇ l+1f k+1
i

≈ h
β
k

h
β

k+1

= 2β ↔ ∇ l+1f k
i

∇ l+1f k+1
i

≈ 2l+β ↔ r = l+β ≈ log2

(
‖∇ l+1f k‖∞

‖∇ l+1f k+1‖∞

)
.

Therefore, in order to estimate the numerically regularity of a subdivision scheme, S,
in a given region, [a, b], we compute (for several values of l)

Rl
S([a, b]) = log2

(
�l
6

�l
7

)
, �l

k := sup{|(∇ l+1f k)i | : xk
i ∈ [a, b]}. (58)

For our numerical testing process we consider f 0
i = F(x0

i ), F(x) = e−2x2 , (x0
i )i

an h0-uniform grid. In Table 3 we display the results corresponding to an initial mesh
with N = 18 points in [−6, 6], so that x = 0 does not belong to the initial mesh, and
in Table 4 we display the results obtained when a uniform mesh with N = 21 points
in [−6, 6], so that x = 0 belongs to the initial grid, is used to compute f 0 (see also
Fig. 10).

The tables show that, for these examples, the global regularity of the limit function
is at least r = 1. Moreover, when x = 0 (the abscissa of the maximum of F(x))
is included in the initial grid, the global regularity of the limit function obtained
with the Powerp schemes is smaller than that obtained with the new schemes when
max{p, q} > 1. According to Table 3, in this case the limit function seems to be
globally C1 for max{p, q} > 1. In addition, we also observe in both tables that for
(p, q) = (2, 2) we get the same smoothness as for the S3,3 scheme, around x = 0,
much higher than that of the Power2 scheme.
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Table 3 Regularity of S∞f 0: Rl
S ([a, b]) in Eq. 58 for S = S3,3, SH2 and SWHp,q , for 3 ≤ p + q ≤ 4

l S3,3 Rl
SWH1,2

Rl
SWH2,1

Rl
SWH2,2

Rl
SH2

0 0.95 1.00 1.00 1.00 0.96 1.00 0.95 1.00 0.94 1.00

1 1.99 1.99 1.00 1.00 1.75 1.50 1.99 1.48 1.90 1.08

2 2.81 2.84 1.00 1.00 1.64 1.01 2.84 1.00 2.06 1.08

3 2.82 2.83 1.00 1.00 1.64 1.00 2.91 1.00 2.04 1.07

4 2.83 2.83 1.00 1.00 1.64 1.00 2.85 1.00 1.78 1.07

Left columns: [a, b] = [−0.1, 0.1]. Right columns: [a, b] = [−3, 3]. Initial data and limit functions
displayed in Fig. 10, left column

5.3 Approximation order

The order of approximation of a subdivision scheme measures its ability to recon-
struct smooth functions from relatively coarse samples. Given f 0 = {F(nh)}n∈Z
where F(x) is a smooth function, we study the difference between the limit function
f ∞(x) = S∞f 0(x) and F(x) in a given region by considering S∞f 0 ≈ SLf 0 (with
L = 7 in all test cases) and measuring

ES,[a,b](h) := max{|(SLf 0)n − F(n2−Lh)|, n2−Lh ∈ [a, b]} ≈ ||S∞f 0 − F ||L∞([a,b]). (59)

In Tables 5-8 we display ES,[a,b](h) for different values of h, different regions [a, b]
and different functions F(x). The tables also show the numerical order of accuracy,
rn, obtained by a least squares fit of the data (log2(hl), log2(ES(hl)) for hl = h0/2l ,
and a given value of h0.

The ultimate purpose of the numerical testing process is twofold. On one hand the
Tables show that, by choosing p, q appropriately, it is possible to obtain the same
order of approximation (as well as errors of a similar magnitude) as that of the S3,3
scheme. In addition, the Tables also show that, for each scheme in the family, the
order of approximation of the limit function is the same as the theoretical order of
approximation after one iteration, rt in the Tables. For the new schemes proposed
in the paper, rt is obtained in Corollary 12 for convex regions, but it can also be

