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ABSTRACT We estimate a spatial econometric interaction model for bilateral
aggregate FDI stock data between 25 European Union member countries in 2010.
We find evidence for spatial spillovers of foreign direct investment for three dif-
ferent types of spatial dependence. Our results document FDI spillovers between
neighboring countries of FDI origin countries, neighboring countries of FDI desti-
nation countries as well as between neighboring countries of both FDI origin and
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lights the importance of taking into account spatial lags when estimating bilateral
FDI gravity models.
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Introduction
This paper contributes to the literature on the determinants of foreign di-

rect investment (FDI) that empirically analyzes the existence and magnitude of
spillovers (indirect or network effects) of FDI activity on third countries’ FDI.
We study the effect of FDI spillovers for the case of the European Union (EU).
The EU is the best example of deeply integrated countries and one of the world’s
largest trading blocs. The high level of economic integration between EU mem-
ber countries makes the existence of FDI spillovers especially likely, providing
an ideal testing ground. Our main hypothesis is that the attractiveness of an EU
country for FDI increases the attractiveness of neighboring countries for EU in-
vestors, fostering economic activity. Therefore, FDI spillovers are expected to
present a positive impact on neighboring countries’ foreign investments. In terms
of methodology, we use a spatial econometric interaction model following LeSage
and Thomas-Agnan (2015). This model allows to detect the existence of FDI
spillovers between neighbors of FDI origin countries, neighbors of FDI destina-
tion countries, as well as spillovers between neighbors of both the origin and desti-
nation countries of FDI. Our spatial matrices are based on both first-order contigu-
ity and nearest neighbors of EU countries. We estimate our model by a Bayesian
Markov Chain Monte Carlo (MCMC) procedure. We find that origin-dependence,
destination-dependence and origin-destination (O-D) dependence matter for FDI.
Finally, we quantify the EU-wide long-run network effects using the scalar sum-
mary measures recently proposed by LeSage and Thomas-Agnan (2015). This
method also allows us to make statements about the statistical significance of spa-
tial spillover effects.

The previous literature considers two different ways to analyze the existence
and magnitude of FDI spillovers between countries using spatial approaches.
Firstly, FDI spillovers are measured through weighting matrices that determine the
effect of characteristics of neighboring third countries on FDI, i.e., using spatial
lags of the regressors. Hence, bilateral flows or stocks of FDI do not only depend
on characteristics of the specific two countries in question but also on third coun-
tries. For example, Baltagi et al. (2007) study bilateral US outward FDI stocks
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and foreign affiliate sales at the industry level in a model which includes spa-
tially weighted averages of third-country characteristics as determinants of FDI as
well as spatial interactions in the error term. Their results support the importance
of third-country effects. Similarly, Badinger and Egger (2013) estimate a grav-
ity model of bilateral FDI stocks for 22 European OECD countries and include
spatially weighted averages of market-sizes in neighboring origin and destina-
tion countries as additional regressors to allow for market-size related interactions
while also allowing for spatial interactions in the error term.

Secondly, FDI spillovers to third countries can be modeled by including spa-
tial lags of FDI itself, i.e., of the dependent variable, to measure spatial origin
or destination dependence. This is done by, e.g., Coughlin and Segev (2000),
Blonigen et al. (2007) and Leibrecht and Riedl (2014).

To the best of our knowledge, Coughlin and Segev (2000) were the first au-
thors to consider spatial interactions for modeling FDI determinants. They use
provincial data from China to analyze whether neighboring provinces can affect
one another in terms of FDI, as an agglomeration effect might lead to higher FDI
levels in neighboring provinces. Also, FDI in one province might negatively af-
fect FDI in neighboring provinces if province-specific advantages attract FDI to a
particular province rather than to its neighbors. Their study highlights the impor-
tance of taking into account spatial dependence for consistent parameter estimates
and inference. Blonigen et al. (2007) focus on US outbound FDI and show that
the traditional determinants of FDI and the estimated spatial interdependence are
sensitive to the countries under study. They estimate a gravity-type model that
considers spatially-dependent FDI by introducing a spatial autoregressive term
which is found to be positive and statistically significant, pointing towards the
agglomeration effect stated by Coughlin and Segev (2000). The importance of
considering indirect effects when analyzing the determinants of FDI is illustrated
in the following quotation: “MNE [multinational enterprises] motivations may
generate important spatial relationships in the data that may not be adequately
controlled for using standard econometric techniques on bilateral-country pairs.
The remaining analysis below provides evidence for the degree of bias from ignor-
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ing spatial interdependence of FDI decisions” (See Blonigen et al., 2007:1308).
In this line, Leibrecht and Riedl (2014) study the presence of spatial inter-

dependencies in FDI between origin and destination countries. They model FDI
flows from advanced OECD countries to Central and Eastern European Countries
(CEECs) using a spatial autoregressive model with two spatial lags, one for FDI
origin countries and one for FDI destination countries. They find that a CEEC
receives more FDI the more FDI a neighboring CEEC is able to attract and that
agglomeration forces are becoming increasingly important for FDI in the CEECs.

The remainder of the paper is structured as follows: Section 2 describes how to
measure FDI spillovers in an O-D interaction framework. The estimation strategy
and data are presented in Section 3. The estimation results of the coefficients
and the construction of scalar summary measures to quantify FDI spillovers are
presented in Sections 4 and 5, respectively. Section 6 concludes.

Measuring FDI Spillovers Using A Spatial Econometric Interac-
tion Model

Equation (1) shows a non-spatial gravity model to estimate the determinants
of bilateral FDI stocks (or flows) from origin country o invested in destination
country d typically used in the literature:

lnFDIdo = β0 +β1 lnGDPd +β2 ln(GDP/POP)d +

β3 lnGDPo +β4 ln(GDP/POP)o +β5 lnDISTdo + edo, (1)

where ln denotes the natural logarithm, GDPo and GDPd are the GDP in the
origin and destination country, and POPo and POPd are the populations in the re-
spective countries, i.e., GDPo/POPo denotes GDP per capita of the origin country.
DISTdo measures the distance between countries d and o and edo is the error term.

