

11

Viability assessment of WPS 2.0 services as communication
standard for expensive web-based machine learning analysis.
A case of study: Indoor Location.

Andrea Calia

Viability assessment of WPS 2.0

services as communication standard for

expensive web-based machine learning

analysis. A case of study: Indoor

Location.

PhD Óscar Belmonte Fernández

Institute of New Imaging Technologies

Universitat Jaume I,

Castellón de la Plana, Spain

PhD PhD Marco Painho

NOVA Information Management School

Universidade Nova de Lisboa,

Lisbon, Portugal

PhD Raúl Montoliu Colás

Institute of New Imaging Technologies

Universitat Jaume I,

Castellón de la Plana, Spain

February 2016

2

Acknowledgments

I would like to express my gratitude to PhD Óscar Belmonte Fernández, PhD Marco

Painho and PhD Raúl Montoliu Colás for the dedication and help they provided to me

for writing this thesis. Thanks to the teachers of the Master in Spain, Germany and

Portugal.

I would like to extend my gratitude to the Geotec Research Group for giving me the

opportunity to improve my skills and to meet great people. Special thanks to Nacho

Miralles Tena. I also would like to thanks my colleagues of the BE-OP team at CERN

for the help and support they gave me in the last step of the Master.

Special thanks to my family who continuously gave me the support needed throughout

my life. Finally, I would like to thank my girlfriend for her support and her patience.

3

Abstract

Communication between client and server is a key factor in the modern age. Nowadays,

telecommunications are at the base of every system and Software that is available. The

way Software communicates can determine the efficacy of it.

In the GIS world, a server is often used for offloading expensive tasks such as geospa-

tial operations or statistical analysis. This technique improves the performance of the

Software systems and makes them able to scale based on the demand on real time.

For making the communication between client and server more efficient, interoperable

and standard, the OGC released the standard WPS. WPS defines abstract operations

that are able to describe a client server communication for remote process executions.

This thesis focuses on the asynchronous execution feature introduced in the version

2.0 of WPS. The main goal is to study how asynchronous process execution can benefit

a client both in performance and availability.

The result are promising and it is demonstrated that WPS is a solid standard for

describing web services operations. Based on the obtained results, future studies can

extend the standard in order to make it more general and suitable for more situations.

