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Abstract

Non-convex functionals have shown sharper results in signal reconstruction as
compared to convex ones, although the existence of a minimum has not been
established in general. This paper addresses the study of a general class of
either convex or non-convex functionals for denoising signals which combines
two general terms for fitting and smoothing purposes, respectively. The first
one measures how close a signal is to the original noisy signal. The second
term aims at removing noise while preserving some expected characteristics
in the true signal such as edges and fine details. A theoretical proof of the
existence of a minimum for functionals of this class is presented. The main
merit of this result is to show the existence of minimizer for a large family
of non-convex functionals.

Keywords: Non-convex funtional, Signal denoising, Minimizer, Calculus of
variations.

1. Introduction

Despite the many recent research efforts in the field of signal restoration,
the design of robust solutions to the problem of signal denoising is still an
open challenge. Traditionally, non-convex variational functionals has been
successfully applied to this problem without any theoretical guarantee [1,
Section 3.2.6].
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The general denoising task can be modeled as a variational problem that
consists in finding a global minimizer of a functional known as energy or cost
function [1, 2, 3, 4]. It is composed of two terms. The first one (the fitting or
fidelity term) is intended to reward the closeness of a signal to the original
noisy signal. The second one (the potential or regularization term) aims
at removing noise while preserving some prior expected characteristics such
as borders, details, among others. To this end, the potential term should
favor the smoothing of regions with small or moderate gradients, usually
corresponding to noises, while it should not penalize regions with strong
gradients, usually corresponding to edges. The combination of these two
terms can be understood as a trade-off between approximation accuracy and
noise removal. Signals very close to the original noisy signal yield low cost
values of the fitting term and high cost values in the regularization term.
Otherwise, smooth signals can be substantially different from the original
one, thus inducing a high cost value in the fitting term, but a low potential
value.

There has been much work in the optimization of both convex and non-
convex cost functionals. Convex functionals are very popular as they are
easy to work with and they are guaranteed to have a minimizer. On the
other hand, it has been systematically and empirically proved [1, 5] that
non-convex regularization provides more chances for image restoration with
well-defined edges as compared to convex methods. However, the existence
of a minimum for non-convex functionals can not be established in general
in continuous domains.

One of the pioneering works in the variational framework is a non-convex
functional proposed by Geman and McClure [3], which has been extensively
used for image restoration. After proving the non-existence of minimum
for this functional, Chipot et al. [6] showed that perturbing it by adding a
quadratic term yields a new non-convex functional with minimizer in one-
dimensional signals, that also presents a good performance preserving edges.
Formally, the proposal by Chipot et al. [6] was defined as follows:

E(u) =

∫ b

a

[u(x)− g(x)]2 dx+

∫ b

a

φ(u′(x))dx (1)

where φ(t) = t2

α2+t2
+ γt2.

The first term in (1) measures how much a function u(x) fits the original
noisy signal g(x) in the least-squares sense, and it is particularly effective
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when additive Gaussian noise is present.
The second term (a regularization term) rewards more the smoothing of

regions of moderate gradients (noise removal) than the smoothing of regions
with large gradients (edge blurring). Therefore, it promotes clean signals
with neat edges.

March et al. [7] proved the existence of a minimum for a generalized
form of (1) in order to show the existence of a solution to the Perona-Malik
equation [8] in the sense of BV [9]. This generalized form keeps unchanged
the quadratic fitting term and introduces a general smooth robust function
as a second term. However, this model does not consider non-smooth po-
tentials which could provide better restoration results for certain problems.
In this regard, Nikolova et al. [10] have shown that non-convex non-smooth
potentials are better to preserve piecewise constant signals.

The works [6, 7] guarantee the existence of a minimizer for certain non-
convex denoising functionals in only one-dimensional signals in continuous
domains. Recently, Harjulehto et al. [11] have demonstrated the existence of
a minimum of the functional (1) on arbitrary dimensions, although this result
does not hold for general functionals with arbitrary non-convex potential and
fidelity terms. Non-convex fitting based on M-estimators [12] has shown to
be quite robust in the presence of outliers caused by impulsive noise [13, 14].

The two terms involved in the functionals proposed in [6, 11, 7] can be
viewed as specific fitting and denoising solutions, respectively. In particular,
the fidelity term has a quadratic form, which makes these functionals partic-
ular for Gaussian noise attenuation. However, these methods fail to remove
Impulsive noise from classes of signals that arise naturally in various fields
of applied sciences, for instance piecewise constant (PWC) and piecewise
smooth (PWS) signals.

A theoretical study on the existence of minimizers for a family of non-
convex functionals in the discrete setting is shown in [10], while [15] provides
empirical evidence on the usefulness of a particular non-convex functional for
image denoising and deblurring in the presence of impulsive noise. However,
no proof on the existence of minimizers for nonconvex variational methods
with both non-quadratic fidelity terms and edge-preserving potential terms
in the continuous domain has been reported.

In this paper we present a generalization of the models discussed above
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Table 1: Examples of functions h(·). The initials C and NC stand for Convex and Non-
convex, respectively.

Name Function Type

Linear L1 t C

Quadratic L2 t2 C

Lα tα, 1 < α < 2 C

Quantile
regression

Qβ(t) =

{
(1− β)t t > 0
β(−t) t ≤ 0

C

Hubert Hα(t) =

{
t2

2
t ≤ α

αt− α2

2
t > α

C

Leclerc φ(t) = 1− e−αt2 NC

Geman
and
McClure

φ(t) = αt2

1+αt2
NC

LogCauchy LCγ(t) = log(γ2 + t2) NC

Lorentzian Lσ(t) = log(1 + 1/2(t/σ)2) NC

to accommodate more general fidelity and regularization terms:

F(u) =

∫ b

a

h(|u− g|)dx+

∫ b

a

φ(u′)dx (2)

The first term is formulated by means of a wide range of functions h(·) to
measure how well a signal u fits the original signal g under different types
of additive noises (e.g. Gaussian, “salt and pepper”, Laplacian), provided
that the signal g satisfies a condition similar to the one introduced in [7], re-
ferred in this paper to as φ-compatible condition (see Definition 1). Table 1
illustrates some particular functions h(·), comprising convex and non-convex
examples. The second general term comprises a family of either smooth or
non-smooth and convex or non-convex functions φ(·) that are intended to
preserve high-quality edges, including those that result from adding a small
quadratic perturbation to functions derived from a robust estimation frame-
work. Some illustrative examples of φ(·) are listed in Tab. 2. According
to [16], the robust statistical approach provides means for detecting bound-
aries (edges) and preserving fine details in piecewise smooth regions of a
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Table 2: Examples of functions φ(·) with quadratic growth (γ 6= 0).

Functions Type

φ(t) = αt2

1+αt2
+ γt2 Smooth

φ(t) = 1− e−αt2 + γt2 Smooth

φ(t) = min{1, αt2}+ γt2 Smooth

φ(t) = log(αt2 + 1) + γt2 Smooth

φ(t) = −1
1+αt2

+ γt2 Smooth

φ(t) = log(α|t|+ 1) + γt2 Non-smooth

φ(t) = 1− e−α|t| + γt2 Non-smooth

φ(t) = α|t|
1+α|t| + γt2 Non-smooth

φ(t) = −1
1+α|t| + γt2 Non-smooth

signal. Meanwhile, the addition of the small quadratic perturbation (γ 6= 0),
as mentioned above, guarantees the existence of the minimum for the general
model without significantly change the behavior of the perturbed term. The
families of functions h(·) and φ(·) will be precisely defined in the next section
through specific properties. Without loss of generality, and to ease the com-
prehension of the manuscript, the scope of the words fitting (or fidelity) and
potential (or regularization) will be extended to denote the functions h(·) and
φ(·), respectively, apart from the two terms of F(·) in (2) as stated before.

