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Abstract

Titanium dental implants are commonly used due to their biocompatibility and biochemical 

properties; blasted acid-etched Ti is used more frequently than smooth Ti surfaces. In this 

study, physicochemical characterisation revealed important differences in roughness, 

chemical composition and hydrophilicity, but no differences were found in cellular in vitro 

studies (proliferation and mineralization). On the other hand, the deposition of proteins onto 

the implant surface might affect in vivo osseointegration. To test that hypothesis, protein 

layers formed on both surface type discs after incubation with human serum were analysed. 

Using mass spectrometry (LC/MS/MS), 139 proteins were identified, 31 of which were 

associated with bone metabolism. Interestingly, Apo E, antithrombin and protein C 

adsorbed mostly onto blasted and acid-etched Ti, whereas the proteins of the complement 

system (C3) were found predominantly on smooth Ti surfaces. These results suggest that 

physicochemical characteristics could be responsible for the differences observed in the 

adsorbed protein layer. 

Keywords: titanium, surface properties, human serum, apolipoprotein E, bone regeneration, 

proteomics



Introduction

Titanium dental implants are commonly used due to their biocompatibility and biochemical 

properties (Lemons & Lucas 1986; Smith 1993; Nakajima & Okabe 1996). Blood plasma is the 

main biological fluid interacting with these implants (Park & Davies 2000). The first event that 

takes place at the biomaterial–tissue interface is the interaction of water molecules and salt ions 

with the surface of the implant. Shortly after the formation of a hydration layer, a variety of 

blood proteins adsorbs onto implant surfaces. This occurs within seconds or minutes after 

implantation (Puleo 1999; MacDonald et al. 2002). The resulting protein film mediates all 

subsequent biological interactions between the material and the surrounding environment; the 

cells are unlikely ever to interact directly with the native material surfaces. The concentration, 

composition and conformation of the protein layer on a biomaterial surface may vary. These 

characteristics of the protein layer are important for synergistic interactions promoting either 

favourable or adverse cellular and tissue responses, such as attachment to material surfaces, 

proliferation, and phenotypic changes (Molino et al. 2012; Fernández-Montes Moraleda et al. 

2013).

Rough and blasted acid-etched Ti have replaced smooth Ti after reports of a positive correlation 

between surface roughness and bone integration (Wennerberg & Albrektsson 2010). Moreover, 

rough Ti surfaces adsorb more proteins than smooth Ti due to the increased surface area (Sela et 

al. 2007; Rockwell et al. 2012).

Protein adsorption is a dynamic process involving non-covalent interactions such as 

hydrophobic interactions, electrostatic forces, hydrogen bonding and Van der Waals forces 

(Andrade & Hlady 1987). The non-covalent interactions are controlled by many protein 

parameters, such as protein size, pI and secondary and tertiary structures (Haynes & Norde 

1994; Rabe et al. 2011). The specific physicochemical properties of the biomaterial surface, 

such as its chemistry, wettability, charge and surface morphology, also affect the protein 

adsorption process (Schmidt, D.R., Waldeck, H., Kao 2009).

For these reasons, the researchers have been focusing on the elucidation of the mechanisms 

governing protein interactions with various biomaterials including polymers, metals and 

ceramics (Wehmeyer et al. 2010). A number of surface-sensitive techniques have been used for 

the quantification of protein adsorption: surface plasmon resonance, optical waveguide 

lightmode spectroscopy, ellipsometry, quartz crystal microbalance with dissipation and total 

internal reflection fluorescence spectroscopy (Malmström et al. 2007).

Many studies evaluating the kinetics of protein adsorption onto Ti have been focused on the 

exposure of Ti to single protein solutions or protein mixtures (Sousa et al. 2008; Imamura et al. 

2008; Pei et al. 2011; Pegueroles et al. 2012; Kohavi et al. 2013). However, the protein 

adsorption process is a complex phenomenon depending on many parameters, some of which 



are not considered in these studies. For instance, in the multi-protein systems such as blood 

plasma/serum, increasing the protein concentration or/and the number of small molecules 

improves their diffusion and accelerates the displacement; thus, they are the first to be adsorbed 

onto the surface. With time, molecules with greater affinity for the surface but slower rate of 

diffusion (due to their low concentration or large size) replace the smaller molecules. This is 

known as the Vroman effect (Kay C Dee, David A. Puleo 2003; Wang et al. 2012).