Table 4 Same as Table 3. Initial data and limit functions displayed in Fig. 10, right column

l Rl
S3,3

Rl
SWH1,2

Rl
SWH2,1

Rl
SWH2,2

Rl
SH2

0 0.91 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00

1 1.99 1.99 1.69 1.69 1.44 1.44 1.93 1.93 1.00 1.00

2 2.82 2.82 1.63 1.63 1.48 1.48 2.47 1.34 1.00 1.00

3 2.83 2.83 1.63 1.63 1.48 1.48 2.58 1.27 1.00 1.00

4 2.83 2.83 1.38 1.38 1.47 1.47 2.64 1.30 1.00 1.00
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Fig. 10 Limit function from coarse Gaussian data. Initial data marked with •

obtained by Taylor expansions in regions where Ll,r ◦ ∇2 does not change sign. For
the purpose of illustration, we include the result of the algebraic computation (done
with Mathematica) for p = 2, q = 2,

(SWHp,qf )2j+1 = F((2n + 1)h/2) + h6

2048

(15FIV ((2j + 1)h/2)2

F ′′((2j + 1)h/2)
+ 10FV I ((2j + 1)h/2)

)
,

(60)

which holds for smooth functions, provided that (Ll,r ◦∇2f )2j+1 have the same sign.
We notice further that if F is a smooth function and fj = F(xj ), straightforward
Taylor expansions lead to

(L2,2∇2f )2n+2m+1 = 2F ′′(xn)h
2 + (1 + 2m)F ′′′(xn)h

3 + ( 23 + m + m2)F IV (xn)h
4 + O(h5),

(L3,1∇2f )2n+2m+1 = 2F ′′(xn)h
2 + (1 + 2m)F ′′′(xn)h

3 + (− 1
3 + m + m2)F IV (xn)h

4 + O(h5),

(L1,3∇2f )2n+2m+1 = 2F ′′(xn)h
2 + (1 + 2m)F ′′′(xn)h

3 + (− 1
3 + m + m2)F IV (xn)h

4 + O(h5).

Table 5 Approximation order for Gaussian data: ES,[a,b](hl), [a, b] = [−0.4, 0.4], hl = 2−lh0, and
several schemes

l S3,3 SH2 SH3 SWH1,1 SWH2,1 SWH2,2 SWH3,1 SWH3,2

0 4.3e-6 2.4e-4 1.1e-4 1.7e-4 1.7e-5 6.3e-6 1.6e-5 3.5e-6

1 7.2e-8 1.8e-5 7.0e-6 1.1e-5 5.4e-7 1.0e-7 5.3e-7 5.7e-8

2 1.1e-9 1.2e-6 4.4e-7 7.5e-7 1.7e-8 1.7e-9 1.6e-8 9.0e-10

3 1.8e-11 8.0e-8 2.7e-8 4.7e-8 5.3e-10 2.7e-11 5.3e-10 1.4e-11

rn 5.96 3.85 3.98 3.95 4.99 5.94 4.98 5.97

rt 6 4 4 4 5 6 5 6
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Hence, at smooth convex regions (at least for h small enough) Ll,r ◦ ∇2 does not
change sign. Moreover, if xn = nh is an inflection point and F ′′′(xn) �= 0, the
formulas above show that, for h small enough and (l, r) = (1, 3), (3, 1), (2, 2),
(Ll,r∇2f )2n+m do not change sign for m ≥ 0 or m < 0, and the calculation of rt by
Taylor expansions is feasible. This is the case of the two functions considered in the
numerical tests.

The testing process below is carried out for the family of schemes SWHp,q . We
have also performed the same study for the SHWq,p family. As expected, the result-
ing tables are similar and the conclusions are also the same, hence we omit them.
We include the errors corresponding to the S3,3 and SHp schemes for the sake of
comparison. An ∗ in the Table 6 means that it is not possible to find rt by Taylor
expansions.

5.3.1 Gaussian data

We consider F(x) = e−2x2
, h0 = 0.1. Table 5 displays the results for the region

[a, b] = [−0.4, 0.4], where F is convex and |F ′′(x)| ≥ |F ′′(0.4)| ≈ 1.04. We
observe that the estimated order of approximation of SWHp,q coincides with rt , the
order of approximation after one iteration in the convex region.