Besides the trend-setting works of Geman and McClure [4] and Chipot
et al. [6], the practical effectiveness of non-convex functionals have also been
shown in other studies. In signal/image denoising, the researches of Aubert
et al. [1], Nikolova [17] and Selesnick et al. [18] illustrate by concrete ex-
amples the better performance of some non-convex functionals as compared
to convex ones. Vese [19] shows the ability of several non-convex potentials
to reconstruct signals, being particularly accurate at restoring edges and
linear regions. In Charbonnier et al. [20], different non-convex potentials
were successfully used to reconstruct 2-D single photon emission tomogra-
phy (SPECT) images with both synthetic and real data. Other challenging
applications on images that have benefited from the use of non-convex func-
tionals are pixel classification [21] and segmentation [1, 22].

Numerical solutions to the minimization of functionals of the class (2)
could produce apparently discontinuous discrete functions [17], which have
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proven to be satisfactory, computationally feasible, and good visual quality
results. In spite of their suitability, these functionals are defined on a domain
W 1,p(Ω), p > 1, which does not include functions with discontinuities. To
cope with such cases, a new class of functionals is defined in Sec. 5 as a
generalization of (2) in the spirit of the Mumford-Shah [23] functional.

The formulation (2) represents a class of either convex or non-convex de-
noising functionals, from which the energy function (1) is a particular case.
The main objective of this work is to prove the existence of a minimum for
all functionals of this class. However, the primary motivation is to study
the subclass of non-convex functionals, because of the problem of finding
a minimizer for the complementary convex cases is well studied. As far as
we know, no work has analytically studied the existence of a minimum for
a family of non-convex denoising functionals as general as the one encom-
passed by the class F(·). To have theoretical guarantees for the existence
of that minimum would provide support to search for other well-posedness
non-convex functionals besides (1), which could potentially produce better
results at preserving edges and fine signal features in specific tasks.

In addition, it is shown that the denoising proposal F(·) is a suitable
solution to reconstruct signals of two popular application domains. A first
problem domain is determined by PWC signals contaminated with Impulsive
noise, White Gaussian noise, and mixtures of them. A second domain is de-
fined by PWS signals corrupted with White Gaussian noise, both alone and
jointly with Impulsive noise. These denoising problems might result from sci-
entific and engineering areas such as cross-hybridization of DNA [24], molec-
ular bioscience [25], reconstruction of brain stimuli [26], among others. From
a practical point of view, impulsive noises may appear due to sensor malfunc-
tioning, while White Gaussian noise is mainly caused by poor illumination,
high temperature, transmission errors, among others.

The high quality of the minimization results for some functionals of the
class F(·) is asserted in the works of Nikolova [17] and Bar et al. [15], which
successfully deals with both PWC or PWS signals corrupted with Impul-
sive and/or White noise by using edge-preserving regularization methods
with non-smooth fidelity terms such as L1, Student’s t-distribution, and M -
estimators.

Summarizing, the main contributions of this paper are highlighted below:

• A class of functionals for robust signal denoising that combine two
general terms for fitting and smoothing purposes.
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• A theoretical proof of the existence of a minimum (existence Theo-
rem) for any functional that belongs to the general class, provided that
the original noisy signal satisfies the φ-compatible condition stated in
Definition 1.

It is shown that two problem domains based on widespread signals
(PWC, PWS) corrupted by common noises (Impulsive, White Gaus-
sian) satisfy the φ-compatible condition. Therefore, the existence the-
orem guarantees a fair solution to these denoising tasks. In addition,
as a corollary of the existence Theorem, the existence of minimizers
for a class of Mumford-Shah functionals is demonstrated, in order to
theoretically accommodate discontinuous solutions.

• A novel proof methodology to establish the existence of a minimum
in optimization functionals within the signal processing field, which
has been adopted from a number of theoretical works developed in
different application domains such as material science, physics of phase
transitions, and fracture mechanics [27, 28, 29, 30, 31].

Due to the huge amount of empirical evidence on the usefulness of non-
convex functionals on image and signal denoising and reconstruction, the
scope of this work does not include practical experiments.

This work has been organized in four main parts. Section 2 characterizes
the class of functionals F(), introduced in Eq. (2), and formally states the
main result of this paper, the existence theorem of a minimum, although no
proof is here provided. Section 3 contains a number of handy definitions and
theorems that will be required to prove the main theorem. In Section 4, the
proof of the existence Theorem is rigorously written. Finally, conclusions
and promising directions for future research are given in Section 5.

2. Formal statement of the existence theorem of a minimum for
each functional of the class F(·)

This section is intended to introduce the main result of this paper. It
consists in a theorem that establishes the existence of a minimum for each
functional of the class F(·), introduced in Eq. (2), for edge-preserving signal
restoration. The scope of this section includes a formal characterization of
two families of functions, h(·) and φ(·), required to build the general fitting
and potential terms, respectively, which can be combined to define the class of
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functionals F(·). The analysis presented hereafter is carried out in arbitrary
dimensions.

To ease the comprehension of this section, the class of functionals F(·)
stated in (2) is reintroduced below:

F(u) =

∫
Ω

h(|u− g|)dx+

∫
Ω

φ(∇u)dx,

where the domain Ω ⊂ Rn, n ≥ 1, is an open and bounded set, the function
u : Ω→ R belongs to the Sobolev space

W 1,p(Ω) = {f ∈ Lp(Ω) : ∇f ∈ Lp(Ω)}

with p > 1, and the noisy signal g belongs to L∞(Ω).
In order to state the existence theorem, several properties of the fidelity

and potential functions h and φ need to be formulated. First, five properties
(F1, F2, F3, F4, F5) of h are listed:

Non-negativity: The data-fidelity function h : [0,+∞)→ R satisfies,

h(x) ≥ 0, ∀x ∈ [0,+∞). (F1)

Zero-value at x = 0: The function h maps the origin into the origin:

h(0) = 0. (F2)

Locally Lipschitz: The function h is piecewise Lipschitz, i.e., there exists
a collection of open sets Bi, ∪Bi = R, and a set of corresponding
constants Ki > 0 such that,

|h(x)− h(y)| ≤ Ki|x− y|, ∀x, y ∈ Bi (F3)

Strictly increasing function: The function h satisfies,

x < y ⇒ h(x) < h(y), ∀x, y ∈ [0,+∞). (F4)

This condition implies the existence of the derivative h′ everywhere
except at a Lebesgue zero-measure set S, as shown in [32].

Lower boundedness of the derivative: Given any interval [a, b] ⊂ (0,+∞),
h′ satisfies

inf
t∈[a,b]\S

h′(t) = wa,b > 0. (F5)
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In the case of the potential function φ, four other properties (P1, P2,
P3, P4) are discussed below. For the purpose of establishing (P4), and by a
common practice to minimize a non-convex functional, the convex envelope
of φ is built and is denoted as φ∗∗ : Rn → [0,+∞]. In addition, to state (P3)
and (P4), let us assume that the detachment set

Aφ = {z ∈ Rn : φ∗∗(z) 6= φ(z)} ,

is a countable union of disjoint open sets Aφi , that is Aφ =
⋃∞
i=1A

φ
i . These

properties are listed below:

Global minimum: The potential reaches a global minimum at 0,

φ(0) = min
z∈Rn

φ(z). (P1)

Grow order: There exist L2 ≥ L1 > 0, µ2 ≥ µ1 ≥ 0 and p > 1 such that

L1(µ1 + |z|2)p/2 ≤ φ(z) ≤ L2(µ2 + |z|2)p/2. (P2)

Local convexity at zero: The detachment set Aφ does not contain zero:

0 /∈ Aφ. (P3)

This implies that φ is locally convex at zero, and the converse is also
true.

