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Abstract: This paper studies parasitic torques in steady-state torque-slip curves of squirrel-cage 

induction motors. The curves of nine motors (small, medium and large size units), three of which 

were measured in the range s = 2 to s = 0, are analyzed. The torque-slip curves of eight of these 

nine motors differ significantly from the smooth curves predicted by the classical single- and 

double-cage models: a torque dip at large slips in the motoring regime and a noticeable torque 

increase in the braking regime occur. As parasitic torques have been traditionally associated with 

space harmonics, two single-cage chain models (which consider the space harmonics) are tested to 

fit the measured torque and current of the three measured motors: one neglects the skin effect, 

leading to the wrong torque prediction while the other (the classical chain model in the literature) 

considers the skin effect, leading to an accurate torque prediction. 

 

 

1 Introduction 

Since the squirrel-cage induction motor became the most common industrial load, manufacturers have 

accumulated large amounts of data on torque- and current-slip curves. 

Generally, measured curves can be approximated by the classical single- and double-cage induction machine 

models. However, a considerable number of motors have torque irregularities (also called parasitic torques) near 

zero speed in the torque-slip curve [1][2]. Table 1 contains manufacturer data of the nine motors considered in 

this paper. The parasitic torques are illustrated in the small size motor curves of Fig. 1 (laboratory measurements 

of motors #1, #2 and #3 made by the authors) and in the medium size motor curves of Fig. 2 (manufacturer 

measurements of motors #4, #5 and #6). More evidence of torque irregularities can be found using software tools 

provided by some manufacturers [3][4]. These tools plot or provide data about torque- and current-slip curves of 

their motors, where torque irregularities can be easily detected for some motors. For instance, Fig. 3 shows the 

curves of motor #7 (obtained from [3]), where parasitic torques are evident. Another example can be found for 



Table 1 Manufacturer data of squirrel-cage induction motors 

Motor PN (kW) UN (V) fN (Hz) PFN N (r/min) N (%) TMAX/TN TST/TN TMIN/TN IST/IN 

#1 1.5 400 50 0.69 950 79.1 2.3 1.7 1.5 3.9 

#2 4 400 50 0.80 1430 86.0 2.6 2.3 1.4 6.3 

#3 4 400 50 0.75 1445 86.7 3.4 3.1 2.5 7.1 

#4 15 400 50 0.81 985 91.0 2.8 2.1 1.5 6.6 

#5 30 400 50 0.85 1475 92.0 2.2 2.4 1.7 5.0 

#6 45 400 50 0.89 2960 94.1 2.8 3.0 2.2 7.1 

#7 88 400 50 0.84 1479 94.7 3.4 3.2 2.0 7.6 
#8 250 400 50 0.86 1490 97.0 2.4 1.4 1.1 8.0 
#9 500 400 50 0.88 1488 95.8 2.4 2.1 1.8 6.5 

 

the large size motors #8 and #9 (obtained from [4]), where the minimum torque is lower than the starting torque 

(TMIN / TST is 0.78 and 0.86, respectively, Table 1). This is indicative of a torque-slip curve similar to that of the 

motors in Fig. 1, Fig. 2 and Fig. 3. 

Fig. 1 and Fig. 2 also show that the classical double-cage model parameters (solid lines) estimated from the 

measurements clearly fail to predict the data measured for five of the six motors, and that the classical single-

cage model parameters (broken lines) provide an even worse prediction for the six motors. 

The notable differences between theoretical and experimental torque/speed curves have been pointed out in 

the classical literature [1][5]-[8], and are generally associated with space harmonics. A thorough analysis of this 

outdated topic reveals that a combination of effects is responsible for the parasitic torques: space harmonics due 

to slot openings, leakage and main flux path saturation, skin effect and rotor eccentricity, among others [1][5][8]-

[14]. A priori, the quality of the air-gap field should depend on the motor size and design. However, there are no 
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 Fig. 1 Measured torque- and current-slip data (circles) for the three tested small size motors. Curves estimated with the classical single-

and double-cage models (broken and solid lines, respectively) are also drawn. Note that the measured range has been extended to the 

braking regime (shaded area). 



significant differences between the torque curve shapes of the low and medium size motors of Fig. 1, Fig. 2 and 

Fig. 3 and those that can be guessed for the large size motors #8 and #9 in Table 1. 

