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Abstract

This article addresses the dynamic behaviour of double track simply supported bridges of short to medium span lengths

(10 m < L < 25 m) belonging to conventional railway lines. These structures are susceptible to experience inadmissible

levels of vertical vibrations when traversed by trains at high speeds, and in certain cases their dynamic performance may

require to be re-evaluated in case of an increase of the traffic velocity above 200 km/h. In engineering consultancies,

these structures have been traditionally analysed under the passage of trains at different speeds using planar models,

neglecting the contribution of transverse vibration modes and also the flexibility of the elastomeric bearings. The study

presented herein endeavours to evaluate the influence of these two aspects in the verification of the Serviceability Limit

State of vertical accelerations, which is of great interest in order to guarantee a conservative prediction of the dynamic

behaviour. In the present study, the dynamic response of representative slab and girder bridges has been evaluated using

an orthotropic plate finite element model, leading to practical conclusions regarding the circumstances under which the

above mentioned factors should be considered in order to adequately evaluate the transverse vibration levels of the deck.
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1. Introduction

During the last decades the extensive construction of

new high-speed lines in developed and developing coun-

tries as well as the increase of the operating train velocity

in the existing ones (above 200 km/h) has risen the con-

cern of scientists and engineers for the dynamic behaviour

of railway bridges. The regular and repetitive nature of

groups of train axle loads can induce resonance situations

in these structures, a phenomenon that takes place when

the time interval between the passage of repeated groups

of loads is a multiple of one of the natural periods of the

bridge. Ψ̂n = 1
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Regarding vertical accelerations, short-to-medium span

simply supported (S-S) bridges (span lengths ranging be-

tween 10 and 25 m) are specially critical, and may expe-

rience considerably high amplifications of the acceleration

levels due to resonance, entailing harmful consequences

[1, 2]. Hence the Serviceability Limit State of vertical ac-

celeration prescribed by Eurocode (EC) [3] (3.5 m/s2 for

ballasted tracks, to avoid ballast instability) is one of the

most demanding requirements and becomes crucial for the

design of railway bridges.

A number of conventional railway lines has been par-

tially adapted for high-speed traffic. Some representative

examples are the Madrid-Sevilla and Valencia-Barcelona

railway lines in Spain, as well as the first European high-

speed line, Paris-Lyon. When a line is upgraded and exist-
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ing bridges are unable to fulfil the Standards, the horizon-

tal structures are sometimes replaced by new decks with

higher transverse stiffness. Alternatively, the strenghten-

ing procedure consists in a partial embedment of the abut-

mens, leading to a kind of portal frame or integral bridge

[1].On the other hand, a number of researchers have eval-

uated in the past years the possibility of applying passive

control techniques [4, 5, 6, 7] that could avoid the deck re-

placement by increasing structural damping. These facts

point out the importance of using accurate enough numer-

ical models, able to realistically predict the vibration levels

in the deck with reasonable computational costs. Super-

fluous refinements are to be avoided, since engineers will

employ them as a tool for deciding (according to the stan-

dards) what is the most adequate retrofit solution from the

economical and technical point of view in each particular

case.

Traditionally, planar numerical S-S beam models are

very common in literature (see [8, 9, 10]). These models

appear to be valid for single track, non-skewed bridges,

since the response of this type of structures at resonance

is mainly governed by the first flexural mode [10]. Never-

theless the contribution of three-dimensional modes, such

as the first torsion mode of the bridge, could be significant

in double track decks, due to the eccentricity of the loaded

track and the proximity between the first bending and the

first torsion natural frequencies in short span bridges. The

quick development of computational technologies and the

versatility of numerical methods have promoted the use of

three-dimensional models for investigation purposes in re-

cent years (see [11, 12]), but their application for railway

bridge dynamic analyses is still less frequent in engineering

consultancies unless a singular structure is designed. An

explanation to this tendency could be found in the reg-

ulations in force at each particular country. Eurocode 1

(EC1) [11], which will be adopted in most of the European

countries in the near future, encourages the use of planar

models when the frequency of the first torsion eigenform

exceeds 1.2 times that of the first longitudinal bending

mode (for non skewed beam or plate type decks on rigid

supports).

Also EC establishes the minimum number of modes re-

quired for an accurate mode superposition analysis, which

is a computationally efficient technique in structures with

linear behaviour. In this regard EC recommends the con-

sideration of the natural frequencies and the corresponding

mode shapes up to the greater of (i) 30 Hz, (ii) 1.5 times

the frequency of the fundamental mode of vibration or (iii)

the frequency of the third one. However, this limitation

highlights a potential inconsistency: when the natural fre-

quency of the first torsion mode is higher than 1.2 times

the fundamental frequency but falls below this previous

criteria, should or should not be taken into account. This

matter has not been reported yet in the scientific litera-

ture and is one of the main issues analysed in the present

study.

On the other hand, for practical purposes the vertical

stiffness of laminated elastomeric bearings found in short

simply supported bridges tends to be neglected by engi-

neers for several reasons: in first place, these elements

introduce spurious high-frequency oscillations in the pre-

dicted dynamic response, which can only be attenuated

by including the track in the model or simulating its dis-

tributive effect at the entrance and exit of the loads using

specific functions [6], thus further complicating the mod-

elling task. Secondly, the elastomeric bearings are rather

stiff, and are traditionally assumed rigid in the vertical

direction for practical purposes. However, several studies

show that their vertical stiffness may affect the dynamic

response of the structure when subjected to railway traffic

[13].

In the present contribution the authors have simulated

the dynamic behaviour of S-S reinforced concrete slabs and

pre-stressed concrete girder bridges belonging to conven-

tional lines in which an increase of the maximum design

velocity is envisaged. The numerical models adopted for
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this investigation follow purposely the main simplifications

and tendencies adopted by engineers for practical appli-

cations (which are also in accordance with the European

Standards) in a view to analyse their suitability. The se-

lected case studies are intentionally restricted to double

track bridges, since these are common structures in exist-

ing railway lines and may experience a significant contri-

bution of the first torsion mode, with a natural frequency

in the vicinity of the fundamental one. The results and

conclusions presented herein provide an enhanced under-

standing of the importance of using three dimensional nu-

merical models and of the effect of the elastic bearings

for the assessment of the maximum acceleration levels in

double track decks.