A study using mass spectrometry techniques has identified fibronectin, albumin, fibrinogen, IgG 

and complement C3 adsorbed on a modified Ti surface incubated in human plasma for 24 h 

(Sela et al. 2007). The same study has shown that the adsorption of plasma proteins depends on 

the roughness of the surface. Recently, label-free quantitative proteomics has been used in a 

study of the composition and function of adsorbed protein layers (Montoya et al. 2011). Dodo et 

al. have characterized the proteome of the protein layer adsorbed onto a rough Ti surface, after 

exposure to human blood plasma. The study has shown that the layer adsorbed on this surface is 

composed mainly of proteins associated with cell adhesion, molecular transportation and 

coagulation processes. This layer creates a polar and hydrophilic interface for subsequent 

interactions with host cells (Dodo et al. 2013).

At present, biological evaluation of medical devices includes a battery of standardized tests, as 

defined in ISO 10993, highly accepted in the biomaterials research field. Typical tests for 

biocompatibility of biomaterials involve cytotoxicity, cells attachment, cells proliferation and 

mineralization assays. However, a lack of correlation between in vitro and in vivo results is 

observed in many occasions. Since the first step before cells attachment on the materials surface 

is protein adsorption, we propose using proteomic to progress in knowledge of materials 

biocompatibility.

Thus the aim of our study was to compare the protein layers adsorbed onto two types of Ti 

surfaces, smooth Ti and blasted acid-etched Ti, after incubation in the serum. To achieve this 

goal, we employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. 

Furthermore, a comparison of the more relevant results with cells in vitro tests outcomes was 

performed.

Therefore, this article shows our interest in testing surfaces, such as those currently used in 

commercial dental implants, in order to establish a correlation between protein deposition and in 

vitro outcomes.



Materials and methods

Surface disc preparation

Ti discs (12 mm in diameter, 1-mm thick) were fabricated from a bar of commercially available, 

pure, grade-4 Ti (Ilerimplant SL). Some of the discs sandblasted-acid-etched (SAE) Ti were 

abraded with 4-μm aluminium oxide particles and acid-etched by submersion in sulfuric acid for 

1 h to obtain a moderately rough implant surface. All discs were then washed in acetone, 

ethanol and 18.2Ω purified water (for 20 min in each liquid) in an ultrasonic bath and dried 

under vacuum. Finally, all Ti discs were sterilised using UV radiation.

Physicochemical characterisation of titanium discs

The surface topography of titanium discs was characterized using atomic force microscopy 

(AFM, Newport Multimode) under dry conditions. Images were taken at different amplitudes. 

Measurements at scan size of 60 and 1 µm, with a scan rate of 1 and 0.3 Hz, respectively, were 

carried out (n = 3). The results were analysed using the NanoScope Analysis software. The 

scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy 

(EDX, Leica-Zeiss LEO) was used to study these surfaces under vacuum. Platinum sputtering 

was employed to make the samples more conductive for the SEM examination. SEM 

micrographs were analysed by image processing with Image J programme. 

The roughness of the samples was determined using a mechanical Dektak 6M profilometer 

(Veeco). Two samples of each material were tested, with three measurements for each sample to 

obtain the average values of the parameters Ra and Rt.

The wettability was evaluated by measuring the contact angle using an automatic contact-angle 

meter (DataPhysics OCA 20), after depositing 10 μL of ultrapure water W04 on the titanium 

surface at room temperature. The drops were formed at  dosing rate of 27.5μL s-1 and the angles 

were determined using SCA 20 software. Five discs of each material were studied after 

depositing two drops on each sample.

Cell culture

MC3T3-E1 (mouse calvaria osteosarcoma cell line) cells were cultured in DMEM with phenol 

red (Gibco–Life Technologies, NY, USA), supplemented with 1% of (100×) 

penicillin/streptomycin (Biowest Inc., USA) and 10% of FBS (Gibco–Life Technologies) for 

the first 24 h. Then, the medium was replaced with differentiation medium: DMEM with phenol 

red (1×) containing 1% of penicillin/streptomycin, 1% of ascorbic acid (5 mg mL-1) and 0.21% 

of β-glycerol phosphate. 