The available models to study squirrel-cage motors in the presence of space harmonic effects can be 

categorized into three groups: 

 Accurate electromagnetic models, e.g., finite-element method models. These models are usually chosen in 

 

 

Fig. 3 Torque- and current-slip curves provided by the manufacturer software for motor #7 [3]. 
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Fig. 2 Measured torque- and current-slip data (circles) for the three tested medium size motors. Curves estimated with the classical single-

and double-cage models (broken and solid lines, respectively) are also drawn. 



the stage design and require the use of manufacturer confidential data. 

 Models which include not only the number of stator turns and rotor bars in slots (winding harmonics), but 

also air-gap permeance variation (slot harmonics) [1][8]-[14]. The complexity of such models is outside 

the scope of this paper. 

 Simplistic steady-state equivalent circuits, i.e., the chain models in Fig. 5c-d. These models are 

numerically efficient and provide accurate steady-state torque- and current-slip curves. 

This paper focuses on the third type of models. An accurate prediction of their torque and current is required 

in the next practical cases: 

− Calculation of motor starting time, mainly when constant power loads are driven (loads with high starting 

torque requirement). 

− Prediction of stator current consumption and rotor speed stability in case of a large speed drop due to a 

voltage sag [15].  

− Use of aggregated motor models for power system studies. 

In this paper, the steady-state torque and current of motors #1, #2 and #3 operating in the braking and 

motoring regimes are measured, and a set of parameters for the steady-state equivalent circuit (which must be 

valid for both regimes) is searched for. Two sets of estimated parameters failed in the torque-slip curve 

prediction. In the first, the classical single- and double-cage models were used whereas in the second, the single-

cage chain model, which considers the space harmonics but neglects the skin effect, was employed. Finally, the 

classical single-cage chain model (which includes both space harmonics and skin effect, and was proposed in the 

early 60’s [5]-[7][16]) successfully predicts the measured data.  

Despite the great number of references to the classical single-cage chain model [1][2][5]-[8][14], few studies 

in the literature fit this model to measurements, i.e., its ability to predict measured machine behaviour in the 

presence of space harmonic effects has not been evaluated. 

 

2 Torque irregularities background 

Despite the good agreement between measured torques and currents and smooth curves predicted by the 

classical single- and double-cage models, the torque-slip curve of some squirrel-cage motors has irregularities 

(i.e., torque dips and cusps at large slips) which cannot be predicted by these models [1]. This is the case of 

motors #2 to #9.  

The torque-slip curve of the classical models is smooth because it is assumed that stator and rotor windings 

are sinusoidally distributed. As a consequence, the air-gap magnetomotive force (mmf) and flux density 

generated by a winding are also sinusoidally distributed. However, because of the (1) non-sinusoidal winding 

distribution, (2) slotting and (3) machine saturation, the resulting air-gap flux density becomes a non-sinusoidal 

function. This is translated into harmonic torques (also called parasitic torques), which may be of considerable 

amplitude [1]. It was observed that, for some stator and rotor slot combinations, harmonic torques could 

seriously impair (or even prevent) motor start up. This is known as crawling. Indeed, pronounced irregularities at 

large slips and in the braking regime (also known as hooks) were reported experimentally [5]-[8]. Some authors 

tried to explain this behaviour analytically and make rules to prevent its occurrence [1][8]. 

 



3 Laboratory measurements 

The squirrel-cage motors #1, #2 and #3 were tested by the authors in the laboratory whereas motors #4, #5 and 

#6 were tested by the manufacturer. The tests measured the torque and the stator current at different steady-state 

operating points (at different speeds). To collect more information, the measured range also included the braking 

regime (i.e., torque and current were measured from s = 2 to s = 0) for motors #1 to #3. 

