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1. INTRODUCTION

This report will talk about the Colloidal Metal Chalcogenides Semiconductors,

specifically quasi two-dimensional ones, the properties that make them different from
the OD quantum dots (QDs) or 1D quantum wires and consequently the interest of their
study and the need of theoretical models in order to simulate the optoelectronics

response.

We shall develop two methods to program with Mathematica which calculate energies,
wave functions and radiative recombination rates for the quasi 2D semiconductors and
at last, the reason why only one of these two methods can work with complex

conditions while the other one only works in simple cases.

About 30 years ago the optical properties of semiconductor colloidal QD, also known as
nanocrystals, were discovered. Since then, the synthesis of these colloidal
semiconductors nanopatrticles is becoming mature enough so that they have started to be

incorporated in devicés

When an electron in the valence band (VB) of a semiconductor nanostructure is excited
it is transferred to the energy level of the conduction band (CB) leaving a hole in the
valence band, see on Figure 1 paid¢l Once in the excited state, the electron relaxes
non-radioactively down to the lowest CB level in a very fast time scale (ps) (@nel

and next back to the VB ground state by emitting photon enbwyypénel (3)

How to change to change the color of the emission? The photon emission energy
depends on the semiconductor gap size. Then, it is necessary modify the gap to change

the energy and consequently the color.
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Figure 1. Schematic of the electron fluorescence in a semiconductor nanocrystal.



The QD gap,EgapQD, Is the energy difference between the lowest CB and the highest
VB states:

EgaPQD = Egap + EgsCB + EgsVB (1.1)

where E ,, is the energy difference between the bottom of the CB and the top of the
VB, i.e. the bulk semiconductor energy gap (denotedapsin Fig.l).EQSCB is the

energy of the ground state in the CB aEgSVB is the ground state energy of the VB.

CB

Figure 2. Diagram showing the energy terms of Eq. (1.1)

Because colloidal QDs are embedded in organic media, they can be seen as quantum

boxes. Then, the electrons and holes energy are:

cg _#r* 1 1 1

Egs™ = (sz + o7 + Lzz) (1.2)
v _#m? 11 1

Egs™ = (sz + o7 + Lzz) (1.3)

where Lx, Ly and Lz are the QD dimensions angamd m, are the masses of the

electron and the hole respectively.

Taking colloidal nanocrystals of different sizes one can form boxes of different sizes too

in which the emission energy and the emitted color change (see Fig. 3).
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Figure 3. The energy of emitted photons scales inversely proportional to the nanocrystal size.

An important development that recently took place in the field of colloidal quantum
dots is the synthesis of two-dimensional (2D) semiconductor nanoplatelets (NPLs) that

appear as free-standing nanosheets.

Figure 4. On the left, the transmission electron microscope images of CdSe colloidal
nanoplatelets. Different lateral shapes (a-d) can be obtained using different precursors. Scale
bars: b) 2(3)nm, others, 10rfmOn the right, TEM images of bare CdSe quantum dots of average
size 5 nm:

From the physical point of view, NPLs are of particular interest because it has been
shown that their thickness (Lz) can be controlled with atomic precision, so that no
inhomogeneous broadening is observed. These large planar facets can be precisely
defined chemically and as a consequence, NPLs can serve as a model system to better
understand the effect of surface chemistry, of composition, and of confinement in

semiconductors systems.



Because they have two large free interfaces, mirror charges play an important role, and
the electron-hole Coulomb interaction due to the small dielectric constant of the

surrounding media is very high. These two effects almost perfectly compensate each
other; it results in particles with unique spectroscopic properties such as fast

fluorescence lifetime and extreme color purity (narrow full width at half-maximum of

their emission spectra).

Figure 5. On the left is shown the fluorescence emitted by QDs and on the right the
fluorescence emitted by NPLs. We can observe that the second one is more powerful and
presents a more pure color.

From the chemical point of view, these colloidal particles are model system to study the
role of ligands since they have precisely defined facets. In addition, the synthesis of
these highly anisotropic objects triggered new research to understand at a mechanistic

level how this strong anisotropy could be generated.

From the application point of view, 2D colloidal NPLs, offer interesting perspectives

when color purity, charge conductivity, or field tunable absorption are reuired

Colloidal NPLs exhibit three striking features compared with QDs: a narrow optical

feature, fast photoluminescence (PL) lifetime, and almost no Stokes’s shift.

The radiative fluorescent lifetime measured in CdSe nanoplatelets decreases with
temperature, reaching 1ns at 6K, two orders of magnitude less than for
spherical CdSe nanoparticlesThis makes the nanoplatelets the fastest colloidal

fluorescent emitters and strongly suggests that they show a giant oscillator strength

transition.



This work focuses on the simulation of excitons in NPLs. The goal is to predict the
emission energy and radiative recombination rate as a function of the NPL dimension

for different materials.

To this end, we develop two computational models. In the first model we consider the
NPL can be defined as an ideal quantum box. This allows us to use the well-known
analytical solutions of the textbook ‘particle-in-a-box’” model. In the second model, we

use finite differences method in the (x,y) directions. While such a numerical method
model is more computationally demanding, we shall see that it allows us to investigate

regimes where the former model is not valid.



2. THEORETICAL FOUNDATIONS

The system consisting of a particle confined in a box of potential with impenetrable
walls constitutes one of the most paradigmatic problems of quantum mechanics. This is
mainly due to two reasons. On the one hand, it presents a simple and manageable
analytical solution, while on the other hand it manifests, despite its simplicity, the main
aspects of physics that govern the microscopic world. In fact, sometimes it allows to
qualitatively interpreting the behavior of quantum systems considerably more complex,
some of whom can be found among the objects of study in various fields of most
current research. This is precisely the case of NPLs, which we deal with in the present
work.

For the reason we shall briefly review here the main aspects of the particle-in-a-box
model and the adapt it to the case of our study. Firstly 1D, for its simplicity and next 3D
(2D+1D).
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21 ANALYTICAL METHOD

The analytical method is, in execution terms, an easy and fast method to obtain the

energies and own eigenfunctions of the system.

Based on the expression of the Hamiltonian:

pZ
H=—+VT (2.1)
2m
And being p the moment:
., 0
Px = —’lxﬁa (2.2)



Substituting (2.2) in (2.1) and applying it to the Schrodinger equéiipr= Ey, the

standing wave equation describing the particle inside the box is:

A% d?

— o= f(x) =Ef(x) (2.3)

2m dx?

where, without loss of generality , we have assumed that the potential inside the box is
zero V=0. The solutions f(x) of this equation must also satisfy the boundary conditions

imposed by the impenetrability of the potential barriers:

f0)=f(L)=0 (2.4)

The analytical integration of equation (1.1) under the imposition of (1.2), which can be

found in any introductory text of quantum mechanics, provides solutions:

fo(x) = \Esm[%x] n=123.. (2.5)
2.2
= fmtz n®,n=123.. (2.6)

for the wave functions (standard) and allowed energies. The quantum number
n=1,2,3,..., which quantifies label functions and their associated energies, occurs

naturally in imposing the boundary conditions.
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22 NUMERICAL METHOD: FINITE DIFFERENCE NUMERICAL
INTEGRATION

Another way to get the energy and functions of the system is to use numerical methods
for integrating equation (1.1). In our case (particle in the box impenetrable walls) it is
additional method to analytical, but in more complex systems we will see later, the

numerical method is the only way able to offer a satisfactory solution to the problem.

Numerical methods are based on approximating each own function f(x) by estimating
the value it takes only in certain discrete values of the variable f(x), obtaining a set of
values

{f(x2), f(x2),....,f(xN)}

(which we abbreviate as {f1, f2,...n}) at the points {x1, x2,...,xn} (which we
abbreviate as {1, 2,..., n}).

The arrangement in space of this set of points is known as mesh discretization (see
Figure 1.3). As outlined below, obtaining numerical functions in turn allows for an
estimate of their energies.