2. Theoretical background

The maximum dynamic response of a bridge under the

circulation of trains is mainly conditioned by two of the

classical phenomena related with the moving load problem:

resonance and cancellation. For that reason, in a view to

obtain a theoretical basis to enhance the understanding of

the elastic supports effect on the dynamic response, these

phenomena have been studied in a first approach by using

the simplest beam model: a Bernoulli-Euler beam sup-

ported on vertical elastic supports (Fig. 1). The starting

point of this investigation are the results published by the

authors in [14], where the effect of the supports vertical

stiffness on the frequency and amplitude of the resonant

response of elastically supported (E-S) beams is analysed

in detail.

The exact frequency equation and mode shapes of the

E-S beam can be found in [15, 16], neglecting structural

damping, shear deformation and rotary inertia effects. In

this case the frequency equation is given by

(

π3

κ

)2

+
π3

κ
λ3

sinh(λ) cos(λ)− cosh(λ) sin(λ)

sin(λ) sinh(λ)

+λ6
1− cos(λ) cosh(λ)

2 sin(λ) sinh(λ)
= 0, (1)

Figure 1: Elastically supported beam traversed by a moving load at

constant speed

with λn = λn(κ) being the roots of Eq.(1), κ = EIzπ
3/(KvL

3)

the ratio of the flexural stiffness of the beam to the verti-

cal stiffness of the elastic bearings, where L, Kv and EIz

are the beam length, vertical stiffness of the support and

bending stiffness of the cross section, respectively. The

circular frequencies are then defined as follows,

ωn =

(

λn
L

)2
√

EIz
m

(2)

with m being the linear mass of the beam. In the S-S

case, κ = 0 and λn = nπ, leading to the well-known nat-

ural frequencies and mode shapes of this particular case.

For the E-S beam, the analytical expressions of the eigen-

forms are

φn(κ, l) =
ψn(κ, l)

max|ψn(κ, l)|
(3)

where l = x/L and ψn(κ, l) is defined as,

ψn(κ, l) = sin(λnl) + sinh(λnl)
sin(λn)

sinh(λn)

+γ1n(cos(λnl) + cosh(λnl) + γ2n sinh(λnl)),0 ≤ l ≤ 1;

(4a)

γ1n =
sinh(λn)− sin(λn)

2
κ

(

π
λn

)3

sinh(λn) + cos(λn)− cosh(λn)
(4b)

γ2n =
cos(λn)− cosh(λn)

sinh(λn)
(4c)

The phenomena of resonance and cancellation are both

associated to the free vibrations created by each of the axle

loads that have crossed the structure. Such free vibrations
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can possibly accumulate, thus leading to the resonance

phenomenon, or vanish at certain speeds of circulation,

which corresponds to the cancellation phenomenon previ-

ously anticipated by Yang et al. ([17] and [9]), Savin [18]

and Pesterev [19]. The amplitude of the nth modal re-

sponse of the beam after the passage of a single moving

load P at constant speed V in the so-called free vibration

phase (t > L/V ) was derived in [14] using the analytical

mode shapes of the beam. It can be expressed as

An =

√

ξ̇n(t = L/V )2

ω2
n

+ ξn(t = L/V )2; (5)

where ξn(t = L/V ) and ξ̇n(t = L/V ) are the initial

conditions for the free vibration phase which correspond,

respectively, to the nth modal deflection of the beam and

its derivative at t=L/V, during the forced vibration phase,

0 ≤ t ≤ L/V . Analytical expressions of these quantities

are derived as per,

ξn(t = L/V ) =
−ξn,st

max|ψn(κ, l)|

·

[

Kn sin(
λn

Kn

)− sin(λn)

K2
n − 1

+

(

sin(λn)

sinh(λn)
+ γ1nγ2n

)

·
sinh(λn)−Kn sin(

λn

Kn

)

K2
n + 1

+ γ1n
cos( λn

Kn

)− cos(λ1n)

K2
n − 1

+γ1n
cosh(λn)− cos( λn

Kn

)

K2
n + 1

]

,

(6a)

ξ̇n(t = L/V ) =
−ξn,stωn

max|ψn(κ, l)|

·

[

Kn cos(
λn

Kn

)−Kn cos(λn)

K2
n − 1

+

(

sin(λn)

sinh(λn)
+ γ1nγ2n

)

·
Kn cosh(λn)−Kn cos(

λn

Kn

)

K2
n + 1

− γ1n
sin( λn

Kn

)−Kn sin(λ1n)

K2
n − 1

+γ1n
Kn sinh(λn) + sin( λn

Kn

)

K2
n + 1

]

,

(6b)

In the previous expressions ξn,st is the static solution

of the beam,

ξn,st =
P

Mnω2
n

=
P

EIz/L3
·

1

Ψ̂nλ4n
, (7)

with Mn being the nth modal mass in the case of uni-

tary amplitude normalisation, and Ψ̂n is defined as follows,

Ψ̂n =

∫ 1

0

φ2n(κ, l)dl. (8)

As can be observed Eqs. (6a) and (6b) are only de-

pendent on the parameters κ, the flexural stiffness of the

beam EIz and its length L, the constant load P and the

nondimensional speed Kn, which is the quotient between

the excitation frequency and the nth circular frequency of

the beam,

Kn =
λnV

ωnL
. (9)
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Figure 2: Normalised amplitude of the free vibrations of the first

mode in a E-S beam after the circulation of a moving load

In a view to analyse the influence of the supports flex-

ibility κ on the amplitude of the free vibration response in

a resonance situation, the following normalisation of Eq.

(5) is defined,

Rn(κ,Kn) =
1

P/(EIz/L3)

√

ξ̇n(t = L/V )2

ω2
n

+ ξn(t = L/V )2.

(10)

In Fig. 2 this new expression is plotted for the first

flexural mode, R1, considering different values of the sup-

port flexibility, ranging from κ = 0.0 (rigid supports) to

κ = 0.1 (upper limit of the bearings vertical flexibility to

be expected in the structures under consideration). Plot-

ting this figure in function of Kn can be somewhat mis-
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leading, since Kn varies with κ. Instead, Fig. 2 is plotted

versus the nondimensional quotient V/(2f1L), standing f1

for the frequency of the first flexural mode of the beam.