Motors #1, #2 and #3 were tested at a reduced voltage of 0.82·UN = 328 V due to source limitations while 

motors #4, #5 and #6 were tested at 0.57·UN = 230 V. The torque and current measured at a reduced voltage are 

prorated to the rated voltage to make them comparable: 
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The experimental measurements are represented by circles in Fig. 1 and Fig. 2. Strong torque irregularities 

which may be the cause of disagreement between theoretical and experimental curves, especially if the classical 

single-cage model is used in the braking regime of Fig. 1, can be observed. The effect varies for the different 

motors; that is, while in motor #1 torque irregularities are practically inexistent, the remaining five motors 

exhibit a torque dip at large slips (in the motoring regime). Furthermore, motors #2 and #3 show a pronounced 

torque increase in the braking regime. 

Despite these irregularities, the current-slip curves are very smooth in the six cases. The smooth torque curve 

of motor #1 makes it possible to fit the measurements by the classical models, as seen in the next section. On the 

other hand, the torque curves of the remaining five motors probably require a more complete machine model. 

Regarding the origin of the torque irregularities in these five motors, the space harmonics are a good candidate 

after examination of the almost pathological torque curves measured in [6][8], where abrupt hooks were caused 

by the space harmonics due to specific stator and rotor slot combinations. Machine saturation could be another 

cause for these irregularities, but this possibility is ruled out in the next subsection. 

 

3.1 Discarding machine saturation 

To discard saturation as the origin of the irregularities in Fig. 1, Fig. 2 and Fig. 3, the following laboratory test 

was made on motor #3. The motor was fed at four voltage levels in the whole speed range in order to obtain the 

corresponding torque- speed curves. Each voltage level includes the saturation effect at all operating points, 

including large slip ones, where the current is several times greater than the nominal [17]. By making different 

tests at a) 0.82 times the nominal voltage UN, which represents the normal saturation level, b) 0.61 and 0.41 

times the nominal voltage, which represent medium saturation levels, and c) 0.20 times the nominal voltage, 

which characterizes the unsaturated machine, the curves with the (prorated) measurements for motor #3 are 

obtained and represented in Fig. 4. 

The following conclusions can be drawn: 

 According to [17], the effect of main flux saturation on the torque-slip curves is negligible if the speed is 

far from synchronism. 

 Moreover, the differences in torque values for the different voltage levels can be attributed to leakage 



inductance saturation [17], which depends on the current consumption. Note that the current is several 

times greater than the nominal at most operating points. 

 Although the curves are slightly different at the different saturation levels, they have a similar shape.  

In summary, saturation should not be considered the sole origin of the measured irregularities. 

 

3.2 Measured stator current harmonics 

Instantaneous stator currents measured in the tests of Fig. 1 were almost sinusoidal in all cases. It is worth 

noting that these measurements are in full agreement with the results in [14], where detailed simulations show 

that, unlike their obvious influence on the torque, the impact of space harmonics on stator currents is almost 

negligible. The space harmonic models used in this paper (chain models in Fig. 5c-d) are based on the 

assumption that the stator currents are purely sinusoidal. 

 

4 Models for predicting the measured behaviour 

Once motor saturation is ruled out, an attempt was made to fit the measured machine behaviour with the three 

types of models in Sections 5, 6 and 7:  

(1) the classical single- and double-cage models in Fig. 5a-b, which consider sinusoidal air-gap flux density 

distribution; 

(2) the single-cage chain model in Fig. 5c, which considers space harmonics due to non-sinusoidally 

distributed windings and uniform air-gap but neglects the skin effect, and  

(3) the single-cage chain model in Fig. 5d, which takes into account both space harmonics and skin effect. 

The chain models are based on the common assumption that the squirrel-cage rotor reacts to all harmonic 

fluxes in the same way as to the fundamental, thus leading to a parasitic torque-slip curve for each harmonic 

[1][6]. 
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Fig. 4 Measured torque- and current-slip curves for motor #3 at different voltage levels. 



 

5 Classical single- and double-cage models 

Fig. 5a-b shows the equivalent circuits for the classical single- and double-cage induction machine models. 

Their torque is calculated with the following equations: 

    2 2 2r 1 2
r 1 2

s s

3 3, ,
ω ω
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where s m

s

ω ω
ω



ps  is the slip at the fundamental frequency and p is the number of pole pairs. 