Affinity: The restriction of φ∗∗ to each Aφi of the detachment set is an affine
function

φ∗∗(z) = ni · z + li, ∀z ∈ Aφi , (P4)

where ni ∈ Rn and li ∈ R. This is a standard condition used to prove
the existence of minimum of non-convex functionals (see [33, 34, 27,
35, 30, 31]).

Moreover, the original noisy signal g has to satisfy the condition stated in
the Definition 1, which is similar to the one proposed by March et al. [7] and
it also holds in the Chipot’s approach. Following the notation introduced
in [7], this is called here φ-compatible, because its formulation depends on
φ. This condition is expressed in terms of i) the Lebesgue measure, denoted
by Ln, ii) the approximate derivative of g, denoted by apDg(x), and iii) the
set of points where g is approximately derivable, denoted by Dg.
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Definition 1 (φ-compatible condition): We say that a signal g : Ω→ R
satisfies the φ-compatible condition if

Ln
{
x ∈ Dg : apDg(x) ∈ Aφ

}
= 0. (3)

As commented in the Introduction section, two popular families of signals

with practical interest (PWC, PWS), when affected by certain types of noises,
fulfill the φ-compatible condition. Next, a brief explanation is provided for
each case:

• PWC signals both noiseless and contaminated with Impulsive noise,
White Gaussian noise, and mixtures of them satisfy (3) when 0 /∈ Aφ.
Since PWC signals corrupted with Impulsive noise keep the PWC
structure, they can be mathematically represented as simple measur-
able functions g(x) =

∑∞
k=1 akχFk(x). Then, it is easy to see that

apDg(x) = 0 and thus,{
x ∈ Dg : apDg(x) ∈ Aφ

}
= ∅. (4)

Therefore, (3) holds.

• As shown next, PWS signals contaminated with a Gaussian Process
(GP) or a mixture of Impulsive noise and GP also satisfy (3). Given
any PWS signal g (with finite approximate derivative at almost every
point), let us assume that g is contaminated with a realization of a
stochastic process X, producing a corrupted signal denoted by g +X.
If X has infinite approximate derivative at almost every point, then
apD(g+X)(t) = apDg(t) + apDX(t) =∞ for almost every t ∈ [a, b].
Therefore, g +X satisfies (4) and, consequently (3).

Using a GP X as a particular case of a stochastic process, it is shown
that, under some conditions, apDX(t) = ∞ at almost every point
t ∈ [a, b], as first deduced in Berman [36, Lemma 3.1, p. 1264]. As it
is demonstrated in that work, a GP with stationary increments and
with jointly continuous local time ψ(x, t) has almost surely realizations
X(t) with infinite approximate derivative for almost every t. To this
end, Berman stated several independent theorems to prove that a GP
with stationary increments has jointly continuous local time. One of
them (Theorem 4.1 [36, p. 1265]), with a remarkable practical interest,
states that a GP with mean 0, stationary increments, and continuous
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σ(t) = E[(X(t) − X(a))2] has jointly continuous local time almost
surely, if the following condition∫ b

a

∫ b

a

σ(t− s)−(2+ε) dt ds < +∞ (5)

holds for some ε > 0.

In particular, the classical White Gaussian noise corresponds to a fam-
ilyX(t), t ∈ [a, b], of i.i.d random variables with zero mean and constant
variance σ2. Thus, this type of noise satisfies (5)1.

The existence of minimum is demonstrated through a theorem that is
formulated on the basis of the conditions (F1) - (F5) and (P1) - (P4) and
having a signal g satisfying the φ-compatible condition.

Theorem 2.1. Let Ω be an open and bounded subset of Rn, n ≥ 1. Let
h : [0,+∞) → [0,+∞) and φ : Rn → R be the data-fidelity and potential
functions, respectively, such that they satisfy the conditions (F1) - (F5) and
(P1) - (P4), respectively. Let us assume that g ∈ L∞(Ω) satisfies the φ-
compatibility condition (Definition 1). Then, any functional of the class F(·)
has a minimizer on W 1,p(Ω), p > 1.

The existence result stated by the above theorem is more general than that
provided by the Chipot et al.’s theorem [6]. More formally, the particular
potential φ of the functional (1) proposed by Chipot et al.

φ(t) =
t2

α2 + t2
+ γ t2,

satisfies the affinity condition (P4) with a detachment set Aφ = (−b,−a) ∪
(a, b), where a and b are positive numbers which depend on φ. Consequently,
0 /∈ Aφ. Besides, the theorem given by Chipot et al. is formulated for simple
measurable functions which, as we note above, satisfy the φ-compatible con-
dition. Therefore, the existence of minimum for the functional (1), proposed
by Chipot et al., can be also deduced from the Theorem 2.1.

At this point two main issues should be highlighted:

1Note that σ(t− s) = 2σ2, ∀t, s ∈ [a, b].
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• Although this result is stated for arbitrary dimensions n, the most
appealing applications can be found for n = 1 which correspond to
functionals of the class F(·) used in signal denoising.

• The previous theorem does not guarantee the existence of a minimizer
for the functional of Chipot et al. on arbitrary dimensions. More for-
mally, when this functional is formulated for n = 2 (image denoising),
the potential term is defined by the following radial function,

φ(z) =
‖z‖2

2

δ2 + ‖z‖2
2

+ γ‖z‖2
2, z ∈ R2,

which does not meet the condition (P4). In fact, some of the most
widely used potentials in image processing (n = 2) adopt a radial
function pattern, but none of these functions satisfy (P4).

Recently Harjulehto et al. [11] have demonstrated the existence of a min-
imum for the functional (1) of Chipot et al. in arbitrary dimensions, on the
basis of the convexity of the quadratic fidelity term. In fact, this proof also
holds for any convex fidelity term, but it is not valid for non-convex ones.
Therefore, this result is not extensible to all functionals that fit the template
F(·) introduced in (2), which admit either convex or non-convex fidelity
terms. The latter ones have shown to be quite robust at fitting signals in the
presence of outliers [13, 14].

Summarizing, we extend the functional introduced in [6] to a class defined
by general fidelity and potential functions h and φ, respectively. In particular,
h can be chosen from a wide range of functions to fit signals under different
types of additive noises. With regard to φ, it is intended to preserve high-
quality edges, and can be any quasi-robust function (see [37]) that needs not
be differentiable. Finally, a theorem was formulated to establish the existence
of a minimum for every functional in the class F(·), provided that the signal
satisfies the φ-compatible condition introduced in Definition 1.

3. Preliminary definitions

This section is intended to provide handy definitions and a lemma that
will be required to prove the main result of the paper. In brief, the following
topics are introduced:
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Definition of Convex Envelope. It is the basis of a strategy to deal with
a non-convex functional, which consists in building and minimizing the
closest convex functional. Under some conditions, the solution of this
convex functional is also the solution of a related non-convex functional.

Definition of Approximate Limit. It is a preliminary concept to define
the approximate differentiability.

Definition of Approximate Differentiability. This definition is a more
general concept of differentiability that supports the next point.

Equality of Approximate Derivative Lemma. It provides a condition
to ensure that two measurable functions have equal approximate deriva-
tives. It partially supports that (1) has a minimizer when the signal
satisfies (3).