Destination and origin GDPs are typically included to proxy the size of the
respective economies. The larger an economy, the higher its potential for outward
and inward FDI. Hence, we expect the coefficients of GDP to be positive, con-
sistent with Coughlin and Segev (2000). As wealthier countries tend to invest in
poorer countries, we expect the coefficients of origin GDP per capita to have a
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positive sign and destination GDP per capita to have a negative sign, similar to
results found in Blonigen et al. (2007) and Márquez-Ramos (2011).1 As GDP
per capita proxies real wages, this argument is in line with vertical FDI motives,
i.e., investors seek to take advantage of wage differences. However, horizontal
FDI, i.e., market-seeking FDI, would imply a positive impact of destination GDP
per capita. Hence, the effect of GDP per capita is ambiguous, see Bénassy-Quéré
et al. (2007). In the end, it is an empirical question which of these two factors is
more important for EU countries. Finally, we expect distance to have a negative
impact on bilateral FDI, in line with, e.g., Blonigen and Davies (2004), Blonigen
et al. (2007) and Badinger and Egger (2013).

FDI stocks are georeferenced data, i.e., they can be linked to specific coun-
tries on the world map. Therefore, it seems natural to investigate whether FDI
values are spatially correlated. There are three possible types of spatial correla-
tion between countries when analyzing bilateral FDI activity: origin, destination
and origin-destination dependence. To get an intuition for these three possible
types, consider Figure 1. It presents four countries, I, J, K and L. I and K are
neighbors, and so are J and L. Let us focus on the determinants of the investment
of country I in J.

Non-spatial bilateral models such as Equation (1) only consider the red, dashed
arrow, i.e., only take into account determinants located in both I and J. Spatial in-
teraction models also take into account the three additional blue, undashed arrows.
Investments of I in J also depend on investments of K in J (origin dependence).
In addition, investments of I in J also depend on investments of I in L (destination
dependence). Finally, investments of I in J also depend on investments of K in L
(origin-destination dependence), possibly due to complex FDI motives or general
equilibrium effects.

Spatial interaction models focus on dyads of countries rather than on indi-
vidual countries. They aim to explain the variation of spatial interaction across
geographic space and draw attention to the three types of neighborhood effects in-
troduced above: those related to properties of neighbors of origin countries, those
related to properties of neighbors of destination countries and those related to
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FIGURE 1: ILLUSTRATION OF POTENTIAL ORIGIN-DESTINATION INTERAC-
TIONS

the spatial interactions between neighbors of origin and neighbors of destination
countries.

For spatial econometric interaction models, it is useful to switch from an ob-
servation based notation as in Equation (1) to a data matrix notation. Following
LeSage and Pace (2008) and LeSage and Thomas-Agnan (2015), let us define Y,
a n× n matrix, with typical element Yi j in row i and column j which represents
the (log of) the FDI stock of country j invested in country i (origin-centric flow
matrix). We can reshape Y into a n2×1 vector lnFDI = vec(Y), i.e., we obtain an
origin-centric ordering of our dependent variable. lnFDI contains the vertically
concatenated columns of Y, i.e., in the first n observations, lnFDI contains the
FDI stocks from origin country 1 in all n destinations, and so on.

We construct three matrices that specify destination-dependence, origin-
dependence and origin-destination dependence which allow us to include three
types of spatial lags to consider spatial FDI spillovers in the following model:

lnFDI = β0 +β1 lnGDPd +β2 ln(GDP/POP)d +

β3 lnGDPo +β4 ln(GDP/POP)o +

β5 lnDIST+ρ1Bd lnFDI+ρ2Bo lnFDI+

ρ3Bw lnFDI+ e, (2)

where variables in bold are the stacked matrix equivalents (origin-centric order-
ing) from Equation (1).2 The difference to Equation (1) comes from the inclusion
of three spatial lag terms: ρ1Bd lnFDI, ρ2Bo lnFDI and
ρ3Bw lnFDI. The spatial lag vector Bd lnFDI is constructed by averaging FDI
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stocks in neighbors of the destination country (destination dependence) and pa-
rameter ρ1 would measure the impact of FDI stocks from origin to all neighbors
of the destination country. The spatial lag vector Bo lnFDI is constructed by av-
eraging FDI stocks from neighbors to the origin country (origin dependence) and
parameter ρ2 would capture the impact of these neighbors on the dependent vari-
able. The third spatial lag in the model, Bw lnFDI, is constructed by using an aver-
age of all neighbors to both the origin and destination countries (origin-destination
dependence) and parameter ρ3 measures the impact of this type of interaction on
FDI stocks. The spatial weight matrices Bd , Bo and Bw specify the neighborhood
definitions for the calculation of the aforementioned averages. Estimating param-
eters ρ1, ρ2 and ρ3 allows to infer the relative importance of the three types of
spatial dependence between the origin and destination countries.

We will use two neighborhood definitions in this paper: one based on sharing
a common border and one which defines the k nearest countries to be neighbors.
We will use these definitions to specify the spatial weight matrices Bd , Bo and Bw

for the contiguity criterion and Dd , Do and Dw for the nearest neighbor criterion.
For this, we introduce a spatial contiguity matrix B̃ with dimensions n× n,

where n is the number of countries. We define its typical entry in row i and column
j, b̃i j, as follows:

b̃i j =

{
1 if i and j share a common border
0 if i and j do not share a common border or i = j.

(3)

As B will be used to measure the spatial spillovers across neighboring ob-
servations, the main diagonal of B̃ is set to 0, i.e., a country does not exert an
influence on itself. Dividing each row of B̃ by the respective row sum yields B,
a row-normalized contiguity matrix, as is common in spatial econometrics, see,
e.g., LeSage and Pace (2009).

We use a four country example to illustrate. Table 1 shows the 4× 4 matrix
B̃ for the four countries Austria, Spain, France and Italy. The corresponding el-
ement of the matrix takes the value of 1 when countries are neighbors, and zero
otherwise. The diagonal elements of the matrix B̃ are set to zero.
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TABLE 1: ILLUSTRATION OF MATRIX B̃

Austria Spain France Italy


Austria 0 0 0 1
Spain 0 0 1 0
France 0 1 0 1
Italy 1 0 1 0

Similarly, we define a second measure of neighborhood by using a k nearest
neighbors matrix. Specifically, for country i, we will rank all distances of i to all
other countries and declare the k nearest countries to be a neighbor of i. Let us
denote the distance of the k nearest neighbor to country i as d(k)

i . Repeating this
for all countries, we can collect this information in a matrix D̃ with dimensions
n×n, where n is the number of countries. Its typical entry in row i and column j,
d̃i j, is given by:

d̃i j =

{
1 if the distance between i and j is ≤ d(k)

i

0 if the distance between i and j is > d(k)
i or i = j.