 

5.1 Parameter estimation 

As the stator resistance Rs was measured off-line, only three functional relationships can be estimated between 

the remaining four unknown electrical parameters of the single-cage model in Fig. 5a [18]. As a solution, the 

restriction Xsd = Xrd is arbitrarily chosen in this study. The estimation procedure is based on the following data 

and unknowns: 
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Regarding the double-cage model in Fig. 5b, it has six unknown electrical parameters as Rs has been 

measured. Since only five functional relationships between these parameters are independent [18], the restriction 

Xsd = X2d is arbitrarily chosen in this paper. The estimation procedure is based on the following data and 

unknowns: 

 
sd m 1 1d 2

s
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Classical double-cage model
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Fig. 5 Classical models for the squirrel-cage motor: (a) single-cage model, (b) double-cage model. Space harmonic models for the 

squirrel-cage motor: (c) single-cage chain model without skin effect, (d) single-cage chain model with skin effect. 



Table 2 Single- and double-cage model estimated parameters in pu (SB = PN, UB = UN, ZB = UB
2 / SB) 

  Single-cage Double-cage 

 rs xsd xm rr xrd rs xsd xm r1 x1d r2 x2d 

Motor #1 0.0422 0.0749 1.0617 0.0313 0.0749 0.0422 0.0595 1.0771 0.0371 0.1236 0.2430 0.0595 

Motor #2 0.0350 0.0612 1.0328 0.0218 0.0612 0.0350 0.0409 1.0532 0.0253 0.1060 0.2153 0.0409 

Motor #3 0.0244 0.0402 1.2767 0.0253 0.0402 0.0244 0.0244 0.0250 1.2103 0.0241 0.0836 0.1781 

Motor #4 0.0422 0.0749 1.0617 0.0313 0.0749 0.0422 0.0595 1.0771 0.0371 0.1236 0.2430 0.0595 

Motor #5 0.0350 0.0612 1.0328 0.0218 0.0612 0.0350 0.0409 1.0532 0.0253 0.1060 0.2153 0.0409 

Motor #6 0.0244 0.0402 1.2767 0.0253 0.0402 0.0244 0.0244 0.0250 1.2103 0.0241 0.0836 0.1781 

 
 

5.2 Least-squares algorithm for parameter estimation 

In this paper, the model parameters are estimated with a MATLAB built-in function for least-squares fit [19]. 

The errors between estimated and measured data are given in values relative to the measured values: 

 estimated  measured
x

 measured
.i i

i
i

x x
x
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The error function to be optimized is a column vector [F] composed of the following scalar error functions, 

where the weight given to each point (wi) can be modified if needed: 
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The least-squares algorithm minimizes the 2-norm residual error: 
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To avoid negative values of the estimated parameters, it is recommended to force all parameters to be always 

positive [18]. 

 

5.3 Estimation results analysis 

The parameters estimated for the classical models of motors #1 to #6 are given in Table 2. The predicted 

torque- and current-slip curves are calculated from these parameters and plotted in Fig. 1 and Fig. 2 (single-cage: 

broken line; double-cage: solid line). 

Analysis of both figures shows that the classical single-cage model cannot accurately predict the behaviour of 

any of the six motors. 

The classical double-cage model can be considered adequate only for motor #1 given that, although the 

torque-slip curve is very smooth and provides better results, it also fails to predict the torque of the remaining 

five motors. 

It is worth noting that the torque predictions in the motoring regime (from s = 1 to s = 0) for motors #2 and #3 

can lead to the wrong conclusion that the classical single-cage models are more accurate in such a speed range. 



This is erroneous as the classical double-cage models in Fig. 1 provide better predictions in the whole speed 

range (i.e., from s = 2 to s = 0). 

Although motors #7, #8 and #9 were not tested, the low values of the minimum torque compared to the 

starting torque (TMIN/TST) in Table 1 suggest that the classical single- and double-cage models would fail in the 

torque prediction 

 

6 Single-cage chain model without skin effect 

Fig. 5c illustrates the steady-state equivalent circuit for the three-phase induction machine with non-

sinusoidally distributed windings and uniform air-gap. The model considers a single-cage for the rotor and 

neglects the skin effect. As can be seen, the circuit contains a rotor subcircuit for any considered space harmonic, 

resulting into a chain model. As the skin effect is neglected, the rotor resistance is identical for all subcircuits, 

and the leakage reactances Xrd k are rigidly related to Xm, Xm k and Xrd. Appendix 2 contains a detailed deduction 

of the model equations because no complete demonstration was found in the literature. 