Space of Special Functions of Bounded Variation. It is denoted by SV B(Ω),
with Ω being a bounded open set. It plays a key role in proving the
existence of minimum for the functional of Mumford-Shah [23].

The above points are accurately stated hereafter.

Definition 2 (Convex envelope): Given a semicontinuous function ψ :
Rn → R, its convex envelope ψ∗∗ : Rn → R is defined as

ψ∗∗(x) = sup {l(x) : l is convex, l(y) ≤ ψ(y) ∀y ∈ Rn} .

It is easy to note that if ψ meets the conditions (P1) - (P4), then ψ∗∗ also
satisfies them.

A usual strategy to prove the existence of a minimizer for any functional
of the type F(·) is to work with an associated auxiliary functional that fits
the model F̂ : W 1,p(Ω)→ R,

F̂(u) =

∫
Ω

h(|u− g|) dx+

∫
Ω

φ∗∗(∇u) dx =

∫
Ω

f̂(x, u,∇u) dx, (6)

where f̂(x, u,∇u) = h(|u−g|)+φ∗∗(∇u) is the convex envelop of f(x, u,∇u) =
h(|u − g|) + φ(∇u) with respect to the third variable ∇u. From the condi-
tions imposed on h and φ in Section 2 it follows that (6) is semicontinuous
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with respect to the weak topology of the Sobolev space, which guarantees the
existence of a minimizer û for a generic functional of the class F̂(·). Besides,
if the following equality

f̂(x, û,∇û) = f(x, û,∇û)

holds almost everywhere on Ω, then from the Ekeland-Teman’s theorem
in [38, Theorem 3.8, Chapter 10] û is also a minimizer of the associated
original functional of the type F(·). Since the conventional concepts of limit
and derivative are not suitable in general for measurable functions, a density
concept is introduced to define the approximate limit and the approximate
differentiability. They extend the classical differentiability analysis to the
class of measurable functions.

Given any measurable set D ⊂ Rn, the upper and lower densities of D at
x are defined respectively as

Θ∗(D, x) = lim sup
r→0

|B(x, r) ∩D|
|B(x, r)|

Θ∗(D, x) = lim inf
r→0

|B(x, r) ∩D|
|B(x, r)|

.

Whenever Θ∗(D, x) = Θ∗(D, x) holds, we will simply write Θ(D, x). For
more details about densities, the reader should refer to Ambrosio-Fusco-
Pallara [9].

Definition 3 (Approximate limit): Given a measurable function u :
Ω→ R, it is said that l is the approximate limit of u at x if the set

Eε = {y ∈ Ω : |u(y)− l| > ε}

has zero upper density at x for all ε > 0, i.e. Θ∗(Eε, x) = 0, ∀ε > 0. We
will denote l by ap limy→x u(y). The approximate discontinuity set Su of u
is defined as

Su =

{
x ∈ Ω : ap lim

y→x
u(y) does not exist

}
.

Definition 4 (Approximate differentiability): Let D ⊂ Rn be a mea-
surable set, and v : D → R be a measurable function. It is said that v is
approximately differentiable at x ∈ D if there exist ax ∈ Rn such that

ap lim
y→x

|v(y)− v(x)− ax(y − x)|
|y − x|

= 0.
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Dv ⊂ D will denote the set of points where v is approximately differentiable.
The vector ax will be denoted by apDv(x), and it will be called approximate
derivative of v at x.

The following lemma establish when two functions have equal approxi-
mate derivatives, and it can be found at Giaquinta-Modica-Saucěk [39].

Lemma 3.1. Let D be a measurable set. Let us assume that u : Ω → R is
almost everywhere approximately differentiable in D, and v : Ω→ R satisfies
that v = u a.e. in D. Then, v : Ω → R is a.e. approximately differentiable
in D and apDv = apDu a.e. in D.

It should be said that any function in the space W 1,p(Ω), p ≥ 1, or
in the space of bounded variation functions BV (Ω), is almost everywhere
approximately differentiable (see [9, 39]).

Definition 5 (Space of Special Functions of Bounded Variation):

SBV (Ω) = {u ∈ BV (Ω) : suppDsu = Su}, (7)

where BV (Ω) is the space of bounded variation functions, and Dsu is the
singular part of Du with respect to Ln, that is, Du = ∇uLn +Dsu.

A useful subspace of SBV (Ω) is W 1,p(Ω\K), with K being a closed subset
of Ω with finite (n − 1)-Hausdorff measure. This subspace is a constituent
part of the Mumford-Shah functional domain.

4. Existence theorem of a minimum for each functional of the class
F(·)

This section presents the proof of the existence of a minimizer for a generic
functional of the type F(·) when the signal g satisfies the φ-compatible con-
dition.

The proof consists of two parts. The first one is a regularity result that
proves the differentiability (almost everywhere in Ω) of any minimizer of an
associated auxiliary functional that fits F̂(·) (Theorem 4.1). The second part
exploits the regularity result to demonstrate the existence of a minimum
of the generic functional of F(·), which is the full version of Theorem 2.1
(the reader will find it below in this section). This proof also relies on an
intermediate result stated in the Theorem 4.3.
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Theorem 4.1 (Regularity). Let Ω be an open and bounded subset of Rn, n ≥
1. Let û be a minimizer of an auxiliary functional of the type F̂(·) on the space
W 1,p(Ω), p ≥ 1 with the functions h : [0,+∞]→ [0,+∞) and φ∗∗ : Rn → R,
satisfying conditions (F1) - (F5) and (P1) - (P4), respectively. Then û is
almost everywhere differentiable.

In the proof of this Theorem, we will distinguish three cases depending
on the value of p. However, since all arguments are well established in the
related literature, only useful guidelines are provided. For the case of n = 1,
the proof is based on the well-known fact that any function u ∈ W 1,p(Ω),
with p ≥ 1 and Ω being a bounded open subset of R, is almost everywhere
differentiable in the classical sense [40, Section 2.2, Theorem 2.14]. For the
case of 1 < n < p, the conclusion follows from the Morrey’s inequality [41].
Finally, when 1 < p ≤ n, the core ideas of the proof come from the works of
Giaquinta and Giusti [42], Giusti [43, Theorem 7.1 and 7.6] and Celada and
Perrota [44, Section 3, Theorem 3.1], except for a few minor modifications
to suitably manage the functional of the class F(·).

Theorem 4.1 guarantees that any minimizers û of the auxiliary functional
of F̂(·) is almost everywhere differentiable in Ω. This result allows the defi-
nition of the following sets

Ei =
{
x ∈ Ω : ∇û(x) ∈ Aφi

}
, i = 1, . . . ,∞. (8)

Moreover, the differentiability of û permits the first order Taylor expansion of
û almost everywhere in Ω. The proof that û is also a minimizer of the target
generic functional of the type F(·) requires to demonstrate that all Ei have
Lebesgue measure equal to zero, i.e. |Ei| = 0. However, the proof of |Ei| = 0
requires first to demonstrate ‖û‖L∞(Ω) ≤ ‖g‖L∞(Ω), which is addressed in the
next Lemma.

Lemma 4.2. Let Ω be an open and bounded subset of Rn, n ≥ 1. Let us as-
sume that g ∈ L∞(Ω). There exists a minimizer û of an auxiliary functional
of the type F̂(·) on W 1,p(Ω), p > 1 with function h : [0,+∞] → [0,+∞)
and φ∗∗ : Rn → R being the data-fidelity and potential functions, respectively,
such that they satisfy the conditions (F1) - (F5) and (P1) - (P4), respectively.
Then û satisfies ‖û‖L∞(Ω) ≤ ‖g‖L∞(Ω).