Cells were cultured (at a concentration of 1 × 104 cells/well) with the titanium discs in 24-well 

culture plates (Thermo Scientific®) at 37 ºC in a humidified (95%) atmosphere of 5% CO2. 



Titanium discs were not exposed to blood serum before cell culture. The culture medium was 

changed every forty-eight hours. In each plate, wells with the same concentration of cells, but 

no Ti discs, were used as a control of culture conditions.

Cell proliferation

For measuring cell proliferation, the commercial cell viability assay alamarBlue® (Invitrogen) 

was used. This kit measures the cell viability based on a redox reaction with resazurin. The cells 

were cultured in wells with the discs (3 replicates per treatment) and examined following the 

manufacturer’s protocol after 24 h, 72 h and 120 h. The percentage of reduced resazurin was 

used to evaluate cell proliferation.

ALP activity

ALP activity was assayed by measuring the conversion from p-nitrophenyl phosphate (p-NPP) 

to p-nitrophenol, and the specific activity of the enzyme was calculated.

Aliquots (0.1 mL) of the solution used for measuring the protein content were assayed for ALP 

activity. To each aliquot, 100 µL of p-NPP (1 mg mL-1) in substrate buffer (50 mM glycine, 1 

mM MgCl2, pH 10.5) was added. After two hours of incubation in the dark (37 ºC, 5% CO2), 

absorbance was spectrophotometrically measured at 405 nm using a microplate reader. ALP 

activity was acquired from a standard curve obtained using various concentrations of p-

nitrophenol in 0.02 mM sodium hydroxide. Results were calculated in mmols of p- 

nitrophenol/h (mM PNP h-1), and data were expressed as ALP activity normalized to the total 

protein content after 14 and 21 days.

Statistical analysis

Data were submitted for analysis of variance (ANOVA) and a Newman–Keuls multiple 

comparison test, when appropriate. Differences at p ≤ 0.05 were considered statistically 

significant.

Total protein

Total protein content was quantified using Pierce™ BCA Protein Assay Kit (Thermo Fisher 

Scientific) for colorimetric protein quantitation based on copper reduction. The culture medium 

was removed from the wells, the wells were washed 3 times with 1 × DPBS, and 100 µL of 

lysis buffer (0. 2% Triton X-100, 10 mM Tris-HCl pH 7.2) were added to each. After 10 min, 

the lysate was sonicated and centrifuged for 7 min at 13300 rpm and 4 ºC. 20 µL of the 

supernatant were used for colorimetric measurement of BCA at 570 nm on a microplate reader 

Multiskan FC® (Thermo Scientific®). Total protein content was calculated from a standard curve 



for bovine albumin and expressed as µg µL-1. These data were used to normalize the alkaline 

phosphatase (ALP) activity after 14 and 21 days.

Formation of the protein layer

Each disc (12 mm Ø) was incubated in a well of a 24-well plate (Thermo Scientific®) with 2 

mL of human blood serum from male AB plasma (Sigma®) for 180 min (37 ºC, 5% CO2). The 

use of blood serum tries to deplete some very high abundant proteins, such as fibrin-related 

proteins. Then, the serum was removed, and the discs were put through five consecutive washes 

with 200L of double-distilled water and a final wash with 100 mM NaCl in 50 mM Tris-HCl, 

at pH 7.1, to remove unadsorbed proteins. The final eluate was obtained by submerging the 

discs in a solution containing 4% SDS, 100 mM DTT and 0.5 M TEAB. This method was based 

on previous studies (Kaneko et al. 2011). Three elutions were performed for each surface 

treatment; each eluate was obtained from 4 distinct discs. Total protein of the serum was 

quantified before the assay, using the method described above (Pierce™ BCA Protein Assay 

Kit), yielding a concentration of 51 mg mL-1.