The authors tried to fit the model to the measurements of Fig. 1. As the adjustment was unsuccessful in all 

cases, it can be concluded that the model is unable to predict the measured squirrel-cage torque irregularities in 

Fig. 1. As a result, it seems apparent that the skin effect must be included in the space harmonic model. 

 

7 Single-cage chain model with skin effect 

Fig. 5d shows the steady-state equivalent circuit for the three-phase induction machine which includes the 

space harmonics and the skin effect [1][2]. This model maintains the rotor subcircuit topology in Fig. 5c. 

However, the skin effect consideration results in variable rotor resistances and reactances Xrd k for any considered 

space harmonic. The model is also valid for non-uniform air-gap (slot harmonics).  

In this model, the total and harmonic torques are calculated as follows: 
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where ± must be interpreted as follows: 

 the positive sign is for the forward harmonics: the fundamental (k = 1) and the harmonics of order k = 7, 

13... (i.e., k = 6n + 1, where n = 0, 1, 2...). 

 the negative sign is for the backward harmonics: the harmonics of order k = 5, 11... (i.e., k = 6n + 5, where 

n = 0, 1, 2...). 

 

7.1 Parameter estimation 

The 5th, 7th and 11th harmonics are chosen for curve fitting. It must be remembered that the 7th harmonic flux 

travels forward (in the direction of the fundamental field) at a sub-synchronous speed of (ωs / p) / 7 while the 5th 



Table 3 Single-cage chain model with skin effect: estimated parameters in pu (SB = PN, UB = UN, ZB = UB
2 / SB) 

  Motor #1 Motor #2 Motor #3 

 rs 0.0422 0.0350 0.0244 

 xsd = xrd 0.0597 0.3701 0.0257 

 xm 0.9288 1.2104 1.4292 

 rr 0.0364 0.0349 0.0256 

xm (5) 0.0012 0.0071 0.0102 

rr (5) 0.1781 0.1197 0.3015 5th
 

xrd (5) 0.1909 0.0009 0.0180 

xm (7) 0.0075 0.0069 0.0053 

rr (7) 0.0784 0.1203 0.0698 7th
 

xrd (7) 0.0024 0.0081 0.0039 

xm (11) 0.0001 0.0179 0.0102 

rr (11) 0.1101 0.4988 0.4302 

11
th

 

xrd (11) 0.1146 0.3202 0.0091 

 

and 11th travel backward at sub-synchronous speeds of (ωs / p) / 5 and (ωs / p) / 11. The estimation procedure is 

based on the following data and unknowns: 

  
sd m r

m r rd
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Single-cage chain model with skin effect
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Note that the arbitrary restriction Xsd = Xrd is again imposed on the parameters related to the fundamental flux. 

 

7.2 Estimation results analysis 

he parameters estimated for motors #1, #2 and #3 are given in Table 3. It is worth noting that, while the 

estimation for motors #1 and #3 was very straightforward, in the case of motor #2 it was necessary to modify the 

weights given to the different points, wi. 

The predicted curves are calculated from the parameters of Table 3 and plotted in Fig. 6. This figure also 

contains the contribution of the harmonic torques, whose zero-crossing occurs at s = 1 ‒ (± 1 / k) = 1 + 1 / 5, 

1 ‒ 1 / 7, 1 + 1 / 11, as can be deduced from (8) by imposing sk = 0. 

Note that the harmonic torque curves are not symmetrical about the horizontal axis, just like in the classical 

models in Fig. 5a-b (the torque-slip curve for motor operation is not identical to that for generator operation). 

This asymmetry is particularly apparent in the 7th harmonic torques of the three motors because there is a 

significant torque increase in the braking regime whereas the impact at rated slip is low. 

The fit obtained for motor #1 in Fig. 6 is slightly better than that obtained with the classical double-cage 

model in Fig. 1. The fit for motors #2 and #3 is also excellent, as the estimated parameters accurately predict the 

pronounced torque irregularities. 