Given a specific function f(x), equation (1.1) must be satisfied at all points of the
variable, and in particular, at all points of the mesh discretization. For a generic point xi
it is satisfied therefore:

— h—zfi” = Efi" (2.7)

2m

Since the function f is defined only for certain values of the coordinate, calculating the
derivative appearing in (1.7) is not trivial, because we cannot apply the limits shown in
the usual definition of derivative of a function. It is therefore necessary to adapt the
definition of a derivative. As shown in Figure 1.2, a good strategy is to approximate the
tangent line to the function at point i by secant defined by its two adjacent points i+1

and i-1. Thus, the derivative is approximated by

! _ I __ fi+1+fi—1
f)=fi==—3— (2.8)

11



Where his the called discretization step. In consequence

fl(xi) — ]cil — fi+1_2h];i+fi—1 (29)

Substituting (1.8) and (1.9) in (1.7) and rearranging terms, one obtains:

h? Y A2
(= thz)fi_l + (mhz)fi + (= m)fi+1 =Ef; (2.10)
which has the form:
bfiatafitbfiii=Ef; (2.11)
""-/f:flﬂ

fi.

Figure8
We can write as many equations of type (1.11) as points exist in the mesh discretization,
the ones corresponding to i=1 and i=N are trivial (as f1=fn=0) and can be ignored (see

Figure 1.3). Thus we obtain a system of equations N-2 can be expressed in matrix form

as:
a b 11 / ] I /i |
b a b 1 1
LT : |=E| :
b a b||[f,, Sy s
i b all| fy,] e

(2.12)
The above expression represents a matrix equation of eigenvaltsesf. Mhe
diagonalization of the matrix M allows for the eigenvalues and eigenvectors E f. These
correspond, respectively, with the allowed energies of the particle and the discretized
eigenfunctions.

12
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Now we consider a 2D system with dimensions Lx Ly.
From the discretization in the case of a single dimension it is easy to obtain it for a two-
dimensional system.
Now, the eigenfunction depends on x and y coordinates so for f(xy) we obtain a set of
values
{f(x1yl), f(x1y2),....,f(xNyN)}

Which we abbreviate asff fio,....,fnn} at the points {x1y1, x1y2,...,xnyn} (which we
abbreviate as {11, 12,...,n n}).

The point of the variable x will be i and the points of the variable y will be j.

But as we have defined the boundary conditions at the ends of the box function is 0
S

Ly

— /N

Figure 10
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when the i and j worth the first of the last point, 1 or np (from now N ‘Il call np, number

of points), will not consider these functiong:=ffi; = f,; = finp =0, so:
{f 22y f23, ree .,f np—l,np—]}
Now for a generic point ij it is satisfied:

2 2 2
_A T Z_y];)f” = Ef" (2.13)

2m “0x?

And the derivative is approximated by:

0%fij _ fi—1j=2fij*fis1j

92 nz, (2.14)
0%fij _ fij—1—2fij* fij+1
oy nz, (2.15)
Being hx and hy:
_ _Lx _ Ly
hy = np-1 hy ~ np-1
Then, substituting (2.14) and (2.15) in (2.13) we obtain the equation:
H? H? H? H?
(= ommfimr + o) o + G fi + G fu +
H? H?
Comag i+ (S = Ef, (2.16)
which we rewrite as:
axfi—l,j + ayfi,j—l + (by + by)fij + ayfi,j+1 + ay fi+1,j = Efij (2.17)

Where, then we will define for the matrix that b %+ b,,

14



With the point i and j of our 2D system we write as many equations (2.17) as possible.
With all of them we build the Hamiltonian matrix, which this time will not have a fixed
format for all np values. For each np change not only the dimensions of the matrix (np-
2)(np-2), as was in 1D case, but also appear some 0 in the ay diagonals (upper and
lower).

For example if we take np=5: the dimensions of the matrix will be (np-2)(np-2) = 9, the

0 in the ay diagonals will appear each (np-2) = 3 rows and the matrix would have this
form:

b ay 0 ax 0 0 0 0 O07|f2 f22
ay b ay 0 ax 0 0 0 O0|]|fe3 fo3
O ay b 0 0 ax 0 0 0 ||fos foa
ax 0 O b ay 0 ax 0 0 ||fs f32
0 ax 0 ay b ay 0 ax O0||fs3|=E|fs3 (2.18)
0 0 ax O ay b 0 0 axl||fss f3a
0 0 O ax 0 O b ay O||fa faz
0 0 0 0 ax 0 ay b ayl|fas fa3
L0 0 0 0 0 ax 0 ay bllfy, faa

To set these zeros, we build matrix for different np and see that is always true that the O
in the lower diagonal begins at row (np-1) and each row+(np- 2) is repeated while the

upper diagonal 0 begin in row (np -2) row and each row+(np- 2) is repeated.

Another thing that also changes when we build the Hamiltonian nuance 2D is the

difference the diagonal ax ay regarding, for each np is a different distance. The upper
diagonal always begins in the first row and ends at the last less np-2 while the lower

row begins in np- 1 and ends at the last.
23HAMILTONIAN OF ELECTRONSAND HOLES

As mentioned in the introduction, the emission energy of a NPL is given by

E

C
gap®” = Egap + Egs®® + Egs"P (2.19)

where Eapis the gap energy of the semiconductor material that forms the NPL, which

can be found in tablsvhile EgSCB is the lowest (electron) state of the conduction band

andE,,"" is the highest (hole) state of the valence band.

15



Neglecting Coulomb interaction between the electron and holes, the latter energies can
be obtained using effective mass (single-band k-p) theory using particle-in-the-box
Hamiltonians:

2 2 2
HeCB _ Px + Py + Pz (2.20)

2m, 2m, 2m,

2 2

2
H,V5 =By 22 _ 4 Po (2.21)
2Zm,p 2Zm,p 2mgyp

Here mis the effective mass of the electron, which for a given material can be obtained

from tables’ Likewise m, is the effective mass of holes. Notice that hole masses are

highly anisotropic, so different values are used in the NPL plang énd in the thin

direction (n).
In the analytical model, the solution of equations (2.20) and (2.21) are straightforward.
For the ground state (nodeless state, witlkny¥n,=1) the eigenenergies and

eigenfunctions are:

CB _ fLZTEZ /LZTEZ th.Z

E = 2.22

gs 2mely®  2meLy®  2meLy? ( )
A2 A2 A2

E;'P = ~+ ~+ . (2.23)
2m, pL, 2mynly 2mypL,

Vs = " = [E5in€- [Esin2 ) JEsinc (2.29)

In the numerical model, we separate in-plane and vertical motion. The wave function is
taken of the form/;gSCB = f(x,y) - ¢(z) is obtained via finite differences as shown in

Section 2.2, while ¢(zjs the analytical solution

d(2) = \/Lzzsm(:_) (2.25)
The corresponding energies are:
Eys® = Eyy + E, (2.26)

n? 1
Again, Ey is obtained from 2D numerical integration method, Whge-EL

ZLZ

The same approximations are used to obfgi{” and E"”.

16



23.1HAMILTONIANWITH AN ELECTRIC FIELD

We consider the case in which we add to our system an electric field F in a certain
direction, in the x-axis. We build the Hamiltonian matrix for the electron and for the
hole for this new case containing that field.

Now, the expressions for the particle-in-the-box Hamiltonians takes the form:

2
HeCB — px +

2me ZmJ_h

+V+q,-F-x (2.27)

VB _ Px’
Hy —E+2mlh+v+qh F-x (2.28)
where the potential V is cero, as it has been defined previouslygeaadd g, the

electron and hole charge respectively and F the intensity.