In a resonance situation it is straightforward to verify that

V r/(2f1L) = d/(2jL), with d being the so-called charac-

teristic distance between repeated moving loads (which

usually identifies a given train set), j the resonance order

of the first flexural mode (a positive integer), and V r the

resonant speed. Therefore, if we restrict the analysis of the

results shown in Fig. 2 to the response of a given beam of

span L, all the amplitude values with the same nondimen-

sional quotient V/(2f1L) can be regarded as corresponding

to a resonance phenomenon of order j excited by a vehicle

with characteristic distance d. In other words, those val-

ues represent identical resonance situations generated by

a certain convoy, and any difference between them is only

caused by the supports flexibility κ.

As can be seen in Fig. 2 and it was also anticipated

by Pesterev et al. [19] for a S-S beam (κ = 0.0), the

amplitude of the free vibrations experiences a number of

local maxima which alternate with points of zero ampli-

tude, which correspond to the phenomena of maximum

free vibration response and cancellation treated in [14],

respectively. Furthermore, this representation reveals an

additional behaviour pattern: the curves exhibit higher

amplitude values with the increase of the support flexibil-

ity κ for certain ranges of the quotient V/(2f1L); on the

contrary, in other regions of the diagram, the amplitude

decreases with the increase of κ. Also, all the free vibration

curves for different values of κ have a common intersecting

point that indicates the change in the mentioned pattern.

Although it may be computed numerically, for practical

purposes this intersection point will be approximated to

the local maxima of the free vibration response of the S-S

beam, since both values are very close to each other. Us-

ing as a basis the observed evolution of the free vibration

response, it is possible to predict whether a certain reso-

nance order j of the first bending mode, due to the passage

of a train of characteristic distance d, attains a higher am-

plitude including the vertical stiffness κ in the numerical

model or does not. This prediction may be obtained from

the following expressions:

- The resonance peak response will attain a higher ampli-

tude neglecting the vertical stiffness of the elastic bear-

ings, κ = 0.0, if the quotient d/(2jL) accomplishes

Kc
11 <

d

2jL
< 0.53, or Kc

1i <
d

2jL
< Km

1i ; i > 1. (11)

- Conversely, the resonance peak response will attain a

higher amplitude considering the vertical stiffness of the

elastic bearings, κ > 0.0, if the quotient d/(2jL) accom-

plishes

Km
1(i+1) <

d

2jL
< Kc

1i; i ≥ 1 (12)

The values Km
1i and Kc

1i are, respectively, the nondi-

mensional speeds associated to a maximum or a cancel-

lation of the free vibration response of the first mode for

the S-S beam, depicted in Fig. 2. Subscript i is a positive

integer that designates the ith local maximum or cancel-

lation of the free vibration response, corresponding i=1 to

the highest nondimensional speed. It should be empha-

sised that in the S-S case, K1 = V/(2f1L). These critical

points may be numerically sought; the ones related to the

highest speeds are shown in table 1.

i=1 i=2 i=3 i=4

Km
1i 0.7314 0.2576 0.1687 0.1258

i=1 i=2 i=3 i=4

Kc
1i 1/3 1/5 1/7 1/9

Table 1: Values of Km

1
and Kc

1
corresponding to maxima of the free

vibrations and cancellations for the first mode of a S-S beam

Eqs. (11) and (12) provide a very useful criteria to ver-

ify whether the introduction of the vertical stiffness of the

elastomeric bearings in the numerical model guarantees a

conservative prediction of the maximum dynamic response

in terms of vertical accelerations or does not. The effec-

tiveness of these expressions will be shown in subsection

5.4.
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3. Definition of a representative ensemble of rail-

way bridges for increased traffic speed

Among the different bridge typologies traditionally used

for covering the span lengths between 10 m and 25 m in

conventional lines, some of the most typical ones found in

the Spanish railway network have been selected for this

study: reinforced concrete slabs and pre-stressed concrete

girder decks. The characteristics of the decks analysed in

this study are derived from existing structures so as to

constitute realistic examples leading to applicable results

and conclusions.

Slab bridges are very common in urban surroundings

for spans shorter than approximately 15 m, and with a

slenderness ratio (depth/span) between 1/12-1/14. Three

representative structures have been dimensioned for this

study, based on the use of a thick slab which covers a short

span with a straightforward, simply supported solution.

Their cross section is shown in Fig. 3, where the parameter

h is given in table 2. The span lengths are equal to 10,

12.5 and 15 m.

h

Figure 3: Cross section of reinforced concrete slab bridges under

study. Units (m)

As regards the mechanical properties of the bridges

(shown in table 2), the nominal value for the concrete

strength fck assumed for the decks is 35 MPa. In order to

take into account the degradation of material properties

due to cracking, which is a frequent phenomenon in this

type of decks, the three different Elastic Modules shown

in table 3 have been considered in the dynamic analyses.

The linear mass values m account for the slab selfweight

and also the dead loads of the deck (ballast, rails, sleep-

ers); three different values are considered due to the un-

S10 S12.5 S15

Slab

L (m) 10 12.5 15

B (m) 11.6

h (m) 0.77 0.96 1.15

fck (MPa) 35 (table 3)

Track

plattform

No.tracks, width 2,UIC

Rail type UIC-60

Track eccentricity 2.15

Mass

minf (kg/m) 28796 34306 39816

mnom (kg/m) 31301 36811 42321

msup (kg/m) 33807 39317 44827

Supports Flexibility κ 0,0.05,0.1

Table 2: Main properties of the concrete slab bridges of lengths

L=[10, 12.5, 15] m

certainty in the determination of the ballast mass and its

great contribution to the total weight of the deck. These

have been obtained considering variations of +/-30% with

respect to a nominal value of the ballast layer thickness

(hnom=0.5 m). The vertical stiffness of the elastomeric

bearings is given in table 2 in terms of κ: three values

per bridge geometry have been considered, ranging from

κ = 0.0 (simply supported deck) to κ = 0.1. Taking into

account the mass variations, the different supports flexi-

bility for each deck, as well as the variations of the Elastic

Modulus, a total number of 81 case studies are analised

for this typology. The data columns of table 2 include a

heading with the nomenclature adopted to identify each

case study. Also, a similar designation is used in table 4

for the girder bridges.