(4)

Again, we set the main diagonal of D̃ to 0, i.e., a country does not exert an in-
fluence on itself. Dividing each row of D̃ by the respective row sum yields D, a
row-normalized matrix.

The following steps apply to both B and D. For expositional reasons, we will
continue to refer to B only.

Destination-based dependence captures the effect that FDI stocks from one
origin country in a destination country may be correlated with the FDI stocks
from the origin country in countries which are neighbors to the destination coun-
try. Denoting the first column of our origin-centric flow matrix by lnFDI1, i.e.,
the FDI stocks from origin country 1, we can construct the spatial lag BlnFDI1,
which is a spatial average of the FDI stocks from country 1 in all neighboring
destinations. Similarly, we can construct the same spatial lag for origin country
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2, BlnFDI2. We can do this for all n origin countries. In matrix notation, this
operation can be represented by the n2×n2 matrix Bd:

Bd = In⊗B =



B 0n . . . 0n

0n B
...

... B
. . .

0n . . . B


. (5)

where ⊗ denotes the Kronecker product, In is a n× n identity matrix and 0n is a
n×n matrix of zeros.

In a similar fashion, we can define Bo, a n2×n2 matrix, to construct a spatial
lag of the dependent variable for all FDI stocks invested by neighboring countries
of the origin country, thus capturing origin-based dependence. Bo is calculated as:

Bo = B⊗ In. (6)

Finally, we can construct a measure of spatial origin-to-destination dependence.
It measures the spatial correlation between FDI stocks from countries which are
neighbors to the origin country to countries which are neighbors of the destination
country. We measure this dependence by Bw in the following way:

Bw = BoBd = B⊗B. (7)

We show these amplified weight matrices Bd , Bo and Bw for our four-country
example in Figures 2 to 4. The interpretation of Figure 2 is that, for example,
destination-based dependence measures whether foreign direct investment from
Spain to Austria is related to foreign direct investment from Spain to the countries
that have a common border with Austria, i.e., Italy. The value of the spatially
lagged dependent variable for FDI from Spain to Austria is given by:

[BdlnFDI]Spain, Austria = 1× lnFDISpain, Italy, (8)

which is a weighted average over the values of foreign direct investment from
Spain for all neighboring countries of the destination country Austria. Note that
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origin destination spatial flow matrix (Bd) ln FDIorigin, destination

Austria Austria 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 YAustria, Austria

Austria Spain 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 YAustria, Spain

Austria France 0 0.5 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 YAustria, France

Austria Italy 0.5 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 YAustria, Italy

Spain Austria 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 YSpain, Austria

Spain Spain 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 YSpain, Spain

Spain France 0 0 0 0 0 0.5 0 0.5 0 0 0 0 0 0 0 0 YSpain, France

Spain Italy 0 0 0 0 0.5 0 0.5 0 0 0 0 0 0 0 0 0 YSpain, Italy

France Austria 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 YFrance, Austria

France Spain 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 YFrance, Spain

France France 0 0 0 0 0 0 0 0 0 0.5 0 0.5 0 0 0 0 YFrance, France

France Italy 0 0 0 0 0 0 0 0 0.5 0 0.5 0 0 0 0 0 YFrance, Italy

Italy Austria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 YItaly Austria

Italy Spain 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 YItaly, Spain

Italy France 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0.5 YItaly, France

Italy Italy 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0.5 0 YItaly, Italy

FIGURE 2: AMPLIFIED WEIGHT MATRIX TIMES THE DEPENDENT VARIABLE,
BdlnFDI.
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origin destination spatial flow matrix (Bo) ln FDIorigin, destination

Austria Austria 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 YAustria, Austria

Austria Spain 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 YAustria, Spain

Austria France 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 YAustria, France

Austria Italy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 YAustria, Italy

Spain Austria 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 YSpain, Austria

Spain Spain 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 YSpain, Spain

Spain France 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 YSpain, France

Spain Italy 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 YSpain, Italy

France Austria 0 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0 YFrance, Austria

France Spain 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0 0 YFrance, Spain

France France 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0 YFrance, France

France Italy 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0.5 YFrance, Italy

Italy Austria 0.5 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 YItaly, Austria

Italy Spain 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 YItaly, Spain

Italy France 0 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0 0 0 YItaly, France

Italy Italy 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0 0 YItaly, Italy

FIGURE 3: AMPLIFIED WEIGHT MATRIX TIMES THE DEPENDENT VARIABLE,
BolnFDI.
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the spatial weight of the lagged dependent variable is equal to one because, in our
example, Italy is the only neighbor of Austria.

According to Figure 3, origin-based dependence measures whether foreign
direct investment from Spain in Austria is related to the foreign direct investment
in Austria from countries that have a common border with Spain (i.e., France).
Hence, the value of the spatially lagged dependent variable, BolnFDI, for FDI
from Spain to Austria is given by:

[BolnFDI]Spain, Austria = 1× lnFDIFrance, Austria, (9)

which is a weighted average over the values of foreign direct investment into Aus-
tria from all neighboring countries of the origin country Spain. Note that the
spatial weight of the lagged dependent variable is again equal to one because, in
our example, France is the only neighbor of Spain.

According to Figure 4, the foreign direct investment from Spain to Austria
is related to foreign direct investment from countries that have a common border
with Spain to countries that have a common border with Austria, i.e., investments
from France to Italy. Hence, the value of the spatially lagged dependent variable,
BwlnFDI, for FDI from Spain to Austria is given by:

[BwlnFDI]Spain, Austria = 1× lnFDIFrance, Italy, (10)

which is a weighted average over the values of foreign direct investment into
neighboring countries of Austria from all neighboring countries of Spain. Note
that the spatial weight of the lagged dependent variable is again equal to one be-
cause, in our example, France is the only neighbor of Spain and Italy is the only
neighbor of Austria.

