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 
Abstract—A new parameters determination method for 

squirrel-cage induction motors is presented. As a main contri-
bution, the method uses the instantaneous electrical power and 
the mechanical speed measured in a free acceleration test to 
estimate the double-cage model parameters. The parameters are 
estimated from the machine impedance calculated at several 
points: (1) at speed points where the double-cage effect is signif-
icant, i.e., between the zero speed point and the maximum 
torque point, the machine impedance is evaluated by the instan-
taneous power method and (2) at speed points where the double-
cage effect is not significant, i.e., between the maximum torque 
point and synchronism, the machine impedance is evaluated by 
a dynamic model based linear least square method. The pro-
posed method has been applied to obtain the parameters of 
three motors tested in the laboratory. To check the method ac-
curacy, the steady-state torque- and current-slip curves predict-
ed by the estimated parameters are successfully compared with 
those measured in the laboratory.  

 
Index Terms—Parameters estimation, double-cage model, 

starting transient measurements. 

I.  INTRODUCTION 
HE accuracy of the motor parameters in simulations is 
crucial for performance prediction during a system dis-

turbance, during the motor starting or when advanced control 
techniques are used. An important review of induction motor 
estimation techniques can be found in [1].  

The main parameter estimation techniques from experi-
mental measurements are based on: 
 Steady-state measurements [2]-[9]. 
 Variable frequency measurements [10]-[13]. 
 Transient measurements [14]-[26]. 
The simplest and most common parameter estimation pro-

cedures are based on steady-state measurements. Ref. [11] 
gives a brief introduction to these techniques based on dc, no-
load and short-circuit tests. Moreover, two standards for this 
kind of procedures [2][3]. IEEE Std-112 [2] and IEC Rotating 
Electrical machines-Part 28 [3] describe the most usual pa-
rameter estimation methods, which are based on short-circuit 
and no-load tests. Finally, advances in steady-state parameter 
estimation via linear regression can be found in [4]. Regard-
ing the double-cage model, the minimum number of parame-
ters that characterize the double-cage model is studied in [6], 
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whereas parameter estimation procedures based on steady-
state data are presented in [7][8]. The 
Matlab/Simulink function “Power Asynchronous Machine 
Params” [9] is based on the above works.  

Methods based on variable frequency tests can be divided 
into two types: those using sources with tunable voltage and 
frequency [10][11], and those using sources with PWM volt-
age waveforms [12][13]. 

Finally, methods based on transient measurements can be 
classified into four categories:  
 Kalman filter methods [14]-[16]. 
 Linear least square methods [17]-[21]. 
 Non-linear least square methods [22]-[25]. 
 Instantaneous rms methods [26]-[27]. 
The extended Kalman filter allows optimal state estimation 

of non-linear systems in the presence of noise. Linear least 
square (LLSQ) methods manipulate electric machine differ-
ential equations to eliminate the non-measurable rotor magni-
tudes (rotor currents and fluxes). In non-linear least square 
methods, an error function is calculated from measured and 
simulated currents. These techniques have a large computa-
tional burden because each error function evaluation requires 
a transient simulation. The minimization of this error func-
tion leads to different parameters estimation approaches. Oth-
er methodologies use instantaneous rms current measure-
ments as steady-state values. 

All of these methodologies are largely applied to the single-
cage model parameters estimation (Fig. 1a). Usually, this 
model can be adequate for some small squirrel-cage motors or 
for wound rotor motors, but a double-cage model (Fig. 1b) 
can be necessary to justify the experimental starting torque 
and current measurements in small, medium and large motors 
[28]. Despite the double-cage model parameters estimation is 
not a new topic in the literature, the estimation methods based 
on transient measurements have been only applied in the past 
to the single-cage model. Only [29] mentions the double-cage 
model parameters estimation problem based on transient data, 
but does not provide a clear methodology to perform the esti-
mation. 

The main objective of this paper is to present a clear novel 
methodology for the double-cage model parameters estima-
tion using the instantaneous voltages, currents and speed 
measured in a free acceleration test. 

Hengameh Kojooyan-Jafari, Lluis Monjo, Student Member, IEEE, Felipe Córcoles, Joaquin Pedra, 
Member, IEEE 

Using the instantaneous power of a free acceleration 
test for squirrel-cage motor parameters estimation  

T

mailto:lluis.monjo@upc.edu,
mailto:les@ee.upc.es,
mailto:pedra@ee.upc.es).