fck = 35MPa

Enom (Pa) 3.4849 · 1010

E−10% (Pa) 3.1365 · 1010

E−20% (Pa) 2.7879 · 1010

Table 3: Values of the Elastic Modulus considered for the slab bridges

At present, solutions based on pre-stressed concrete

girder bridges are less usual in high-speed lines, since they
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GB10 GB12.5 GB15 GB17.5 GB20 GB22.5 GB25

Slab

L (m) 10 12.5 15 17.5 20 22.5 25

B (m) 11.6

h (m) 0.22 0.22 0.25 0.25 0.25 0.25 0.25

ρ (kg/m3) 2500

fck (MPa) 30

Girders

Ngirder, dgirder 6,2.0 6,2.0 6,2.0 6,2.0 5,2.275 5,2.275 5,2.275

Ih (m4) 0.011 0.0228 0.0396 0.062 0.1117 0.1599 0.2181

Iv (m4) 0.0085 0.0085 0.0085 0.009 0.0202 0.0202 0.0203

J(m4) 0.0017 0.0018 0.0019 0.002 0.0078 0.0081 0.0083

A (m2) 0.2276 0.2516 0.2756 0.299 0.4787 0.5087 0.5387

hgirder (m) 0.6 0.8 1.0 1.2 1.3 1.5 1.7

ρ (kg/m3) 2500

fck (MPa) 50

Track

plattform

No.tracks, width 2,UIC

Rail type UIC-60

Track eccentricity 2.15

Mass

minf (kg/m) 16260 16620 17850 18210 19699 20075 20450

mnom (kg/m) 18765 19125 20355 20715 22205 22581 22956

msup (kg/m) 21271 21631 22861 23221 24711 25086 25461

Supports Flexibility κ 0,0.05,0.1

Table 4: Main properties of the girder bridges of span lengths ranging from 10 to 25 m.

exhibit lower resistance to torsion when compared to other

solutions. Despite this fact, a number of girder bridges

were specifically built in the late 80’s for the first high-

speed railway line in Spain (Madrid-Sevilla), and they are

also very common in conventional lines which, according

to current trends, often experience increases of the operat-

ing train speed. This typology usually covers span lengths

between 10 m and 25 m, with slenderness ratios no higher

than 1/13. Fig. 4 and table 4 summarise the geome-

try and main properties of a series of prestressed concrete

girder bridges that have been dimensioned for this study.

Considering the three different variations of linear mass

for each bridge geometry, due to the uncertainties in the

determination of the ballast layer thickness, and also the

three different supports flexibility for each deck, a total

number 63 pre-stressed concrete girder bridge models are

analysed.

dgirder

hgirder

h

Figure 4: Cross section of pre-stressed concrete girder bridges under

study. Units (m)
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4. Numerical analysis

4.1. Finite element model

The dynamic performance of the bridges under rail-

way traffic has been predicted using a finite element (FE)

model implemented in a Fortran code (Fig. 5), whose main

features are the following: (i) the deck behaviour is sim-

ulated by means of an orthotropic thin plate discretised

in linear varying curvature FEs, which are C1 compatible

triangular elements with 12 degrees of freedom as shown

in Figure 5 (Felippa [20]); (ii) the laminated rubber bear-

ings of the deck girders are included in the model as an

equivalent vertical stiffness uniformly distributed along the

abutments; (iii) different mass density elements are used

in order to concentrate the weight of the ballast, sleepers

and rails over the central portion of the plate; (iv) a point

load model is adopted for the railway excitation, there-

fore neglecting vehicle-structure interaction effects; these

loads move along the rails of one of the tracks, with ec-

centricities of 1.4325 m and 2.8675 m; (v) the dynamic

equations of motion are transformed into modal space and

numerically integrated applying the Newmark-β linear ac-

celeration algorithm, taking into account a proper number

of modes; (vi) uniform damping ratios are assigned to all

mode contributions, in accordance to the minimum values

recommended by EC1, which are 1% for spans L≥ 20 m

and 1+0.07(20-L) in the other cases.

The model main features can be easily implemented

using a commercial software and are in accordance with

the European Standards. For these reasons, this model

could be a suitable simplification for the verification of

the Serviceability Limit State of vertical acceleration in

practical applications. The effect of track irregularities are

considered with the multiplication of the dynamic results

by the factor (1+ϕ′′/2) defined in EC1.

As the track rigidity has not been included in the model,

when a load enters or exits the bridge crossing a border

element a transient phenomenon takes place due to the

Figure 5: Orthotropic plate FE model
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presence of the elastic bearings which leads to unrealistic

high-frequency modal contributions of the plate [21]. This

numerical problem has been solved including the distribu-

tive effect of rails, sleepers and ballast during the appli-

cation process of the wheel loads when they are close to

the abutments. To this end, each axle load is distributed

throughout a load-print which is based on the Zimmerman-

Timoshenko solution for an infinite beam on Winkler foun-

dation, as described in [21].

The computation of the orthotropic plate constants,

Dx, Dy, D1, D2, Dxy and Dyx, from the real bridge deck

mechanical properties is not included in this document for

the sake of brevity, but it is explained with detail in liter-

ature (see [22, 23]).

4.2. Description of the analysis procedure

The vertical response in terms of accelerations of the

double-track decks is computed in the time domain at 25

points of study equally spaced over the track platform (Fig.

6), and under the circulation of the ten HSLM-A trains

defined in EC1 in a range of velocities between 100 and

420 km/h in 1.80 km/h steps. As can be seen in Fig.

6, the vertical accelerations are computed at five sections

(A,B,C,D,E) corresponding to x/L= (0,0.25,0.5,0.75,1), with

L being the span length. For each section, five post-

processing points (1,2,3,4,5) are considered corresponding

to y/B = (0.1, 0.3, 0.5, 0.7, 0.9), with B being the span

width

Three analyses per bridge deck model have been per-

formed, accounting for a different number of mode contri-

butions which are (i) all modes with frequencies up to the

maximum limit prescribed by EC; (ii) only the longitudi-

nal bending modes among those satisfying the preceding

criterion (i); and (iii) the first two mode shapes, which

correspond to the first longitudinal bending and first tor-

sion modes of the decks in all cases. The comparison of

(i), (ii) and (iii) will provide valuable insight into the rela-

tive influence of the different modal contributions, focusing

Figure 6: Location of post-process points

particularly in the first two eigenforms, as well as on the

additional effects due to higher modes up to 30 Hz.