Proteomic analysis

Eluted protein sample was resolved in 10% polyacrylamide gels, using a Mini-Protean II 

electrophoresis cell (Bio-Rad). A constant voltage of 150 V was applied for 45 min. The gel 

was then stained using SYPRO Ruby stain (Bio-Rad) following the manufacturer’s instructions. 

The gel was then washed, and each lane was cut into 4 slices. Each of these slices was digested 

with trypsin following a standard protocol (Anitua et al. 2015).

The resulting peptides were resuspended in 0.1% formic acid, separated using online NanoLC 

and analysed using electrospray tandem mass spectrometry. Peptide separation was performed 

on a nanoACQUITY UPLC system (Waters) connected to a SYNAPT G2-Si spectrometer 

(Waters). Samples were loaded onto a Symmetry 300 C18 UPLC Trap column (5 μm, 180 μm × 

20 mm, Waters) connected to a BEH130 C18 column (1.7 μm, 75 μm × 200 mm, Waters). The 

column was equilibrated in 3% acetonitrile and 0.1% FA. Peptides were eluted at 300 nL/min 

using a 60-min linear gradient of 3%−50% acetonitrile.

 A SYNAPT G2-Si ESI Q-Mobility-TOF spectrometer (Waters) equipped with an ion mobility 

chamber (T-Wave-IMS) for high definition data acquisition analyses was used for the analysis 

of the peptides. All analyses were performed using electrospray ionization (ESI) in a positive 

ion mode. Data were post-acquisition lock-mass corrected using the double charged 

monoisotopic ion of [Glu1]-fibrinopeptide B. Accurate LC-MS data were collected in HDDA 

mode, which enhances signal intensities using the ion mobility separation. Searches were 

performed using Mascot search engine (Matrix Science) in Proteome Discoverer v.1.4 software 

(Thermo). Mascot generic files (MGF) files were generated from the original SYNAPT RAW 



files using ProteinLynx Global Server 3.0.2 (PLGS, Waters) and further processed using the 

Proteome Discoverer. Peptide mass tolerance of 10 ppm and 0.2-Da fragment mass tolerance 

were used for the searches. Carbamidomethylation of cysteines was selected as the fixed 

modification and oxidation of methionine as a variable modification for tryptic peptides. 

Proteins identified with at least one peptide with an FDR < 1% were kept for further 

examination.

Progenesis LC-MS software (Nonlinear Dynamics) was used for differential protein expression 

analysis. Raw files were imported into the programme, and one of the samples was selected for 

a reference run to which the precursor masses in all the other samples were aligned. Abundance 

ratio between the run to be aligned and the reference run were calculated for all features at given 

retention times. These values were then logarithmized and the programme, based on the analysis 

of the distribution of all ratios, automatically calculated a global scaling factor. Once 

normalized, the samples were grouped into the appropriate experimental categories and 

compared. Differences between groups were only considered for peptide abundances with an 

ANOVA p-value < 0.05 and a ratio > 1.5 in either direction. A peak list containing the differing 

peptides was generated for each comparison and searched against a Swiss Prot database using 

the Mascot Search engine (www.matrixscience.com). Proteins with ANOVA p < 0.05 and a 

ratio higher than 1.3 in either direction were considered different.

Results

Physicochemical characterisation of Ti discs

Figure 1 shows SEM images of smooth Ti and sandblasted acid-etched Ti surfaces. The 

different topographies can be clearly seen. The particles on the titanium surface (Figure 1b) are 

visible in the image. EDX results demonstrated that these were alumina (Al2O3) particles that 

could have been encrusted in the material after the sandblasting process (Figure 2). The area of 

the disc covered by alumina particles reaches a 13.84% of the disc surface area. AFM images in 

Figure 3, with a scan size of 60 µm, were analysed and an increase on the surface area was 

detected after aluminium oxide blasting acid-etching treatment. The untreated discs showed a 

specific surface area of 0.69 ± 0.16%, while that of the blasted acid-etched discs was of 19.97 ± 

1.40%.

Untreated titanium discs, with smoother topography (Figures 3a and 3c), showed series of 

grooves due to the machining process. The change in the topography of Ti after the surface 

blasting and acid-etching treatment is clearly visible in Figures 3b and 3d. Machining grooves 

disappeared as a result of sandblasting, and the roughness increased significantly (p<0.05) when 

the surface was marked by alumina powder. As it can be seen in Figures 3c and 3d, the blasting 



and acid-etching resulted in larger irregularities, but the surface was smoother in comparison 

with the untreated Ti. This can be attributed to the acid-etching treatment.