Estimation Strategy and Data
We use a Bayesian MCMC approach following LeSage and Thomas-Agnan

(2015) to estimate the spatial interaction model given in Equation (2).3 We gener-
ate 6,000 draws where we throw away the first 3,000 to get rid of the dependence
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origin destination spatial flow matrix (Bw) ln FDIorigin, destination

Austria Austria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 YAustria, Austria

Austria Spain 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 YAustria, Spain

Austria France 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0.5 YAustria, France

Austria Italy 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0.5 0 YAustria, Italy

Spain Austria 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 YSpain, Austria

Spain Spain 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 YSpain, Spain

Spain France 0 0 0 0 0 0 0 0 0 0.5 0 0.5 0 0 0 0 YSpain, France

Spain Italy 0 0 0 0 0 0 0 0 0.5 0 0.5 0 0 0 0 0 YSpain, Italy

France Austria 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0.5 YFrance, Austria

France Spain 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0 YFrance, Spain

France France 0 0 0 0 0 0.25 0 0.25 0 0 0 0 0 0.25 0 0.25 YFrance, France

France Italy 0 0 0 0 0.25 0 0.25 0 0 0 0 0 0.25 0 0.25 0 YFrance, Italy

Italy Austria 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0 0 YItaly, Austria

Italy Spain 0 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0 0 0 YItaly, Spain

Italy France 0 0.25 0 0.25 0 0 0 0 0 0.25 0 0.25 0 0 0 0 YItaly, France

Italy Italy 0.25 0 0.25 0 0 0 0 0 0.25 0 0.25 0 0 0 0 0 YItaly, Italy

FIGURE 4: AMPLIFIED WEIGHT MATRIX TIMES THE DEPENDENT VARIABLE,
BwlnFDI.
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of the Markov chain on the starting values. For comparison, we also estimate the
non-spatial model given in Equation (1) using ordinary least squares.

We use data on bilateral stocks of FDI from UNCTAD for 25 EU member
countries for the year 2010.4 FDI stock data have the advantage that they are
less volatile than FDI flow data, see Bénassy-Quéré et al. (2007). Bilateral FDI
data are characterized by differences in reporting standards across countries as
well as discrepancies between FDI statistics for inward and outward FDI activity,
see, e.g., Weigl and Fujita (2003). We use bilateral inward FDI stock data from
UNCTAD’s bilateral FDI statistics. For 25 countries, we should observe 25×24=
600 observations of bilateral FDI stocks. Of these, 103 observations are missing.
We therefore follow the strategy used by Barthel et al. (2010) and Badinger and
Egger (2013) who use both data on inward and outward FDI stocks (so-called
“mirror statistics”) to fill up missing values. This allows us to fill up 88 missing
values. In total, of the non-missing observations, 24 are negative. If we observe
positive outward FDI stocks, we replace 0 or negative inward FDI stocks with their
corresponding outward FDI stocks. After this, we end up with 14 negative inward
FDI stocks, 45 FDI stocks which are zero as well as 15 genuinely missing values.
As we use a log-linear model, we replace these 14+45+15 = 74 observations with
the value 1.

Another reason for missing observations is the fact that even though the spatial
econometric model also applies to the FDI stock from i in i, i.e., the direct invest-
ment of country i in itself, UNCTAD’s data base on FDI stocks by definition only
includes foreign direct investment. To the best of our knowledge, the ii observa-
tions for spatial FDI models have not been used previously in the spatial FDI liter-
ature. However, it is common in other spatial econometric studies. For example,
in their study of commuter flows in Toulouse, France, LeSage and Thomas-Agnan
(2015) also include flows of commuters who work in the same district where they
live.5 This raises the question of how to measure domestic investments. We pro-
pose the following measure. We use data on national capital stocks, CAPITALi,
from the Penn World Tables 8.1.6 We then construct our measure of domestically
sourced capital, FDIii, by subtracting the sum of foreign direct investment stocks
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from all source countries different than i, i.e., FDIii =CAPITALi−∑ j, j 6=i FDIi j.
Obviously, this measure is not without difficulties. As our sample only includes
25 countries from the European Union, we count as domestic capital stock also
FDI stocks which come from countries outside the EU. Hence, we overstate the
level of FDIii. If anything, this will probably overestimate the negative impact of
distance on bilateral FDI stocks as well as the intranational effects calculations.
Still, we think that including a measure for FDIii is at least an improvement over
simply filling up the dependent variable for the ii observations with 1s or dropping
them altogether. By using our constructed measure of FDIii we get 25 additional
observations for our data set.7

For our regressors, we use GDP (current US$) and population data from the
World Development Indicators from the World Bank. Our distance and contiguity
measures are from Centre d’études prospectives et d’informations internationales
(CEPII).

Coefficient Estimates
Column (1) of Table 2 displays the results of estimating the baseline FDI re-

gression by ordinary least squares, i.e., Equation (1). The estimated coefficients
obtained for destination and origin GDP are positive and significant. The effect of
GDP per capita of the FDI origin country is positive and significant, whereas the
coefficient of GDP per capita of the destination country is negative and not signifi-
cant, as well as smaller in absolute magnitude than its source country counterpart.
Distance has a negative effect on FDI stocks. Columns (2) and (3) show the re-
sults of estimating Equation (2) by the Bayesian MCMC algorithm, where column
(2) presents the results for the weight matrices using the contiguity criterion (Bd ,
Bo, Bw) and column (3) for the weight matrices using the four nearest neighbors
matrix (Dd , Do, Dw). Beginning with column (2), the estimated coefficients ob-
tained for destination and origin GDP are positive and significant, as obtained in
the baseline model, but smaller in magnitude. Interestingly, when controlling for
spatial FDI spillovers, the negative effect of GDP per capita of the destination
country turns significant. The coefficient of GDP per capita of the origin country,
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in contrast, now turns negative and not significant. This highlights the potential
bias when neglecting spatial spillover effects, which we detect by the significant
estimates of the spatial lags. Destination and origin dependence have a positive
effect on FDI stocks among EU member states, and also the coefficient for origin-
destination dependence is found to be positive and significant. The coefficient for
the distance variable is negative and closer to zero than when estimating by ordi-
nary least squares. This result is in line with LeSage and Thomas-Agnan (2015)
who also find that the importance of geographical distance diminishes after taking
spatial dependence into account. It suggests that distance may be acting as a proxy
for spatial dependence, or that spatial dependence plays a role similar to that of
distance in non-spatial models.