4

Keywords

async-wps

Classification

Geographical Information System

Indoor Location

Indoor Location Management Tool

Java

JavaScript

kNN

Machine Learning

Web Development

Web Processing Service

5

Acronyms

API - Application Programming Interface

BDD - Behavior Driven Development

CRS - Coordinate Reference System

CSS - Cascading Style Sheets

CSV - Comma Separated Values

GIS - Geographic Information System

GLONASS - GLObal NAvigation Satellite

System

GML - Geography Markup Language

GNSS - Global Navigation Satellite System

GPS - Global Positioning System

GUI - Graphical User Interface

HTML - HyperText Markup Language

HTTP - Hypertext Transfer Protocol

IDE - Integrated Development Environ-

ment

IoT - Internet of Things

ISO - International Organization for Stan-

dardization

JSON - JavaScript Object Notation

KVP - Keyword Value Pair

MIME - Multipurpose Internet Mail Exten-

sions

OGC - Open Geospatial Consortium

OSGEO - Open Source Geospatial Founda-

tion

OWS - OGC Web Services Common Stan-

dard

SQL - Structured Query Language

UI - User Interface

UML - Unified Modeling Language

URI - Universal Resource Identifier

URL - Uniform Resource Locator

VCS - Version Control System

WPS - Web Processing Service

XML - Extensible Markup Language

6

Contents

1 Introduction 14

2 State of the art 16

3 Web Processing Service 2.0 18

3.1 Definition . 19

3.1.1 GetCapabilities . 20

3.1.2 DescribeProcess . 23

3.1.3 Execute . 26

3.1.4 GetStatus . 31

3.1.5 GetResult . 33

3.2 Interaction between Client and Server: Sync and Async execution models 36

3.2.1 Process discovery . 36

3.2.2 Process execution . 37

3.3 Issues and improvements . 40

4 Web Processing Service Client Library: async-wps 41

4.1 Current implementations . 42

4.1.1 52north-wps-js . 43

4.1.2 OpenLayers 2 . 43

4.2 Requirements . 45

7

4.3 Development and Results . 46

4.3.1 Technology and design decisions 46

4.3.2 Requirements fulfillment . 48

4.3.3 Dependencies . 53

4.3.4 Tests . 54

4.3.5 Library compilation and test . 54

4.3.6 Source code . 55

4.4 Limitations . 56

5 Case Study: Indoor Location 57

5.1 Definition . 58

5.2 Classification problem . 59

5.3 WPS 2.0 server: wps-classificator . 60

5.3.1 Requirements . 60

5.3.2 Development and Results . 61

5.3.2.1 Technology and design decisions 61

5.3.2.2 Requirement fulfillment 62

5.3.2.3 Dependencies . 68

5.3.3 Source code . 69

5.4 Web Application: Indoor Location Management Tool 70

5.4.1 Requirements . 70

8

5.4.2 Development and Results . 71

5.4.2.1 Technology and design decisions 71

5.4.2.2 Requirement fulfillment 73

5.4.2.3 Dependencies . 79

5.4.3 Limitations . 80

5.4.4 Source code . 81

6 Discussion 82

7 Conclusion 87

8 Future work 90

9

List of Figures

1 Conceptual model of a WPS server. From [28] 20

2 Process discovery interaction between a client and a WPS 2.0 compliant

server. From Figure 15 of [28] . 37

3 Process execution interaction between a client and a WPS 2.0 compliant

server. (a) shows the interaction using synchronous request, while (b) using

an asynchronous request. From Figure 3 and 4 of [28] 39

4 The tabular view visualizes the element of the database in rows. Each

column represent a attribute of the element. Pagination is added because

the expected number of entries of the database is large. The page size can

be customized . 74

5 The map view visualize the data taking into account the geospatial at-

tributes of the elements. Those are latitude and longitude specified using

WGS84. Custom layers can be added into the map to better understand

and analyze the data. Elements that are very close to each other in the

selected zoom are clustered together for clarity reasons 75

6 Filtering options using a form. It is possible to filter the data based on

non-geospatial properties. In this early version, the filter options occurs

comparing using equality the properties set in the form with the ones stored

in the database . 76

7 Filtering options for geospatial attributes. The filter happens using the

geospatial operation "within". The user chooses the preferred method

(arbitrary polygon or rectangle), draws the feature on the map and the

database entries that fall into the feature are selected automatically . . . 77

8 The experiment details are shown in the sidebar of the web application.

In the central part, the elements of the experiment are visualized 78

10

9 This chart compares the status of a WPS client during asynchronous (a)

and synchronous (b) requests for the Large dataset. The simulation is

particularly heavy since it involves 15000 elements 84

10 This chart compares the status of a WPS client during asynchronous (a)

and synchronous (b) requests for the Small dataset. The simulation is

particularly heavy since it involves 15000 elements 85

11 These charts show the evolution of the completing time for the proposed

simulations compared with the interval between status polling. (a) shows

the results for the Large dataset, while (b) shows the results using the Small

dataset. The polling interval (in seconds) is the time the client waits before

requesting the status of the execution. The selected polling interval affects

significantly the total execution time of the experiments depending on the

duration of the experiment (in seconds). Longer experiments (execution

time) seems not to be heavily affected . 86

11

List of Tables

1 Specific properties of a GetCapabilities request. Based on Table 35 of WPS

2.0 standard specification [28] . 21

2 Specific properties of a GetCapabilities response. Based on Table 36 of

WPS 2.0 standard specification [28] . 21

4 Specification of a Process Summary property. Based on Table 37 and 29

of WPS 2.0 standard specification [28] 22

5 Specific properties of a DescribeProcess request. Based on Table 38 of

WPS 2.0 standard specification [28] . 23

6 Specific properties of a DescribeProcess response. Based on Table 39 of

WPS 2.0 standard specification [28] . 24

8 Specification of a Process Offerings property. Based on Table 40 and 29 of

WPS 2.0 standard specification [28] . 25

9 Specific exceptions for a DescribeProcess request. Based on Table 41 of

WPS 2.0 standard specification [28] . 25

10 Specific properties of an Execute request. Based on Table 42 of WPS 2.0

standard specification [28] . 27

13 Specification of a Data Output Definition Type. Based on Table 44 and

24 of WPS 2.0 standard specification [28] 28

14 Specific exceptions for a Execution request. Based on Table 46 of WPS

2.0 standard specification [28] . 30

12 Specification of a Data Input Type. Based on Table 43 of WPS 2.0 stan-

dard specification [28] . 31

12

15 Specific properties of a GetStatus request. Based on Table 47 of WPS 2.0

standard specification [28] . 32

16 Specification of a Status Info document. Based on Table 32 of WPS 2.0

standard specification [28] . 33

17 Specific exceptions of a GetStatus request. Based on Table 48 of WPS 2.0

standard specification [28] . 33

18 Specific properties of a GetResult request. Based on Table 49 of WPS 2.0

standard specification [28] . 34

19 Specific properties of a GetResult response. Based on Table 33 of WPS

2.0 standard specification [28] . 34

20 Specification of a Data Output Type. Based on Table 34 of WPS 2.0

standard specification [28] . 35

21 Specific exceptions of a GetResult request. Based on Table 50 and 48 of

WPS 2.0 standard specification [28] . 35

22 Summary of the requirements for the async-wps library 45

23 Summary of the requirements for the wps-classificator 60

24 Summary of the requirements for the Indoor Location Management Tool 71

25 This table shows the status of the client during an asynchronous and a

synchronous request for each simulation. The large dataset involves 15000

elements, while the Small dataset only 3000 elements. During the Blocked

status, the client cannot perform any action, since it is waiting for the

response of the server. During the Idle status, the client is available for

doing other tasks, like updating the GUI or processing other data. The

time is expressed in seconds . 83

13

1 Introduction

The amount and heterogeneity of geospatial data has increased drastically in the past

few years. This is due to the improvements on network performance and the capabilities

of modern hardware [21]. At the beginning of the Internet era, the digital representation

of geospatial data was very simple, but nowadays it become a complex task to digitalize

and maintain geospatial data. The main motivation is that geospatial information is now

growing exponentially due to its value in, for example, business, climate change analysis

and socio-economical development. This situation created the need of developing new

data formats, analysis algorithms and delivery standards. This heterogeneity leads to

complex Software architectures and confusions for the final user [24].

There were multiple attempts to make the development of geospatial Software appli-

cations less complex. One of the most recognised is the release of the Web Processing

Service (WPS) [26] by the Open Geospatial Consortium in 2007. This standard intro-

duces a way to publish, discover and execute geospatial algorithm through the Web[14].

The power of the standard is the interoperability it introduces for executing processes

on remote servers. Being the discovery, communication and format in a standardized

way, any client can interact with the server, exchange information or schedule processes

execution.

According to the standard WPS 1.0, the execution of a process happens synchronously.

This means that the client send a request for a certain process to execute and wait for

the server response. This mechanism is very simple but it has problems when the process

needs or produces large quantity of data or it is particularly time consuming. In such

a situation, the client is blocked for a long time waiting for the server response. This

issue can cause some problems like the faulty user responsiveness, network timeout or

computational resource waste.

To improve this situation, OGC released in 2015 the version 2.0 of the WPS standard

[28]. This new revision addresses the issues raised by the community over the first version

of the standard. One of the main improvement is the support for asynchronous operations

14

as part of the standard. A client is now able to schedule a process execution on a server

and continue its execution. Periodically, the client will query the server for the execution

status and, eventually, for the result.

The hypothesis of this thesis is to take advantage of the asynchronous execution ca-

pabilities of WPS 2.0 for improving the performance and the user experience of web

geospatial applications. This is of particular interest in cases where long running algo-

rithms are performed. This can be the case of expensive geospatial operations, machine

learning algorithm, clustering and statistical analysis with large datasets.

In order to achieve this goal, a client implementation of the WPS standard is pre-

sented. This library is called async-wps and is able to communicate with WPS 2.0

compliant servers in a asynchronous way. Also, it exposes a simple API for query and

execute processes on the server (see Section 4.2 for the complete list of the requirements).

In the direction of demonstrating the proposed hypothesis, the case of study of Indoor

Location is proposed. The case of study includes a WPS 2.0 server (wps-classificator)

that implements the kNN classification algorithm and a web application that manage a

Indoor Location database (Indoor Location Management Tool) [35].

The following sections are structured as follow: Section 2 provides a description of

the usage of WPS standard in the academic literature. Section 3 provides a summary

of the WPS 2.0 standard meant as an overview of the specification to better understand

the context of the thesis. Section 4 describe in details the Software library async-wps.

Section 5 provides a description of the case of study, including the server wps-classificator

and the Indoor Location Management Tool. Section 6 shows the discussion of the results

and the improvement of the client responsiveness and performance. Section 7 explain

the conclusions of the proposed thesis. Finally, Section 8 shows the following step to be

undertaken in the future as the result of the work of this thesis.

15

2 State of the art

WPS is a well recognised standard and is been used in a variety of projects successfully.

Despite this, WPS defines abstract operations and data formats, but does not provide

official implementations ready to be used [10].

In [13], the problem of connecting multiple WPS endpoints is undertaken. The pro-

posed approach involves the extension of the WPS standard for including two parameters.

The proposed implementation is a proof of concept and is able to mediate different WPS

services in a computing Grid. The context of the work is the calculation of the Normalized

Difference Vegetation Index.

The work proposed in [5] uses WPS standard for providing high performance and

scalable web service for analysing Earth Observation data. In such a context, WPS is

able to orchestrate the communication between client and servers in order to provide

more throughput in the data analysis. Also, a multilayer framework of WPS servers is

able to manage the user requests and the cloud computing environment. To be able to

process large quantity of data in real time, the cloud computing layer is built on top of

Apache Hadoop.

An interesting project is found in the work of Fenoy et all (20013) in which the

ZOO Project is developed [10]. In this project, a WPS framework is build with the

aim to integrate and link various algorithms and expose them using WPS interface. It

provides connectors for developing algorithms using C/C++, Java, Perl, Python, PHP

and JavaScript. This framework supports only the version 1.0 of WPS.

In [2], the WPS standard is used for creating a service oriented infrastructure. The

proposed problem involves the usage and coupling of various mathematical models in

the context of Environmental modelling. In this scenario, each mathematical model is

represented by a WPS web service. Then, a client is able to orchestrate the workflow

because every web service use a standard WPS interface. The proposed system is based

on the version 1.0 of WPS.

16

Stollberg et all. [33] presents the aggregation of WPS web services in a Service oriented

Architecture. In this architecture, the WPS services are able to communicate between

each other for exchanging information. For the first time, the term "Composite-WPS" is

introduced. This term indicates the chaining of dependency of a specific WPS process.

This allows, for example, to chain multiple WPS web services and, when invoked, they will

be triggered automatically. This architecture is validated in a simulated bomb treatment

scenario in the context of quick response to a disaster.

Degree Framework [12] is a project that allows the easy development of WPS servers

using Java as programming language. It has the particularity of supporting large amount

of data using streaming techniques. This framework supports most of OGC standards

(e.g. GML, WFS, WFS, WMS and WPS) in order to provide a full-stack open source

software for spatial data infrastructure. The component offered by the framework include

the management, visualization and access to geospatial information. The supported

version of WPS is 1.0.

Another open source WPS framework for Java programming language is WPSint [37].

It provides an easy integration with Spring1. This framework is meant to be used to easily

develop web services and expose them in a way compatible with WPS. The project, even

if it has some interesting features, is no longer maintained and it supports only the WPS

standard version 0.4.0.

For accessing WPS servers using JavaScript, there are two libraries: 52◦ North WPS

[38] and OpenLayers2 [15]. The first one is JavaScript project that offers a web interface

for accessing WPS servers. Its usage is limited because the WPS client code is tightly

coupled with the project and is not proposed as external module. The supported version

of WPS is 1.0. The latter is a famous JavaScript library for creating geospatial web

applications. It aims to be full-features including an implementation for the majority of

OGC standards. WPS compatibility is only present in the second version of the library

and the it is limited to WPS 1.0. Section 4 explain them in details

1https://spring.io/

17

https://spring.io/

3 Web Processing Service 2.0

This section covers the WPS 2.0 standard. Its aim is to provide an overview of the core

operations and the basic interactions between a client and a server that use WPS as a

communication protocol. Its aim is to provide a simplified version to better understand

the standard. The properties included refers only to the ones specified in the WPS 2.0

standard specification, to access or create a fully functional WPS 2.0 server it may involve

to include options and properties of others OGC standards, such as OWS Commons [27].