The number of space harmonics is chosen a priori. Considering the results in Fig. 6, the 5th harmonic could be 

discarded a posteriori for motors #1 and #3, and the 11th for motors #1 and #2 without significant loss of 

accuracy. 

 

8 Models summary 

The ability of each model to predict the torque curves measured in three motors is summarized in Table 4. The 

classical single- and double-cage models and the single-cage chain model without skin effect are unable to 

simultaneously predict space harmonics and skin effect. On the contrary, the single-cage chain model which 

considers the skin effect provides accurate predictions. 
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Fig. 6 Prediction of the single-cage chain model with skin effect for the three tested small size motors: (a) the total (solid line) and 

fundamental torques (broken line) (b) harmonic torques, and (c) total current. 



Table 4 Models summary 

  Skin effect Space harmonics 

Fig. 5a Single-cage (classical model)   

Fig. 5b Double-cage (classical model)   

Fig. 5c Single-cage chain model without skin effect   

Fig. 5d Single-cage chain model with skin effect   

 

9 Conclusions 

The paper shows the measured torque- and current-slip curves of six squirrel-cage induction motors. Five 

units exhibit apparent torque irregularities caused by space harmonics. For completeness, the measured range 

was extended to the braking regime (s = 2 to s = 1) for three of the motors. The measured data are successfully 

fit by the following models: (1) the classical single- and double-cage models, (2) the single-cage chain model 

which considers space harmonics effects but neglects the skin effect, and (3) the single-cage chain model which 

takes into account both space harmonics and skin effects. 

It is concluded that the smooth torque curves predicted by the classical models do not fit the measured curves 

when space harmonic effects are apparent. The single-cage chain model which neglects the skin effect also fails 

in the torque prediction despite considering space harmonics effects. On the contrary, the single-cage chain 

model which takes into account both space harmonics and skin effects exhibits excellent agreement with 

experimental data. 

 

10 Appendix 1: space harmonics 

The classical models assume that stator and rotor windings are sinusoidally distributed. As a consequence, the 

air-gap mmf of a winding is a perfectly sinusoidal waveform, i.e., the air-gap mmf of a winding supplied by 

current i(t) can be expressed as a function of time and position angle x as 

      1 1 1
2, cos ,f x t F x i t F N         

 (10) 

where α is the winding magnetic axis of symmetry, and amplitude F1 depends on the winding arrangement 

(number of turns N and winding factor for the fundamental wave, ξ 1, i.e., distribution, pitch, and skew factors). 

The classical models also assume an unslotted machine having uniform air-gap of length g. Thus, the air-gap 

flux density B is also sinusoidal: 

        1 1
0 0 1, , cos ,B x t g f x t g F x i t              (11) 

where μ0 is the permeability of free space. 

In practice, the flux density contains harmonics produced by [1]: (1) concentration of mmf in a finite number 

of slots (winding harmonics), (2) non-uniform air-gap due to stator and rotor slot openings (slot harmonics), and 

(3) machine saturation. Then, the air-gap mmf and flux density can be expressed as [10]-[12]: 
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


 (12) 

where k is the harmonic order (including the fundamental), and amplitude Fk depends on the winding 

arrangement (number of turns N and winding factor for harmonic k, ξ k). The positive sign in Fk is for the 

harmonics of order k = 2n + 1 (n = 0, 1, 2...), i.e., k = 1, 5, 11..., while the negative sign is for the harmonics of 

order k = 2n + 3, i.e., k = 3, 7, 9... The air-gap length is no longer a constant but depends on the position angle x 

and the rotor mechanical angle θm (p is the number of pole pairs). Only odd harmonics are considered in (12) 

because the winding arrangement is assumed to be symmetrical about its magnetic axis . 

 

10.1 Inductance calculation for non-sinusoidally distributed windings and uniform air-gap 

The mutual inductance mab of two windings a and b whose magnetic axes of symmetry are inclined at a and 

b electrical degrees, respectively, is calculated by integration of the flux linkage of winding a, characterized by 

(12), with winding b. Assuming uniform air-gap, the resulting expression is [10]-[12]: 
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 (13) 

where r is the average radius and be is the stack length. The calculation of the self-inductance of winding a must 

also consider the leakage flux, i.e., the leakage flux inductance la d must be added to (13): la = maa + la d. 