 2

TABLE I 
CATALOGUE DATA OF TESTED SQUIRREL-CAGE INDUCTION MOTORS 

Motor PN 
(kW) 

UN 
(V) 

fN 
(Hz) 

PFN N 
(r/min) 

N 
(%) 

TMAX 

/TN 
TST 

/TN 
IST 

/IN 
J 

(kg·m2) 
#1 75 400 50 0.86 1480 93.6 4.7 3.8 5.9 4.9 

#2 37 400 50 0.83 985 92.3 4.0 4.6 5.8 3.1 

#3 1.5 400 50 0.69 940 79.1 2.3 1.7 3.9 0.115* 

#4 2.2 400 50 0.80 1430 86.0 2.6 2.3 6.3 0.200* 

#5 2.2 400 50 0.75 950 86.7 3.4 3.1 7.1 0.193* 

* These values include the inertia of the DC machine connected to the shaft of 
the squirrel-cage induction motor. 

II.  INDUCTION MOTOR MODEL 

A.  Steady-State Modeling 
The circles in Fig. 2 represent the steady-state torque and 

current of two medium-sized ABB motors measured by the 
manufacturer (the catalogue data are summarized in Table I). 
Table II contains the single- and double-cage model parame-
ters estimated from these steady-state measurements [7]. The 
curves predicted by both models are also plotted in Fig. 2. As 
expected, the double-cage model (solid line) exhibits a good 
agreement between measurements and predictions whereas 
the single-cage model (dotted line) only provides accurate 
results between the maximum torque point and the synchro-
nous speed. Fig. 2 clearly shows that both motors should be 

represented with a double-cage model [28]. The figure also 
contains with discontinuous lines the predicted curves with 
the proposed method in this paper: a double-cage model from 
estimated a free acceleration test. We will return to these 
curves in Subsection III.E. 

B.  Transient Modeling 
The dynamic equations of the single-cage induction motor 

model in the synchronous reference frame are 

 

    
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s r r r

*
s r m

jω jω

0 j ω j ω

2 Im , ω ω ω,

    

    

   

v R L p i M p i

M p s i R L p s i

T t M i i s

 (1) 

where  is the number of pole pairs,  is the synchronous 
speed, m is the mechanical speed, s is the slip. The self and 
mutual inductances are calculated as: 

   m s sd m r rd mω  ;  ω  ;  ω.    M X L X X L X X (2) 

The dynamic equations of the double-cage induction motor 
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Fig. 1.  Steady-state star equivalent circuit for the (a) single-cage and (b) dou-
ble-cage models of the squirrel-cage induction motor. 
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Fig. 2.  Measured (marked with circles) and predicted torque- and current-slip curves for motors #1 and #2. Models used for torque and current prediction: single-
cage model from steady-state measurements (dotted line), double-cage model from steady-state measurements (solid line) and double-cage model from a free accel-
eration test (discontinuous line). 
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model in the synchronous reference frame are 

 

      
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where the self and mutual inductances are calculated as: 

 
 

   
m s sd m

1 1d m 2 2d m

ω ; ω

ω ; ω.

  

   

M X L X X

L X X L X X
 (4) 

The relation between the above complex variables and the 
Park variables (dq components) is  

 sd sq
s

j
; , .

2


 

x x
x x v i  (5) 

The instantaneous stator currents and voltages can be 
transformed into the Park variables according to next rela-

tions: 

 

sd sa sb sc

sq sa sb sc

2 2π 2πcos θ cos θ cos θ
3 3 3

2 2π 2π= sin θ sin θ sin θ
3 3 3

, ,

            
    
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    



x x x x

x x x x
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 (6) 

where θ is the Park’s transformation angle: θ = ω·t. 