Turning to column (3), i.e., the spatial interaction model where we use the four
nearest neighbor countries to define neighborhood, results change only slightly.
The coefficients of GDP in the destination and origin country remain quite simi-
lar, both in terms of magnitude and significance. GDP per capita in the destination
country also exerts a significant and negative effect on bilateral FDI stocks, while
the effect of GDP per capita in the origin country turns positive but is still not
significant. The coefficient of distance has an intermediate value between the
least squares estimate from column (1) and the estimate from column (2). Turn-
ing to the spatial dependence measures, we find larger coefficients for destination
and origin dependence but now origin-destination dependence is no longer signif-
icant.8

Summing up, our results are consistent with origin-, destination- and, at least
in one specification, origin-destination-dependence for FDI stocks. Until now, we
have only described the estimated coefficients of the spatial interaction model.
Policy makers or researchers, however, are mostly interested in the interpretation
of marginal effects, i.e., how do FDI stocks change if a regressor changes? As
stressed by LeSage and Thomas-Agnan (2015), the coefficients of a spatial model
are not identical to the marginal effects of interest, as the coefficients do not take
into account the changes in neighboring observations in the sample.9 Instead,
marginal effects vary across all country pairs. Therefore, we turn to the calculation
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of scalar summary measures of the marginal effects in the following section.

Scalar Summary Effects Estimates for GDP and GDP per capita
In the non-spatial model given in Equation (1), the parameter β1 is interpreted

as a partial derivative reflecting the impact of changes in GDP at the destina-
tion and β3 is associated to a change in GDP at the origin of the FDI stocks. A
similar interpretation for GDP per capita holds for β2 and β4. As LeSage and
Thomas-Agnan (2015) point out, although the conventional approach of inter-
preting the coefficient sum β1 +β3 as a measure of the total effect on FDI arising
from changes in origin and destination GDP is correct (β2 + β4 for the case of
GDP per capita), the approach of LeSage and Thomas-Agnan (2015) allows us to
decompose the total effect into origin, destination and intracountry effects.

In the case of spatial interaction models, the change in the characteristics of
a single country can impact foreign direct investment into and out of this country
to its partners, but also FDI into and out of its neighbors and neighbors of its
destination country that are not part of the dyad. Then, four different effects can
be distinguished: origin effect (OE), destination effect (DE), intracountry effect
(IE) and network effect (NE). Spatial models differ from non-spatial models by
the inclusion of network effects. For example, a change in GDP of country i
may not only affect FDI from and into country i but may also affect neighboring
countries within the sample of n countries in the long-run; the strength of this
effect is measured by the network effects.

Let us now explain how to calculate the four different effects. First, the OE
represents the effect in the dependent variable of a change in the rth explana-
tory variable of the origin country in the O-D dyad. Second, the DE refers to
the change in the dependent variable as a consequence of a change in the rth ex-
planatory variable of the destination country. The IE measures how changes in the
rth explanatory variable of country i affect investments from i in i (i.e., domestic
investments). The OE, DE and IE can be interpreted as short-run effects. In the
long-run, a change in the rth explanatory variable in i will ripple through the whole
sample through the neighborhood interactions, not only for those dyads where i
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TABLE 2: COEFFICIENT ESTIMATES

(1) (2) (3)

non-spatial B D

Least Bayesian Bayesian
Squares MCMC MCMC

CONSTANT -40.446∗∗∗ -14.444∗∗∗ -17.151∗∗∗

(3.099) (2.979) (3.526)
lnGDPd 0.776∗∗∗ 0.436∗∗∗ 0.440∗∗∗

(0.075) (0.090) (0.095)
ln(GDP/POP)d -0.312 -0.651∗∗∗ -0.537∗∗∗

(0.195) (0.188) (0.197)
lnGDPo 0.936∗∗∗ 0.420∗∗∗ 0.348∗∗∗

(0.071) (0.087) (0.095)
ln(GDP/POP)o 2.049∗∗∗ -0.155 0.179

(0.181) (0.180) (0.193)
ln(DIST )do -2.343∗∗∗ -0.691∗∗∗ -0.925∗∗∗

(0.229) (0.153) (0.165)
Bd lnFDI 0.368∗∗∗

(0.039)
BolnFDI 0.313∗∗∗

(0.055)
BwlnFDI 0.288∗∗∗

(0.056)
Dd lnFDI 0.518∗∗∗

(0.053)
DolnFDI 0.326∗∗∗

(0.065)
DwlnFDI 0.142

(0.106)

Notes: Table reports coefficient estimates for the (non-)spatial regression
model given in Equations (1) and (2). All models are estimated using 625
observations. Column (1) is estimated by least squares and reports robust
standard errors in parenthesis. Columns (2) and (3) are estimated using a
Bayesian MCMC estimator following LeSage and Thomas-Agnan (2015)
and using 6,000 draws of which we throw away the first 3,000 for burn-in.
In parenthesis, we report the standard deviation of the parameter draws. ***
p <0.01, ** p <0.05, * p <0.1. We calculate p-values for columns (2) and
(3) by calculating an equivalent t-statistic and compare it to the according
quantiles of the standard normal distribution.
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is directly involved. These interactions not only occur between direct (first-order)
neighbors, but also between neighbors of neighbors, etc. If the spatial model is
stable, i.e., ρ1+ρ2+ρ3 < 1, these effects will eventually peter out and the system
will reach a new equilibrium in the long-run. The NE measures how FDI stocks
would change across the whole sample due to these indirect spatial spillovers in
the long-run if a regressor in a typical country changes, i.e., excluding the direct
effects which are measured by OE, DE and IE.10

But what is the combined effect of these four components, i.e., how do all FDI
stocks across all observations change with a change in the value of the regressor r
of country i, xr

i , in the long-run? The total effect (TE) answers this question. We
can express TE for the non-spatial gravity model as the following partial deriva-
tive:

TENon−spatial =

 ∂Y/∂Xr
1

...
∂Y/∂Xr

n

=



∂y11/∂xr
1 ∂y12/∂xr

1 . . . ∂y1n/∂xr
1

∂y21/∂xr
1 ∂y22/∂xr

1 . . .
...

... . . . ...
∂yn1/∂xr

1 . . . . . . ∂ynn/∂xr
1

∂y11/∂xr
2 . . . . . . ∂y1n/∂xr

2

∂y21/∂xr
2

. . . ...
... . . . ...