 

11 Appendix 2: single-cage chain model without skin effect  

In this appendix, a simplistic dynamic model in space vector variables for an induction machine with non-

sinusoidally distributed windings, uniform air-gap and without skin effect is derived. By imposing electrical and 

mechanical steady-state, and assuming that a sinusoidal current source supplies the stator, the chain equivalent 

circuit in Fig. 5c is obtained. This circuit can be considered as a particular case of the more general chain model 

in Fig. 5d, which considers the space harmonics due to the skin effect and non-uniform air-gap. Because of its 

low computational burden, the model derived in this appendix can be used as a simulation tool to provide useful, 

qualitative dynamic and steady-state results. 

 

11.1 Model assumptions 

The following assumptions about a three-phase induction machine are made: 

 Ideal magnetic circuit (negligible saturation and infinite relative magnetic permeability). 

 Uniform air-gap. 

 Three identical stator and rotor windings having constant parameters (due to skin effect on the rotor 

windings) and symmetrical arrangement about their magnetic axes (located at α, α + 2π / 3 and α ‒ 2π / 3). 

 Constant leakage flux inductances. 

The inductance calculation in (13) is simplified because the stator and rotor winding arrangements are 



identical (ξ s k = ξ r k = ξ k ). Further simplification is obtained by reducing the rotor parameters to the stator 

(Ns = Nr = N): 
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 (14) 

Note that concentrated windings (square-wave mmfs) lead to the largest space harmonic content. In this case, 

the maximum value for mk is obtained as ξ k = 1, resulting in mk = m1 / k 2. 

 

11.2 Dynamic model equations in space vector variables 

The abc phase model for the induction machine is given by 
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 (15) 

where θ is the rotor mechanical angle in electrical degrees and θ0 is its value at instant t = 0 s. The inductance 

matrix is defined as 

   s sr
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This matrix contains the winding inductances 
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where lsd and lrd are the stator and rotor leakage inductances, and mk is given by (14). 

The abc variables are transformed into the 0FB variables by the complex rotating transformation [T] or 

forward-backward transformation (abbreviated as FB-transformation) [20] expressed in the stationary reference 

frame 
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where 0 is the zero-sequence component, and F and B are the forward and backward components, which are 

complex conjugate. Note that matrix [T] in (18) is the Fortescue matrix, which is used for the symmetrical 

component transformation. The forward component of (18) is also known in the literature as the space vector, the 

spatial vector, or the space phasor of the abc phase quantities. 

The electrical equations of (15) are expressed in transformed variables as 
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where [TC] is the complete transformation matrix 
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The electromagnetic torque expressed in transformed variables is calculated as 
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The stator and rotor zero-sequence equations in (19) are decoupled from the remaining equations. 

Furthermore, the forward and backward equations of (19) are complex conjugate. Thus, machine behaviour can 

be expressed with the zero-sequence and forward equations only, and using the 0 and F variables: 
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where the following change of variables is made: 

 sd sd rd rd 1
3 3,     ,     ,     .
2 2k kL l L l M m M m     (23) 

In (22) the writing of the equations depends on the order of the harmonic inductances Mk : 

The zero-sequence equations only depend on the harmonic inductances of order k = 3, 9, 15... (i.e., k = 6n + 3, 

where n = 0, 1, 2...). These harmonics are called zero-sequence harmonics. 



The positive sign in the forward equations is for the fundamental (k = 1) and harmonic inductances of order 

k = 7, 13..., (i.e., k = 6n + 1, where n = 0, 1, 2...). These harmonics are called forward harmonics as fluxes of this 

order travel forward (in the direction of the fundamental field) at sub-synchronous speeds of (ωs / p) / k. 

The negative sign in the forward equations is for the harmonic inductances of order k = 5, 11... (i.e., k = 6n + 5, 

where n = 0, 1, 2...). These harmonics are called backward harmonics as fluxes of this order travel backward (in 

the direction of the fundamental field) at sub-synchronous speeds of (ωs / p) / k. 

And the torque with only the F variables is 
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where [MTF()] is composed of the F elements of matrix [MT()]. 