III.  PROPOSED METHOD  

Fig. 3 shows the torque, direct and quadrature stator cur-
rents, and the mechanical speed obtained by simulation of a 
free-acceleration test at rated voltage on motors #1 and #2. 
All these data are labeled as ‘exact’ in contrast to the ‘meas-
ured’ or ‘estimated’ data in Fig. 4 to Fig. 6. The motors have 
been simulated with the double-cage model parameters in 
Table II, and with the catalogue rotor inertia of Table I. The 
instantaneous dq stator currents and mechanical speed in Fig. 
3 are the data used for the parameters estimation method pro-

TABLE II 
SINGLE- AND DOUBLE-CAGE MODEL PARAMETERS IN PU ESTIMATED FROM THE MANUFACTURER STEADY-STATE MEASUREMENTS IN FIG. 2 (SB = PN, 

UB = UN, ZB = UB2 / SB) 
 Single-cage model Double-cage model 

Motor rs  xsd = xrd xm rr rs  xsd = x2d xm r1 x1d r2 
#1  0.0280 0.0810 1.5156 0.0169 0.0544 0.0474 1.9051 0.0182 0.1108 0.1964 
#2 0.0716 0.0633 2.1839 0.0150 0.0647 0.0379 1.9587 0.0166 0.1416 0.1092 
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Fig. 3. Exact (calculated by simulation) instantaneous torque, direct and quadrature stator currents, and mechanical speed in a free acceleration test on motors #1 and #2. 
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posed in this paper as will be shown in next subsections. 

A.  Description and Justification of the Proposed Method 
The proposed estimation method estimates the steady-state 

machine impedance at specific slip points sk, i.e. estimates the 
values of Zmeas(sk) from the instantaneous data measured in a 
free-acceleration test, such as that in Fig. 3. Subsequently, the 
parameters of the double-cage model are estimated from the 
previous estimated steady-state machine impedances. The 
selection of the impedances is justified with the transient 
event in Fig. 3. The torque-time plot shows four data zones 
which correspond to different electromagnetic events. 

Zone #0 presents large oscillations due to the initial elec-
tromagnetic transient. Zone #1 is the acceleration zone, 
where the instantaneous rms currents at any slip are similar 
to those of the steady-state currents at such slip. This is also 
the zone where the double-cage effect is more evident, i.e., 
large torques at large slips. Zone #2 corresponds to the zone 
between the maximum torque point and the steady-state re-
gime point near synchronism. Finally, Zone #3 corresponds to 
the steady-state regime.  

The instantaneous power method proposed in this paper 
evaluates the instantaneous active and reactive powers con-
sumed by the motor from the measured voltages and currents 
as: 

 

     
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 (7) 

Let us define the instantaneous machine impedance, which 
is determined from the instantaneous measured active and 
reactive powers of (7) as: 

    
   

23
.

j



U t

Z t
P t Q t

 (8) 

The validity of the above instantaneous machine impedance 
is analyzed by estimation of the instantaneous torque as fol-
lows,  

      
 

2
s

s

3
.

ω





P t R I t
T t  (9) 

Fig. 4a compares the estimated instantaneous torque from 
(9) with the exact dynamic torque. It can be observed that the 
estimated torque from (9) is a good indicator of the dynamic 
torque in zones #1, #2 and #3, (where the instantaneous 
torque oscillations have vanished), while only can predict the 

average instantaneous torque in Zone #0 because it is based 
on the averaged values in (7).  

However, as the estimation method proposed in this paper 
is based on the steady-state impedance, it is not clear if the 
instantaneous impedance in (8) matches up with the steady-
state impedance or not. In other words, if the instantaneous 
torque in (9) matches up with the steady-state torque. This 
comparison is made in Fig. 4b, where it can be observed the 
great similitude between both torques inside zones #0 and #1, 
despite small oscillations near zero speed. These small torque 
oscillations can be reduced if the active and reactive instanta-
neous power are previously smoothed [21], as shown in Fig. 
4c. On the contrary, the instantaneous and the steady-state 
torque do not fit inside zones #2 and #3, as the maximum 
steady-state torque is greater than the maximum instantane-
ous torque (this phenomenon is always produced, as pointed 
out in [4]). As a consequence, the smoothed estimated torque 
from (9) is a good indicator of the steady-state torque only in 
zones #0 and #1 and, therefore, the smoothed instantaneous 
impedance from (8) can be a good approximation for the 
steady-state machine impedance in zones #0 and #1, where 
the double-cage effect is apparent. 

A different method is required to estimate the (steady-state) 
machine impedance in zones #2 and #3, as the smoothed in-
stantaneous impedance from (8) seems to be a bad indicator 
for such impedance. The results in Fig. 2 provide the solu-
tion: the torque predicted by the single- and double-cage 
models in zones #2 and #3 are very similar and exhibit a good 
agreement with that measured. Thus, the parameters of the 
single-cage model in zones #2 and #3 are calculated with the 
dynamic model based linear least square (LLSQ) method in 
[21] and, subsequently the machine impedance at specific slip 
points is evaluated from the estimated single-cage model. 