18

3.1 Definition

WPS is a standard developed at the OGC.

According to its website[29], OGC defines itself as "an international industry con-

sortium of over 520 companies, government agencies and universities participating in a

consensus process to develop publicly available interface standards". The main area of

concern of OGC is geospatial information. One of the goals is to provide and improve,

where exists, interoperability between geospatial software and services.

WPS defines an abstract framework of communication between two entities, the client

and the server. In this scenario, the server offers a particular process that the client needs

to execute. As WPS is meant to be used on the Web the client and the server are normally

distributed and may not reside on the same machine. For example, the server can belong

to a private company that sells services or to a public university that provides services

free of charge.

The latest version of WPS is 2.0[28] and it has been published on the fifth of march

of 2015. This revision of the standard introduces some significant advantages, such as:

flexibility to be used using REST or SOAP; nested inputs and nested outputs; better

process description; synchronous and asynchronous execution. To be able to support the

new features, data and process models have been revised.

Figure 1 shows the conceptual model of a WPS server. It can be summarized into:

• Web Processing Service: the server itself.

• Process: the operation that the server provides. For example, a Buffer or a Convex

Hull operation.

• Job: it represent and instance of an operation that executes a specified process with

associated data.

• Job Control Operation: it provides the ability to control a job that is executing

19

on the server. It can provide such operations as: load balancing; error report; log;

dismiss; etc.

• Data: data that the job uses to operate.

• Status: the current status of the job.

Figure 1: Conceptual model of a WPS server. From [28]

Version 2.0 of WPS standard defines five operations that a compliant server needs to

implement: GetCapabilities; DescribeProcess; Execute; GetStatus; GetResult.

3.1.1 GetCapabilities

GetCapabilities operation allows the client to get metadata and information about the

processes available on the WPS server. This operation is particularly useful in two sce-

narios: capabilities discovering of an unknown WPS server; checking for availability of a

specific process of a known WPS server.

Table 1 shows the properties of a WPS GetCapabilities request. Table 2 shows the

properties of a WPS GetCapabilities response.

In the case of an error, the WPS server should respond with a generic exception

(specification at [27]).

20

Name Description Type Cardinality Mandatory

Service Service identifier Fixed character

string: "WPS"

One Yes

Extension Hook for future

extension

specifications

Any Zero or more No

Table 1: Specific properties of a GetCapabilities request. Based on Table 35 of WPS 2.0

standard specification [28]

Name Description Type Cardinality Mandatory

Service Service identifier Fixed character

string: "WPS"

One Yes

Contents Contains a list of

the offered

processes.

ProcessSummary,

Table 4

One Yes

Extension Hook for future

extension

specifications

Any Zero or more No

Table 2: Specific properties of a GetCapabilities response. Based on Table 36 of WPS

2.0 standard specification [28]

21

Name Description Type Cardinality Mandatory

Title Name of the

process

String One Yes

Abstract Brief description

of the process

String Zero or more No

Keywords List of keywords

that describe

better the

process

String Zero or more No

Identifier Unambiguous

identifier for the

process

String One Yes

Job Control

Options

Options for

controlling this

process

List of options:

"sync-execute";

"async-execute";

"dismiss"

One or more Yes

Output

Transmission

Transmission

modes for

output data

List of

transmission

options:

"value";

"reference"

One or more Yes

Process Model Type of the

process

description

URI Zero or one No

Table 4: Specification of a Process Summary property. Based on Table 37 and 29 of WPS

2.0 standard specification [28]

22

3.1.2 DescribeProcess

DescribeProcess operation allows a client to get a detailed description of a process on

a WPS compliant server. This information includes the description of the inputs and

outputs of the process. It is very important to check this information before executing

an operation, otherwise it may lead to unexpected behavior.

Table 5 shows the properties of a DescribeProcess request. Table 6 shows the prop-

erties of a DescribeProcess response.

In the case of an error, the WPS server should respond with an exception. Table 9

shows the possible exceptions for a DescribeProcess request.

Name Description Type Cardinality Mandatory

Identifier Process identifier String (special value

"ALL" indicates

that the will to

retrieve the

description for all

the processes)

One or more Yes

Lang Indicates the

language for the

desired description

String in the

human-readable

format from the

standard IETF RFC

4646 [16]

Zero or one No

Table 5: Specific properties of a DescribeProcess request. Based on Table 38 of WPS 2.0

standard specification [28]

23

Name Description Type Cardinality Mandatory

Lang Indicates the

language for the

desired

description

String in the

human-readable

format from the

standard IETF

RFC 4646 [16]

Zero or one No

Process Offer-

ings

Contains a list

of the

description for

each queried

process

ProcessOffering,

Table 8

One or more No

Table 6: Specific properties of a DescribeProcess response. Based on Table 39 of WPS

2.0 standard specification [28]

24

Name Description Type Cardinality Mandatory

Any Any property it

may be useful to

better describe

the process.

Any One or more Yes

Job Control

Options

Options for

controlling this

process

List of options:

"sync-execute";

"async-execute";

"dismiss"

One or more Yes

Output

Transmission

Transmission

modes for

output data

List of

transmission

options:

"value";

"reference"

One or more Yes

Process Model Type of the

process

description

URI Zero or one No

Table 8: Specification of a Process Offerings property. Based on Table 40 and 29 of WPS

2.0 standard specification [28]

Code Description HTTP Code

NoSuchProcess The WPS server does not

contains one or more

queried processes

400 (Bad request)

Table 9: Specific exceptions for a DescribeProcess request. Based on Table 41 of WPS

2.0 standard specification [28]

25

3.1.3 Execute

Execute operation allows a client to execute an operation provided by a WPS compliant

server. This operation schedules a job on the server that runs the operation with the

given inputs (if any) and, eventually, returns an output.

The result may be returned either by value or by reference. If the output is returned

by value, it is embedded in the response of the Execute request or GetResult (see Section

3.1.5) request. A reference return type means that the output is stored in an web acces-

sible way. For example, in a different server or in a different domain. It must be specified

by a URI and it must allow the download using standard HTTP. The latter case is very

useful in the situation that involves a large amount of data as a output. In this case, the

client may want to schedule the download of the result in a different moment. Also, it

can improve the overall performance of the server by serving the result over a CDN or a

dedicated Web Service that does not slow down the jobs execution time.

A major feature of the version 2.0 of WPS standard is the ability to request syn-

chronous (Sync) and asynchronous (Async) execution models for a process. In a syn-

chronous execution model, an Execution request from a client is blocked until the process

is done and, either a result is produced or an error is thrown. In contrast, the asyn-

chronous execution model allows the client to schedule a job on the server and then to

continue its calculations/operations. At some point in the future, the client will query

the server for the status and the result of the scheduled job. Section 3.2 explains in de-

tails the interaction between a WPS client and server in both Sync and Async execution

models.

Table 5 shows the properties of an Execute request. The response of an Execute

operation is based on the server implementation and the type of requested operation. For

an Async operation, the response is a Status Info document (Table 16). This document

describes the current status of a scheduled job on the server. This document is explained

in details in Section 3.1.4. In the case of a Sync operation, the result may be the response

document with the result of the operation or raw data. The latter case is allowed only

26

when the process returns a single output and there are no errors.

In the case of an error, the WPS server should respond with an exception. Table 14

shows the possible exceptions for an Execute request.

Name Description Type Cardinality Manda-

tory
Identifier Process identifier String One Yes

Mode Indicates the

preferred execution

model for the process

Fixed string, one of:

"sync"; "async";

"auto"

One No

Response Indicates the preferred

response format

Fixed string, one of:

"document"; "raw".