∂yn1/∂xr
n . . . . . . ∂ynn/∂xr

n


=

 Jd1β r
d + Jo1β r

o
...

Jdnβ r
d + Jonβ r

o

 (11)

In Equation (11), Y is the n× n matrix of bilateral (log) FDI stocks as defined
above with typical entry yi j, the foreign direct investment from country j in coun-
try i. Xr

i is given by xr
i × ιn, where xr

i is the value of the rth regressor of country i,
and ιn is a n×1 vector of ones. Jdi is a n×n matrix of zeros with the ith row equal
to ι ′nβ r

d , and Joi is an n×n matrix of zeros with the ith column equal to ιnβ r
o (see

LeSage and Thomas-Agnan, 2015).11 There are n sets of n×n outcomes resulting
in the n2×n matrix TENon−spatial which contains the partial derivatives reflecting
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the total effect on FDI stocks from changing the rth explanatory variable of all n
countries.

When we add spatial lags to the O-D model, LeSage and Thomas-Agnan
(2015) show that the spatial total effects are calculated as:

TE =

 ∂Y/∂Xr
1

...
∂Y/∂Xr

n

= A−1

 Jd1β r
d + Jo1β r

o
...

Jdnβ r
d + Jonβ r

o

 , (12)

where, in the case of the contiguity matrix defined above, A≡ In2−ρ1Bd−ρ2Bo−
ρ3Bw. As can be seen, in the spatial model, the spatial dependence parameters and
weight matrices now affect the total effect calculation. Hence, ignoring spatial
dependence at the estimation stage leads to erroneous marginal effects interpreta-
tions and inferences.

The n2× n matrix of total effects can be condensed into a scalar summary
measure. It takes the following form:

te =
1
n2 ι
′
n2TEιn. (13)

This scalar summary measure can be interpreted in the same way as a marginal
effect in a standard regression model. Specifically, it can be interpreted as the
change in the dependent variable across the whole sample for a change in a regres-
sor of a typical country in the long-run. In our application, it indicates how FDI
stocks would change across the whole European Union (i.e., across all country-
pairs) in the long-run if a regressor in a typical EU member country changes.
When we replace TE by TENon−spatial , we can calculate a similar scalar summary
measure for the non-spatial model.

LeSage and Thomas-Agnan (2015) and LeSage (2014) show that the total ef-
fects can be decomposed into OE, DE, IE and, in the case of the spatial model,
NE.12 For every of these components, one can calculate similar scalar summary
measures as for TE. We denote these by lower case letters. The effects are given
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by the following formulae:

Origin effects: OE = A−1


J̃o1β r

o

J̃o2β r
o

...
J̃onβ r

o

 , oe =
1
n

n

∑
i=1

(
1
n ∑

k 6=i

∂yki

∂xr
i

)
,

Destination effects: DE = A−1


J̃d1β r

d

J̃d2β r
d

...
J̃dnβ r

d

 , de =
1
n

n

∑
i=1

(
1
n ∑

k 6=i

∂yik

∂xr
i

)
,

Intracountry effects: IE = A−1


Ji1(β r

d +β r
o)

Ji2(β r
d +β r

o)
...

Jin(β r
d +β r

o)

 , ie =
1
n

n

∑
i=1

(
1
n ∑

k=i

∂ykk

∂xr
i

)
,

Network effects: NE = TE−OE−DE− IE, ne = te−oe−de− ie,

where J̃oi is the n×n matrix Joi but where we replace its ii element by 0, so that
we exclude the intracountry effect, which we calculate separately. We adjust Jdi

in a similar way to get J̃di. From this it follows that Jii is a matrix of zeros but
ones for the ii element.13

We cannot simply interpret the obtained coefficients of the origin and destina-
tion characteristics as marginal effects. Instead, we have to rely on the effects cal-
culations laid out above, even though the model does not contain a spatial compo-
nent. The reason is that the ceteris paribus condition needed for this interpretation
does not hold: for example, when we change the origin GDP of a specific country
by one percent, we simultaneously change GDP for all observations where this
country acts as a destination. Hence, we cannot simply change one regressor in
isolation. The calculations above take these simultaneous changes into account.

We can now calculate these effects for our estimated model of FDI stocks.
Effects estimates are shown in Table 3 for the non-spatial model and in Table 4
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TABLE 3: EFFECTS ESTIMATES FOR THE NON-SPATIAL AUTORE-
GRESSIVE INTERACTION MODEL

Least-Squares

lower 0.05 mean median std. dev. upper 0.95

Origin GDP 0.788 0.898 0.898 0.067 1.007
Destination GDP 0.622 0.746 0.747 0.072 0.860
Domestic (Intra) GDP 0.061 0.069 0.069 0.005 0.076
Network GDP -0.000 -0.000 0.000 0.000 0.000
Total GDP 1.518 1.713 1.714 0.116 1.902
Origin GDP p.c. 1.686 1.973 1.972 0.176 2.263
Destination GDP p.c. -0.611 -0.300 -0.298 0.188 0.014
Domestic (Intra) GDP p.c. 0.049 0.070 0.070 0.012 0.090
Network GDP p.c. -0.000 -0.000 -0.000 0.000 0.000
Total GDP p.c. 1.224 1.743 1.748 0.311 2.253

Notes: Effects are calculated using the method by LeSage and Thomas-Agnan (2015) based on parameter
estimates from column (1) of Table 2. Dispersion measures are calculated by a parametric bootstrap generating
3,000 draws from a multivariate normal distribution using as parameters the estimated coefficients and variance
covariance matrix from column (1) of Table 2. “lower 0.05” denotes the 5 percent quantile of the effects
calculated using the bootstrap parameter draws and “upper 0.95” the 95 percent quantile. “mean” denotes the
mean of the draws, “median” their median and “std. dev.” their standard deviation.
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TABLE 4: EFFECTS ESTIMATES FOR THE SPATIAL AUTOREGRESSIVE