When we apply the Schrédinger Equation in each Hamiltonian we obtain:

(5—;:+%+qe-F-x)-1/)=E1/) (2.29)
(2 +q,-F-x)-¢=Eyp (2.30)

2Zm,p Zm 1h

If we operate them according Section 2.2 including the camp infjtherm and

considering that when we discretize x it is (nd)

( 2m, hZ )fl 1j T ( 2moh? )fl] 1 (m nz, )fu (m PP )ft;"‘((l—l)%th)fu

(= —thhz Vije1+ (= #)fm,j =Ef; (2.31)
( Zmlhh2 )fl Lj ( 2ml h2 )fl} 1 (ml hZ, )flj (m h2 )ft] + (G- 1)thhx)fL]
(_ Zmihzy)fi'j"'l + (_ mehhzx)fi"'l,j = Eflj (232)

which we rewrite as:
axfi_Lj + ayfl-,j_l + (bx + by + kW)fU + ayfi,j+1 + axfi_,_l,j = Efl] (233)

being k=(i-1) and wgFh,

17



For the points ij we write as many equations (2.33) as possible and then we build with
all of them the Hamiltonian matrix. It is similar to (2.18) but the electric field is added
to the main diagonal. Besides this there is another difference, the term k does not
change his value of row into row, instead of, k changes every (np-2) rows. It will be no

easy to program that, it will be necessary a double loop (see it in annex).

For example, for 5 points we obtain a (np-2)(np-2) matrix like this:

b+w  ay 0 ax 0 0 0 0 0 Tlf2z f22
ay b+w ay 0 ax 0 0 0 0 ||fzs fa3
0 ay b+w 0 0 ax 0 0 0 fou faa
ax 0 0 b+ 2w ay 0 ax 0 0 f32 f32
0 ax 0 ay b+ 2w ay 0 ax 0 fa3| = E |fz3
0 0 ax 0 ay b+ 2w 0 0 ax faa f3a
0 0 0 ax 0 0 b+ 3w ay 0 faz faz
0 0 0 0 ax 0 ay b+ 3w ay fas faz
0 0 0 0 0 ax 0 ay b+ 3wllf,, fas
(2.34)

To build the matrix we consider two matrixes, one like (2.34) but without b terms and
another one with b in the main diagonal and then we add them.
This matrix (2.34) will be built twice, for the electron and for the hole. To calculate the

energy the vertical motion will be added analytically, see in Section 2.3.
24ELECTRONIC TRANSITION PROBABILITY IN SEMICONDUCTORS
When an electron is excited from the valence band (VB) to the conduction band (CB) it

leaves a hole behind. Then, the electron returns to the VB emitting a photon with energy
hv.

¥ E

Conduction
band

electrons

hv

holes

Vabe#e band
Tk

Figure 11 Electronic transition
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The life-time of an electron before it recombines with the holg is {

The transition rate is calculated using Fermi’s golden rule:

-1 27T 2
Gij =+ |<;lunp;>| (2.35)
wherey =e - r
When increase the transition rgjgincrease the probability of the transition.

In this case, the electron transition occurs from the CB to the hole in the VB, so i will be

the electron and j will be the hole. The equation (1.17) changes to:

-1 21
Ce-n” =5 |<Peluppn>| (2.36)
By the approximation of the envelope function approx.:
<Y, U Wp> = <Slu | P>, >+ <SIP><Zf,|u |fn,> (2.37)

where Y, = f,|S >, Y, = fn| P > beingf, andf; the envelope function andS| P>

the Bloch functions of conduction and valence band respectively.

Since <9 P> = 0 by symmetry, with the equations (1.18) and (1.18)oltain:

(oo = Z<SI | P>|<LIfy> 12 = KI<f|fy>? (2.38)

One can see from equation (2.22) that the electron-hole recombinatiof raté is
proportional to the electron-hole overlapf, |[f,>. We will study how the different

size and shape of NPLs can be used to enhance recombination rates based on such a

fact.

19



3.RESULTS

In this section we are going to show the results obtained for the energy and for the
transition probability rates. They have been calculated by two methods, as we have
explained that we would do it, the analytical and the numerical method. Finally we will
work in the system with an electric field, which is solve numerically, the only possible

way.
3.1ENERGIES

Firstly, we represent the energy as function of the length of NPLs by analytical method.

We take CdSe and CdS NPL with typical experimental dimen&ions.

Figure12. On the left the representation of the energy against to Lx and Ly for CdSe's NPL and
on the right the representation of the energy against to Lx and Ly for CdS's NPL.

Since it is possible to observe in the Figure 12, for values of Lx and Ly higher than
15nm the variation of the energy is very slightly sensitive at the rate of dimensions,
whereas for small values of Lx and Ly (between Onm and 10nm), the energy
experiences sudden changes. It is very sensitive managing to overcome in both cases the
energy of the bulk semiconductor gap which is 1.732eV for CdSe NPLs and 2.482eV
for CdS ones.

The graph is like a ramp that it begins with a very big slope for small NPLs and that

keeps a slope increasingly small with the increase of the NPLs’ size.

Then, we proceed to calculate the energies both for the analytical method and for the
numerical one. We obtain the first four energies but the one that we are really interested
in is the grown state energy, since; it is in the grown state of the valence band where the

electron-hole recombination occurs.

20



The energy is obtained in the numerical method from the Hamiltonian matrix described

in section 2.2. We program in Mathematica (look at annex) and we obtain the energy in-

plane, then we add the vertical motion by the analytical solution ( f—ﬁin(;) .

In the analytical method to obtain the energy we employ the equation:

A2 h2m? A2
E =—7-Nn 2 + n 2 +——n 2 3.1
XYz = g2 X 2mLy? y amL? % (3.1)

Considering the dimensions for the NPL Lx=Ly= 10nm and np=50, the first four

energies in each method are:

Analytical energies (eV) Numerical energies (eV)
E;17= 0.233043 E;= 0.23302
Ei21= 0.333695 E,=0.3335
E21= 0.333695 Es;= 0.3335
Ezo1= 0.434347 Es,= 0.43398

Tablel. The analytical and numerical energies for the first four states.

Note that the energies are similar in both methods but they are not exactly the same.
This is because, while the analytical method with the application of the Equation (3.1)
only gives rise to a unique solution for eagh m, and n, by the method of finite
differences the result changes significantly with the number of points. The higher

number of points are taken the more accurate the result.

Moreover, we can see that the second and third energies are equal for each method, they

are degenerated.

Then we calculate the energy only for the growneskaith for the numerical method
and for the analytical one. For it we keep Lx's value constant to 10nm and we are giving
to Ly different values to see the trend of the changes in the energy.

21



Ly (nm) Eanayt (EV) Enum (€V)
5 0.333695 0.331998
10 0.233043 0.232364
15 0,214403 0.213913
20 0,207879 0.207865
25 0,20956 0.207455
30 0,20322 0.204466
35 0,202231 0.202843

Table 2. The energies for the ground state.

Again we see that the energies are very similar but are not exactly equal, they differ
from the third decimal, and the reason is the same that we have said in the page before.

We see that the energy diminishes often that we enlarge Ly, nevertheless, from values

of Ly superiors to 10nm the energy changes smaller (as we have seen in it Figures 12).

We represent the energies in Figure 13 winerean see in red the curve for the energy for

the analytical method and in blue for the numerical method.

As expected seeing the values in the second table, the curves were going to be almost
coincidental. If we compare it with the graphs of the Figure 12, we find seemed between these
curves and the profile of the graphs, for small values of Ly the energy results higher and with

the increase of the Ly the energy decreases till values almost constant.

Energies

0,4
0,35
0,3
0,25

0,2
0,15 e Enum

E (eV)

0,1 === Eanalyt
0,05

0 10 20 30 40

Ly (nm)

Figure 13. The ground state energies for different values of Ly.

22



3.2WAVEFUNCTIONS

In addition, we have represented the wavefunctions for the first four states with each
method, in the numerical method by the command eigenvectors and in the analytical
method by the equation (look at annex):

CB VB 2 &, TIX
lpgs = lpgs = L_Sln(L_ nx) -
X X

23



Figure 14. On the left the wavefunctions obtained by the analytical method and on the right the
wavefunction by the numerical one.

We can observe two facts typically to simple sight: firstly we see that for the analytical
method the representations contain in its surface less squares that those of the numerical
method, this is because in the numerical method more points have been taken for the
integration, increasing the number of points a more exact surface is obtained. On the
other hand, there is the same number of nodes for every wavefunction in every method
but them signs do not correspond, both are correct because it does not import the sign of

the phase.
3.3TRANSITION PROBABILITY RATE

Another point in this work has been to calculate the rate of the electronic transition

probability. One more time, we have done that analytical and numerically.