In Table 6 we display the corresponding results for [a, b] = [−1, −0.3], which
contains the inflection point x = 0.5. The Table indicates that the computed rn coin-
cides with rt for all the nonlinear 6-point schemes. As observed above, rt can still
be computed by Taylor expansions for the 6-points nonlinear schemes. It should be
noticed that for F(x) = e−2x2

FIV (x)2

F ′′(x)
= 64e−2x2

(
16x4 − 24x2 + 3

)2

4x2 − 1

which has a vertical asymptote in x = ±0.5 and hence it is unbounded around the
inflection points. Since F ′′((2n + 1)h/2) = F ′′′(nh)h/2 + O(h2), Eq. 60 leads to

(SWHp,qddf )2n+1 = F((2n + 1)h/2) + O(h5),

around the inflection point, i.e., the order of approximation after one iteration is 5 in
the non-convex region. Performing the analogous computation for (p, q) = (3, 1),

Table 6 Same as Table 5 for [a, b] = [−1,−0.3]

l S3,3 SH2 SH3 SWH1,1 SWH2,1 SWH2,2 SWH3,1 SWH3,2

0 3.1e-6 6.1e-4 5.9e-4 1.0e-4 1.5e-5 8.9e-6 1.5e-5 3.3e-6

1 5.1e-8 7.7e-5 7.6e-5 7.3e-6 5.3e-7 2.1e-7 5.3e-7 5.0e-8

2 8.1e-10 9.7e-6 9.6e-6 4.6e-7 1.7e-8 5.7e-9 1.6e-8 7.4e-10

3 1.3e-11 1.2e-6 1.2e-6 2.9e-8 5.3e-10 1.5e-10 5.3e-10 1.1e-11

rn 5.97 2.99 2.98 3.95 4.95 5.26 4.95 6.07

rt 6 * * 4 5 5 5 6
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Table 7 Approximation order for Tangent data: ES,[a,b](hl), [a, b] = [0.1, 0.3], hl = 2−lh0 and several
schemes

l S3,3 SH2 SH3 SWH1,1 SWH2,1 SWH2,2 SWH3,1 SWH3,2

2 1.6e-5 7.3e-6 1.4e-4 3.3e-4 9.0e-5 2.8e-5 1.8e-5 1.7e-5

3 2.8e-7 4.8e-7 1.1e-5 2.0e-5 2.3e-6 4.5e-7 2.1e-6 2.8e-7

4 4.7e-9 3.1e-8 7.5e-7 1.3e-6 6.9e-8 7.6e-9 6.6e-8 4.7e-9

5 7.7e-11 1.9e-9 5.0e-8 1.3e-7 2.1e-9 1.2e-10 2.0e-9 7.7e-11

rn 5.88 3.96 3.80 4.09 5.11 5.94 5.02 5.93

(3, 2) we find that the ’theoretical’ approximation order after one iteration is 5 and 6,
respectively, also in the non-convex region.

We also remark that, in all the tables displayed, the magnitude of the errors corre-
sponding to the 6-point nonlinear schemes whose order of accuracy is 4, 5 or 6 are
similar to those of S3,3 and better than that of the Powerp schemes.

5.3.2 Tangent data

We repeat the previous study for F(x) = tan(πx). In this case, the function is con-
vex in the interval [0.1, 0.3], and changes convexity at [−0.25, 0.25]. We consider
h0 = 0.1. The conclusions are similar. In particular, the magnitude of the errors is
similar to those of S3,3, and better than those obtained with the Powerp schemes, for
SWHp,q schemes whose order of accuracy is 4, 5 or 6. We also remark that order of
approximation of the scheme coincides with rt (not displayed in the tables). Notice
that for F(x) = tan(πx)

F IV (x)/F ′′(x) = 8π6(cos(2πx) − 5)2 tan(πx) sec6(πx)

which is a bounded function around x = 0. Hence, according to Eq. 60, the order of
approximation after one iteration of SWHp,qdd is 6 also in the non-convex region.