Envelopes of maximum acceleration in the deck plat-

form have been computed for each numerical model and

speed of circulation, and have been grouped in terms of (i)

the bridge span and typology, (ii) the number of mode con-

tributions accounted for, and (iii) the value of the vertical

stiffness of the elastic bearings.

Table 5 gathers the nomenclature adopted for the iden-

tification of these dynamic envelopes, where the initials

XX stand for the bridge geometry designation that was

firstly introduced in tables 2 and 4 (e.g. slab bridge of

10 m span length, S10; girder bridge of 25 m span length,

GB25).

5. Results

Due to the large amount of case studies analysed in

this work, for the sake of conciseness only a summary of

the most representative results is presented, along with the

main conclusions derived.

5.1. Summary of natural frequencies and mode shapes

In Fig. 7 the fundamental frequency f1 of all the

bridges of study, which corresponds to the first longitu-

dinal bending mode in all cases, is presented as a function

of the span length. All these values are enclosed by the

9



long. bending 1st bending + 1st torsion EC frequencies

κ = 0 XX.SS.b XX.SS.b+t XX.SS.all

κ = 0.05 XX.ES(0.05).b XX.ES(0.05).b+t XX.ES(0.05).all

κ = 0.1 XX.ES(0.1).b XX.ES(0.1).b+t XX.ES(0.1).all

Table 5: Nomenclature adopted for the analyses performed

frequency band of EC, which entails that at speeds lower

than 200 km/h significant vibrations are not expected.

2

6

10

14

18

10 12.5 15 17.5 20 22.5 25

Slab bridges

Girder bridges

EC frequency band

f1 =94.76 L
-0.748

23.58L
-0.592

f1=
80/ for 4 < < 20 mL, L

L (m)

f 1
(H

z)

Figure 7: First natural frequency of the bridges of study versus their

span length

The second lowest natural frequency, f2, is associated

to the first torsion mode in all case studies. Table 6 shows

the quotients f2/f1 predicted in the bridges, where the

shaded cells highlight the bridge types that could be mod-

elled as beams according to EC1.

The variations of E assumed for the slab bridges have

no influence in the ratios shown in table 6. As can be

observed the span length and the vertical stiffness of the

elastic bearings have little influence in the quotient f2/f1

for the girder bridges. Conversely, in the slab bridges the

frequency ratio f2/f1 raises with the span length and di-

minishes at any increase of the flexibility κ of the elastic

supports.

For frequencies higher than f2, eigenforms of transverse

bending, torsion or longitudinal bending appear in alter-

nate order. As an example, Fig. 8 shows the mode shapes

and natural frequencies below 30 Hz of the girder bridge

f2/f1 S10 S12.5 S15 GB10-GB25

κ = 0.0

minf 1.60 1.84 2.11 1.08-1.09

mnom 1.62 1.86 2.13 1.10-1.11

msup 1.63 1.88 2.14 1.11-1.12

κ = 0.05

minf 1.51 1.7 1.89 1.08

mnom 1.53 1.71 1.90 1.10

msup 1.55 1.73 1.92 1.11-1.12

κ = 0.1

minf 1.46 1.61 1.75 1.07-1.08

mnom 1.47 1.62 1.77 1.09-1.10

msup 1.49 1.64 1.79 1.11-1.12

Table 6: Frequency ratios f2/f1 in all the bridges of study

of 25 m span, GB25, with mass Mtab,sup and considering

κ=0.0. When the vertical stiffness of the elastic supports

is included in the numerical model a certain reduction of

natural frequencies and also variations in the curvature

of the eigenforms, specially along the abutments lines, are

noticeable, being the modes of higher frequencies the most

affected ones. However no significant changes in the order

of appearance of the different eigenforms is observed in the

range of the supports flexibility considered κ = [0, 0.1].

5.2. Maximum acceleration envelopes

Fig. 9 shows the envelopes of the maximum accelera-

tion for all the case studies versus the circulating speed. In

these plots each curve represents the envelope of maximum

acceleration of all the bridges with the same span, typology

and κ value, under the passage of HSLM-A trains. These

results have been computed including all the mode con-

tributions prescribed by EC, and have been multiplied by

the track irregularity factor (1+ϕ′′/2) according to EC1.

10



0
10

20

0

5

10

−0.01

0

0.01

L(m)

Mode 1  f = 4.998 Hz

b(m)
0

10
20

0

5

10

−0.01

0

0.01

L(m)

Mode 2  f = 5.497 Hz

b(m)
0

10
20

0

5

10

−0.01

0

0.01

L(m)

Mode 3  f = 7.584 Hz

b(m)

0
10

20

0

5

10

−0.01

0

0.01

L(m)

Mode 4  f = 13.52 Hz

b(m)
0

10
20

0

5

10

−0.01

0

0.01

L(m)

Mode 5  f = 19.705 Hz

b(m)
0

10
20

0

5

10

−0.01

0

0.01

L(m)

Mode 6  f = 20.811 Hz

b(m)

0
10

20

0

5

10

−0.01

0

0.01

L(m)

Mode 7  f = 22.739 Hz

b(m)
0

10
20

0

5

10

−0.01

0

0.01

L(m)

Mode 8  f = 23.539 Hz

b(m)
0

10
20

0

5

10

−0.01

0

0.01

L(m)

Mode 9  f = 26.149 Hz

b(m)

Figure 8: Frequencies and eigenforms below 30 Hz of the girder bridge GB25 of mass mnom considering κ=0.0

Vertical lines of the same colour as the acceleration en-

velopes indicate the maximum admissible circulating speeds

which keep the acceleration levels below admissible limits.

These speed values have been obtained considering that

accelerations 15% higher than the Serviceability Limit of

3.5 m/s2 may still be acceptable, since this limit is affected

by a safety factor of 2.