Proof. The proof of this Lemma follows from the same arguments used in
Chipot et al. [6] (the truncation argument) and the property (F4). If ū is a

16



minimizer of F̂(·), then the function

û(x) =

{
‖g‖L∞(Ω), if |ū(x)| ≥ ‖g‖L∞(Ω)

ū(x), otherwise.
(9)

satisfies h(|û(x)− g(x)|) ≤ h(|ū(x)− g(x)|) for a.e., x ∈ Ω which entails∫
Ω

h(|û(x)− g(x)|) dx ≤
∫

Ω

h(|ū(x)− g(x)|) dx. (10)

From (9) follows that

∇û(x) =

{
0, if |ũ(x)| ≥ ‖g‖L∞(Ω)

∇ū(x), otherwise.
(11)

which satisfies φ∗∗(∇û(x)) ≤ φ∗∗(∇ū(x)) for a.e., x ∈ Ω due to property
(P1). Therefore, the following inequality holds∫

Ω

φ∗∗(∇û) dx ≤
∫

Ω

φ∗∗(∇ū) dx. (12)

From (10) and (12) we obtain that û is a minimizer.

The next theorem takes a first step towards the proof of the result |Ei| =
0, by using some arguments presented by Dacorogna and Marcellini [35],
Fonseca, Fusco and Marcellini [29] and Celada, Perrota and Guidorzi [45].

Theorem 4.3. Let Ω be an open and bounded subset of Rn, n ≥ 1. Let û be a
minimizer of an auxiliary functional of the type F̂(·) on W 1,p(Ω), p > 1 with
function h : [0,+∞]→ [0,+∞) and φ∗∗ : Rn → R being the data-fidelity and
potential functions, respectively, such that they satisfy the conditions (F1) -
(F5) and (P1) - (P4), respectively. Let us assume that g ∈ L∞(Ω) satisfies
the φ-compatibility condition (Definition 1). Then we have either |Ei| = 0
or û(x) = g(x) for a.e. x ∈ Ei.

Proof. The strategy used to demonstrate the theorem is “proof by contra-
diction”. Suppose that,

Ln {Ei ∩ {x ∈ Ω : g(x) 6= û(x)}} > 0.
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Under this assumption, the proof focuses on building ũ as a modification
of the minimizer û, in order to induce a decreasing of the functional F̂(·),
i.e. F̂(ũ) < F̂(û). But, this is a contradiction with the fact that F̂(û) is the
minimum value of F̂(·).

This modification will be accomplished only on a particular subset of Ω
through a linear function, that will be denoted by Gr(x0) and vrx0(·), respec-
tively. Both entities are defined below. Formally,

ũ(x) =

{
vrx0(x), if x ∈ Gr(x0)

û(x), if x ∈ Ω \Gr(x0).
(13)

The proof method is based on finding vrx0(x) and Gr(x0) such that (14)
and (15) are satisfied. ∫

Ω

φ∗∗(∇ũ) dx ≤
∫

Ω

φ∗∗(∇û) dx (14)∫
Ω

h(|ũ− g|) dx <
∫

Ω

h(|û− g|) dx (15)

Note that by adding (14) and (15), the contradiction F̂(ũ) < F̂(û) comes to
light.

This process is carried out in two parts. The first part is aimed at proving
(14), which means that the potential value does not increase. The second
part is devoted to demonstrate (15), which means that the fitting term de-
creases.

Part 1: Proof of (14).
Let us assume that x0 ∈ Ei ∩ {x ∈ Ω : g(x) 6= û(x)} such that there exists
∇û(x0) by the Theorem 4.1. By the differentiability of û at x0, using Taylor
expansion in x0, we have

û(x) = û(x0) +∇û(x0)(x− x0) + o(‖x− x0‖2)

with
|o(‖x− x0‖2)|
‖x− x0‖2

< γ ≤ 1,∀x ∈ Bδ(x0) (16)

for some δ. Let us take r < δ to define vrx0(·):

vrx0(x) =

{
sx0(x)− wx0(x), if g(x0) < û(x0)

sx0(x) + wx0(x), if g(x0) > û(x0)
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where,

sx0(x) = û(x0) +∇û(x0)(x− x0),

wx0(x) = γ(r − 2‖x− x0‖2)

with x ∈ Br(x0) ⊂ Ω, sx0 is a local linear approximation to the function û
at x0, and wx0 is a correction term.
Let us now define Gr(x0) as,

Gr(x0) =

{
G−r (x0), when g(x0) < û(x0)

G+
r (x0), when g(x0) > û(x0)

where G−r (x0) and G+
r (x0) are the closed sets around x0, which are formulated

as follows:

G−r (x0) = {x ∈ Bδ(x0) : vrx0(x) ≤ û(x)}, G+
r (x0) = {x ∈ Bδ(x0) : vrx0(x) ≥ û(x)}.

The set Gr(x0) can be considered the cornerstone of the subsequent deduc-
tion. The study of Gr(x0) involves the analyses of G−r (x0) and G+

r (x0). Due
to their similarity, without loss of generality, hereinafter it will be assumed
that Gr(x0) = G+

r (x0).
Next, some useful properties of Gr(x0) and vrx0(·) are given, which are going
to be used in both the part 1 and the part 2:

1. Br/4(x0) ⊂ Gr(x0) ⊂ Br(x0) ⊂ Bδ(x0).

From right to left, the first inclusion is obvious since r < δ. To prove
the second one, we will proceed by contradiction. Suppose there exists
x ∈ Gr(x0)\Br(x0) which implies r < ‖x−x0‖2, and from the definition
of Gr(x0) we get ‖x− x0‖2 < δ. Consequently,

vrx0(x)− û(x) = γ(r − 2‖x− x0‖2)− o(‖x− x0‖2)

= γ(r − ‖x− x0‖2)− γ‖x− x0‖2 − o(‖x− x0‖2).

Since r < ‖x− x0‖2, we have γ(r− ‖x− x0‖2) < 0. Then, we arrive to
the next inequality:

vrx0(x)− û(x) ≤ −γ‖x− x0‖2 − o(‖x− x0‖2)

= ‖x− x0‖2(−γ − o(‖x− x0‖2)

‖x− x0‖2

) < 0
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where the last inequality follows from (16). This result is a contradic-
tion because it matches with the definition of G−r (x0), but we assumed
Gr(x0) = G+

r (x0).
The leftmost inclusion Br/4(x0) ⊂ Gr(x0) can be deduced in a similar
way, which implies that Gr(x0) is not empty.

2. ũ ∈ W 1,p(Ω).

From the definition of Gr(x0), the function ũ, firstly defined in Eq. (13),
can be rewritten as

ũ =

{
max {û(x), sx0(x) + wx0(x)}, if x ∈ Br(x0)

û(x), if x ∈ Ω \Br(x0).
(17)

Since û(x) ≥ sx0(x)+wx0(x) when x ∈ ∂(Br(x0)), then the two function
pieces of (17) agree on ∂(Br(x0)).
In addition, from [32, Theorem 4, Section 4.2], max {û(x), sx0(x) +
wx0(x)} ∈ W 1,p(Br(x0)) and, by the very definition of û(x), û ∈
W 1,p(Ω \Br(x0)).
From the continuity of ũ at ∂(Br(x0)) and the belonging of their two
pieces to their respective Sobolev spaces, we conclude that ũ ∈ W 1,p(Ω).

3. Given n ∈ Rn,
∫
Gr(x0)

n · (∇vrx0 −∇û) dx = 0.