In summary, the estimation procedure is composed by the 
following three steps. The first step (Section III.B) uses the 
data in zones #0 and #1 to evaluate the machine impedances 
at specific slip points. The method used in this step is called 
the instantaneous power method. The second step (Section 
III.C) uses the data in zones #2 and #3 to fit the parameters of 
a single-cage model by using the dynamic model based LLSQ 
algorithm in [21]. The machine impedance at specific slip 
points is evaluated from the estimated single-cage model pa-
rameters. In the third step (Section III.D), the parameters of a 
double-cage model able in all the slip range (from s = 0 to s = 
1) are fit to the machine impedances calculated in the previ-
ous steps. 

B.  Step 1: Estimation of the Machine Impedance in Zones #0 
and #1 by the Instantaneous Power Method 

The machine impedance at specific slip points sk = s(tk) is 
determined from the measured active and reactive power of 
(7) as: 

      
23

.
j




k
k k

k k

U
Z s

P s Q s
 (10) 
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It is worth noting that measured active and reactive power 
must be smoothed before being used in the above expression. 

C.  Step 2: Estimation of the Machine Impedance in Zones #2 
and #3 by the dynamic model based LLSQ method in [21] 

The main limitation in squirrel-cage induction motor pa-
rameters determination is the fact that the rotor currents are 
non-measurable. The single-cage model allows equations to 
be rewritten without using the rotor magnitudes [17]-[21]. It 
is worth noting that no similar deduction for the double-cage 
model has been found in the literature. For this reason, the 
double-cage model machine impedance is measured in the 
previous subsection in an indirect way by means of the in-
stantaneous power method. 

Ref. [21] uses an approximation of the rotor flux to im-
prove the estimation procedure accuracy. This approach is 
used in the current paper and repeated here for clarity. 

The elimination of the non-measurable rotor currents in (1) 
leads to the following set of linear equations: 
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Fig. 4.  (a) Exact (calculated by simulation) instantaneous and estimated torque, (b) exact (calculated by simulation) steady-state torque and estimated torque, and 
(c) exact (calculated by simulation) steady-state torque and smoothed estimated torque for motors #1 and #2. 



 6

 

 

sq
q1 q2 sq q3 mec sd q4 sd

mec
q5 mec sd sq q6 sq

d
; ; ω ω ; ω

d
d d ω1ω ω ;
dt ω d

    

 
       

 

sq

i
a a i a i a i

t
v

a v v a v
t

 (14) 

 
 

 

2
sq sd

q mec2

mec
mec sq sd

d d
2ω ω

dd
d ω

ω ω ω .
d

    


  

i i
b

tt

i i
t

  (15) 

Use of n data points leads to the following overdetermined 
linear system: 
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which can be rewritten as 

 .Ax = b  (17) 

This overdetermined linear system is solved by the least 
square regression method 

   ,
-1t tx = A A A b  (18) 

where the estimated parameters are x = (K1, K2, K31, K32, K4, 
K5). The electrical parameters are calculated from the above 
parameters by considering the restriction Lsd = Lrd [6]:  

 
  25

s r s
32 4 s

s s 31 r r 32 sd rd s

1; ; 1

; ; .

 

 

    

    

K
L L M L

K K L
R L K R L K L L L M

 (19) 

The machine impedance at specific slip points sk in the 
range between the maximum torque point and the synchro-

nous speed are determined by using the single-cage model 
estimated parameters  s r sd rd m, , , ,R R X X X  as, 

   s sd

m r rd

1j .
1 1

j j

  




k

k

Z s R X

X R s X

 (20) 

D.  Step 3: Double-Cage Model Parameters Determination 
Two sets of machine impedances at different slips are esti-

mated: 
In this third step, the two sets of evaluated impedances in 

steps 1 and 2 are used to estimate the double-cage model pa-
rameters. This model has six unknown parameters, 

s r1 r2 sd 1d 2d m, , , , , ,R R R X X X X , as it has been assumed that 

sd 2dX X  [6]. The impedance at the slip point sk is 

 
 