As can be seen the maximum acceleration values at-

tained in the slab bridges (Figs. 9(c) and (d)) are much

lower than the ones corresponding to the girder bridges of

the same length (Figs. 9(a) and (b)). This fact is related

to the lower mass of the latter typology and also to the

higher values of f1 associated to the slab bridges. At max-

imum speeds up to 270 km/h slab bridges may still exhibit

an acceptable behaviour in terms of vertical accelerations,

whereas the girder bridges may undergo inadmissible ac-

celeration levels at lower speeds, close to 200 km/h. This

latter fact largely justifies why girder bridges are rarely

found in the high speed lines of more recent construction.

The increase of span length has, in general, a benefi-

cial effect in the maximum vibration levels attained at the

highest speeds, due to the increment of mass. However,

as was derived from Fig. 2 there are other factors (e.g.,

d/L ratio, κ) that vary the pattern of resonances, and also

the resonance speeds decrease with the span length and κ.

These effects may mitigate the favourable influence of the

span length. For instance, in Fig.9(a) and (b) the span of

17.5 m exhibits a resonance peak at 408 km/h that sig-

nificantly raises the acceleration levels. Furthermore, at

velocities between 200 km/h and 280 km/h, the dynamic

behaviour of girder bridges in terms of accelerations does

not tend to improve with the span length.

It should also be emphasised that the maximum ac-

celeration levels in all the bridges of study take place at

mid span. This points out the predominant contribution

of eigenforms with one half-sine wave along the load path,

such as the first longitudinal bending mode or the first

torsion one.

5.3. Effect of the contribution of transverse vibration modes

5.3.1. Reinforced concrete slab bridges

The dynamic performance of this type of bridge in

terms of maximum vertical accelerations is mainly gov-

erned by resonances of the first longitudinal bending mode;

11
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Figure 9: Envelopes of acceleration of the bridges of study
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Figure 10: Influence of mode contribution in the prediction of the maximum acceleration levels for slab bridges
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this behaviour is intensified by the increase of the span

length and the reduction of the supports flexibility. This

can be derived from the observation of Fig. 10, which is

explained in what follows.

Fig. 10(a) shows a numerical quantification of the dif-

ferences between the prediction of the maximum accel-

eration levels considering only the longitudinal bending

modes (ab) and the accelerations obtained also consider-

ing the remaining contributions up to the EC frequency

limit (aall). Each marker of the plot represents a differ-

ence in the prediction of these accelerations, evaluated as

(aall − ab)/aall × 100.

In this quotient the maximum acceleration for each

speed Vmax is obtained considering also every lower speed,

i.e. is obtained in the range of velocities [100 km/h, Vmax].

In such way, only the most significant peaks take part in

the evaluation of the relative difference. The speed Vmax is

indicated in the horizontal axis in steps of 3.6 km/h. Also

differences derived from acceleration values being both of

them below 3.5 m/s2 have been excluded from the plot,

since they are not critical for ballast stability.

The shaded area in the range of speeds between 260

km/h and 290 km/h is specially interesting, since the max-

imum acceleration levels are slightly beneath or above 3.5

m/s2 (see Fig. 9) and therefore, significant differences in

the prediction of the acceleration levels within this range

may be crucial for a safe prediction of the admissible speed

limits for this typology. As can be seen the highest differ-

ences appear in the elastically supported cases. EC1 only

allows to ignore the torsion modes when the supports are

rigid, which seems in accordance with these results.

Fig. 10(b) and (c) show the envelopes of vertical ac-

celeration for the two cases in which the highest influence

of modes other than longitudinal bending ones has been

detected. The results show that the predominance of the

first longitudinal bending mode contribution to the maxi-

mum response is evident, and becomes even more signifi-

cant with the increase of the span length.

From the analysis of this typology in terms of the mode

contributions affecting the maximum acceleration levels of

the deck, the following conclusions can be remarked: (i)

the contribution of the first longitudinal bending mode

prevails; (ii) modal contributions different from the first

longitudinal bending and the first torsion mode have little

influence; (iii) the contribution of the first torsion mode

may slightly increase the amplitude levels of the resonances

of the first vertical bending mode; this effect is more clear

in the elastically supported cases. Except in the worst

scenario shown in Fig. 10(b), which correspond to the

shortest slab bridge and the most flexible supports, the

differences between the maximum acceleration computed

just with the longitudinal bending modes and with all the

modes are kept below 14%.

5.3.2. Pre-stressed concrete girder bridges

As previously done for the slab bridges, Fig. 11(a)

shows the numerical quantification of the differences in

the prediction of the maximum acceleration levels when all

the modes are included or only the longitudinal bending

ones, evaluated as (aall−ab)/aall× 100. Since most of the

results fall below 10% and this difference is not significant

to draw practical conclusions, for the sake of clarity the

vertical axis is limited to the range 10%-40%.

From the analysis of the results it can be derived that

the contribution of the first mode to the maximum dy-

namic response is also relevant, though the contribution

of other eigenforms is more noticeable than in the slab

bridges, especially in the cases with flexible supports. Mode

shapes other than the ones that can be predicted with

a simple beam model start to be determinant for spans

longer than 15 m, or even for the spans of 12.5 m when

the most flexible elastic supports are considered. This can

be seen in Fig. 11(a), where all the differences above 15%

correspond to the longest spans (L=[17.5 25]m) and with

very flexible supports (κ=0.1). In these cases resonances of

the first torsion mode increase significantly the maximum
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Figure 11: Influence of mode contribution in the prediction of the maximum acceleration levels for girder bridges

level of vibrations. However, the first resonance peaks that

lead to inadmissible amplitudes due to the contribution of

the torsion mode are usually preceded by resonances of the

first longitudinal bending one, occurring at lower speeds,

which attain similar or higher amplitudes (see Fig. 11(b)

at 260 km/h). The differences in the shaded area of 11(a)

are quite low; they are kept below 10% when the points as-

sociated to the longest spans are excluded. As explained

below, in the longest spans these higher differences are

mainly due to higher frequency modes.

Regarding the contribution of the modes higher than

the first torsion one, it has been observed that they have

little influence in the acceleration envelopes of the shortest

spans. However they may have a significant contribution

in certain cases, which correspond to the bridges of the

longest spans (L=22.5 m, L=25 m) on very flexible elastic

supports (κ = 0.1); this is reflected in Fig. 11(a) with the

highest differences in the plot. The envelopes of maximum

acceleration of the two worst scenarios are shown in Fig.