Table 8 Same as Table 7 for [a, b] = [−0.25, 0.25]

l S3,3 SH2 SH3 SWH1,1 SWH2,1 SWH2,2 SWH3,1 SWH3,2

2 3.5e-6 6.2e-5 6.2e-5 2.1e-4 2.2e-5 6.1e-6 7.1e-5 3.7e-6

3 6.0e-8 7.8e-6 7.8e-6 1.2e-5 6.1e-7 9.9e-8 5.6e-7 6.1e-8

4 1.0e-9 9.7e-7 9.7e-7 7.2e-7 1.8e-8 1.6e-9 1.8e-8 1.0e-9

5 1.6e-11 1.2e-7 1.2e-7 4.4e-8 5.6e-10 2.6e-11 5.5e-10 1.6e-11

rn 5.90 3.00 3.00 4.07 5.08 5.93 5.01 5.93
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6 Conclusions

We have constructed two families of non-oscillatory subdivision schemes that can
be considered nonlinear versions of the 6-point Deslauries-Dubuc interpolatory sub-
division scheme. We have studied their convergence by exploiting the (piecewise)
smoothness properties of the functions that define these subdivision schemes, follow-
ing a novel technique developed in [19]. The stability of these schemes turns out to
be more difficult to study with the techniques employed in [22] and we have explored
this issue computationally. The numerical results reveal indeed that the techniques
based on finding appropriate bounds for the Generalized Jacobian of the second dif-
ference scheme, as in [22], have no chance to succeed, except for (p, q) = (1, 1)
(where contractivity might be proven for L = 2) and (p, q) = (2, 1) (for L = 4).

We have also performed several numerical experiments that suggest that the
approximation properties of the new schemes can be as good as those of the 6-point
linear scheme when reconstructing smooth functions. In addition, numerical experi-
ments show that the smoothness of the limit functions obtained from convex data may
be larger than the smoothness of the limit functions obtained with Powerp schemes.

Acknowledgments The authors acknowledge support from Project MTM2014-54388 (MINECO,
Spain) and the FPU14/02216 grant (MECD, Spain).

Appendix A. Generalized Gradients and Generalized Jacobians

The schemes considered in this paper involve nonlinear functions that are continuous
but only piecewise differentiable. As shown in [22], the theory developed by Oswald
and Harizanov in [19] can be used to analyze the stability of such schemes, provided
that the functions that define them belong to a special class of piecewise smooth func-
tions, for which uniformly bounded Generalized Gradients can be defined. For the
sake of completeness, and ease of future reference, we include here the relevant the-
oretical results, including proofs, in a framework broad enough to cover the schemes
considered in [19, 22] and in this paper. We also remark that the theory of Gener-
alized Gradients has been developed in greater generality by Clarke in a series of
papers (see [7, 21]).

The C1
pw(Rm) class of functions: Generalized Gradients

The C1
pw(Rm) class of functions was defined in [19]. Functions ψ : R

m → R

in this class are continuous, piecewise smooth and have directional derivatives
except (maybe) at 0 ∈ R

m and across certain hyperplanes separating regions of C1

smoothness. Directional derivatives along the separating hyperplanes do, also, exist.
We shall assume that there exist a finite number of hyperplanes {Hi}i , 0 ∈ Hi ,

such thatψ is continuously differentiable ∀x ∈ R
m\ ⋃

i Hi andψ |Hi
is continuously

differentiable (as a function ofm−1 variables) except maybe at x = 0. In this context
R

m\ ⋃
i Hi is the union of a finite number of disjoint open convex sectors in R

m,
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which we shall denote by �j . Therefore Rm = (
⋃

j �j ) ∪ (
⋃

i Hi ), the sets
⋃

j �j

and
⋃

i Hi are disjoint, and ∂�j , the boundary of �j , is always included in the union
of the separating hyperplanes.

In addition, functions in C1
pw(Rm) have uniformly bounded gradients in smooth

regions, i.e.
C||·|| := sup

j

sup
p∈�j

||∇ψ(p)|| < ∞, (A.1)

and the smooth gradients satisfy the following compatibility condition on the sepa-
rating hyperplanes: Let 0 �= x ∈ ∂� ⊂ H, where � is a smoothness region for ψ

and H is one of the hyperplanes separating the regions of smoothness of ψ . Then

( lim
x←p∈�

∇ψ(p) ) · w = Dwψ(x), ∀0 �= w ∈ H (A.2)

where Dwψ(x) is the derivative of ψ at x in the direction of w.
Functions in C1

pw(Rm) admit Generalized Gradients. As the standard gradient of
a smooth function, the main property of a Generalized Gradient is that the associated
linear map recovers all directional derivatives that ’make sense’ at a given point.
Conditions (A.1)-(A.2) ensure that