 

11.3 Steady-state equivalent circuit 

The steady-state closed-form solution of the previous model is cumbersome because the spectrum of the stator 

and rotor currents is infinite even if only one harmonic in Mk is considered (assuming the stator is supplied by a 

sinusoidal voltage source). A steady-state model with truncation of stator and rotor currents was obtained but it 

is not included here for brevity purposes [21]. 

A more useful approximate steady-state solution is found if stator windings are assumed to be supplied by a 

sinusoidal current source of pulsation s, rms amplitude Is 1, and phase a angle Is 1. According to (18), the 

forward stator current is 

  s Is 1 s
j ω φ jω

s 1sF sF 1 s13 2 e 3 2 e ,    t ti i I I  (25) 

where Is 1 is the phasor of phase a. Let us also assume that the harmonic content of vsF can be neglected: 
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Then, the analysis of the forward stator equation in (22) indicates the frequencies in irF. As the term 
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current irF pulsates at   sω θt k t  . Thus, 
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By replacing (25), (26) and (27) in the forward equations of (22), dividing the stator equation by sjω3 2 e t  

and the rotor equations by   sj ω θ3 2 e   t k
ks , and using that θ = p ωm t + θ0, the following phasor equations are 

obtained: 
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These equations can be expressed with the steady-state equivalent circuit in Fig. 7, where the average torque is 

calculated as 
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The circuit in Fig. 7 leads to the chain model in Fig. 5c if the following changes are made: (1) rotor windings 

are short-circuited (i.e., Vr 1 = Vr k = 0), and (2) the two leakage inductances of the rotor subcircuits are 

substituted by a total rotor leakage inductance (note that the inductance 
1,5,7

 
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 
 k k

k
M M  can be considered a 

leakage inductance). 

 

11.4 Dynamic and steady-state model simulation 

In order to illustrate the model behaviour, the induction motor of Table 5 is simulated. The parameters of the 

classical single-cage model are given in this table. A 7th space harmonic is included in the model by considering 

inductance M 7. The space harmonic amplitude is exaggerated to equal that of a concentrated winding (square-

wave mmf): M 7 = M / 49. Two simulations are performed: the stator is supplied by a voltage source or by a 

current source. 
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Fig. 7 Single-cage chain model for the induction machine with non-sinusoidally distributed windings, uniform air-gap and without skin

effect. The model assumes that the stator is supplied by a purely sinusoidal current source. 



Table 5 Simulated induction motor parameters in pu (SB = PN, UB = UN, ZB = UB
2

 / SB) 

PN (kW) UN (V) fN (Hz) PFN N (r/min) N (%) TMAX/TN TST/TN IST/IN 

2.2 400 50 0.70 925 69.8 2.1 1.1 2.9 

rs xsd = xrd xm rr  7th harmonic:  xm 7 
0.0256 0.0679 0.5791 0.0379  0.5791 / 49 = 0.0118 

 

The results are shown in Fig. 8 (solid and broken lines for the voltage and current source, respectively). The 

instantaneous torque and currents are obtained with the dynamic model in (22)-(24) while the steady-state 

torque- and current-slip curves are obtained with the steady-state model with truncation from [21] (voltage 

source) and the model in (28)-(29) (current source). The hypothesis of the stator supplied by a sinusoidal current 

source is suitable, as the differences between both cases are not significant. As expected from the exaggeration 

of the harmonic amplitude, the results are rather extreme, especially the large oscillations in the instantaneous 

torque. Thus, the model seems unable to predict the measured squirrel-cage torque irregularities in Fig. 1, Fig. 2 

and Fig. 3. 

Two conclusions can be extracted from this analytical model: (1) the harmonic magnitudes must be 

exaggerated to make their effects on the torque-speed curve visible; (2) it cannot be used directly (without 

changes) for motors where space harmonic and skin effects are apparent because of the various simplifying 

assumptions. 
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Fig. 8 Simulated (average) torque and (rms) current-slip curves for the motor of Table 5 assuming non-sinusoidally distributed windings 

(concentrated windings), uniform air-gap and no skin effect. The instantaneous torque and currents at three different points with slips 0.85, 

0.5 and 0.1 are also plotted. The stator is supplied by a sinusoidal voltage source (solid line) and a sinusoidal current source (broken line). 
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