This property can be proved as follows:

∫
Gr(x0)

n·(∇vrx0−∇û) dx =

∫
Gr(x0)

n·(∇ũ−∇û) dx =

∫
Br(x0)

n·(∇ũ−∇û) dx

= −
∫
Br(x0)

div(n)(ũ− û) dx = 0.

The first two equalities can be respectively deduced from the definition
(13) of ũ and the fact that ũ− û has support in Gr(x0) ⊂ Br(x0) ⊂ Ω.
The third equality can be inferred from the property (2) which im-
plies that ũ− û ∈ W 1,p(Ω), the fact that ũ− û is zero in ∂Br(x0) and
the formula for integration by parts. The fourth equality follows from
div(n) = 0.
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4. |vrx0(x)− û(x)| ≤ 4r, x ∈ Gr(x0).

It can be easily proved:

|vrx0(x)− û(x)| ≤ γ(r + 2‖x− x0‖2) + |o(‖x− x0‖2)| ≤ 4γr ≤ 4r (18)

5. |vrx0(x)− û(x)| ≥ γr
4
, x ∈ Br/4(x0).

It can be inferred as follows:

vrx0(x)− û(x) = γ(r − 2‖x− x0‖2)− o(‖x− x0‖2)

≥ γr − 2γ‖x− x0‖2 − γ‖x− x0‖2

= γr − 3

4
γr =

γr

4
.

6. ‖∇vrx0(x) −∇û(x0)‖2 = 2γ, x ∈ Gr(x0). It follows from the computa-
tion of the derivative of vrx0(x).

7. ∇vrx0(x) ∈ Aφi , ∀x ∈ Gr(x0).

It is deduced from ∇û(x0) ∈ Aφi , with Aφi being an open set, and by
using the property (6) with values of γ small enough.

The property (7) together with (P4) imply that φ∗∗(∇vrx0(x)) = ni ·
∇vrx0(x) + li, ∀x ∈ Gr(x0). From this fact, the inequality φ∗∗(z) ≥ ni · z + li
∀z ∈ Ω, the property (3), and the definition (13) of ũ, we have the following
set of inequalities:

∫
Ω

φ∗∗(∇û) dx =

∫
Ω\Gr(x0)

φ∗∗(∇û) dx+

∫
Gr(x0)

φ∗∗(∇û) dx

≥
∫

Ω\Gr(x0)

φ∗∗(∇û) dx+

∫
Gr(x0)

ni · ∇û+ li dx

=

∫
Ω\Gr(x0)

φ∗∗(∇û) dx+

∫
Gr(x0)

ni · ∇vrx0 + li dx

=

∫
Ω\Gr(x0)

φ∗∗(∇û) dx+

∫
Gr(x0)

φ∗∗(∇vrx0) dx

=

∫
Ω\Gr(x0)

φ∗∗(∇ũ) dx+

∫
Gr(x0)

φ∗∗(∇ũ) dx

=

∫
Ω

φ∗∗(∇ũ) dx.
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Finally, the next inequality is obtained:∫
Ω

φ∗∗(∇ũ) dx ≤
∫

Ω

φ∗∗(∇û) dx. (19)

Therefore, (14) is proved.

Part 2: Proof of (15).
Now we will prove that the fitting term of (6) decreases (see (15)). Without
loss of generality, we assume that g(x0) > û(x0).

From Federer [46], the fact that g is measurable implies that for almost
every point in Ω the function g is approximately continuous. Let us assume
that g is approximately continuous at x0. Let us define Dε and Gε

r(x0) as
shown below

Dε = {x ∈ Ω : |g(x)− g(x0)| ≤ ε},
Gε
r(x0) = Gr(x0) ∩Dε = {x ∈ Gr(x0) : |g(x)− g(x0)| ≤ ε} ∀ε > 0.

Then, the set Dε has density value equal to one at x0 for all ε > 0 with
respect to the sequence {Gr(x0)}r∈I (due to g is approximately continuous
at x0), where I = (0, s) for some positive number s, i.e.

lim
r→0,r∈I

|Gε
r(x0)|

|Gr(x0)|
= 1. (20)

We denote by Cr and Dr the two sides of (15), respectively, constrained to
the region Gr(x0) where these two terms are different (due to û 6= ũ, ũ = vrx0
in Gr(x0)):

Cr =

∫
Gr(x0)

h(|û(x)− g(x)|) dx, Dr =

∫
Gr(x0)

h(|vrx0(x)− g(x)|) dx.

They can be decomposed as

Cr = C ′r + C ′′r , Dr = D′r +D′′r ,

where

C ′r =

∫
Gεr(x0)

h(|û(x)− g(x)|) dx, C ′′r =

∫
Gr(x0)\Gεr(x0)

h(|û(x)− g(x)|) dx,

and

D′r =

∫
Gεr(x0)

h(|vrx0(x)− g(x)|) dx, D′′r =

∫
Gr(x0)\Gεr(x0)

h(|vrx0(x)− g(x)|) dx.
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The proof of (15) is based on showing that the difference between Cr and
Dr is strictly positive when r is small enough. To achieve this goal, this
difference is conveniently rearranged as follows:

Cr −Dr = (C ′r −D′r) + (C ′′r −D′′r ).

The idea is to show that the first term (C ′r − D′r) is positive and decreases
slower than the absolute value of the second term (C ′′r − D′′r ) when r ap-
proaches to zero. Then, their sum will be positive for r small enough, and (15)
will be satisfied.
Firstly, a lower bound for C ′r −D′r will be found. To this end, a number of
facts are going to be introduced. Let us take an ε, r and some fixed r0 small
enough such that,

0 < ε < g(x0)− û(x0), (21)

0 < r ≤ r0, (22)

sup
x∈Gεr(x0)

vrx0(x) < g(x0)− ε, (23)

g(x0)− ε

2
< g(x),∀x ∈ Gε

r0
(x0). (24)

Then, we have

û(x) ≤ vrx0(x) < g(x0)− ε < g(x), ∀x ∈ Gε
r(x0). (25)

Consequently,

|û(x)− g(x)| ≥ |vrx0(x)− g(x)|, ∀x ∈ Gε
r(x0). (26)

In addition, given the set Gε
r0

(x0), the following numbers are defined:

b0 = max
x∈Gεr0 (x0)

|û(x)− g(x)|, a0 = min
x∈Gεr0 (x0)

|vrx0(x)− g(x)|.

These two numbers can be bounded as b0 < +∞ and a0 > ε/2. The first
bound can be straightforwardly inferred from the boundedness of û(x) and
g(x). The second one follows from (24) and (25).
Let us define now two other numbers:

b = |û(x)− g(x)|, a = |vrx0(x)− g(x)|.
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From the definition of a, b, a0 and b0, the following interval inclusion is
obtained:

[a, b] ⊂ [a0, b0].