Dψ(x) :=
{

∇ψ(x) if x ∈ � (smoothness region)
limx←p∈� ∇ψ(p) if x ∈ ∂�

∀ 0 �= x ∈ R
m, Dψ(0) = 0

(A.3)

provides an adequate definition of a Generalized Gradient of ψ ∈ C1
pw(Rm), since

for each 0 �= x ∈ R
m, Dψ(x) defines a linear map that satisfies

Dvψ(x) = Dψ(x) · v (A.4)

for any �0 �= v ∈ R
m when x belongs to a smoothness region, and also for any

0 �= v ∈ H when 0 �= x ∈ H.
Notice that Dψ(x) in Eq. A.3 might not be uniquely defined when x belongs to

a hyperplane separating two or more regions of smoothness, if the limit in Eq. A.3
is different for different smoothness regions with a common boundary. However the
compatibility condition (A.2) ensures (A.4) for all directional derivatives that make
sense, independently of the chosen definition for the vector Dψ(x).

The following results generalize some of the properties satisfied by the gradient
of a smooth function.

Lemma 18 (Generalized MVT) Let ψ ∈ C
1
pw(Rm), x, y ∈ R

m, x �= y and � :=
{tx + (1 − t)y, t ∈ (0, 1)}. Then, if � ⊂ � (smoothness region for ψ) or � ⊂
H − {0}, then ∃ t̂ ∈ (0, 1) such that

ψ(x) − ψ(y) = Dψ(ξ)(x − y), ξ = t̂x + (1 − t̂ )y,

where Dψ is a generalized gradient of ψ .

Proof Define γ : [0, 1] → R
m, g : [0, 1] → R

γ (t) := tx + (1 − t)y = y + t (x − y), g(t) := ψ(γ (t)). (A.5)
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Then,

g(t + h) − g(t) = ψ(γ (t) + h(x − y)) − ψ(γ (t)) ∀h ∈ R (A.6)

hence, under the hypothesis of the Lemma, γ ((0, 1)) =: � ⊂ � or � ⊂ H−{0}, and

g′(t) = lim
h→0

g(t + h) − g(t)

h
= Dx−yψ(γ (t)) = Dψ(γ (t))(x − y) (A.7)

for any Generalized Gradient Dψ and for any t ∈ (0, 1) (notice that if x, y ∈ H, a
separating hyperplane, then x − y ∈ H). Since g(t) is differentiable in (0, 1), by the
classical Mean Value Theorem (MTV)

∃t̂ ∈ (0, 1) : ψ(x) − ψ(y) = g(1) − g(0) = g′(t̂) = Dψ(ξ)(x − y), (A.8)

with ξ = γ (t̂) = t̂x + (1 − t̂ )y.

Corollary 19 Let ψ ∈ C1
pw(Rm). Then ∀x, y ∈ R

m

|ψ(x) − ψ(y)| ≤ C1||x − y|| C1 = sup
j

sup
p∈�j

||∇ψ(p)||1 (A.9)

Proof We consider again the straight line γ (t) = y + t (x − y) and the function
g(t) = ψ(γ (t)) in Eq. A.5. Notice that γ (t) can either cut the separating hyperplanes
at a finite number of points, or belong entirely to one of them. We prove (A.9) in each
case.

Let us assume that that 0 ≤ t1 < . . . < tk ≤ 1 are such that γ (tk) are the cutting
points with the (finite number of) hyperplanes separating the smoothness regions of
ψ . We consider t0 = 0 and tk+1 = 1. Without loss of generality, we may assume
t0 < t1 < . . . < tk+1, hence �l := {γ (t), t ∈ (tl, tl+1)} is included in one of the
smoothness regions of ψ , for l = 0, · · · , k. By the previous lemma,

g(tl+1)−g(tl) = g′(t̂l ) = Dψ(γ (t̂l ))(γ (tl+1)−γ (tl)) = Dψ(γ (t̂l ))(tl+1−tl )(x−y), l = 0, . . . , k.