The mechanical profilometer revealed that for the smooth Ti surface, Ra and Rt parameters were 

0.14 ± 0.04 and 1.28 ± 0.40 μm, respectively. After blasting and acid-etching, Ra and Rt were 

0.93 ± 0.06 and 8.38 ± 0.99 μm, respectively. Thus, the surface roughness of the treated discs 

was significantly higher than the roughness of the untreated samples.

Contact angle measurements were carried out to determine the wettability of the surface. 

Significantly (p<0.05)  lower contact angles were observed for blasted acid-etched Ti surfaces 

than for the untreated discs, namely, 85.70 ± 2.83° and 94.53 ± 2.59°, respectively. Thus, the 

treated discs showed greater hydrophilicity.

In vitro cultures

Analysis of cell proliferation (Figure 4) clearly showed that disc treatment had no significant 

effect on the cellular growth. Cells proliferated equally on both types of discs during the 5-day 

protocol. A threefold increase in cell numbers was observed between 24 h and 3 days in culture. 

Proliferation slowed down between 3 and 5 days of incubation, showing a plateau and a 

reduction in proliferation.

 ALP enzyme activity (Figure 5) was not affected by disks topography after 14 and 21 days 

(ANOVA, p > 0.05). Moreover, between these time points, there was a slight decrease in the 

ALP activity, as expected. These in vitro data indicate that the disc topographies examined in 

our study do not affect the metabolic and division processes of MC3T3-E1 cells, related to 

mineralization.

Proteomic analysis

Identification of proteins adsorbed onto the blasted acid-etched Ti and smooth Ti

The LC-MS/MS analysis of the protein layers adsorbed to both Ti surfaces resulted in the 

identification of 218 different proteins. The identified proteins are presented in Table 1. Serum 

proteins involved in cell adhesion and extracellular matrix, important for implant integration, 

were also found: vitronectin (Salasznyk et al. 2004; Kundu & Putnam 2006; Di Benedetto et al. 

2015) and proteoglycan 4 (Novince et al. 2012). Intriguingly, we found cellular/cytoplasmic 

components of cell adhesion and cell junction adsorbed to the Ti surfaces, integrin alpha-V 

(Kumar 2003; Roux 2010; Kaneko et al. 2014), junction plakoglobin (D’Alimonte et al. 2013), 

gelsolin (Kwiatkowski et al. 1989; Thouverey et al. 2011; Kim et al. 2013) and actin 

cytoplasmic 1 (Sen et al. 2015). LCMS/MS analysis also revealed the cellular and secreted 

proteins associated with bone homeostasis, such as peptidyl-prolyl cis-trans isomerase B (Pyott 

et al. 2011) and lysozyme C (Siebert et al. 1978; Briggs & Arinzeh 2014). We also found serum 



proteins involved in bone formation to a certain degree, serum paraoxonase/arylesterase 1 

(Dowling et al. 2014), vitamin D binding protein (Benis & Schneider 1996; Swamy et al. 2001; 

Schneider G.B., Grecco K.J., Safadi F.F. 2003) and pigment epithelium-derived factor (Li et al. 

2013; Li et al. 2015). 

Gene ontology analysis of the identified proteins

The proteomic analysis led to the identification of 181 and 162 proteins on smooth Ti and 

blasted acid-etched surfaces, respectively. Adsorbed proteins were classified using the 

PANTHER (Protein ANalysis THrough Evolutionary Relationships) classification system 

(Figure 6). The results of protein classification according to biological processes were almost 

identical for the two types of surfaces (Figure 6a and 6b). However, classification of proteins 

according to the pathways in which they are involved revealed differences between the two 

types of surfaces (Figure 6c and 6d). Interestingly, we observed that smooth Ti-adsorbed 

proteins intervene in a wider range of pathways than those found on the blasted acid-etched Ti. 