Then, taking into account (F5), the inequality

wa,b ≥ wa0,b0 > 0 (27)

is established.
Besides, since h is continuous and increasing (see (F4)), the following relation
holds [9]:

h(d)− h(c) ≥
∫ d

c

h′(t) dt, d ≥ c. (28)

Using (27) and (28) with d = b and c = a, a lower estimate is obtained:

h(b)− h(a) ≥
∫ b

a

h′(t) dt ≥ wa,b(b− a) ≥ wa0,b0(b− a). (29)

Then, by substituting a and b in (29) by their expressions, we get the following
inequality:

h(|û(x)− g(x)|)− h(|vrx0(x)− g(x)|) ≥ wa0,b0(|û(x)− g(x)| − |vrx0(x)− g(x)|).
(30)

Given the equality

C ′r −D′r =

∫
Gεr(x0)

h(|û(x)− g(x)|)− h(|vrx0(x)− g(x)|),

and using the inequality (30) and the property (5), the following sequence of
inequalities is obtained:

C ′r −D′r ≥ wa0,b0

∫
Gεr(x0)

|û(x)− g(x)| − |vrx0(x)− g(x)| dx

= wa0,b0

∫
Gεr(x0)

vrx0(x)− û(x) dx

≥ wa0,b0

∫
Gεr(x0)∩Br/4(x0)

vrx0(x)− û(x) dx

≥ wa0,b0 γ
r

4
|Gε

r(x0) ∩Br/4(x0)|

≥
wa0,b0γr|Br/4(x0)|

4

|Gε
r(x0) ∩Br/4(x0)|
|Br/4(x0)|

> 0
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where

Gε
r(x0) ∩Br/4(x0) = {x ∈ Br/4(x0) : |g(x)− g(x0)| ≤ ε}. (31)

From the limit stated in (20) and the property (1), the following limit ex-
pression is obtained:

lim
r→0

|{x ∈ Br/4(x0) : |g(x)− g(x0)| ≤ ε}|
|Br/4(x0)|

= 1. (32)

Finally, the targeted lower bound is deduced by using (32):

C ′r −D′r ≥ O(rn+1). (33)

Therefore, we conclude that C ′r−D′r converges to zero no faster than O(rn+1).

Next, we will find an upper bound for |C ′′r −D′′r |. From the definitions of C ′′r
and D′′r , we have

C ′′r−D′′r =

∫
Gr(x0)\Gεr(x0)

h(|û(x)−g(x)|) dx−
∫
Gr(x0)\Gεr(x0)

h(|vrx0(x)−g(x)|) dx.

(34)
In order to bound (34), an additional property of h needs to be considered.
The fitting function h is Lipschitz on the interval I = [0, 2‖g‖L∞(Ω) + 4] with
a Lipschitz constant M . This can be inferred from these two points:

• According to property (F3), h is locally Lipschitz.

• |g(x)−vrx0(x)|, |g(x)−û(x)| ∈ [0, 2‖g‖∞+4] for a.e. x ∈ Gr(x0), which is
derived from ‖û‖L∞(Ω) ≤ ‖g‖L∞(Ω) (Lemma 4.2). The number 4 comes
from adding and subtracting û(x) in |g(x)− vrx0(x)|, from applying the
subadditivity property of the modulus function, and finally from using
the property (4).

The fact that the function h isM -Lipschitz on the interval I = [0, 2‖g‖L∞(Ω)+
4] and the property (4) imply the following inequalities, where B denotes
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Gr(x0) \Gε
r(x0),

|C ′′r −D′′r | ≤
∫
B

M
∣∣|û(x)− g(x)| − |vrx0(x)− g(x)|

∣∣ dx
≤

∫
B

M
∣∣û(x)− vrx0(x)

∣∣ dx
≤ M 4r |Gr(x0) \Gε

r(x0)|

≤ M 4r |Br/4(x0)| |Gr(x0) \Gε
r(x0)|

|Br/4(x0)|
. (35)

By similar arguments as those exposed to deduce (32), we conclude that

lim
r→0

|Gr(x0) \Gε
r(x0)|

|Br/4(x0)|
= 0. (36)

Then, from (35) and (36) it is inferred that

|C ′′r −D′′r | ≤ o(rn+1). (37)

We conclude that |C ′′r −D′′r | converges to zero faster than o(rn+1). Now, by
combining the lower and upper bounds (33) and (37) it is obtained, for r
small enough,

Cr −Dr = (C ′r −D′r) + (C ′′r −D′′r ) > 0. (38)

Consequently,∫
Gr(x0)

h(|û(x)− g(x)|) dx >
∫
Gr(x0)

h(|vrx0(x)− g(x)|) dx. (39)

Hence, integrating over the entire domain Ω, and using that ũ = û in Ω \
Gr(x0), we get∫

Ω

h(|û(x)− g(x)|) dx >
∫

Ω

h(|ũ(x)− g(x)|) dx, (40)

which corresponds to (15).

The above theorem can be considered the foundation of the result previously
stated in Theorem 2.1, Section 2. It is reproduced below for ease of clarity,
and its proof is provided here.
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Theorem 2.1. Let Ω be an open and bounded subset of Rn, n ≥ 1. Let
h : [0,+∞) → [0,+∞) and φ : Rn → R be the data-fidelity and potential
functions, respectively, such that they satisfy the conditions (F1) - (F5) and
(P1) - (P4), respectively. Let us assume that g ∈ L∞(Ω) satisfies the φ-
compatibility condition (Definition 1). Then, any functional of the class F(·)
has a minimizer on W 1,p(Ω), p > 1.

Proof. Let us define

D = {x ∈ Ω : ∇û(x) ∈ Aφ} =
∞⋃
i=1

Ei.

As regards the value of Ln{D}, two possible alternatives need to be explored:

• The first alternative is a trivial case. If Ln{D} = 0, then û is a mini-
mizer of (F) and the proof is completed.

• The second alternative corresponds to Ln{D} > 0, which is a non-
trivial case. By applying Theorem 4.3 we conclude that

û(x) = g(x), for a.e. x ∈ D.

By using Lemma 3.1 on the functions û : Ω → R and g : Ω → R we
obtain that g is a.e. approximately differentiable on D and

∇û(x) = apDg(x), for a.e. x ∈ D.

The previous equality and the fact that ∇û(x) ∈ Aφ allow us to infer,

apDg(x) ∈ Aφ, a.e. x ∈ D,

which is a contradiction with the φ-compatible condition (Definition 1).
Hence, the only possible alternative is the first one, which guarantees
that û is a minimizer of F(·).

In order to deal with functions having discontinuities such as PWC and
PWS signals, the class of functionals F(·) is extended to a more general
class which is also a generalization of the Mumford and Shah functional,
whose fidelity and regularization terms retain the properties (F1)-(F5) and
(P1)-(P4), respectively.
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5. Dealing with discontinuities via the Mumford-Shah functional

The proof of Theorem 4.3 requires the solutions to belong to W 1,p(Ω),
Ω ⊂ Rn, n ≥ 1, and p > 1, a space which does not include functions with
discontinuities. However, numerical methods could yield satisfactory discon-
tinuous solutions to approximate truly discontinuous target signals, or as
discrete approximations to continuous sharp signals [47]. These solutions
can be obtained by computationally efficient algorithms, and are generally
perceived as good visual quality results.

Although these are valid solutions, it would be appropriate to extend the
theoretical framework to accommodate them. To this end, the Mumford-
Shah (MS) functional [23] can be generalized as follows:

M(u,K) =

∫
Ω\K

h(|u− g|) dx+

∫
Ω\K

φ(∇u) dx+Hn−1(K ∩ Ω), (41)

where K stands for a jump set that estimates the discontinuities of the target
signal g, φ : Ω ⊂ Rn → R satisfies the properties (P1) - (P4), h : [0,+∞)→
[0,∞] satisfies the properties (F1) - (F5), and Hn−1 denotes the (n − 1)-
dimensional Hausdorff measure. The goal is to determine a pair (ũ, K̃) that
satisfies

(ũ, K̃) = arg minM(u,K), (42)

where K ⊂ Ω is a closed set with Hn−1(K) < +∞ and u ∈ W 1,p(Ω \
K) ⊂ SBV (Ω). Next, some functionals and a theorem introduced in related
papers are revisited because they are necessary to demonstrate the existence
of minimizers for the functional M.

The MS functional is a particular case of (41), with h(·) = φ(·) = ‖ · ‖2
2.