The latter can be

specified only when

the process returns a

single output

One No

Input Contains the list of

the inputs for the

process

Data Input Type,

Table 12

Zero or one No

Output Contains the list that

specify the desired

format of each output

Output Definition

Type, Table 13

Zero or one No

Table 10: Specific properties of an Execute request. Based on Table 42 of WPS 2.0

standard specification [28]

Name Description Type Cardinality Manda-

tory
Id Identifier for the

output

URI One Yes

27

Transmission Desired

transmission

mode. The valid

transmission

modes are listed

on the Output

Transmission

property of a

Describe Process

query (Table 6

and Table 8)

String Zero or one No

Mimetype Desired

Mimetype for this

output

String One Yes

Encoding Desired encoding

for this output

String Zero or one No

Schema Data schema for

the output

URI Zero or one No

Output A nested output

element

Data Output

Type, this table

Zero or one No

Table 13: Specification of a Data Output Definition Type. Based on Table 44 and 24 of

WPS 2.0 standard specification [28]

Code Description HTTP Code

NoSuchProcess The WPS server does not

contains one or more

queried processes

400 (Bad request)

NoSuchMode The process does not allow

the specified execution

mode

400 (Bad request)

28

NoSuchInput One or more input

specified on the request

does not match with the

process description

400 (Bad request)

NoSuchOutput One or more output

specified on the request

does not match with the

process description

400 (Bad request)

DataNotAccessible One or more input is not

accessible. This applies in

the case of input specified

as Reference

400 (Bad request)

SizeExceeded One or more input cannot

be handled due to its size

400 (Bad request)

TooManyInputs There are more inputs

then the ones specified on

the process description

400 (Bad request)

TooManyOutputs There are more outputs

then the ones specified on

the process description

400 (Bad request)

ServerBusy The server cannot accept

any more requests

503 (Service Unavailable)

StorageNotSupported The server does not

support transmission

mode Reference

400 (Bad request)

NoSuchFormat One or more inputs or

outputs did not match the

format described on the

process description

400 (Bad request)

WrongInputData The received input data

cannot be read

400 (Bad request)

InternalServerError Internal server error 500 (Internal Server Error)

29

Table 14: Specific exceptions for a Execution request. Based on Table 46 of WPS 2.0

standard specification [28]

30

Name Description Type Cardinality Mandatory

Id Identifier for the

input

URI One Yes

Data Embedded data WPS Data

structure, Table

23 of [28]

Zero or one

Yes, only one

should be

used

Reference Reference of

where the data

should be

fetched from

WPS Reference

structure, Table

25 of [28]

Zero or one

Input A nested input

element

Data Input

Type, this table

Zero or one

Table 12: Specification of a Data Input Type. Based on Table 43 of WPS 2.0 standard

specification [28]

3.1.4 GetStatus

The GetStatus operation allows a client to retrieve the status of an asynchronous job

that is running on a server. This operation should be done after scheduling an execution

using the Execute operation, specifying the Async execution mode.

Table 15 shows the properties of a WPS GetStatus request. The result of a GetStatus

request is a StatusInfo document, described in Table 16. The StatusInfo document is

used to determine which is the current state of the scheduled job on the server. WPS 2.0

standard defines four types of state (Table 3 of WPS 2.0 standard specification[28]):

• Succeeded: The job is done and no error occurred.

• Accepted: The job has been accepted by the server and it is scheduled for execution.

• Running: The job is currently running on the server.

• Failed: The job produced an error during its execution.

31

A WPS 2.0 server can provide custom states for a job. The standard does not limit

the number of possible states and allows domain-specific states in the case they are

meaningful. For example, a server with very high demand for long-running tasks, may

include the state "Paused". This information can be used by the client to provide feedback

to the end user of an application improving its user-friendliness.

Table 17 shows the exceptions a WPS 2.0 compliant server should throw in the case

of an error during a GetStatus request.

Name Description Type Cardinality Mandatory

Job ID The identifier of a

job scheduled on the

server

String One Yes

Table 15: Specific properties of a GetStatus request. Based on Table 47 of WPS 2.0

standard specification [28]

Name Description Type Cardinality Manda-

tory
Job ID Job identifiers String One Yes

Status Indicates the

current status of

the specified job

String, it may

includes one of

the following:

"Succeeded";

"Failed";

"Accepted";

"Running"

One Yes

Expiration Date It specifies when

the job and its

results will no

longer be

accessible

String following

ISO-8601 [1]

standard

Zero or one No

32

Estimated Com-

pletion

It specifies when

the job is

expected to be

done

String following

ISO-8601 [1]

standard

Zero or one No

Next Poll It specifies when

it is

recommended to

request a status

update

String following

ISO-8601 [1]

standard

Zero or one No

Percent Com-

pleted

The percentage of

completion of this

job

Integer from 0 to

1

Zero or one No

Table 16: Specification of a Status Info document. Based on Table 32 of WPS 2.0

standard specification [28]

Code Description HTTP Code

NoSuchJob The WPS server does not

have any job with the

specified identifier

400 (Bad request)

Table 17: Specific exceptions of a GetStatus request. Based on Table 48 of WPS 2.0

standard specification [28]

3.1.5 GetResult

The GetResult operation it is intended to be used to retrieve the result of an asynchronous

job execution on a WPS 2.0 server.

Table 18 shows the properties of a GetResult request. Table 19 shows the properties

of a GetResult response.

33

In an error occurred during a GetResult operation, the server should return an ex-

ception. Table 21 shows the specific exceptions for a GetResult operation.

Name Description Type Cardinality Mandatory

Job ID The identifier of a

job scheduled on the

server

String One Yes

Table 18: Specific properties of a GetResult request. Based on Table 49 of WPS 2.0

standard specification [28]

Name Description Type Cardinality Mandatory

Job ID The identifier of

a job scheduled

on the server

String One Yes

Expiration Date It specifies when

the job and its

results will no

longer be

accessible

String following

ISO-8601 [1]

standard

Zero or one No

Output Contains a list

with the outputs

for the specified

job

Data Output

Type, Table 20

One or more Yes

Table 19: Specific properties of a GetResult response. Based on Table 33 of WPS 2.0

standard specification [28]

34

Name Description Type Cardinality Mandatory

ID Identifier of the

output

String One Yes

Data Embedded data Any Zero or one Yes, only one

should be usedOutput A nested output

element

Data Output

Type, this table

Zero or one

Table 20: Specification of a Data Output Type. Based on Table 34 of WPS 2.0 standard

specification [28]

Code Description HTTP Code

NoSuchJob The WPS server does not

have any job with the

specified identifier

400 (Bad request)

ResultNotReady The specified job has not

yet finished its execution

400 (Bad request)

Table 21: Specific exceptions of a GetResult request. Based on Table 50 and 48 of WPS

2.0 standard specification [28]

35

3.2 Interaction between Client and Server: Sync and Async ex-

ecution models

The WPS standard is an abstract communication protocol between a client and a server.

The aim of the client is to execute an operation (service) offered by the server. The

WPS standard provides abstract operation for discovery, description and execution of a

operation (service).

As stated in Section 3.1, WPS 2.0 defines five operations: GetCapabilities; De-

scribeProcess; Execute; GetStatus; GetResult. The interaction between a client and

a server in the context of WPS can be divided into two sections: process discovery and

process execution.

3.2.1 Process discovery

The WPS 2.0 operations involved in the process discovery are: GetCapabilities and De-

scribeProcess. A client needs to use those operations in order to know the processes

offered by a WPS 2.0 server.

The first step for a WPS client is to use the GetCapabilities operation. The result of

this operation includes the metadata about the server, including the processes it offers.

For example, in addition to the offered processes, a WPS server may specify an abstract

that describes the included services, some keywords, the supported version of WPS and

a contact person in case of error or misbehavior.

With the information of the GetCapabilities operation, the client may select a suitable

process that solves its needs. If it is the case, a DescribeProcess operation should be

issued. This operation retrieves the metadata for the specific process of the server. In

this way, the client knows exactly which input it should provide and which output it

should expect. Another important information is the available execution models, for

example it may be convenient to check if the server supports asynchronous execution

model.

36

Figure 2 shows a UML interaction diagram that summarize the process discovery

procedure.

Figure 2: Process discovery interaction between a client and a WPS 2.0 compliant server.

From Figure 15 of [28]

3.2.2 Process execution

The process execution phase include the execution of a previously selected process avail-

able on the WPS server. Therefore, it is assumed that the client knows the identifier of

the job it needs to access (if this is not the case, see Section 3.2.1).

The version 2.0 of the WPS standard [28] introduces, among other features, the ability

to specify the execution model of a process. There are two execution model defined in

the standard: synchronous and asynchronous.

In the synchronous execution model the client performs an Execute operation on the

WPS server and waits for the result. The server response is either an error or the execution

37

result. In this paradigm, the client is blocked until the server finishes the scheduled job

and produce a result (or, in many implementation, a timeout occurs). Synchronous

execution is the classical client-server interaction and may be the optimal choice for the

most of the cases. Figure 3a shows a UML interaction diagram that summarize the

client-server interaction using synchronous execution.

The asynchronous execution model is first introduced in the version 2.0 of the WPS

standard [28]. The operations involved are: Execute; GetStatus; GetResult. The first

operation the client should perform is Execute, specifying the Async execution model.