As it has been explained in the section 2.4, at last we have to represent the equation:

loon = kI<fo|fn>1? (3.3)

Were the electron-hole recombination rate is proportional to the electron-hole overlap

and the term k, being k:
k=22<Slu|P> (3.4)

According to the Equation (3.3) the electron-hole recombination rate is proportional to
K.

24



If we represent it:

Figure 15. The electron-hole recombination raﬁ@_h_l .

The Figure 15 is the same for both methods, because the function is the same (but
obtained by different methods) and it only need to apply the Equation (3.3) with

Mathematica (look at annex).

Looking at the Figure 15, we can conclude about the transition rate that they are
constant for any Lx and Ly dimensions and its values is one, so the size of the NPLs

will not affect its electron-hole recombination rates.
3.4THE EFFECT OF ANELECTRIC FIELD

We take two experimental values for F (0 and 100 kV/&mnd calculate the ground

energy, wavefunction and electron-hole recombination rate for each case.

F=0 (without fied) F=100 (with fidd)
Edectron (EV) Enote (EV) Edectron (EV) Ehole (V)
0.23302 24.5575 0.181115 24.5961
0.3335 24.525 0.281595 24.6211
0.3335 24.525 0.2855 24.633
0.43398 24.6075 0.385981 24.658

“Table 3. Energies for electric field
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As it is shown in Table 3, the electric field affect the system, its energies and its

wavefuctions modifying them:

Figure 16. Therepresentations of the wave functions for the edeck=0 and F=100
respectively.

Figure 17. Therepresentations of the wave functions for the hel@ &d F=100 respectively.

There are differences between them, so there is an effect produced by the electric field,
but with so many points it is difficult to appreciate, so we try with less points (this way

is less exact is only to see the effect):

Figure 18. Therepresentations of the wave functions for the edacand hole with electric field
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Finally we cheek the electron-hole transition rate. Without camp we have proved that it
is constant and its value is one, but when we add an electric field (F=100), the value is
not constant and it is around 0.5.
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4. CONCLUSIONS

To conclude this work we are going to speak about the concepts that we have extracted
in clearly. In the introduction we were speaking about the properties of NPLs such as
his short lifetime, his high luminescence or his pure color that become them in

interesting subjects of study. For it we needed to simulate his optoelectronic response.

When we have studied the trend of the energy depending on the dimensions of the NPL,
we have seen that, if we take the experimental values to define Lx and Ly, from values
around 10nm w find a point of change in the trend of energéhile, for Lx and Ly

minors than 10nm the energy suffers very sudden changes managing to reach high
energies, if we take major dimensions of them, the energy suffers changes very small

and as the L grows these changes become smaller.

Therefore, we can say that for the lengths of the sides Lx and Ly upper to 10nm, the

energy is kept almost equal, for what it does not import the size of the NPL.

On the other hand, when we represent the electron-hole recombination rate we obtain in
every case the same response. The transition rate is always the same and proportional to
k Equation (3.3) and (3.4). It is independent of the size of the NPLs. So for any NPL we

will obtain always the same transition probability.

When finally we add an electric field to the system, we perceive some changes in its
energy, wavefunction, the field modifies them. Moreover, we get a lower transition
probability rate than without electric field.dhows that the action of the electric field is

to reduce overlap between electron and hole (directly proportional to the rate) and thus

extend the lifetime of electrons in the conduction band.

Note that we have been using analytical and numerical methods until now but for the
last case we have only used the numerical method because only with it we can work

with more complex systems as is the case of the electric field.

Personally, this work has allowed me to learn more things and with more depth of
nanotechnology. Also | have dealt with researches about quantum mechanics and
scientific articles in which | have supports my work. And | have improve my knowledge
in the use of Mathematica too.
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6. ANNEXES
VALUESFOR CdSe AND CdSNANOPLATELETS

Cristallinestructure
Wurtzite

a = 4.2999A

c =7.0109A
Ix=1ly = 3-50 nm
lz=4.5 nm
CdSe

E, = 1.732eV
m, *= 0.112m,
my, Lx= 0.45m,
my *= 1m,
Cds

E, =2482eV
m, *= 0.25m,
m, Lx=0.7m,
My *= 5m,

Qe= -1

gh=1

1 bohr = 0.529 A = 0.529-18m
1 hartree = 27.2107 eV
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CdSe.nb 1

In[108]: =
(» CdSe =*)
Clear ["Global® x"]
hb = 1;
m=1;
mn= 0.112;
mpp = 0.45;
mp=1;
In[114]: =
ban = 0.529;
In[115]: =
Iz = 4.5;
In[116]: =
egap = 0.06365;
hb? % 72 hb? % 72 hb? % 72
entix_ ly_ 1:= X %10 + ly *10 + Iz +10
2xmppx (==)"2  2xmppx (=)"2  2xmpx (F==)"2
In[118]: =
hb? » 72 hb? % 72 hb? % 72
eellx_ ly_ 1:= X *10 « nmy T ly «10 * 10
2*mn*(W) 2 2*mn*( e )"2 2*mn*(m—) 2
(» La energia en hartree *)
In[119]: =
Ehart [Ix_,ly_ 1:= egap +eh[Ix,ly ]+ee[lxly ]
(» La energia en eV &)
In[120]: =
EevI[Ix_,ly_ 1:= Ehart [Ix,ly ]=%27.2107
In[121]: =
Plot3D [Eev[Ix,ly 1, {Ix,3,50 3}, {ly,3,50 }, AxesLabel - {"Lx (nm)","Ly (nm)","E (eV)"}]
2.
E(eV). 05
Qut[121] =

- SurfaceG aphics -



Cdsnb 1

In[93]:= (* CdS %)
Clear ["Global® "]
hb = 1;
m=1;
mn= 0.25;
mpp= 0.7;
mp=5;

In[99]:= ban = 0.529;

In[100]: =
egap = 0.09121,
Iz =4.5;
In[103]: =
hb? » 72 hb? » 72 hb? » 2
ehih_ ly_ 1:= X *10 « ngy T X *10 « gy T Z +10 « A
2xmpp* (—===) "2 2xmpp* (=) "2 2xmpx (=) "2
In[104] : =
hb? » 72 hb? & 72 hb? 72
eellx_ ly_ 1:= X *10 « nmy T ly «10 * X #10 « A
2 xMmMnx ( o) 2 2*mn*( e )"2 2 xmn# ( ) 2
In[105]: =
Ehart [Ix_,ly_ 1:= egap +eh[Ix,ly ]J+ee[lxly ]
I n[106]: =
EevI[Ix_,ly_ 1:= Ehart [Ix,ly ]=*27.2107
In[107]: =
Plot3D [Eev[Ix,ly 1, {Ix,3,50 3}, {ly,3,50 1}, AxesLabel - {"Lx (nm)","Ly (nm)","E (eV)"}]
E(eV
Qut[107] =

- SurfaceG aphics -



analytical method.nb

In[1]:

(» ANALITICAL METHOD *)

Clear ["Global® "]

In[2]:= hb =1,

m= 1,

mn= 0.112;
mpp = 0.45;

mp= 1,

ban = 0.529;

Ix =100 / ban;
ly =100 / ban;
Iz =85 (xuax);
elv =27.2107,

In[12]:= egap = 0.064;
(» we calculate the first four energies *)

hb?2 % 72 hb? & 72

+
2 ¥ mnx Ix"2 2 xmnxly"2

In[13]:= enexyll = ( ] *elv

Qut[13]= 0.0671016

hb?2 % 72 % 12 hb? & 72 % 22
In[14] := enexyl2 = + *elv
2 x mnx Ix"2 2 xmnxly"2
Qut[14]= 0.167754
hb? % 72 % 22 hb? & 72 % 12
In[16] : = enexy2l = + elv
2 ¥ mnx Ix"2 2 xmnxly"2
Qut[16]= 0.167754
hb? % 72 % 22 hb? % 72 % 22
In[17] : = enexy22 = + elv
2 x mnx Ix"2 2 xmnxly"2