Blood coagulation (43.35%), inflammation mediated by cytokines (17.34%) and integrin 

signalling (13.29%) were the three major process-classified protein categories found on the 

treated (blasted and acid-etched) Ti. For smooth Ti, blood coagulation (28.52%) and 

inflammation (11.91%) were the most significant categories. However, a major group of 

proteins related to glycolysis (11.91%) was adsorbed on smooth Ti, which is absent on sand- 

blasted acid-etched surfaces. Integrin signalling was only represented by a relatively minor 

proportion of proteins on the smooth Ti (4.69%) in comparison with the treated Ti surfaces. 

Proteins related to diseases such as Parkinson’s and Alzheimer’s and proteins related to CCKR 

signalling pathways were found on both disc types (a very small proportion). In addition to 

these categories, smooth Ti surfaces adsorbed a small percentage of proteins involved in 

apoptotic and plasminogen signalling pathways.

Specifically enriched proteins

To find the specifically enriched proteins adsorbed onto the two surface types that might reflect 

their different osteoinduction capabilities, a differential analysis was performed (in triplicate) 

using the Progenesis QI software. This method identified 9 proteins differentially 

enriched/associated with each surface (Table 2).

Proteins enriched on the blasted acid-etched Ti were apolipoproteins ApoA-I, ApoE, ApoA-IV, 

plectin, antithrombin III and Vitamin K-dependent protein. The largest difference between the 

two surface types was found for ApoA-IV and plectin. We also found that complement C3 and 

some immunoglobulins (Ig gamma and lambda chains) were significantly enriched on the 

smooth Ti but not on the blasted and acid-etched Ti discs.



Discussion

The main part of our study characterises the protein layer adsorbed onto titanium discs with two 

different surface types: a sandblasted, acid-etched Ti and an untreated, smooth Ti. It is 

reasonable to assume that the different surface characteristics will affect the adsorption of 

proteins.

Roughness is a key parameter in the assessment of the osseointegrative properties of material 

(Buser et al. 1991). The two surface types studied in this work have different topography, i.e. 

sand-blasted acid-etched Ti is rougher than the untreated Ti surface. These results are consistent 

with previous studies (Grassi et al. 2006). Moreover, the presence of alumina is also associated 

with a good bone response (Wennerberg et al. 1995) and a change in hydrophilicity affecting 

both chemical and physical composition of the surface. All these physicochemical features will 

affect the affinity of the protein layer formed on the material.

Ti surfaces are widely used in implants; techniques advancing the osteogenesis are needed to 

improve the quality of health care and patient recovery. The surface types described here have 

been extensively used in orthopaedic implants with overall similar outcomes (Schwartz et al. 

2008).

Our in vitro experiments, using an osteosarcoma cell line, showed no differences between both 

samples either in proliferation or mineralization. Both surfaces showed very similar 

proliferation results evolution with time, increasing gradually in all the test period. 

Mineralization in cells, measured by ALP activity, an enzyme that becomes very active during 

osteoblast differentiation, decreased on both Ti surfaces with time, while differences founded 

had not statistical meaning. In similar studies, no significant differences in neither proliferation 

nor mineralization were found (Yoshida et al. 2012). These results are supported by the 

proteomic analysis of proteins adsorbed onto the different discs since the vast majority of 

proteins attach on a similar way to both surfaces. The extensive list of adsorbed proteins shows 

that at least 30 of these proteins are involved in bone homeostasis in a direct or indirect way 

(Table 1).

However, the blasted and acid-etched Ti surfaces and smooth Ti surfaces show different 

osteogenic properties in in vivo models (Wennerberg & Albrektsson 2009). Furthermore, 