Thus, using Lemma 18 and considering the Generalized Gradient Dψ in Eq. A.3, we
can write

|ψ(x) − ψ(y)| = |
k∑

l=0

g(tl+1) − g(tl )| = |
k∑

l=0

Dψ(t̂l )(tl+1 − tl )(x − y)| ≤
k∑

l=0

(tl+1 − tl )|Dψ(t̂l )(x − y)|

≤
k∑

l=0

(tl+1 − tl )||Dψ(t̂l )||1||x − y||∞ ≤ C1||x − y||∞
k∑

l=0

(tl+1 − tl ) = C1||x − y||∞.

since (A.1) leads to ||Dψ(x)||1 ≤ C1, ∀ x ∈ R
m, for Dψ in Eq. A.3.

Let us assume now that {γ (t), t ∈ R} ⊂ H. Then, either � ∈ H−{0} or ∃t̄ ∈ (0, 1)
such that γ (t̄) = 0. In both cases, the result follows easily from Lemma 18, using the
same arguments as before.
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The following result establishes that the chain rule holds for the composition of
C1

pw(Rm) functions with Lipschitz curves.

Theorem 20 Let γ : [a, b] → R
m be a Lipschitz curve, ψ : Rm → R a function in

C1
pw(Rm) and Dψ a generalized gradient of ψ . Then γ̃ = ψ ◦ γ : [a, b] → R is

also a Lipschitz curve, and

γ̃ ′(t) = Dψ(γ (t))γ ′(t) a.e. in (a, b). (A.10)

Proof The curve γ̃ is Lipschitz because both γ and ψ are Lipschitz. Let Aγ be the
set of points where γ is not differentiable and Aγ̃ the corresponding set for γ̃ . Notice
that both sets have zero measure, since Lipschitz functions are a.e. differentiable.

Since Rm = (
⋃

i Hi )∪ (
⋃

j �j ) it follows that [a, b] = (
⋃

i H̃i )∪ (
⋃

j �̃j )∪O,
where

H̃i := {t ∈ [a, b], 0 �= γ (t) ∈ Hi}, �̃j := {t ∈ [a, b] : γ (t) ∈ �j }, O = {t ∈ [a, b] : γ (t) = 0}.

Let us denote by Ei the set of isolated points in H̃i and F the set of isolated points
in O. These sets are countable3, hence (

⋃
i Ei) ∪ F is also countable. Therefore

B = Aγ ∪Aγ̃ ∪ (
⋃

i Ei)∪F is also a set of zero-measure. We shall check that (A.10)
holds ∀ t ∈ (a, b)\B. Notice that ∀t ∈ (a, b)\B both γ̃ ′(t) and γ ′(t) exist, since
t �∈ Aγ̃ ∩ Aγ , and can be computed as

γ̃ ′(t) = lim
n→∞

γ̃ (tn) − γ̃ (t)

tn − t
, γ ′(t) = lim

n→∞
γ̃ (tn) − γ̃ (t)

tn − t
(A.11)

for any sequence {tn}n such that tn → t .
Let us assume that t ∈ �̃j\B and let {tn} be a sequence such that tn → t . Since

γ is continuous, γ (tn) → t . Moreover, γ (tn) ∈ �j for n large enough, because �j

is an open set. Since �j is convex, �n ⊂ �j , where �n is the segment joining γ (tn)

and γ (t). Hence, for n large enough, using Lemma 18 we can write

γ̃ (tn) − γ̃ (t) = Dψ(ξn)(γ (tn) − γ (t)), ξn ∈ �n. (A.12)

Since γ (tn) → γ (t), we have that ξn → γ (t). In smooth regions, any generalized
gradient must be uniquely defined as Dψ(x) = ∇ψ(x). Since ψ |�j

∈ C1(�j ), we
have that

lim
n→∞ Dψ(ξn) = Dψ(γ (t)). (A.13)

Hence,

γ̃ ′(t) = lim
n→∞

γ̃ (tn) − γ̃ (t)

tn − t
= lim

n→∞ Dψ(ξn)
γ (tn) − γ (t)

tn − t
= Dψ(γ (t))γ ′(t).

(A.14)
Let us assume now that t ∈ H̃i\B, with Hi one of the separating hyperplanes.