Qut[17]= 0. 268406

(» and we calculate the subtractions *)

In[18]:

enexyl?2 - enexyll

Qut[18]= 0.100652

In[19] : = enexy2l - enexyl2
Qut[19]= O.
In[20] : = enexy22 - enexy2l
Qut[20]= 0.100652
(» we calculate and add z axis to xy z *)
hb?2 % 72
In[21]:= enezl = —— xelv

2xmrxlz "2

Qut[21]= 0.165941



analytical

method.nb

In[22]:

Qut [ 22]

I n[23]:

Qut [ 23]

I n[ 25] :

Qut [ 25] =

I n[26]:

Qut [ 26]

I n[27]:

Qut[27] =

I n[ 28] :

Qut [ 28]

I n[29] :

Qut [ 29] =

enexyz111l =enexyll +enezl

0. 233043

enexyz121 =enexyl2 +enezl

0. 333695

enexyz211l =enexy2l +enezl

0. 333695

enexyz221 = enexy22 +enezl

0. 434347
(* The new subtractions *)

enexyz121 - enexyz111

0.100652

enexyz211l - enexyz121

0.

enexyz221 - enexyz211

0.100652

(» We write the wavefunctions and represent them

1 \/ 2 Sin [7r*X ]
X_1:= — i ;
[x_1] Ix * Ix
2 . 2% 7% X
f2 [x_] := \/— *Sin [ ———1;
Ix Ix
2
ful [y_] := —*Sin[n*y];
ly ly
2 2
fu2 [y_1] := —-*Sin[*—m)-/-];
ly ly
(» Estado fundamental *)

fl [x_,y_ 1:= fl [x]=*ful [y]

*)



analytical method.nb

Plot3D [fl [x,y 1, {X, 0,Ix '}, {y,0,ly }, AxesLabel - {"Lx", "Ly", "Lz" }1

N
N

=

N

- SurfaceG aphics -

f2 [x_,y_ 1:= fl [x]=*fu2 [y]

Plot3D [f2 [x,y 1, {X, 0,Ix '}, {y,0,ly }, AxesLabel - {"Lx", "Ly", "Lz" }1

- SurfaceG aphics -

f3 [Xx_,y_ ]1:= f2 [x]=*ful [y]



analytical method.nb
}, AxesLabel - {"Lx", "Ly", "Lz" }1

Loy, 0 ly

Plot3D [f3 [x,y 1, {X O, Ix

- SurfaceG aphics -

f4 [x_,y_ ]1:= f2 [x] *fu2 [y]
}, AxesLabel - {"Lx", "Ly", "Lz" }1

by, 0 ly

Plot3D [f4 [x,y 1, {X O, Ix

N
SN

O
oo S
Lz ’é
0 L
0. 005 150
0.01
Ly

- SurfaceG aphics -



numerical method.nb

In[1]:

In[2]:

In[13]:=

In[22]:=

In[27]:

I n[28]:

Qut [ 28] =

In[29]:=

Qut [ 29] =
Qut [ 30] =
Qut[31] =

Qut[32] =

Clear ["Gobal® "]

hb = 1;
ban = 0.529;
Ix =100 / ban;
ly =100 / ban;
m=0.112;
elv =27.2107;
np = 50;
Ix
hx = ;
np-1
hy = Y ;
np-1
dif =np-2;
fin =dif =*dif;

matH = Table [0, {fil, 1, fin }, {col, 1, fin }1;

For [fil =1,fil  <fin, fil =fil  +1, matH [ [fil, fil 11 = b1;
For [fl =1,fil <fin -1,fi =fil  + 1, matH [ [fil, fil +1]] = aal;
For [fil = dif, fil <fin -1,fil =fil +dif, matH [ [fil, fil +11]1 =07;
For [fil =2, fil < fin, fil =fil +1, matH [ [fil, fil -1]1] = aal;
For [fl =np-1,fil <fin, fil =fil  +dif, matH [ [fil, fil -111 =01;
For [fil =1,fil <fin -dif, fil =fil  +1, matH [ [fil, fil +dif 11 =al;
For [fl =np-1,fil <fin, fil =fil  +1, matH [ [fil, fil -dif 11 =a]
matH // MatrixForm;
hb?
bx = ;
m+ hx?
b hb?
y = ;
mx hy?
b = bx + by;
-hb?
a=z —;
2 % mx hx?
-hb?
aa = ——8 —;
2xmxhy?

(» Energies x)

energ = Eigenvalues [matH, -4] // N

{0. 00985049, 0.00615782, 0.00615782, 0.00246516}

energial
energia2
energia3
energia4

energ [[4]] xelv
energ [[3]] xelv
energ [[2]] xelv
energ [[1]] xelv

0. 0670786

0. 167559

0. 167559

0. 268039



numerical

method.nb

In[33]:=

Qut [ 35]

In[36]:=

Qut [ 36] =

I n[38]:

Qut [ 38]

I n[ 40] :

Qut [ 40] =

In[42]:

Qut [ 42]

I n[43]:

Qut [ 43] =
Qut [ 44] =

I n[45]:

Qut [ 45]

In[46]:=

In[47]:=

I n[ 48] :

In[51]:=

(» we add analitically the z-axis *)
Iz = 85;
mn= 0.112;
hb?2 % 72

enezl = —— xelv

2 xmnxz"2
0. 165941
energiall = energial +enezl
0. 23302
energia2l = energia2 +enezl
0. 3335
energia3l =energia3 +enezl
0. 3335
energiadl = energia4d +enezl
0. 43398
energia2 - energial
energia3 - energia2
0. 10048
1.21014x 107
energia4 - energia3
0.10048

(* Wavefunctions *)
func = Eigenvectors [matH, -471;
funcl =func [[4]];
func2 =func [[3]];
func3 =func [[2]];
func4 =func [[1]];

(» Represent the wavefunctions *)
listabis =Table [{0,01}, {i,1,np -2}, {, 1, np
listax =

elem =0;
For[i =2,i <np-1,i =i +1,
For[j =2,j] <np-1,j =j +1,
elem = elem + 1; listabis [[i -1,j -17] =funcl

-2}1;

[lelem]]11];



numerical method.nb

In[54]:=

Qut [ 54] =

In[55]: =

Qut [ 55] =

In[56]:=

Qut [ 56] =

In[58]:=

Qut [ 58] =

In[59]:=

In[60]:=

ListPlot3D  [listabis

Q
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R
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$0620%
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9%

- SurfaceG aphics -

(» We normalize the function and return to represent

gij = Dot [funcl, funcl

1.

int = hx = hy * gij

14. 8832

norm =
int

0. 25921

%
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funclnorm = norm = funcl;

listabis = Table [{0,0 }, {i, 1, np

- 2]’1 {J! 11 np



numerical method.nb

In[61]:= elem =0;

For[i =2,i

snp-1,i
2,

=i +1,
For [} =
elem

snp-1,j =j +1,
elem + 1; listabis

ListPlot3D  [listabis

[[I _11j
1

- 1371 = funclnorm [[elem1]1]11;
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Qut[63]= = SurfaceG aphics -
(» Now we prove it =x)
In[64]:= hx xhy %= Dot [funclnorm, funclnorm ]
Qut[64]= 1.
In[65]:= gij2 =Dot [func2, func2 ]
Qut[65]= 1.
In[66]:= int2 =hx %hy *gij2
Qut[66]= 14.8832
In[67]:= norm2 =
Aint2
Qut[67]= 0.25921
In[68]:= func2norm = norm2 = func2;
In[69]:= listabis2  =Table [{0,0}, {i,1,np -2}, {jL,np =-2}1;
In[70]:= elem =0;
For[i =2,i =np-1,i =i +1,
For[j =2,) =np-1,] =j +1,
elem = elem + 1; listabis2 [[i -1,j

-1]] =func2norm [[elem]1]1]1;



numerical method.nb

In[72]:= ListPlot3D [listabis2 ]

207
2277547
.;','.',rl.,"": 7
RRIFFZT

2L

&

Qut[72]= = SurfaceG aphics -
In[73]:= g@ij3 = Dot [func3, func3 ]
Qut[73]= 1.
In[74] := int3 =hx =hy = gij3
Qut[74]= 14.8832
In[75]:= norm3 = ——
4/int3
Qut[75]= 0.25921
In[76] : = func3norm = norm3 = func3;
In[77]:= listabis3  =Table [{0,03}, {i,1,np -2}, {1, np -2}1;
In[78]:= elem =0;
For[i =2,i =np-1,i =i +1,
For[j =2,j <np-1,j =j +1,

elem = elem + 1; listabis3 [[i -1,j -11] =func3norm [[elem]1]]1;



numerical method.nb

In[80]:= ListPlot3D [listabis3 ]
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Qut[80]= = SurfaceG aphics -
In[81]:= gij4 = Dot [func4, funcd ]
Qut[81]= 1.