This operation creates and schedules a job on the server. The client receives an identifier

of the job as a response. After, the client can continue its calculations/operations as it

is not blocked by the server. At regular intervals, the client should perform a GetStatus

operation specifying the job identifier. The response include the current status of the

job. Eventually, the job finishes and the result becomes available using the GetResult

operation in conjunction with the job identifier. Clearly, this execution model is suitable

in such situation in which the job takes long time to complete. For example, because the

process is particularly time consuming, or because the data size is specially big. Figure

3b shows a UML interaction diagram that clarify the relation between the client and the

WPS server.

38

(a) Interaction diagram for a synchronous execu-

tion model

(b) Interaction diagram for an asynchronous ex-

ecution model

Figure 3: Process execution interaction between a client and a WPS 2.0 compliant server.

(a) shows the interaction using synchronous request, while (b) using an asynchronous

request. From Figure 3 and 4 of [28]

39

3.3 Issues and improvements

Undoubtedly, WPS 2.0 introduces interesting features over the previous iteration of the

standard. Nevertheless, the are some aspect that can be further improved. The follow-

ing considerations comes from the experience earned while developing and studying the

subject in the context of this Master thesis.

The first consideration is the data format used for exchanging information between

the client and the server. WPS does not enforce the use of XML but encourages it. This

is not an issue, rather a limitation. Nowadays, web applications are moving to JSON as

data format because of its simplicity and its seamless integration with JavaScript, which

is the main language for developing web applications.

Also, the exact format (hierarchy of elements, attributes, et cetera) of the data is not

specified into the standard, but is implementation specific. This seams like a paradox

giving the aim of the standard is interoperability. Even if the abstract data model is

defined, a client still need to study the specific behavior of a certain server. One server can

accept the mode="async" as an attribute for the root element of the XML document, while

another server may expect is as a XML element per se. Giving a generic (preferred) way

of structuring communication data would improve the interoperability of the standard

to a real high level. Each supported data format, XML or JSON, can have a template

indicating how a client should formulate the requests to a serve and how to expect the

response.

Finally, the asynchronous execution model implies the use of polling technique for re-

questing the status of the scheduled process execution. Although there are some attempt

to improve the performance of polling [9][18], it efficiency in much less if compared to new

techniques like WebSocket [30] and the new features of HTTP2 [17]. The use of these

new technologies may lead to higher performance under certain scenarios. Possibly, the

support for polling and streaming models would improve the flexibility and adaptability

of the WPS standard.

40

4 Web Processing Service Client Library: async-wps

This section explains in detail the development of the async-wps library.

The motivation for developing async-wps comes naturally with the release of WPS

standard version 2.0. The new standard offers very interesting features for web services

and web applications.

It standardizes the way a client and a server interact in a remote procedure call scenario.

Also, the support for asynchronous execution makes the standard useful in performance-

sensible scenarios.

Finally, the preferred communication format is XML in WPS. While XML is a very

famous data interchange format, easy to read for humans and widely used in the industry,

it may not be easy to work with from a programming language. To not worry about object

to XML and viceversa conversion, a library is very welcome.

JavaScript is the reference language for developing web applications. While there are

attempt of establishing new languages (lastly Dart2 from Google [8]), no one was widely

adopted. JavaScript (formally and implementation of ECMAScript) is already supported

by all web browsers. Also, JavaScript has been a growing programming language for

server-side scripting. The rise of NodeJS and the support of ECMAScript 5 in the Java

8 version made JavaScript a very appealing programming language.

2https://www.dartlang.org/

41

https://www.dartlang.org/

4.1 Current implementations

At the moment, there are two ways to work with a WPS server using JavaScript as a

programming language: create an ad-hock implementation; use a library.

The first option has a few advantages and some key disadvantages. The most impor-

tant advantage is the simplicity of development for a particular use case. This option

only applies if the application needs to communicate with a well known WPS server, and

a small part of the standard is involved. For example, when a WPS server performs a

simple spatial operation between two rectangles. In contrast, the client application needs

to create and process XML documents. Using JavaScript it is difficult to work with XML

documents. The language specification does not provide API for manipulating XML. In

a browser environment (for example, Firefox and Chromium) there are some workaround

due to the ability of the browser to work with HTML. In a server environment (for ex-

ample, NodeJS) the only option is to parse the XML document as a string of character

and extract valuable information from it. The client is also in charge of producing valid

WPS 2.0 XML documents. This includes the correct position and value of the properties

and fields required by the standard. Not complying with the standard specification may

lead to unexpected behavior.

The second option to deal with a WPS server is by using a third-party library. This

is the most suitable solution for most use cases. A library should be able to communi-

cate with a WPS compliant server while offering a simple API to the user. It should

encapsulate (hide) the complexity of the standard and the difficult interaction with XML

documents using JavaScript. There are two disadvantages of using a library. In the one

hand, sometimes is difficult to find a library that meets the requirements of an applica-

tion. It may not be available due to license conflict or it may not include all the required

features. On the other hand, it is necessary to invest time in learning how the library

works. This step is not always easy, specially for small library that are not company-

backed. The main barrier may be the lack of documentation and examples. Nevertheless,

normally, this kind of libraries are open source and the code can be reviewed by the user

and find hint on how the library should be used.

42

Currently, there are two libraries that allow a user to interact with a WPS server.

The first one is wps-js developed by 52◦North3. The second one is called OpenLayers 24.

4.1.1 52north-wps-js

52north-wps-js is a project started by 52◦North company. It is a open source project

(Apache Software License 2.0) and it is publicly accessible through the company’s Github

page5.

It provides a way to access WPS 1.0 servers. It provides a standalone JavaScript file

to import and a form-based visualization of WPS 1.0 servers. The first is useful when

creating web applications, while the latter is useful to try WPS 1.0 servers. It provides

the following WPS operations: GetCapabilities; DescribeProcess; Execute.

The library does not offer a direct import option, it is necessary to download and

build the Git repository in order to create an "executable" file to use.

The library is tightly coupled with a browser environment. It has hard dependencies

with jQuery and OpenLayers 2.

4.1.2 OpenLayers 2

OpenLayers 2 is an open source project (2-clause BSD License) sponsored by OSGEO.

The code is accessible from the dedicated Github page6.

OpenLayers is a library that allows to integrate dynamic maps into web pages. It

supports many OGC standard and, therefore, is able to interact with many geospatial

services. Among its features, it is able to access WPS 1.0 servers. Therefore, the opera-

tions GetCapabilities, DescribeProcess and Execute are available.
3http://52north.org/
4http://openlayers.org/two/
5https://github.com/52North/wps-js
6https://github.com/openlayers/ol2

43

http://52north.org/
http://openlayers.org/two/
https://github.com/52North/wps-js
https://github.com/openlayers/ol2

The library can be included into any web page directly as it is distributed with an

already compiled version.

OpenLayers 2 is not the latest version of the library. Version 3.12.17 provides many

new features and compatibility with new web standards. Although, it does not offer WPS

server interaction. For this reason, the OpenLayer 2 is considered for the purpose of this

thesis.

7http://openlayers.org/

44

http://openlayers.org/

4.2 Requirements

Table 22 shows the requirements for the async-wps library.

Requirement ID Description

R01 Support for WPS 2.0 operations: GetCapabilities; DescribePro-

cess; Execute; GetStatus; GetResult
R02 Compatibility with NodeJS and browser environment

R03 Support for ComplexData input type

R04 Open source compatible license

R05 JavaScript API for accessing WPS 2.0 servers

R06 Encapsulation of XML to JavaScript Object, and viceversa, con-

version

Table 22: Summary of the requirements for the async-wps library

45

4.3 Development and Results

This section describes the development of the async-wps library.

4.3.1 Technology and design decisions

In order to fulfill the requirement presented in Table 22, this section explains the design

and technology decisions.

The programming language of choice for the library is JavaScript. JavaScript is de-

veloped incrementally. This means that first, the specification (ECMAScript) is agreed

by the ECMA International Organization8 and, second, developer implements the spec-

ification in their platforms. The target platform for this library is NodeJS version 4.2.4

LTS (Long Term Support). This platform is based on the open source JavaScript engine

V89, sponsored by Google. This version of NodeJS implements a part of the ECMAScript

2015 (ECMA-262 specification [19]), such as, among others, Classes syntax, Block Scop-

ing variables, Promise API specification, Arrow functions and Template strings. The

NodeJS environment supports the asynchronous features that are the key of the strength

of async-wps library. Mainly, the Promise API and the non-blocking code execution.