INTERACTION MODEL USING A CONTIGUITY WEIGHTING MATRIX

Spatial Autoregressive

lower 0.05 mean median std. dev. upper 0.95

Origin GDP 1.942 3.100 3.024 0.792 4.499
Destination GDP 1.842 2.899 2.802 0.753 4.295
Domestic (Intra) GDP 0.138 0.206 0.201 0.047 0.289
Network GDP 15.319 25.359 24.332 7.318 38.492
Total GDP 19.488 31.563 30.364 8.792 47.301
Origin GDP p.c. -3.680 -1.787 -1.781 1.148 0.105
Destination GDP p.c. -5.678 -3.777 -3.688 1.134 -2.042
Domestic (Intra) GDP p.c. -0.296 -0.188 -0.186 0.065 -0.085
Network GDP p.c. -40.450 -25.320 -24.469 8.797 -12.258
Total GDP p.c. -49.317 -31.072 -30.186 10.744 -15.026

Notes: Effects are calculated using the method by LeSage and Thomas-Agnan (2015) based on parameter
estimates from column (2) of Table 2. “lower 0.05” denotes the 5 percent quantile of the effects calculated using
the MCMC parameter draws and “upper 0.95” the 95 percent quantile. “mean” denotes the mean of the draws,
“median” their median and “std. dev.” their standard deviation.
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TABLE 5: COMPARISON OF MEAN EFFECTS

GDP

oe de ie ne te

Non-spatial model 0.898 0.746 0.069 0.000 1.713
Spatial model using B 3.100 2.899 0.206 25.359 31.563
Spatial model using D 4.485 4.193 0.225 78.778 87.680

GDP p. c.

oe de ie ne te

Non-spatial model 1.973 -0.300n.s. 0.070 0.000 1.743
Spatial model using B -1.787n.s. -3.777 -0.188 -25.320 -31.072
Spatial model using D -1.717n.s. -3.438 -0.118n.s. -55.822 -61.094

Notes: Mean effects are calculated using the method by LeSage and Thomas-Agnan (2015) for the three estimated
models from Table 2. oe denotes the origin-dependence scalar summary measure, de the destination-dependence scalar
summary measure, ie the intracountry effect, ne the network effect scalar summary measure and te the total effect scalar
summary measure. n.s. denotes an effect which is not statistically different from 0 when judged by the according 90
percent credible interval.
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for the spatial model using the contiguity weight matrix.14 The non-spatial results
show that a one percent increase in GDP at the typical origin country of invest-
ments would lead to a 0.898 percent increase in outward FDI stocks, while a one
percent increase in GDP per capita at the typical origin would increase outward
FDI stocks by 1.973 percent.15 The effect of increasing GDP per capita at the
destination is not significant, while a one percent increase in GDP at destination
increases inward FDI stocks by 0.746 percent. These results are close to the co-
efficient estimates presented in column (1) of Table 2. It is worth mentioning that
there is a small difference due to the fact that our effects decomposition explicitly
takes into account intracountry effects. For example, the marginal effect of GDP
at origin is 0.898 percent in the decomposition that considers intracountry effects,
while it is 0.936 percent when simply using the estimated coefficient. Intracountry
effects of increasing GDP or GDP per capita are positive and significant, although
small in magnitude (0.069 and 0.07, respectively). This implies that increasing
GDP or GDP per capita in a country leads to higher investment stocks within the
same country. Finally, total effects reflect the sum of origin, destination and intra-
country effects, which equal 1.713 percent for GDP and 1.743 percent for GDP
per capita.

In the spatial model, the effects also show how FDI stocks would change if
GDP and GDP per capita of a country change by one percent, but in this case the
non-zero estimates of the endogenous interaction parameters ρd , ρo, ρw have to
be taken into account. Regarding the spatial contiguity model (Table 4), if GDP
at origin increases by one percent, outward FDI stocks increase by 3.1 percent,
but origin GDP per capita is not statistically significant, based on the 0.05 and
0.95 credible interval. Additionally, if GDP at destination increases by one per-
cent, inward FDI stocks increase by 2.899 percent, while destination GDP per
capita decreases inward FDI stocks by 3.777 percent. The intracountry impact
of increasing GDP is relatively small, although larger than the one found for the
non-spatial model. The relatively small effect can be explained by the fact that
the domestic capital stock, lnFDIii, is typically several times the current GDP of
a country. Hence, a one percent increase in GDP will lead to a smaller percent
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increase in the domestic capital stock, even if all of GDP were to be invested. The
effect of GDP per capita is negative and statistically significant, in contrast to the
positive intracountry effect found for the non-spatial model. Intuitively, though,
the negative effect makes sense: the richer the country, the less it invests into
itself but spreads its investments to other countries. In the case of Europe, this
reflects the fact that richer countries like, e.g., Germany invest more into other,
poorer countries such as the Eastern European transition economies. This could
be interpreted as evidence that vertical FDI motives are more prevalent between
EU countries than market-seeking FDI. This also highlights the potential for bias,
not only in terms of coefficient estimates but also in terms of policy conclusions
when neglecting spatial dependence in FDI data. Finally, the network effect equals
25.359 and -25.32 percent for GDP and GDP per capita, respectively. This means
that a one percent increase in GDP in the typical EU country leads to a 25.359
percent increase in FDI stocks across all 25 EU countries in the sample in the
long-run, while a one percent increase in GDP per capita leads to a decrease of
25.32 percent of FDI stocks across the whole EU in the long-run. Even though
these effects seem large, it has to be noted that the majority of the increase of FDI
stocks within the EU due to the increase of GDP in a typical EU country would
fall predominantly on the direct neighbors of the respective country, as spatial de-
pendence decreases with the increasing order of neighborhood, see LeSage and
Thomas-Agnan (2015).

Using the contiguity matrix, the results provide evidence in line with the im-
portance of the network effect on the FDI activity between EU countries. In fact,
it seems that the most important variation of FDI stocks among EU countries is
due to the indirect effects (spillovers or NE) that arise between countries.

Let us now compare calculated effects for the different weighting matrices we
used. To ease the comparison of the calculated effects, we present mean scalar
summary measures for all three estimated models in Table 5. The upper panel
compares the effects for GDP, whereas the lower panel shows the effects for GDP
per capita.

Mean effects for GDP calculated using the nearest neighbors matrix are similar
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in sign and more or less in magnitude. Effect sizes are also fairly similar for both
spatial weight matrices for GDP per capita. However, the statistical significance
of the intracountry GDP per capita effects vanishes when using the four nearest
neighbors matrix.16

To sum up, we find evidence for spatial spillovers of foreign direct invest-
ment decisions for our sample of 25 EU member countries, which highlights the
importance of taking into account spatial dependence structures when estimating
bilateral FDI models.