In[82]:= int4 =hx xhy xqgij4

Qut[82]= 14.8832

In[83]:= norm4 =

int4

Qut[83]= 0.25921
In[84]:= funcdnorm = norm4 = func4;
In[85]:= listabis4 =Table [{0,0}, {i,1,np -2}, {, 1, np -2}1;

In[86]:= elem =0
For[i =2,i =np-1,i =i +1,
For[j =2,j <np-1,j =j +1,
elem = elem + 1; listabis4 [[i -1,j -11] =funcdnorm [[elem]1]]1;
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[listabis4

ListPlot3D
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electronic transition probabiliry (analyt).nb

Clear ["Global® x"]

T2 max
fl [x_]:= \/K *Sin | |E

Ix

2
ful [y_] := 2 esin [22Y |E

ly ly

2 . T*Z
funl [z_1] := — *Sin | |E

Iz Iz
Iz =4.5;

felec [x .,y ,z ]1:= fl [x]=*ful [y]*funl [z]
fhueco [x_,y ,z_ 1:= fl [x]=ful [y]=*funl [z]

rate [Ix_,ly_ 1:=
(Integrate  [felec [X,y,z ]=xfhueco [x,y,z 1, {X,0,Ix 3}, {v.0, ly 3}, {z, 0,1z 3}1)"2

Plot3D [rate [Ix,ly 1, {Ix, 3,50 3}, {ly, 3,50 1}, PlotRange - {0, 2 }]

- SurfaceG aphics -



electronic transition probabiliry (num).nb 1

Clear ["Global® x"]

funclnorm = {0.0012376248959005888",
0.0023259739639574398", 0.0031337762442413164", 0.003563598859858037",
0.0035635988598580488", 0.0031337762442413242", 0.0023259739639574567",
0.0012376248959006099°, 0.002325973963957417", 0.004371401140141917",
0.005889572823815496°, 0.006697375104099385", 0.0066973751040993925",
0.00588957282381551", 0.004371401140141935", 0.002325973963957458",
0.0031337762442413164", 0.005889572823815496°, 0.007934999999999987",
0.009023349068056841", 0.009023349068056864", 0.007935000000000008",
0.005889572823815529", 0.0031337762442413338", 0.0035635988598580522",
0.006697375104099375", 0.009023349068056838", 0.010260973963957462",
0.010260973963957467", 0.009023349068056869", 0.006697375104099388",
0.0035635988598580687", 0.0035635988598580496°, 0.0066973751040994",
0.009023349068056874", 0.010260973963957459", 0.010260973963957455",
0.009023349068056867", 0.0066973751040993726°, 0.0035635988598580574",
0.003133776244241319", 0.005889572823815527", 0.007935000000000011",
0.009023349068056869°, 0.009023349068056857", 0.007935000000000003",
0.005889572823815518", 0.0031337762442413177", 0.0023259739639574614",
0.004371401140141946°, 0.005889572823815532", 0.006697375104099391",
0.0066973751040993856°, 0.005889572823815518", 0.004371401140141925,
0.0023259739639574562", 0.0012376248959006066°, 0.00232597396395746",
0.0031337762442413307", 0.0035635988598580652", 0.003563598859858062",
0.003133776244241313", 0.0023259739639574545", 0.0012376248959006042" };

Iz =4.5;
np = 10;
ban = 0.529;
Ix =100 / ban;
ly =100 / ban;
Ix

hx ;
np -1

ly
np-1"
rate [Ix_,ly_ 1:=

Iz 2 ) TTxZ 2 . TTxZ
(hx % hy % Dot [funclnorm, funclnorm 1) *J — *Sin | ] #4] — =Sin | ]| dz
0 1z 1z 1z 1z

hy:

A
.




electronic transition probabiliry (num).nb

Plot3D [rate [x,y 1, {Ix,3,50 3}, {ly,3,50 }]

- SurfaceG aphics -

2 maz
fz [z_] := \/E— *Sin | - |E

rate [Ix_,ly_ 1:=
( (hx = hy = Dot [funclnorm, funclnorm ]) xIntegrate [fz [z] =fz [z], {z, 0,1z }])”"2

Plot3D [rate [x,y ], {Ix,3,50 3}, {ly,3,50 }]

- SurfaceG aphics -



electric field.nb

In[1]:

Clear ["Gobal® "]

In[2]: hb = 1;
ban = 0.529;
Ix =100 / ban;
ly =100 / ban;
m=0.112;
elv =27.2107;
np = 50;
Ix

hx = ;
np-1

ly
np-1"
dif =np-2;
fin =dif =*dif;

hy

In[13]:= (* we define the Hamiltonian matrix for the electron

I n[14]:

matH = Table [0, {fil, 1, fin

fil =1;

For [k =1, k =<dif, k
For [fil = fil, fil

For [fil =1, fil < fin -1, fil =fil  + 1, matH [ [fil, fil

}, {col, 1, fin }1;

=k +1,

For [fil = dif, fil <fin -1,fl =fil +dif, matH [ [fil, fil

For [fil =2, fil
For [fil

< fin, fil =fil  +1, matH [ [fil, fil
np - 1, fil

For [fil =np -1, fil
matH // MatrixForm;

I n[ 24] :

matdebH // MatrixForm;

matrizH = matH + matdebH;
matrizH // MatrixForm;

I n[ 26] :

hb? )
ms hx?2 '
hb? ]
m*hyz’
b = bx + by;
-hb? ]
2« mxhx?’
-hb? )
2*rn*hy2'

bx

I n[ 28] :

by:

a=

aa =
w= ge * F x hx;

I n[34] :

ge = -1;
F=0;

(» Now we calculate the energy in xy for the electron

In[36]:= energiasxy = Eigenvalues [matrizH,

-41//N

Qut[36] = {0.00985049, 0.00615782, 0.00615782, 0. 00246516}

< k = dif, fil =fil  +1, matH [ [fil, fil

matdebH = Table [If [fl ==col, b, 0 1, {fil, 1, fin },

*)

11 =k*wll;

+1]] =aal;

+111 =07;

-1]1 = aa];
< fin, fil =fil  +dif, matH [ [fil, fil
For [fil =1,fil <fin - dif, fi =fil  +1, matH [ fil, fil
< fin, fil =fil  +1, matH [[fil, fi

-111 =01;
+dif 1] =aj;
-dif 1] =a]

{col, 1, fin 1,
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In[37]:

Qut [ 37]
Qut [ 38]
Qut [ 39]

Qut [ 40]

In[41]:

I n[ 45] :
Qut [ 45]
I n[ 47] :
Qut [ 47]
I n[ 49] :

Qut [ 49]

enexyl = energiasxy
enexy2 = energiasxy
enexy3 = energiasxy
enexy4 = energiasxy

0. 0670786
0. 167559
0. 167559

0. 268039

(» Now we calculate the energy z and add t to the energy in xy for the electron

Iz =85;
mn= 0.112;

hb2 % 7?2
enezl =

2xmrxlz "2

[[4]1] *elv
[[3]] *elv
[[2]] *elv
[[1]1] *=elv

*elv;

enexyzl =enexyl +enezl

0. 23302

enexyz2 = enexy2 +enezl

0. 3335

enexyz3 = enexy3 +enezl

0. 3335

*)
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In[51]:=

Qut[51] =

In[52]:=

I n[ 64] :