Aparicio et al, showed that high Ra values favour osseointegration of the dental implant in 

comparison with smoother surfaces (Aparicio et al. 2011). This effect is attributed to the higher 

implant-bone contact interface as a consequence of greater roughness. Nevertheless, in this 

study we find also chemical differences between treatments. To test this premise we performed 

a detailed analysis of the proteins adsorbed to the two surface types to find statistically 

significant differences between them. In order to isolate and identify these surface adsorbed 

proteins, we established a protocol where, following serum incubation, discs were washed and 



final proteins elution was obtained with an SDS-containing buffer. This approach permitted us 

to wash the surfaces thoroughly and to get a good protein yield for the characterization of the 

differences between both surfaces. The procedure shows that under the same regime of washes 

and the same elution strength a number of different proteins bind more consistently to any of the 

surfaces in a statistically significant way, revealing differences in the surface-protein 

interactions. Although other approaches cannot be discarded, our method has proved to be 

useful for our intended purpose. On the other hand, the use of harsher buffer could release 

proteins that might have remained attached after SDS wash, however, we believe that although 

the total list of proteins could increase, it should not affect the differential analysis. We get an 

average of 114 proteins identified in the smooth Ti surface discs, and 108 proteins in the blasted 

and acid-etched Ti surface. This suggests that the differences observed between surfaces arise 

from differential binding of certain proteins and not from the total amount of protein. 

The proteomics differential quantification analysis performed by Progenesis found some 

significant differences for plectin, antithrombin-III and several other apolipoproteins. Plectin is 

a cytoskeleton protein that links intermediate filaments to other cytoskeletal systems and 

anchors them to the membrane junction sites. It binds mostly to vimentin and is very important 

for preserving the mechanical integrity of the tissue (Burgstaller et al. 2010). Plectin is not a 

typical serum protein; therefore, its presence in the protein layer formed by incubation of Ti 

discs with the serum was unexpected. Antithrombin (AT) is a glycoprotein that inactivates 

several enzymes of the coagulation system. Specifically, AT-III inactivates thrombin, which 

catalyses the formation of fibrin from fibrinogen. Fibrin architecture at the clot affects bone 

healing (Shiu et al., 2014). However, apolipoproteins are important serum proteins involved in 

lipid transport; different isoforms have different properties and activities. Apolipoprotein A-IV 

has antioxidant-like activity and is involved in the inhibition of lipid oxidation (Spaulding et al. 

2006). It has been reported that patients with osteonecrosis, a skeletal pathology with intense 

bone degeneration, have lower levels of ApoA-IV in comparison with healthy individuals (Wu 

et al. 2008). Lipid metabolism and oxidative injury are important processes in the 

pathophysiology of the disease. Apo A-IV mutations are linked to corticosterone-induced 

osteonecrosis in patients with renal transplants (Hirata et al. 2007). In our study, Apo A-IV level 

was significantly higher on the blasted acid-etched Ti than on the smooth Ti. This observation 

might account for a favourable osseointegration environment created by the treated discs as the 

protein acts as an antioxidant. Another important apolipoprotein, ApoA1, was found adsorbed 

to the treated Ti in larger amounts than to smooth Ti. ApoA1 is the main component of the 

high-density cholesterol complex, but it has not been associated with bone formation or 

resorption. Interestingly, ApoE, which is involved in the regulation of bone metabolism, was 

also adsorbed to the blast acid-etched Ti in larger amounts than to smooth Ti. Although the data 

interpretation is still controversial, ApoE has been extensively reported to be involved in bone 



homeostasis (Niemeier et al. 2012), possibly via promotion of vitamin K uptake into the 

osteoblasts (Newman et al. 2002). However, various ApoE alleles behave very differently in 

this process. ApoƐ2 is the allele with the lowest involvement in the transport of vitamin K 

(Saupe et al. 1993). The ApoƐ4 allele has been associated with a low bone mass in several 

studies in postmenopausal women (Shiraki et al. 1997; Sanada et al. 1998). More recently, 

epidemiological studies have confirmed that ApoƐ2 represents an increased risk for trabecular 

bone fracture (Dieckmann et al. 2013). The most frequent ApoE allele is ApoƐ3, found with a 

frequency of 79%. ApoƐ2 is present in approximately 7% of the population and ApoƐ4, in 14%. 

ApoƐ3 is also called the neutral allele because it is not associated with any of the human 

diseases. Apoe2 and 4 have been associated with increased probability of developing 

arthrosclerosis and Alzheimer’s disease (Eisenberg et al. 2010).