11(b) and (c); it is important to highlight that this par-

ticular behaviour has only been observed in the bridges of

22.5 m and 25 m of span length when the most flexible

elastic support is considered. As can be seen, despite the

influence of higher frequency modes, the response of the

bridges still becomes inadmissible due to resonances of the

first longitudinal bending mode. Therefore, the prediction

of the admissible speed limits that keep the maximum ac-

celeration levels below 3.5 m/s2 could be also made with

a beam-like model for a preliminary assessment.

As a conclusion, three main ideas can be highlighted

regarding the dynamic behaviour of the studied girder

bridges: (i) the contribution of the first longitudinal bend-

ing mode is significant for the prediction of the maximum

acceleration levels and suffices for a preliminary assesment;

(ii) remarkable resonances of the first torsion mode may

appear in the range of speeds of interest, though they are

not determinant for the prediction of the maximum ad-

missible speeds of circulation since other resonances of the

first longitudinal bending mode occur at lower speeds with

comparable amplitudes; (iii) modes higher than the first

torsion one contribute to the maximum dynamic response

for the longest spans (L=22.5 m, L=25 m) with the most

flexible elastic supports (κ = 0.1).

5.4. Effect of the vertical stiffness of elastomeric bearings

The introduction of the vertical stiffness of the elastic

supports in the numerical models has two main effects in

the prediction of the dynamic behaviour of the bridge: (i)
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reductions of the natural frequencies, and therefore of the

critical speeds, and (ii) variations of the resonance ampli-

tudes, which may increase or diminish due to the alter-

ations experienced by the mode shapes, and to the associ-

ated variation in the free vibration response of the bridge

created by each passing load, as explained in section 2.

5.4.1. Reinforced concrete slab bridges

Regarding the variations of the natural frequencies with

the flexibility of the supports, in the slab bridges a max-

imum reduction of 6% has been found in the frequency

of the first longitudinal bending mode for the elastically

supported cases with κ = 0.1, with respect to the rigid

supported cases. For the first torsion mode differences up

to 22% have been detected; however, as the first mode pre-

vails in the resonance response, this significant frequency

reduction of the first torsion mode is not relevant in terms

of maximum acceleration levels. Fig. 12(c) shows an ex-

ample of the subsequent shift to lower speeds of the res-

onance peaks with the increase of the supports flexibility.

A particular resonance of the first bending mode which is

clearly above 3.5 m/s2 only when the supports are consid-

ered as rigid has been marked with vertical arrows.

As regards the influence of κ on the amplitude of the

resonances, Fig. 12(a) shows another numerical quantifi-

cation; in this case the maximum acceleration levels con-

sidering the highest flexibility of the supports (a0.1) are

compared with the ones obtained with rigid supports (a),

using the expression (a0.1−a)/a×100. This comparison is

made separately for the accelerations predicted with only

bending modes, the first bending and torsion modes and

all the mode contributions up to the limit prescribed by

EC. Also, differences derived from accelerations that are

both below 3.5 m/s2 are excluded from the plot. In this

case, in a view to evaluate the sole influence of κ in the

amplitude of identical resonances, maximum accelerations

up to each speed are obtained considering also every lower

speed as in Fig. 10(a) and 11(a), but are rather displayed

in terms of nondimensional speed [V/(2f1L)]max as shown

in Fig. 12(a).

The vertical dotted trace in Fig. 12(a) indicates the

position of Kc
11. As can be seen all the differences are neg-

ative and are located above this value, meaning that reso-

nance peaks with associated inadmissible acceleration lev-

els take place at speeds higher than the ones corresponding

to the first cancellation of the first longitudinal bending

mode. As the contribution of this mode prevails for this

type of bridge, according to Eq.(11) the resonance ampli-

tudes should attain higher values if the vertical stiffness of

the elastic bearings is neglected. This fact is in accordance

with the negative differences shown in Fig. 12(a).

Fig. 12(b) and (c) show the envelopes of maximum

acceleration of the slab bridge with the highest influence

of κ on the resonance amplitudes; they are plotted versus

V/(2f1L) and V , respectively. As predicted by Eq. (11)

the resonance peaks derived from a numerical model with

rigid supports are higher, followed by the values predicted

with κ=0.05 and κ=0.1.

The reduction of the natural frequencies caused by the

flexibility of the supports may lead to the appearance of

new resonances at the highest speeds of the range of inter-

est, which are not present in the S-S case. However, the

only effect of the reduction of the resonance speeds could

be compensated by increasing in 6% the circulating speeds

of the trains for the prediction of the acceleration levels in

the S-S model. In this regard, the 1.2 factor affecting the

speed that EC1 prescribes also intends to take into account

the uncertainty regarding the natural frequencies.

The previous results show that, under important un-

certainties in the determination of the vertical stiffness of

the elastomeric bearings, a safe and conservative predic-

tion of the maximum acceleration values may be achieved

neglecting the flexibility of these elements and assuming

them as rigid instead. The supports flexibility may lead

to maximum reductions of the resonance amplitudes of

28%.
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Figure 12: Influence of κ in the prediction of the maximum acceleration levels for the slab bridges
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Figure 13: Influence of κ in the prediction of the maximum acceleration levels for the slab bridges
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5.4.2. Pre-stressed concrete girder bridges

In the girder bridges the frequency differences of the

first two mode shapes with respect to the rigid supported

case are of the same order, and close to 6% when the most

flexible elastic support is considered. Since the variations

of natural frequencies lead to subsequent reductions of the

resonance speeds, new acceleration peaks may appear in

the range of speeds of interest when the elastomeric bear-

ings are included in the numerical models. Nevertheless,

as mentioned above, the dynamic analyses should be per-

formed at speeds of circulation up to 20% higher than the

maximum design velocity of the line, which is a consider-

ably larger margin than the uncertainty in the determina-

tion of the resonance speeds due to the flexibility of the

supports.

The influence of κ in the prediction of the maximum

acceleration levels has also been quantified as in the previ-

ous section, with the expression (a0.1−a)/a×100. The re-

sults are shown in Fig. 13(a). As can be seen, in the girder

bridges resonances leading to inadmissible levels of vertical

acceleration can also be found at speeds right above the

corresponding to the second cancellation (Kc
12).