I n[ 66] :

I n[ 86] :

In[89]:

In[95]: =

Qut [ 95] =

enexyz4 =enexy4 +enezl

0. 43398

(» we define the Hamiltonian matrix for the hole *)

mathuecoH = Table [0, {fil, 1, fin }, {col, 1, fin }1;

fil  =1;
For [k =1,k =<dif,k =k+1,

For [fil = fil, fil < k = dif, fil =fil + 1, mathuecoH [ [fil, fil 11 =k *Vv]1;
For [fil =1, fil <fin -1, fil =fil + 1, mathuecoH [ [fil, fil +1]] =00];
For [fil = dif, fil <fin -1,fl =fil +dif, mathuecoH [ [fil, fil +1]]1 =01;
For [fil =2, fil <fin, fil =fil  + 1, mathuecoH [ [fil, fil -1]]1 =00];
For [fil =np -1, fil < fin, fil =fil  +dif, mathuecoH [ [fil, fil -111 =01;
For [fil =1,fil <fin -dif, fil =fil +1, mathuecoH [ [fil, fil +dif 1] =0];
For [fil =np -1, fil < fin, fil =fil  + 1, mathuecoH [ [fil, fil -dif 1] = 0]

mathuecoH // MatrixForm;

matdepH = Table [If [fl =col, p,0 1, {fil, 1, fin }, {col, 1, fin }1;
matdepH // MatrixForm;

matrizH2 = mathuecoH + matdepH,;
matrizH2 // MatrixForm;

mhz = 1;
mh= 0.45;
gh = 1;

hb?
mhs hx2 '

hb2
mhx hy?2 '
p = bx + by;

-hb2
2 » mhxhx?2 '

-hb2
2 * mhx hy? ’
Vv = gh % F % hx;

pPX

py

00 =

(*» Now we calculate the energy in xy for the hole *)

energiashuecoxy = Eigenvalues [matrizH2, -4] // N

{0. 903649, 0.902729, 0.902729, 0.90181}
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In[96] : = enhxyl = energiashuecoxy
enhxy2 = energiashuecoxy
enhxy3 = energiashuecoxy
enhxy4 = energiashuecoxy

Qut[96]= 24.5389
Qut[97]= 24.5639
Qut[98] = 24.5639

Qut[99]= 24.5889

(» Now we calculate the energy z and add t to the energy in xy for the hole

[[4]] *elv
[[3]] *elv
[[2]] *elv
[[1]1] *=elv

In[101]: =
hb? % 2
enhzl = ————— xely;
2xmhz*1z"2
I n[106] : =
(» The total energy *)
enhxyzl =enhxyl +enhzl
enhxyz2 = enhxy2 +enhzl
enhxyz3 = enhxy3 +enhzl
enhxyz4 = enhxy4 +enhzl
Qut [ 106] =
24. 5575
Qut[107] =
24,5825
Qut[108] =
24.5825
Qut[109] =
24. 6075
In[110]: =
energial =enexyzl +enhxyzl
Qut[110] =
24. 7905
In[111]: =
energia2 = enexyz2 + enhxyz2
Qut[111] =
24.916
In[112]: =
energia3 = enexyz3 + enhxyz3
Qut[112] =

24.916
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In[113]: =
energia4 = enexyz4 + enhxyz4
Qut[113] =
25. 0415
In[114]: =
(* WAVEFUNCTIONS)
(» For holes x)
holefunc = Eigenvectors  [matrizH2,
In[115]: =
funcholel = holefunc [[4]1];
funchole2 = holefunc [[3]];
funchole3 = holefunc [[2]];
funchole4 = holefunc [[1]11];
(» we normalize the functions
gij = Dot [funcholel, funcholel
Qut[119] =
In[120]: =
int = hx % hy *gij
Qut[120] =
14. 8832
In[122]: =
1
norm =
int
Qut[122] =
0. 25921
In[123]:=
funcholelnorm = norm *funcholel;

(* we can prove it *)

*)

-41;
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In[124]: =
hx = hy % Dot [funcholelnorm, funcholelnorm 1
Qut[124] =
(» For electrons  x)
In[125]: =
elecfunc = Eigenvectors  [matrizH, -41;
In[126]: =
funcelecl =elecfunc [[4]1];
funcelec2 =elecfunc [[3]1];
funcelec3 =elecfunc [[2]];
funcelec4 =elecfunc [[1]1;
In[130]: =
(* now we normalize the functions for electrons
ji = Dot [funcelecl, funcelecl ]
Qut[130] =
In[131]: =
integral = hx % hy = jij
Qut[131] =
14. 8832
In[132]:=
1
cten = ———
+/integral
Qut[132] =
0. 25921
In[133]: =
funceleclnorm = cten =*funcelecl;
In[134]:=
(* prove it *)
hx = hy % Dot [funceleclnorm, funceleclnorm 1
Qut[134] =
(» we build a list with the funtion for the ground state
In[135]: =
electronlistl =Table [{0,0}, {i,1,np -2}, {1, np
listax =
elem = 0;
For[i =2,i <np-1,i =i +1,

For[j =2,] <np-1,j =] +1,

elem = elem + 1; electronlistl [[i -1,j -171] = funceleclnorm

-2}1;

[[elem]]11];
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In[138]: =
ListPlot3D  [electronlistl ]
-0.0025
- 0. 005
-0.0075
Qut[138] =
- SurfaceG aphics -
In[139]: =
holelistl =Table [{0,0 3}, {i,1L,np -2}, {j,L,np =-2}1;
listax =
elem = 0;
For[i =2,i =np-1,i =i +1,

For[j =2,j =np-1,j =j +1,
elem = elem + 1; holelistl [[i -1,j -17] =funcholelnorm [[elem]1]]];



electric field.nb

In[142] : =

ListPlot3D  [holelistl 1
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Qut[142] =

- SurfaceG aphics -

In[143]: =
(» Now we calculate the rate of the transition probability
o TT*Z
fz[ z_] := — *Sin|
Iz

*)
Iz ];
rate [Ix_,ly_ 1:=

I n[ 145] :

( (hx % hy = Dot [funceleclnorm, funcholelnorm

1) = Integrate
Plot3D [rate [Ix, ly

[fz [z] xfz [z], {z, 0,1z
1, {Ix 3,50

}, {ly, 3, 50

ynn2
}, AxesLabel - {"Lx (nm)", "Ly (nm)", "rate"

3

Qut [ 145] =

- SurfaceG aphics -
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In[1]:= Clear ["Gobal’ "]
Inf[2]:= hb =1,
ban = 0.529;
Ix =100 / ban;
ly =100 / ban;
m=0.112;
elv =27.2107;
np = 50;
Ix
hx = ;
np-1
hy = Y ;
np-1
dif =np-2;
fin =dif =dif;
(» we define the Hamiltonian matrix for the electron *)

In[13]:= matH = Table [0, {fil, 1, fin }, {col, 1, fin 11
fil  =1;
For [k =1,k <dif,k =k+1,

For [fil = fil, fil < k = dif, fil =fil  +1, matH [ [fil, fil 11 =k *w]7;
For [fil =1, fil <fin -1, fil =fil  + 1, matH [ [fil, fil +1]] = aal;
For [fil = dif, fil <fin -1,fl =fil +dif, matH [ [fil, fil +11]1 =071;
For [fil =2,fil  <fin, fil =fil  +1, matH [ [fil, fil -11]1 = aal;
For [fl =np-1,fil <fin, fil =fil  +dif, matH [ [fil, fil -111 =01;
For [fil =1,fil <fin -dif, fil =fil  +1, matH [ [fil, fil +dif 11 =al;
For [fl =np-1,fil <fin, fil =fil  +1, matH [ [fil, fil -dif 1] =a]

matH // MatrixForm;

I n[23]:

matdebH // MatrixForm;