The Promise API is the base of the asynchronous capabilities of async-wps library.

JavaScript has an asynchronous and virtually-parallel execution flow [11], but it is a

single-thread language. This can seams a paradox, but in fact it works for most of the

situations. The key point is to specify the code execution in a non-blocking way. Non-

blocking means that the code flow is not blocked by a function execution, instead multiple

code blocks can be set to run at the same time with no need to synchronize the execution.

Since JavaScript is single-thread, the execution does not happen simultaneously, but the

platform scheduler and compiler may evenly distribute execution time. In this way,

overall performance is high. It is important to note that a Promise can end in two states:

resolved or rejected. When resolved, the promise is done and, if present, the execution is
8http://www.ecma-international.org/
9https://developers.google.com/v8/

46

http://www.ecma-international.org/
https://developers.google.com/v8/

passed to the next chained promise (specified using the .then(...) method). When a

promise is rejected, an error occurred and the error catching code, if present, is executed

(specified with .catch(...) method).

The compatibility with browser environments, such as Chrome, Safari and Firefox, is

achieved using compiling techniques. Using the third-party library Browserify and Ba-

belJS (see Section 4.3.2), the async-wps library code is converted in a browser-compatible

code. This is necessary since NodeJS uses newer features of JavaScript, while browsers

are more conservative and they must maintain compatibility to older standards in order

to not break existing web pages code.

The library async-wps can be imported into bigger projects using a variety of methods.

It needs to support ECMAScript 2015 Modules, AMD and CommonJS/Node. External

modules import in standard JavaScript has been introduced in ECMAScript 2015. This

lack of functionality in the previous versions, created different implementation of the

"import" as third-party libraries. Since there was no standard, each library implemented

the functionality in a different way. While the implementation is different, the philosophy

remains the same, to provide the ability to load external JavaScript modules. In the

NodeJS environment, the library should be imported using the NodeJS import system,

CommonJS. In a browser environment, the library can be loaded using standard HTML

Script tag, the new ECMAScript 2015 modules syntax and RequireJS. This is needed

because async-wps needs to be able to be imported in any project, independently of the

used import system.

The XML document management complexity is hidden to the final user. The async-

wps library allows users to interact with its API using JavaScript objects. Internally,

these objects are converted to XML document for the interaction with the WPS 2.0

compliant server. Also, the server response XML document is parsed and converted to

JavaScript object and then offered to the user of the library.

The license for the project is GPL 3.010. This license is sponsored by the Free Software
10http://www.gnu.org/licenses/gpl-3.0.en.html

47

http://www.gnu.org/licenses/gpl-3.0.en.html

Foundation and it is compatible with the open source and free software philosophy.

The source code and tests are developed with version 4.2.4 of NodeJS as target plat-

form. This offers a good environment for the development and test of the system. It has

much more flexibility then a browser environment and every phase of the development

can be achieved in a IDE. For this purpose, WebStorm 10 from JetBrains11. Some of the

most important feature of this IDE are:

• Support for NodeJS environment

• Smart code completion for JavaScript

• Support for Mocha BDD testing

• Integrated debugging tools

• Code quality tools

4.3.2 Requirements fulfillment

This section covers the requirements for the library and how are they solved.

Requirement R01

The Listing 1 shows a sample code in JavaScript that illustrate the use of async-

wps API. This example shows an interaction between a client that uses the async-wps

library and a WPS 2.0 server. The code makes use of the Promise API and shows

the integration with the five supported operations: GetCapabilities; DescribeProcess;

Execute; GetStatus; GetResult.

11https://www.jetbrains.com/webstorm/

48

https://www.jetbrains.com/webstorm/

1 function processCapabilities(...) { ; }

2 function processDescription(...) { ; }

3 function waitForCompletion(...) { ; }

4 function processResult(...) { ; }

5 function logError(...) { ; }

6

7 let getURLFromForm = new Promise((resolve, reject) => {

8 let url = document.getElementById(’url-input’).value;

9 if(! isValid(url)) reject(’URL is not valid’);

10 else resolve(url);

11 });

12

13 getURLFromForm

14 .then(wpsjs.GetCapabilities.executeGet)

15 .then(processCapabilities)

16 .then(wpsjs.DescribeProcess.executePost)

17 .then(processDescription)

18 .then(wpsjs.Execute.executePost)

19 .then(waitForCompletion)

20 .then(wpsjs.GetResult.executePost)

21 .then(processResult)

22 .catch(logError);

23

24 // The code below does not wait for the algorithm to be done to execute

25 ...

Listing 1: Sample code for a interaction with a WPS 2.0 server in JavaScript. This code

makes use of the Promise API found in the ECMAScript 2015 specification

49

Requirement R02

The library is developed with NodeJS as target platform. The support for a browser

environment is achieved using two third-party libraries: Browserify12 and BabelJS13.

Browserify is a JavaScript library that is able to pack a NodeJS projects is a way that

is compatible with web browsers. The dependencies of the project are bundled together

and a single JavaScript file is created. Also, Browserify provides a browser-compatible

implementation of the NodeJS base library, for example the require function or the http

NodeJS native module. In this way, a code that makes use of the http NodeJS module is

able to run on a browser environment without changes. Furthermore, Browserify is able

to compact and optimize the code.

BabelJS is a JavaScript compiler that makes JavaScript code backward compatible

with the desired JavaScript version. In order to be able to run code that makes use of

new features in older JavaScript environments code modifications are needed. Browserify

does this modifications automatically. It has implementations of the latest ECMAScript

features for previous version of the language. For example, the Promise API is introduced

in ECMAScript 2015. This means that a older JavaScript environment does not support

it natively. In this case, Browserify provides a module that introduces this new feature,

so that the developer does not have to modify the code.

Requirement R03

ComplexData is a supported data type for inputs element in Execute operations. Code

Listing 2 shows an example on how to use a ComplexData input type in a asynchronous

Execute operation. As shown in line 6, async-wps offers a constant to specify a Complex-

Type input (wps.Constants.COMPLEX_TYPE) and a content property for specifying the

desired data.

Requirement R04
12http://browserify.org/
13https://babeljs.io/

50

http://browserify.org/
https://babeljs.io/

1 var params = {

2 mode: ’async’,

3 identifier: ’process-id’,

4 inputs: [

5 {

6 type: wpsjs.Constants.COMPLEX_TYPE,

7 identifier: ’complex-input’,

8 mimeType: ’text/xml’,

9 encoding: ’utf-8’,

10 content: ’<complexData>...</complexData>’

11 }]

12 };

Listing 2: Sample code for the specification of a ComplexData input for an Async process

execution

The license of the project is GPL 3.0. This license is fully open source and is sponsored

by the Free Software Foundation.

Requirement R05

The API of the library contains five objects. Each object represents a WPS 2.0

operation: GetCapabilities; DescribeProcess; Execute; GetStatus; GetResult. The

library allow the operations to be executed using a HTTP GET or HTTP POST request.

Therefore, each object provides two different methods:

• executeGet(url): it executes a GET request to the specified URL. The parameters

of the operation are specified using Query Parameters in the URL itself.

• executePost(url, parameters): it executes a POST request to the specified

URL. In this case, the parameters are provided using a JavaScript object. The

properties of the object are extracted and a XML document is created. Finally, the

document is attached to the request using the body of the POST request.

51

Each method return a JavaScript Promise object. When the promise resolves, the callback

will receive a object with three properties:

• parsedData: a JavaScript object that represents the response XML document main-

taining the hierarchy of the attributes and properties.

• rawData: string property with the full response XML document as retrieved from

the server.

• data: a JavaScript object that provides simpler access to some meaningful prop-

erties of the response XML document. Also, it can provide aggregated data and

direct access to important properties that are deep in the hierarchy of the XML

document.

Requirement R06

The XML document manipulation required by theWPS standard is hidden to the user.

The user specifies and receives input and outputs using JavaScript objects. Internally,

the library creates and parse XML documents that need to be sent and are received from

a WPS 2.0 server.

The transformation from a XML document to a JavaScript object is done using the

jsonix third-party library. This library uses predefined schemas to map a XML document

to a JavaScript object. Schemas for all the OGC standards (including WPS 2.0) are

available14. When a XML document is received, jsonix first identify the correctness of it

according to the standard, then maps its properties to a JavaScript object.