The method that we used to characterise the protein layer on Ti surfaces did not allow the 

determination of the type of ApoE allele adsorbed. Moreover, is not clear whether 

physicochemical properties of the surface discriminate between the allele types. It is tempting to 

hypothesize that blasted acid-etched Ti has the ability to enrich the microenvironment of the 

implant with ApoE. However, this could only improve the osseointegration outcome if the 

patient carried the ApoƐ3 alleles. Following this line of thought might help to determine the 

mechanisms of the variability in the outcomes of the same implant type in different patients.

Kaneko and colleagues have published a similar study using different surfaces, octacalcium 

phosphate (OCP) and hydroxyapatite crystals (HA). They have found that ApoE and 

complement component 3 (C3) were among the proteins differentially associated with these 

surfaces. They have observed that HA adsorbed more C3 than OCP, whereas OCP adsorbed 

more APoE (Kaneko et al. 2011).

Interestingly, in our study, C3 was enriched on smooth Ti discs. C3 belongs to a family of 
proteins involved in immune and inflammatory responses (Sahu & Lambris 2001). Osteoclasts 
are bone macrophages derived from the myeloid lineage that requires complement C3 and C5 
for optimal differentiation (Tu et al. 2010). Osteoclasts are necessary for bone resorption and 
the optimal balance between osteoblast and osteoclast differentiation must be reached to achieve 
healthy bone formation. It is not clear whether the increased C3 adsorption onto smooth Ti 
surfaces alters this balance.

To summarise, two types of surfaces, smooth and SAE, were studied by physicochemical, in 

vitro and proteomic analysis. Al2O3 was found in the SAE surface while only Titanium in 

smooth sample. Roughness and hydrophilicity were increased by SAE treatment. Bibliography 

showed differences in in vivo experiments giving more osseointegration SAE surfaces. In our 

study and, in accordance with literature, no differences in in vitro tests (proliferation and 

mineralization) were found. Proteome analysis of the proteins adsorbed onto both surfaces 



showed the presence of proteins related to bone generation. Proteins enriched on the SAE Ti 

were apolipoproteins ApoA-I, ApoE, ApoA-I, plectin, antithrombin III and Vitamin K-

dependent protein. The largest difference between the two surface types was found for ApoA-

IV and plectin. We also found that complement C3 and some immunoglobulins (Ig gamma and 

lambda chains) were significantly enriched on the smooth Ti but not on the blasted and acid-

etched Ti discs.

Although significant physicochemical differences are found between samples (chemical 

composition, roughness and hydrophilicity), in vitro test did not show any. Further work is 

needed to demonstrate that proteomic analysis is able to explain in vivo behaviour.
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Figure captions:

Figure 1: SEM images of disc surface: (a) smooth-Ti  and (b) SAE-Ti  (x1000).

Figure 2: SEM/EDX images of titanium sandblasted and acid-etched disc for Al2O3 
particles identification. 

Figure 3: AFM images at scan size 60 µm: (a) untreated titanium and (b) SAE treated 
titanium; and 1 µm: (c) untreated titanium and (d) SAE treated titanium. The z-axis 
could not be normalized to the same scale due to the height difference between 
treatments. 

Figure 4: MC3T3-E1 cells proliferation on different treated discs: Smooth-Ti (White 
circle), SAE-Ti (black semi-square with dotted line).  Cells, on an empty well, without 
disc was used as a control (white circle). No statistically significant differences were 
found between treatments. 

Figure 5: MC3T3-E1 cells ALP activity normalized to the total protein (BCA) levels 
(mM PNP/h) / (µg/µl) on different treated discs at 14 (a) and 21 (b) days.; Smooth-Ti 
(White column); SAE-Ti (sqared/dotted column).  Cells, on an empty well, without disc 
was used as a control (Black column). No statistically significant differences was found 
between treatments 

Figure 6: PieCharts pathways, of the biological processes, of the proteins adhered to (a) 
SAE-Ti and (b) Smooth-Ti.  

Figure 7: PieCharts pathways of the proteins adhered to (c) SAE-Ti and (d) Smooth-Ti. 

 



Table titles

Table 1: Plasma proteins adsorbed on SAE Ti and Smooth Ti as identified by LC-
MS/MS. Spectral counts indicates number of MS/MS spectra obtained for each protein 

Table 2: Specific Proteins (Progenesis method)