Since t �∈ Ei , ∃tn → t , tn ∈ H̃i . Since γ (t) is continuous and γ (t) �= 0, we can also

3If x ∈ E is an isolated point, ∃Vx open, such that Vx ∩ E = {x}, and R is a second-countable space.
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assume that �n ⊂ Hi\{0} and, by Lemma 18, we get (A.12). Notice that Eq. A.13
also holds, because of the requirement that ψ |H is continuously differentiable (as a
function of Rm−1 variables) in H\{0}. Hence, Eq. A.14 also follows in this case.

Finally, let us assume that t ∈ O\B. Since t ∈ O\F , ∃tn → t , γ (tn) = 0. Then

γ̃ ′(t) = lim
n→∞

γ̃ (tn) − γ̃ (t)

tn − t
= 0 = Dψ(γ (t)) lim

n→∞
γ (tn) − γ (t)

tn − t

since γ̃ (tn) = γ̃ (t) and γ (tn) = γ (t).

The chain rule (A.10) turns out to be the key property for our purposes. The next
result shows that this property is also satisfied by a possibly wider class of functions.

Corollary 21 Let ψ ∈ C1(Rm), M : Rp → R
m a linear map and γ : [a, b] → R

p

a Lipschitz curve. Then the curve γ̃ := ψ ◦ M ◦ γ is also Lipschitz and satisfies

γ̃ ′(t) = Dψ(Mγ (t))Mγ ′(t) a.e. in (a, b)

Proof Note that γM := M ◦ γ : [a, b] → R
m is continuous and γ ′

M(t) = Mγ ′(t) a.e
in (a, b). Hence, the result follows from applying Theorem 20 to ψ and γM .

This result allows us to write D(ψ ◦ M)(x) = Dψ(Mx)M as a Generalized
Gradient of ψ ◦ M when ψ ∈ C1

pw(Rm). Notice that ||D(ψ ◦ M)(x)|| is also uni-
formly bounded. Hence, we may also associate the notion of Generalized Gradients
to certain functions, related (by composition) to C1

pw(Rm) functions.

Generalized Jacobians

The notion of Generalized Gradient leads, in a rather natural way, to that of Gener-
alized Jacobian for functions ψ : Rm → R

p, ψ = (ψ1, . . . , ψp), ψi ∈ C
1
pw(Rm).

As in the smooth case,

Dψ(x) :=
⎛

⎜⎝
Dψ1(x)

...

Dψp(x)

⎞

⎟⎠

provides the definition of a Generalized Jacobian of ψ at x ∈ R
m. Obviously, the

definition may not be unique, but, as stated below, the linear maps associated to such
matrices also satisfy the chain rule for the composition with Lipschitz curves.

Theorem 22 Let γ : [a, b] → R
m be a Lipschitz curve, ψ : R

m → R
p, ψ =

(ψ1, · · · , ψp), a function such that ψi ∈ C1
pw(Rm) and Dψ a generalized Jacobian

of ψ . Then γ̃ = ψ ◦ γ is also Lipschitz and

γ̃ ′(t) = Dψ(γ (t))γ ′(t), a.e. in (a, b). (A.15)
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Proof Since γ̃i = ψi ◦ γ , it is Lipschitz and Eq. A.15 holds a.e. for each 1 ≤ i ≤ p.
Hence

γ̃ ′
i (t) = Dψi(γ (t))γ ′(t), ∀t ∈ [a, b]\Ii → γ̃ ′(t) = Dψ(γ (t))γ ′(t), ∀t ∈ [a, b]\

⋃

i

Ii

since
⋃

i Ii is a null set. Hence the chain rule is valid a.e. in (a, b).