In order to be able to convert a JavaScript object to a valid WPS 2.0 XML document,

templates are used. This technique uses some predefined texts with some special symbols

that are used as placeholders for dynamic data. The async-wps library uses lodash

template strings to achieve this goal. Code Listing 3 shows the template string for creating

a GetStatus request. The function _.template(”) creates an "executable" version of
14https://github.com/highsource/ogc-schemas

52

https://github.com/highsource/ogc-schemas

1 var template = _.template(‘

2 <wps:GetStatus service="WPS" version="2.0.0"

3 xmlns:wps="http://www.opengis.net/wps/2.0"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:schemaLocation="http://www.opengis.net/wps/2.0 ../wps.xsd ">

6 <wps:JobID><%= jobID %></wps:JobID>

7 </wps:GetStatus>

8 ‘)

Listing 3: Template string for a GetStatus request document

the template to which it is possible to pass parameters. In the showed example, the only

necessary parameter is the jobID.

4.3.3 Dependencies

This section provides a brief description of the library that are needed at runtime for

async-wps to execute. All the libraries are open source and in the case of a browser-

compatible build, they are bundled with async-wps. Mocha and Chai are testing depen-

dencies. They are not required for a normal execution of the library but are used to run

the tests.

jsonix 15 This library provides a mapping between JavaScript objects and XML

documents. It is able to make the conversion in both directions. Also, it is able to

validate a XML document with a XMLSchema. To make a conversion, this library needs

a mapping file in which is specified the rules for converting the XML document to a

JavaScript object and vice versa. Mappings for any OGC standards are available online.
15https://github.com/highsource/jsonix

53

https://github.com/highsource/jsonix

lodash 16 This library includes many utility functions to the JavaScript language. It

has interesting functions for functional programming such as: map; reduce; pick; plunk;

any; some. Also, it provides template string for creating text from predefined templates

and dynamic data.

mocha 17 This is a testing framework for JavaScript. Its strengths are in the sim-

plicity of the definition of tests and the asynchronous execution of them.

chai 18 This library provides fluid assertion functions. Its primary goal is to be

used in conjunction with a testing framework. It provides both BDD and TDD styles

assertions.

4.3.4 Tests

The async-wps library code comes with unit testing to improve code quality and robust-

ness. The tests are executed in a NodeJS environment using Mocha and Chai third-party

libraries.

A very simple testing WPS 2.0 server is provided with the library. It is implemented

in NodeJS. This server expects and returns valid WPS 2.0 XML documents.

The async-wps tests are intended to test the library functionality against the XML

documents provided in Annex B of WPS 2.0 standard document [28].

4.3.5 Library compilation and test

The library async-wps ships with a build folder in which is possible to find compiled

and ready-to-use version of the library. Code Listing 4 shows the steps to build and test
16https://lodash.com/
17https://mochajs.org/
18http://chaijs.com/

54

https://lodash.com/
https://mochajs.org/
http://chaijs.com/

1 git clone https://github.com/andreacalia/wps-js.git

2 npm install

3 npm run test

4 npm run build-all

Listing 4: List of console commands to build and test the async-wps library

manually the library (the commands are shown on a standard UNIX console system).

4.3.6 Source code

The VCS for this project is Git19. Git is a distributed version control system that aims

to be fast and easy to learn. It can manage projects of every size and it can be fully

integrated with Github. Github20 is a web application that manages software projects

that use Git as VCS. It supports collaboration, code review and more features that allows

easy management of big projects. Github offers free hosting for open source projects.

For this reason, the code of async-wps is hosted on Github and cab be found here:

https://github.com/andreacalia/wps-js.

19https://git-scm.com/
20https://github.com/

55

https://github.com/andreacalia/wps-js
https://git-scm.com/
https://github.com/

4.4 Limitations

Current implementation of the WPS 2.0 standard in async-wps is not complete. Most of

the features the standard provides are already present in the library, as well as the API

structure.

A current limitation can be found in the automatic management of XML documents.

These documents can be rather complicated and includes portions of other OGC stan-

dards. The support for every possible combination of OGC standards is complicated to

achieve. Yet, the modular structure of async-wps allows easy integration.

Another limitation is the support for only ComplexData input types. WPS 2.0 stan-

dard includes other two types of input type: LiteralData and BoundingBox. They are

not currently included in the library. Placeholders are included and the library in already

able to identify them, throwing a "not implemented" exception.

These limitations do not affect the usability of the library for the sake of this thesis.

The main goal of this thesis is to provide a starting point for a fully fledged WPS 2.0

support in JavaScript. This base needs to be modular, robust yet flexible and well tested.

Those are the main focuses of the development.

56

5 Case Study: Indoor Location

This section explains the case study for this thesis. Indoor Location is a hot topic now a

days and it presents some interesting academic and business-related challenges. It can be

used in a variety of situations. From security to advertisement. For example, it can be

used to efficiently evacuate people from a crowded museum in case of emergency. Another

example is to offer special prices to customers based on their location on the mall.

Section 5.1 explains the definition of Indoor Location. Section 5.2 contains a brief

introduction to the machine learning classification method and which is the scope of

classification in the Indoor Location context taken into account in this thesis. Section

5.3 gives details of the WPS 2.0 server developed on the context of the thesis. Finally,

Section 5.4 explains in details the tool created to manage Indoor Location data and how

WPS 2.0 is used to communicate to the data-processing server.

57

5.1 Definition

Indoor Location is a generic term that refers to the spatial localization of an entity in a

closed environment. Usually, the entity is a user of the system (a person), but it can also

be a thing (sensor, printer, PC, robot, etc.) in a IoT environment.

Classical entity positioning is achieved using GNSS systems, such as GPS (USA),

GLONASS (Russia) and Galileo (Europe). These systems use satellites to calculate the

position of an entity on the Earth surface. This is achieved using a combination of satellite

to triangulate the position of the entity given the known position of the satellites. An

entity in this system needs to be in a more or less open environment, because it is needed

to have a view of the satellite constellation. This can be a problem on, for example,

subways, tunnels, thick forests, small alleys of cities and building interiors. In these

situations, the satellites signal intensity is not sufficient to be able to determine the

position of the entity in reliable way.

Indoor Location is a localization system that aims to locate an entity in a building or,

more broadly, in an environment in which classical GNSS does not work properly. There

are a large number of techniques to achieve this goal. According to [4], there are two

main distinction of indoor positioning system: infrastructure-based; infrastructure-less.

Infrastructure-based indoor positioning systems use a combination of sensors to produce

and receive a specific signal that is then processed and analyzed. Such systems includes

RFID[25], infrared[36], Bluetooth[32] and ultrasound[31][23] sensors. Infrastructure-less

indoor positioning systems make use of the signal that are already present in a specific area

to locate entities. Normally, these signals are portions of the electromagnetic spectrum

and can be, among others, Wi-Fi[39][20][3], FM radio[4] and magnetic field[6].

A comparison of the most used Indoor Location techniques has been made for the

occasion of the Microsoft Indoor Localization Competition [22].

58

5.2 Classification problem

In the context of this thesis, the Indoor Location is considered a classification problem.

The case study is based on the supervised creation of a database with samples that indi-

cates various sensors value in a specified location in the space. Sensors values S1, S2, ..., Si

and positioning data L1, L2, ..., Lj represent a sample in the database. The sensors values

are may be the intensity signals of Wi-Fi access points, FM radio signal or whatever

sensor the system may include. Positioning data refers to meta-data that identify the

location of the sample, it may include floor and building number, latitude and longitude,

zone id, etc.

Given a database in the described form (as a training set) and a new sample, the

Indoor Location system should be able to locate the sample in the space. For example,

given S1, S2, ..., Si a simple system may be able to identify only the building id of an

unknown sample. More elaborated systems may even be able to estimate latitude and

longitude.

In order to be able to process and identify an unknown sample, a classification algo-

rithm is executed. One of the most used and simpler algorithm is kNN[7]. In summary,

this algorithm is able to determine the class of a sample based on the nearest class in the

database using a specific distance measure. Number of voting classes, distance function

and other parameters are able to adapt the algorithm behavior to the specific problem. In

the context of this application the classes are the different values of the positioning data.

In a simple example, the system may be able to identify the building id of a unknown

sample. In this situation, the classes are the different building ids that are present in

the database. The distance measure is an important factor for the performance of the

system. A good distance measure heavily depends on the database used[34].

59

5.3 WPS 2.0 server: wps-classificator

This section explains in details the implementation of the WPS 2.0 server for classifying

data using the kNN machine learning classification algorithm. The name of this Software

is wps-classificator.