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s sd

m 1 1d 2 2d

1j
1 1 1

j j j
, j , ,
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 

 

 

k

k k

k k k

Z s R X

X R s X R s X
Z s R s X sx x

 (21) 

where  s 1 2 sd m 1d, , , , ,R R R X X Xx .  
The parameters are estimated by solving the minimization 

problem 

        2 2
R X

1

min min ε , ε , ,


 
  

 


N

k k k k k
k

F w s sx x x  (22) 

where N is the number of points, wk is the weight given to any 
point (all weights in this paper are given to unity), and the 
error functions are defined as 
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Fig. 5.  Exact (calculated by simulation) and estimated resistance- and reactance-slip curves for #motor 1 and #motor 2. 

TABLE III 
DOUBLE-CAGE MODEL PARAMETERS IN PU ESTIMATED FROM THE FREE 

ACCELERATION TEST (SB = PN, UB = UN, ZB = UB2 / SB) 
Motor rs  xsd = x2d xm r1 x1d r2 

#1  0.0548 0.0501 1.5011 0.0183 0.1119 0.1788 
#2  0.0647 0.0394 1.6997 0.0161 0.1449 0.1030 
#3 0.0363 0.0696 1.0781 0.0331 0.0812 0.2874 
#4 0.0268 0.0562 1.1500 0.0254 0.0738 0.1698 
#5 0.0359 0.0861 1.0202 0.0314 0.1149 0.1701 
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k k

R s R s X s X s
R s X s

x x
 (23) 

The Matlab routine lsqnonlin [30] is used in this paper 
to solve (22).  

E.  Estimation Results Analysis 
Table III contains the parameters estimated using the free-

acceleration test of motors #1 and #2. Fig. 2 shows the 
torque- and current-slip curves predicted with these parame-
ters (discontinuous line). It can be observed that the results 

predicted by the proposed method exhibit a good agreement 
with the experimental measurements. 

Fig. 5 compares the “exact” resistance and reactance values 
calculated with the double-cage model in Table II with those 
predicted in the step 1 (circles), in the step 2 (triangles) and 
by the double-cage model parameters of Table III.  

IV.  EXPERIMENTAL VALIDATION 
To validate the proposed method, motors #3, #4 and #5 in  

Table I were tested in the laboratory at a reduced voltage in 
order to avoid leakage reactances saturation during the 
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Fig. 6. Measured and estimated direct and quadrature stator currents and mechanical speed in a free acceleration test at reduced voltages on motors #3, #4 and #5. 
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steady-state and transient tests. The voltage used in all the 
tests was 0.52UN for motor #1, 0.24UN for motor #2 and 
0.28UN for motor #3. These reduced voltages draw the rated 
current at zero speed. Fig. 6 shows the free acceleration test 
(at reduced voltage) of the three motors, whose measured data 
is used to calculate the double-cage model parameters in Ta-
ble III.  

Fig. 7 shows with circles the steady-state torque- and cur-
rent-slip curves at rated voltage. Despite these measurements 
were taken at the mentioned reduced voltages, they have been 
subsequently prorated to rated values for comparison purpos-
es: 

 
2

N N
prorated measured prorated measured; ,    

   
   

U U
T T I I

U U
 (24) 

where UN is the nominal value [31]. 
Fig. 7 also shows the estimated torque- and current-slip 

curves calculated with the parameters in Table III (solid 
lines). As can be seen, the agreement between the predicted 
and measured torque and current curves in the three motors is 
excellent. 

V.  CONCLUSIONS 
This paper presents a new parameter estimation method for 
the double-cage model of squirrel-cage induction machines 
which uses the instantaneous stator voltages, currents and the 
mechanical speed in a free acceleration test. Firstly, the first 
set of machine impedances is calculated by the instantaneous 
power method, using the data in the range between the max-
imum torque point and the zero speed point (zones #0 and 
#1). The second set of machine impedances is obtained from 
a single-cage dynamic model based on a LLSQ method, esti-
mated with the data in the range between the maximum 
torque point and the steady-state speed point (zones #2 and 
#3). Lastly, the parameters of the double-cage model are fit to 
the estimated values of the machine impedances by a least 
square algorithm.  

The method was tested in the laboratory with three motors. 
The steady-state torque- and current-slip curves predicted 
with the estimated parameters and those measured in the la-
boratory show an excellent agreement.  
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