In[25]:= matrizH = matH + matdebH;

matrizH // MatrixForm;

hb? )
ms hx?2 '
hb? ]
mx hy? ’
b = bx + by;
-hb? ]
2« mxhx?’
-hb? )
2+ mx hy? ’

In[27]:= bx

by:

a=

aa =
w= ge * F x hx;

I n[33]:

ge = -1;
F=19 %10°5;

(» Now we calculate the energy in xy for the electron *)

In[35]:= energiasxy = Eigenvalues [matrizH, -4] //N

Qut [ 35] {0. 00808651, 0.00439384, 0.00425031, 0.000557645}

matdebH = Table [If [fl ==col, b, 0 1, {fil, 1, fin }, {col, 1, fin }1;
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I n[36]:

Qut [ 36]
Qut [ 37]
Qut [ 38]

Qut [ 39]

I n[ 40] :

I n[ 44] :
Qut [ 44]
I n[ 46] :
Qut [ 46]
I n[ 48] :

Qut [ 48]

enexyl = energiasxy
enexy2 = energiasxy
enexy3 = energiasxy
enexy4 = energiasxy

0. 0151739
0. 115654
0. 119559

0. 22004

(» Now we calculate the energy z and add t to the energy in xy for the electron

Iz =85;
mn= 0.112;

hb2 % 7?2
enezl =

2xmrxlz "2

[[4]1] *elv
[[3]] *elv
[[2]] *elv
[[1]1] *=elv

*elv;

enexyzl =enexyl +enezl

0.181115

enexyz2 = enexy2 +enezl

0. 281595

enexyz3 = enexy3 +enezl

0. 2855

*)
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In[50]:=

Qut [ 50] =

In[51]:=

I n[63]:

I n[ 65] :

I n[67]:

In[70]:

In[76]: =

Qut [ 76] =

In[81]:=

In[86]:=

enexyz4 =enexy4 +enezl

0. 385981

(» we define the Hamiltonian matrix for the hole *)

mathuecoH = Table [0, {fil, 1, fin }, {col, 1, fin }1;

fil  =1;
For [k =1,k =<dif,k =k+1,

For [fil = fil, fil < k = dif, fil =fil + 1, mathuecoH [ [fil, fil 11 =k *Vv]1;
For [fil =1, fil <fin -1, fil =fil + 1, mathuecoH [ [fil, fil +1]] =00];
For [fil = dif, fil <fin -1,fl =fil +dif, mathuecoH [ [fil, fil +1]]1 =01;
For [fil =2, fil <fin, fil =fil  + 1, mathuecoH [ [fil, fil -1]]1 =00];
For [fil =np -1, fil < fin, fil =fil  +dif, mathuecoH [ [fil, fil -111 =01;
For [fil =1,fil <fin -dif, fil =fil +1, mathuecoH [ [fil, fil +dif 1] =0];
For [fil =np -1, fil < fin, fil =fil  + 1, mathuecoH [ [fil, fil -dif 1] = 0]

mathuecoH // MatrixForm;

matdepH = Table [If [fl =col, p,0 1, {fil, 1, fin }, {col, 1, fin }1;
matdepH // MatrixForm;

matrizH2 = mathuecoH + matdepH,;
matrizH2 // MatrixForm;

mhz = 1;
mh= 0.45;
gh = 1;

hb?
mhs hx2 '

hb2
mhx hy?2 '
p = bx + by;

-hb2
2 » mhxhx?2 '

-hb2
2 * mhx hy? ’
Vv = gh % F % hx;

pPX

py

00 =

(*» Now we calculate the energy in xy for the hole *)

energiashuecoxy = Eigenvalues [matrizH2, -4] // N

{0. 905506, 0.904587, 0.904147, 0.903228}

enhxyl = energiashuecoxy [[4]] xelv;
enhxy2 = energiashuecoxy [[3]] xelv;
enhxy3 = energiashuecoxy [[2]] =elv;
enhxy4 = energiashuecoxy [[1]] =elv;

(» Now we calculate the energy z and add t to the energy in xy for the hole

hb?2 « 52
enhzl = ———  — xelv;
2x*mhzx1z"2

*)
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In[91]:= (% The total energy *)

enhxyzl =enhxyl +enhzl

enhxyz2 =enhxy2 +enhzl
enhxyz3 = enhxy3 +enhzl
enhxyz4 = enhxy4 +enhzl

Qut[91]= 24.5961
Qut[92]= 24.6211
Qut[93]= 24.633

Qut[94]= 24.658

In[95]:= energial =enexyzl +enhxyzl
Qut[95]= 24.7772
In[96] : = energia2 =enexyz2 +enhxyz2
Qut[96] = 24.9027
In[97]:= energia3 =enexyz3 +enhxyz3
Qut[97]= 24.9185
In[98]: = energiad =enexyz4 +enhxyz4
Qut[98]= 25.044
In[99]:=
(* WAVEFUNCTIONS)
(» For holes )
holefunc = Eigenvectors  [matrizH2, -47;
I'n[100] : =
funcholel = holefunc [[4]1];
funchole2 = holefunc [[3]1;
funchole3 = holefunc [[2]];
funchole4 = holefunc [[1]11;
(» we normalize the functions *)
gij = Dot [funcholel, funcholel ]
Qut[104] =
I n[105]: =
int = hx *hy *gij
Qut [ 105] =

14. 8832
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In[107]: =
1
norm =
int
Qut[107] =
0. 25921
In[108]: =
funcholelnorm = norm xfuncholel;
(*» we can prove it *)
In[109]: =
hx = hy % Dot [funcholelnorm, funcholelnorm 1
Qut[109] =
(» For electrons  x)
In[110]: =
elecfunc = Eigenvectors [matrizH, -47;
In[111]: =
funcelecl =elecfunc [[4]1];
funcelec2 =elecfunc [[3]];
funcelec3 =elecfunc [[2]1;
funcelec4 =elecfunc [[1]1;
In[115]: =
(» now we normalize the functions for electrons
ji = Dot [funcelecl, funcelecl ]
Qut[115] =
1
In[116]: =
integral = hx % hy = jij
Qut[116] =
14. 8832
In[117]: =
1
cten = —— M
+/integral
Qut[117] =
0. 25921
In[118]: =

funceleclnorm = cten =*funcelecl;

*)



electric field (F=100).nb

In[119]: =
(* prove it *)
hx = hy %= Dot [funceleclnorm, funceleclnorm ]
Qut[119] =
1.
In[120]: =
(» we build a list with the funtion for the ground state *)
In[121]:=
electronlistl =Table [{0,0}, {i,1,np -2}, {j,1, np =-2}1;
listax =
elem =0;
For[i =2,i =snp-1,i =i +1,
For[j =2, =np-1,] =) +1,
elem = elem + 1; electronlistl [[i -1,j -11] =funceleclnorm [[elem]1]1]];
In[124]:=
ListPlot3D  [electronlistl ]
3‘31‘3‘:‘\‘3\“3‘\
-0. 0025 _—
-0. 005
-0. 0075
Qut[124] =
- SurfaceG aphics -
In[125]: =
holelistl =Table [{0,0 3}, {i,1L,np -2}, {j,L,np =-2}1;
listax =
elem = 0;
For[i =2,i <np-1,i =i +1,

For[j =2,j =np-1,j =j +1,
elem =elem +1; holelistl [[i -1,j -1]1] =funcholelnorm [[elem]]]];
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In[128]: =

ListPlot3D

[holelistl 1
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Qut[128] =

- SurfaceG aphics -

In[129]: =
(» Now we calculate the rate of the transition probability *)
fz[ z_1: 2 Sin[ n*Z].
.= —_— % _—,
- Iz Iz
rate [Ix_, ly ]:=
( (hx % hy = Dot [funceleclnorm, funcholelnorm
In[131]: =

1) = Integrate  [fz [z] xfz [z], {z,0,1z }])"2
Plot3D [rate [Ix,ly 1, {Ix,3,50 3}, {ly, 3,50 1}, AxeslLabel

- {"Lx (nm)", "Ly (nm)", "rate"

3

Qut[131] =

- SurfaceG aphics -