The existence of minimizer for this functional was proved by Mumford et
al. [23], De Giorgi et al. [48], and Dal Maso et al. [49]. In particular, the
proof given in [48] relies on minimizing a simpler functional, presented below,
which was previously introduced by Ambrosio et al. [9].

G(u) =

∫
Ω

|u− g|2 dx+

∫
Ω

‖∇u‖2
2 dx+Hn−1(Su), (43)

where u ∈ SBV (Ω), ∇u ∈ L2(Ω), and Su is the discontinuity set of u. The
existence of minimizers of G is proved in [9] (by the Ambrosio’s compactness
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Theorem). Let ũ be a minimizer of G; then, in [48] is proved that (ũ, Sũ) is
a minimizer of the MS functional.

Furthermore, Fonseca et al. [50] and Fusco et al. [51] defined the following
generalization of the MS functional:

MC(u,K) =

∫
Ω\K
|u− g|q dx+

∫
Ω\K

φ(∇u) dx+Hn−1(K ∩Ω), q ≥ 1 (44)

with φ(·) being a convex function satisfying (P1), (P2), and the following
two conditions:

• Convexity at infinity∫
Q

φ(z +∇η) dx ≥
∫
Q

[φ(z) + ν(µ2 + |z|2 + |∇η|2)
p−2
2 |∇η|2] dx, (M1)

where v > 1, µ ≥ 0, ∀η ∈ C1
0(Q), and Q ⊂ RN is the unit cube.

• Given 0 < t0 < t, 0 < m < p, and ∀z ∈ Sn−1, the p-recession function
of φ, φp(z) = lim supt→+∞

φ(tz)
tp

, satisfies∣∣∣∣φp(z)− φ(tz)

tp

∣∣∣∣ ≤ co
tm
, (M2)

The proof of existence of minimizer for the functionMC relies on its equiv-
alence with the following functional

GC(u) =

∫
Ω

|u− g|q dx+

∫
Ω

φ(∇u) dx+Hn−1(Su), q ≥ 1 (45)

which is well known that has minimizers according to the Ambrosio’s com-
pactness Theorem as shown in Fonseca et al. [50].

With regards to the minimization of the nonconvex functionals of the
class M, the corresponding convexified functional M∗∗ is introduced below:

M∗∗(u,K) =

∫
Ω\K

h(|u− g|) dx+

∫
Ω\K

φ∗∗(∇u) dx+Hn−1(K ∩ Ω), (46)

where φ∗∗ is the convex envelope of φ, and h : R → [0,∞] is as in (41).
The functional M∗∗, which is also a generalization of the MS functional, is
intended to facilitate the existence of minimum of M.
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Following the strategy used to prove the equivalence of (44) and (45)
in the Theorem 3.5 in [51], the next functional is proposed to establish an
equivalence with M∗∗:

G∗∗(u) =

∫
Ω

h(|u− g|) dx+

∫
Ω

φ∗∗(∇u) dx+Hn−1(Su). (47)

The equivalence of (46) and (47) is formulated as in the previous equiv-
alences: if ũ is a minimizer of G∗∗, then (ũ, Su) is a minimizer of M∗∗. The
proof is similar to the Theorem 3.5 in [51], considering the two facts below:

1. If φ(·) satisfies the conditions (P1), (P2), (M1), and (M2), required by
the Theorem 3.5 in [51], then so does φ∗∗(·).

2. The proof of the Theorem 3.5 in [51] does not depend on the nature of
the fidelity function common to both functionals.

The existence of minimizers for functionals in M∗∗ together with Theo-
rem 2.1 stated in Sec. 4, are the key premises for proving the existence of
minimizer for functionals in the class M in the next section.

5.1. Existence of Solution for the class of functionals M
Theorem 5.1, which is formulated below, establishes the existence of min-

imizer for functionals in the class M. This result follows from the Theorem
2.1 stated in Sec. 4, the Ambrosio’s compactness Theorem, and the equiva-
lence between functionals (46) and (47), provided that φ satisfies (F1)-(F5)
and h satisfies the conditions (P1)-(P4) and (M1)-(M2).

Theorem 5.1. Let Ω be an open and bounded subset of Rn, n ≥ 1. Let
h : [0,+∞) → [0,+∞) be the data-fidelity function such that it satisfies the
conditions (F1)-(F5), and let φ : Rn → R be the potential function such
that it satisfies the conditions (P1)-(P4) and (M1)-(M2). Let us assume that
g ∈ L∞(Ω) satisfies the φ-compatibility condition (Definition 1). Then, any
functional of the class M has a minimizer (ũ, K̃) where u ∈ W 1,p(Ω \ K̃)
and K̃ is a compact set with Hn−1(K̃) <∞.

Proof. Let (ũ, K̃) be a minimizer of some functional of the form M∗∗.
Then, Hn−1(K̃) < +∞ and ũ is a minimizer of the corresponding functional

M∗∗
K̃

(u) =

∫
Ω\K̃

h(|u− g|) dx+

∫
Ω\K̃

φ∗∗(∇u) dx,
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in the space W 1,p(Ω\K̃). Since apDg(x) /∈ Aφ for almost everywhere x ∈ Dg

(φ-compatible condition), then by the Theorem 2.1 we obtain

M∗∗
K̃

(ũ) =MK̃(ũ) =

∫
Ω\K̃

h(|ũ− g|) dx+

∫
Ω\K̃

φ(∇ũ) dx.

Consequently,
M∗∗(ũ, K̃) =M(ũ, K̃). (48)

In what follows, the proof focuses on proving that (ũ, K̃) is also a minimizer
of M. Since φ∗∗ ≤ φ, the next inequality holds

M∗∗(u,K) ≤M(u,K), (49)

for all u ∈ W 1,p(Ω \K) and K ⊂ Ω compact. Then, given (48) and (49), it
is easy to see that

M(ũ, K̃) =M∗∗(ũ, K̃) ≤M∗∗(u,K) ≤M(u,K),

for all u ∈ W 1,p(Ω \K) and K ⊂ Ω a closed set with Hn−1(Ω) < +∞. Thus,
the Theorem holds.

6. Conclusions

This paper defines a general class of denoising functionals, and presents
a theoretical proof of the existence of minimum provided that the noisy
signal satisfies a property denoted by φ-compatible condition. There is a
wide range of signals that satisfy this condition, some of them with clear
practical interest such as the family of PWC and PWS signals which can
arise in a number of application domains. These functionals integrate two
general terms based on M-estimators from robust statistics for fitting and
smoothing purposes, respectively. Although this class includes both convex
and non-convex functionals, the main contribution of this work is to have
established this theoretical result, for the first time, on a broad subclass
of non-convex models. There is much empirical evidence supporting that
this type of functionals produces sharper results in signal reconstruction as
compared to convex ones.

The above contributions suggest a substantial potential for solving com-
plex denoising problems, when considering unexplored functionals that fit
the class defined in this paper and the problem complexity .

Promising directions for future research can be outlined as follows:
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• The functionals of this class are able to restore signals affected by ad-
ditive noises. Thus, a natural extension of this work is to deal with
other kinds of noises such as those which are multiplicative in nature
(Poisson, speckle, etc.).

• The guarantee of existence of a minimum for this class of non-convex
problems enables the use of numerical methods to solve them. However,
a theoretical proof on the convergence of numerical methods to the
minimum is still open.

• The possibility of proving the existence of minimum for less constrained
functionals would allow to denoise, with theoretical guarantees, signals
of arbitrary dimension with practical interest.

• Besides the PWC and PWS signals, it would be interesting to find
out what other classes of signals with practical applications satisfy the
φ-compatible condition.
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