As the contribution of the first mode is very signifi-

cant in the maximum dynamic response, the pattern of the

resonance amplitudes observed in the E-S beam matches

reasonably well the results shown in Fig. 13(a). Most

of the differences found at speeds above (Kc
11) are nega-

tive, meaning that the maximum acceleration peaks attain

higher amplitudes when the supports are rigid. Some ex-

ceptions can be found in the plot, as in the case of the

positive differences found in the girder bridge of 15 m of

span; the acceleration envelopes including the contribu-

tion of all the modes prescribed by EC are shown in Fig.

13(b). These positive differences are only caused by the

way in which the acceleration curves are compared. As

can be seen in Fig.13(b)in the range V/(2f1L)= [0.3 0.38]

the resonance peak with the highest amplitude for κ=0.1

is the one occuring at V/(2f1L)= 0.3, while the accelera-

tion values for κ=0 are lower. At speeds above Kc
11=1/3,

although it is clear from Fig.13(b) that the acceleration en-

velope obtained with rigid supports (grey curve) predicts

higher amplitudes than the one with κ=0.1 (black curve),

the results in Fig.13(a) do not switch to negative values

until the grey envelope overcomes the resonance peak at

V/(2f1L)= 0.3.

In the range of speeds between Km
12 and Kc

11 inadmis-

sible acceleration levels caused by resonances of the first

bending mode can also be found, especially for the spans

between 15 and 25 m, where the introduction of the flex-

ibility of the supports (κ > 0) in the numerical model

raises the predicted resonance acceleration levels and, sub-

sequently, most of the differences shown in Fig. 13(a) are

positive. For reasons similar to the ones previously men-

tioned, some case studies do not follow the pattern pre-

dicted by Eq. (12): Fig. 13(c) shows a bridge of 20 m span

in which a resonance peak at V/(2f1L)= 0.25 predicted

with κ=0., is causing that in the range V/(2f1L)=[0.25

0.42] the corresponding markers in Fig. 13(a) are negative

instead. Finally, between Kc
12 and Km

11 the markers in Fig.

(a) are negative, which is also in accordance with Eq. (11).

In general Eqs. (11) and (12) will predict consistently

whether the model with rigid supports is more conserva-

tive than the one with elastic supports or vice versa for

each resonant peak. If the comparison includes every lower

speed, the exceptions found here should be taken into ac-

count.

The results reveal that the influence of the supports

flexibility on the resonance amplitudes is significant, differ-

ences up to 40% have been found when comparing the res-

onance amplitudes predicted under variations of the sup-

ports flexibility. However there is not a clear conclusion

in what concerns the convenience of including the elas-

tic supports in the numerical model for a safe prediction

of the maximum acceleration levels, since the resonance

speed plays an important role. Under high uncertainties

in the estimation of the supports flexibility, considering
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both rigid and flexible supports for the prediction of the

maximum acceleration levels is recommended.

6. Conclusions

With the increase of the speed of railway vehicles a

number of conventional lines are adapted for the circula-

tion at higher velocities and then, the dynamic simula-

tion of existing bridges subjected to these new operating

speeds is required to ensure traffic safety. In this contri-

bution the dynamic behavior of several simply supported

bridges of some of the typologies traditionally found cover-

ing short-to-medium span lengths in conventional lines has

been studied, in a view to give a response to several crit-

ical aspects for the implementation of numerical models,

which are the influence of both the transverse vibration

modes and the flexibility of elastomeric bearings in the

prediction of the maximum vertical acceleration levels in

the deck. After the dynamic simulation of an extensive

set of bridges under the passage of high-speed trains the

following conclusions may be outlined:

- As it is known, girder bridges exhibit a poor behaviour

at high speeds. This largely justifies why they are rarely

found in most high-speed lines of more recent construc-

tion. This work shows that they may undergo inadmis-

sible vertical accelerations at speeds even close to 200

km/h. The behaviour of slab bridges in terms of verti-

cal acceleration at high speeds is better than the former

typology. The speed of circulation in these bridges may

attain 270 km/h without experiencing excessive vibra-

tion problems. Although slab bridges experience a bet-

ter performance in terms of vertical accelerations, other

factors such as deck cracking due to the increase of the

operating speed, may cause that fatigue problems be de-

terminant for the dynamic performance and should be

analysed.

- Planar beam models are useful for the verification of

the Serviceability Limit State of vertical accelerations

in slab bridges, since their dynamic behaviour is mainly

governed by resonances of the first longitudinal bending

mode and the contribution of other eigenforms is less

significant. Regarding girder bridges, their dynamic be-

haviour in terms of vertical accelerations becomes inad-

missible due to resonances of the first longitudinal bend-

ing mode as well, but also acceleration peaks caused by

resonances of the first torsion mode and other three-

dimensional modes may attain significant levels. This

is more noticeable as the span length and the supports

flexibility increases. Beam-like numerical models may

be a useful approach for a preliminary assessment of

the maximum acceleration levels according to building

codes such as EC, though not for an accurate prediction

of the acceleration response in cases with very flexible

supports.

- When the conditions established by EC1 to use planar

models are met (i.e., frequency of the first torsion mode

1.2 times higher than the frequency of the first longitu-

dinal bending mode, for non skewed beam or plate type

decks on rigid supports), the contribution of the first

torsion mode or other three-dimensional modes can be

neglected even though their frequencies fall below the

criteria recommended by EC (i.e., modes with frequen-

cies up to the greater of (i) 30 Hz, (ii) 1.5 times the fre-

quency of the fundamental mode or (iii) the frequency

of the third one, should be considered for an accurate

mode superposition analysis according to EC).

- The introduction of the vertical flexibility of the elas-

tomeric bearings in the numerical models does not guar-

antee a conservative prediction of the dynamic response,

since it leads to variations of the resonance amplitudes

that increase or diminish with the bearings vertical flex-

ibility. Simple conditions have been provided to deter-

mine a priori the evolution of the resonances of the fun-

damental mode with the flexibility of the supports, and

can be useful to ascertain wheter the uncertainty in the

estimation of this parameter could be determinant for a
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safe prediction of the maximum acceleration levels.
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