In [19], the authors extend the notion of Generalized Jacobian to any scheme S

that is defined by functions in C1
pw(Rm). For binary schemes

{
(Sf )2n = ψ0(fn−p, . . . , fn+p)

(Sf )2n+1 = ψ1(fn−p, . . . , fn+p)
(A.16)

such that ψk ∈ C1
pw(R2p+1), k = 0, 1, a Generalized Jacobian of S at f ∈ l∞(Z),

DS(f ), is defined as the linear operator associated to the bi-infinite matrix whose
rows have the following non-zero components

(DS(f ))[2n+k,n−p : n+p] = Dψk(fn−p, . . . , fn+p), k = 0, 1, j ∈ Z, (A.17)

where Dψk is a generalized gradient of the function ψk . We notice that ∀ f, g ∈
l∞(Z), k = 0, 1

|(DS(f )g)2n+k | = |Dψk(fn−p, . . . , fn+p) · (gn−p, . . . , gn+p)| ≤ ||Dψk(fn−p, . . . , fn+p)||1||g||∞
hence

||DS(f )||∞ = sup
g �=0

||DS(f )g||∞
||g||∞ ≤ max{Cψ0

1 , C
ψ1
1 }

with C
ψk

1 in (A.1). The following result generalizes Theorem 22.

Theorem 23 Let S be a scheme of the form (A.16), ψk ∈ C1
pw(R2p+1), and let

γ : [a, b] → l∞(Z) be a Lipschitz curve4. Then γ̃ = S ◦ γ : [a, b] → l∞(Z) is also
a Lipschitz curve, and

γ̃ ′(t) = DS(γ (t))γ ′(t) a.e. on (a, b). (A.18)

Proof In each coordinate we have

γ̃2j+k = (Sγ )2j+k = ψk ◦ χj−p,j+p ◦ γ,

with χn,mf = (fn, . . . , fm), n < m. Since ψk is Lipschitz, we have that

‖γ̃2j+k(s) − γ̃2j+k(t)‖∞ ≤ Lψk
‖(χj−p,j+p ◦ γ )(s) − (χj−p,j+p ◦ γ )(t)‖∞

≤ Lψk
‖γ (s) − γ (t)‖∞ ≤ Lψk

Lγ |s − t |,

4γ = {γi}i∈Z with γi : R → R and |γi(x) − γi(y)| ≤ Lγ |x − y|, ∀x, y ∈ R, ∀i ∈ Z.
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where L∗ denotes the Lipschitz constant of each function involved. Therefore, each
component of γ̃ is a Lipschitz curve and

‖γ̃ (s) − γ̃ (t)‖∞ = sup
i∈Z

|γ̃i (s) − γ̃i (t)| ≤ max{Lψ0 , Lψ1}Lγ |s − t |.

Since the countable union of sets of zero measure has zero measure, Eq. A.18 follows
as in Theorem 22.

Obviously, the last two theorems apply as long as the functionsψi admit uniformly
bounded Generalized Gradients, Dψi , satisfying the chain rule (A.10).

The study of contractivity via Generalized Jacobians

Theorem 23 allows to study the contractivity properties of the powers of subdivision
schemes that are defined by functions in C1

pw(Rm) (or, in general, by functions that
admit uniformly bounded Generalized Gradients satisfying the chain rule (A.10)) by
the following argument, sketched in [19]:
Given f, g ∈ l∞(Z), define recursively γ j : [0, 1] → l∞(Z) as follows

γ 0(t) := tf + (1 − t)g, γ j (t) := S ◦ γ j−1(t), j > 0.

Notice that (γ 0)′(t) = f − g, hence γ j is also Lipschitz and

(γ j )′(t) = DS(γ j−1(t))(γ j−1(t))′ = . . .

= DS(γ j−1(t))DS(γ j−2)(t) · · · DS(γ 0(t))(γ 0)′(t), a.e. in (0, 1).

Hence, since γ j (1) = Sjf , γ j (0) = Sjg, ∀ j ≥ 0 we can write

Sjf −Sjg = γ j (1)−γ j (0) =
∫ 1

0
DS(γ j−1(t))DS(γ j−2)(t) · · · DS(γ 0(t))(f −g)dt, (A.19)

||Sjf − Sjg||∞ ≤
(∫ 1

0
||�j−1

k=0DS(γ k(t))||∞dt

)
||f − g||∞. (A.20)

From Eq. A.20, we easily deduce the following contractivity result, which has been
used in [22] to prove the stability of a monotone nonlinear scheme.

Corollary 24 Let us assume that ∃L ≥ 1, 0 < μ < 1 s. t. ∀f0, . . . , fL ∈ l∞(Z),
||�L−1

k=0 DS(fk)||∞ ≤ μ, then SL is contractive.
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