Conclusions
This paper presents evidence for spatial spillovers of bilateral foreign direct in-

vestment decisions in a sample of 25 European Union member countries in 2010.
To do so, we rely on a spatial gravity equation that considers spatial lags using the
spatial interaction model framework by LeSage and Pace (2008). This framework
allows us to take into account that foreign direct investment decisions may be
correlated across neighboring countries of the origin of FDI (origin-based depen-
dence), across neighboring countries of the destination of FDI (destination-based
dependence), as well as across neighboring countries of both origin and destina-
tion countries of FDI (origin-destination-based dependence).

To correctly interpret the estimates from this type of spatial bilateral model,
we follow the methodology by LeSage and Thomas-Agnan (2015). This allows
us to present scalar summary measures that are easily interpreted and are similar
to standard marginal effects in non-spatial unilateral regression models.

We find that larger economies invest more and attract more investments. Cru-
cially, our findings provide evidence that non-spatial gravity models of FDI under-
estimate the total impact of increasing market size (measured as GDP) on invest-
ments across European countries, as spatial spillover effects are not considered. In
fact, spatial spillover effects are the single most important component of the total
effect of the increase in market size. In addition, we find evidence that wealthier
economies (measured by GDP per capita) invest less at home and more abroad,
contrary to results from a model without spatial spillovers. The significance of the
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reduction in domestic investment (i.e., the intracountry effect) due to an increase
in GDP per capita, however, depends on the specific way of modeling the spatial
neighborhood relations between countries.

The main conclusion is that spatial lags are significant in a gravity-type model
for FDI between EU member countries and should therefore be included in further
regression analyses to prevent an omitted variable bias.

NOTES
1Note that interpreting the coefficients for GDP per capita in a ceteris paribus fashion is iden-

tical to assume that a country’s population decreases for a given level of GDP.
2For a detailed exposition of the construction of the matrices, see LeSage and Pace (2008).
3We thank James P. LeSage for cordially sharing his code with us.
4We leave out Cyprus and Malta even though they were EU member states in 2010, as both are

island countries and hence do not have any contiguous border with another country.
5In the literature on structural trade gravity models, Yotov (2012), Bergstrand et al. (2015) and

Heid et al. (2015) use both intranational and international trade flows.
6We use ck, the capital stock in current million US$ (PPP). For a detailed description of the

Penn World Tables as well as the included capital stock measures, see Feenstra et al. (2013),
Feenstra et al. (2015a), Feenstra et al. (2015b) and Inklaar and Timmer (2013).

7Some authors deal with zero or negative values in the dependent variable by using an inverse
hyperbolic sine transformation, i.e., sinh−1(y) ≡ ln[y+(y2 +1)1/2]. For example, Kristjánsdóttir
(2012) and Rotunno et al. (2013) use it to model trade flows; Kristjánsdóttir (2005) uses it to model
FDI flows. The advantage of this transformation is that for large positive values, ln(y)≈ sinh−1(y).
Hence, for this range of the data, the inverse hyperbolic sine transformation behaves as a constant-
elasticity model if the regressors are also in logs. Therefore, when estimating a regression model
with only positive values of the dependent variable, choosing ln(y) or sinh−1(y) yields very similar
coefficients, see e.g., Kristjánsdóttir (2012). When estimating the model including many zeros and
negative values, the estimated model coefficients at least for these values cannot be interpreted as
elasticities. In sum, the inverse hyperbolic transformation imposes a non-linearity in the implied
marginal effects for which there is no clear intuition in terms of its economic implications. We
therefore abstain from using this transformation.

8In unreported results, we also estimated our model with a six nearest neighbors weight matrix.
As expected, see LeSage and Pace (2014), effect calculations presented in the following section
are very similar for different values of k.

9Similar arguments are used in the structural trade gravity literature, see, e.g., Heid and Larch
(2016).
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10For a detailed explanation, see LeSage and Thomas-Agnan (2015). Note that the authors refer
to “cumulative” effects instead of effects in the long-run.

11β r
o and β r

d denote the parameters associated with the explanatory variables for origins and
destinations.

12Note that while LeSage and Thomas-Agnan (2015) use an origin-centric ordering of the de-
pendent variable, LeSage (2014) uses a destination-centric ordering. We adjusted the notation
accordingly.

13Note that for the non-spatial model, OE, DE and IE can be calculated by setting ρ1 = ρ2 =

ρ3 = 0, i.e., A = In2 , and NE = 0 by construction.
14We present effect calculations for the nearest neighbors matrix in Table A.1 in the Appendix.
15As we estimate a log-log model, the parameters represent elasticities.
16We experimented also with a six nearest neighbors matrix. As expected by LeSage and Pace

(2014), results hardly change for varying k.
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Appendix Effects Estimates for Four Nearest Neighbor Matrix
Table A.1 shows the effects calculations using the spatial weighting matrix D

as explained in the main text. The table is organized in the same way as Table 4.

TABLE A.1: EFFECTS ESTIMATES FOR THE SPATIAL AUTOREGRESSIVE

INTERACTION MODEL USING A FOUR NEAREST NEIGHBORS WEIGHT-
ING MATRIX

Spatial Autoregressive

lower 0.05 mean median std. dev. upper 0.95

Origin GDP 2.446 4.485 4.207 1.651 7.440
Destination GDP 2.255 4.193 3.893 1.601 7.118
Domestic (Intra) GDP 0.131 0.225 0.214 0.073 0.357
Network GDP 37.532 78.778 71.586 35.547 144.425
Total GDP 42.489 87.680 79.932 38.835 159.159
Origin GDP p.c. -4.777 -1.717 -1.603 1.816 1.009
Destination GDP p.c. -6.586 -3.438 -3.258 1.804 -0.820
Domestic (Intra) GDP p.c. -0.266 -0.118 -0.114 0.087 0.015
Network GDP p.c. -119.874 -55.822 -51.115 35.439 -7.914
Total GDP p.c. -131.871 -61.094 -56.058 38.993 -7.849

Notes: Effects are calculated using the method by LeSage and Thomas-Agnan (2015) based on parameter
estimates from column (3) of Table 2. “lower 0.05” denotes the 5 percent quantile of the effects calculated using
the MCMC parameter draws and “upper 0.95” the 95 percent quantile. “mean” denotes the mean of the draws,
“median” their median and “std. dev.” their standard deviation.
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