This server implements the WPS standard version 2.0. This means that provides the

implementations for the following operations: GetCapabilities; DescribeProcess; Execute;

GetStatus; GetResponse.

Classification algorithm such as kNN can be time consuming depending on the size

of the data. Also, in a web scenario, the client can vary from a Smartphone to a super

computer. For this reason, delegating the classification processing to a server increase the

overall performance of the system. This is specially true when the data size is specially

high. In this case, the ability of WPS 2.0 to work in asynchronous mode leads to even

more, raw or perceived, performance in the client side.

WPS 2.0 supports two execution models, synchronous and asynchronous. wps-classificator

supports both execution models for providing flexibility to the user. In this way, it can

choose which execution model fits its needs for a specific problem.

5.3.1 Requirements

Table 23 shows the requirements for the wps-classificator web service.

Requirement ID Description

R01 WPS 2.0 compatible web API

R02 Support for asynchronous and synchronous process execution

models
R03 Support for large quantity of input data

Table 23: Summary of the requirements for the wps-classificator

60

5.3.2 Development and Results

This section describes the development of the WPS 2.0 wps-classificator server.

5.3.2.1 Technology and design decisions

In order to implement the requirements specified in the Table 23, the following technology

and design decisions are made.

The API of the server is composed by a single entry point. The URL is in the

form: http://localhost:4567/wps. This decision allows the user to not be confused

about URLs of the server and it is consistent with the WPS standard. To access WPS

operations, the user connects to the entry point using the HTTP POST method. In this

way, the WPS payload is included in the body of the HTTP request and is then extracted

and processed by the server. Based on the content of the payload, the different WPS

operations are performed.

The asynchronous execution model implies the storage of some information about

the process executions. This information includes the current status of the process and,

eventually, the result or the error that occurred. This information is stored in a in-

memory Redis database. This database provide a simple key-value storage that is very

suitable for this scenario.

In order to be able to support large input files, the server implements the possibility to

upload the WPS payload using raw HTTP POST body or using a XML file. The second

option is specially suitable for web applications in which the concatenation of large data

in a, for example, AJAX request can affect the performance.

The language of choice for developing wps-classificator is Java version 8. Java is a

largely established programming language for developing web services due to its scala-

bility, robustness and type safety. The Java ecosystem is huge and it has tools that ease

the development of such Software.

61

5.3.2.2 Requirement fulfillment

This section explain in details the implementation of the requirements for the wps-

classificator Software.

Requirement R01

In order to be fully compatible with WPS 2.0, the server have to implement the

following operations: GetCapabilities; DescribeProcess; Execute; GetStatus; GetResult.

GetCapabilities gives a description of the WPS server. It includes the name, abstract,

version and the processes it contains. Listing 5 shows a short (for brevity) version of the

XML document returned by the server.

DescribeProcess operation gives a detailed description of a process available on the

server. Since the server supports only the kNN classification for now, this is the only

returned description. Listing 6 shows the XML document returned by the server.

Execute operation is supported for both asynchronous and synchronous execution

models. The result may be a StatusInfo document (Listing 8) or a Result document

(Listing 9) for, respectively, asynchronous and synchronous mode. More details about

the implementation of this operation can be found in the description of the Requirement

R02.

GetStatus is used to retrieve the status of a scheduled process. the status can be:

Succeded; Accepted; Running; Failed. Refers to Section 3.1.4 for a detailed description

of the meaning of such statuses. Listing 8 shows the XML document returned for a

GetStatus operation for the scheduled process with id 8132019285681.

GetResult operation gets the result of a scheduled process on the server. Given the id

of the process, a Result document is returned with the result. Listing 9 shows the result

of the process with id 8132019285681.

62

1 <wps:Capabilities service="WPS" version="2.0.0">

2 <ows:ServiceIdentification>

3 <ows:Title>WPS kNN Classification server</ows:Title>

4 <ows:Abstract>This server provides kNN classification machine

learning algorithm.</ows:Abstract>

5 <ows:Keywords>

6 <ows:Keyword>Geoprocessing</ows:Keyword>

7 <ows:Keyword>kNN</ows:Keyword>

8 <ows:Keyword>classification</ows:Keyword>

9 </ows:Keywords>

10 <ows:ServiceType>WPS</ows:ServiceType>

11 <ows:ServiceTypeVersion>2.0.0</ows:ServiceTypeVersion>

12 <ows:Fees>NONE</ows:Fees>

13 <ows:AccessConstraints>NONE</ows:AccessConstraints>

14 </ows:ServiceIdentification>

15 <ows:OperationsMetadata> (removed for brevity)

</ows:OperationsMetadata>

16 <wps:Contents>

17 <wps:ProcessSummary jobControlOptions="sync-execute

async-execute">

18 <ows:Title>kNN classificator</ows:Title>

19 <ows:Identifier>kNN</ows:Identifier>

20 </wps:ProcessSummary>

21 </wps:Contents>

22 </wps:Capabilities>

Listing 5: Sample XML document for a GetCapabilities operation of the wps-classificator

63

1 <wps:ProcessOfferings>

2 <wps:ProcessOffering jobControlOptions="sync-execute async-execute"

outputTransmission="value">

3 <wps:Process>

4 <ows:Title>kNN classification</ows:Title>

5 <ows:Identifier>kNN</ows:Identifier>

6 <wps:Input>

7 <ows:Title>trainData</ows:Title>

8 <ows:Identifier>trainData</ows:Identifier>

9 <wps:ComplexData> <wps:Format

mimeType="application/json"encoding="UTF-8"/>

10 </wps:ComplexData>

11 </wps:Input>

12 <wps:Input>

13 <ows:Title>testData</ows:Title>

14 <ows:Identifier>testData</ows:Identifier>

15 <wps:ComplexData> <wps:Format

mimeType="application/json"encoding="UTF-8"/>

16 </wps:ComplexData>

17 </wps:Input>

18 <wps:Output>

19 <ows:Title>Evaluation of evaluating the model</ows:Title>

20 <ows:Identifier>1</ows:Identifier>

21 <wps:ComplexData> <wps:Format mimeType="text/plain"

encoding="UTF-8"/>

22 </wps:ComplexData>

23 </wps:Output>

24 </wps:Process>

25 </wps:ProcessOffering>

26 </wps:ProcessOfferings>

Listing 6: Sample XML document for a DescribeProcess operation of the wps-classificator

for describing the kNN process 64

1 <wps:Execute version="2.0.0" response="document" mode="async">

2 <ows:Identifier>kNN</ows:Identifier>

3 <wps:Input id="trainData">

4 <wps:Data>

5 <wps:ComplexData>

6 {

7 "data": "...",

8 "classIndex": "BUILDINGID"

9 }

10 </wps:ComplexData>

11 </wps:Data>

12 </wps:Input>

13 <wps:Input id="testData">

14 <wps:Data>

15 <wps:ComplexData>

16 {

17 "data": "...",

18 "classIndex": "BUILDINGID"

19 }

20 </wps:ComplexData>

21 </wps:Data>

22 </wps:Input>

23 </wps:Execute>

Listing 7: Sample XML document for the execution of the kNN classification with the

specified input data

65

Requirement R02

The server wps-classificator supports both synchronous and asynchronous execution

models.

During a asynchronous execution, a token is created for the scheduled process and a

StatusInfo (Listing 8) document is returned immediately. Behind the scene, the server

starts a Thread that executes the operation with the given inputs. The Thread updates

the status of the scheduled process on the Redis database. When it terminates, the result

is stored on the database and the status is set to Succeded. Meanwhile, the client can

query for the status of the scheduled process, as its status is retrieved from the database.

Finally, the client asks for the results of the process, Result document 9.

In contrast, the synchronous execution does not start a Thread, instead the process

execution is done during the request. The result of the process is sent as the response of

the execution request (Listing 9).

66

1 <wps:StatusInfo xmlns:ows="http://www.opengis.net/ows/2.0"

2 xmlns:wps="http://www.opengis.net/wps/2.0"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://www.opengis.net/wps/2.0 ../wps.xsd">

5 <wps:JobID>8132019285681</wps:JobID>

6 <wps:Status>Accepted</wps:Status>

7 <wps:NextPoll>2016-01-02T12:23:08.230Z</wps:NextPoll>

8 </wps:StatusInfo>

Listing 8: Response of an asynchronous WPS execute request or a GetStatus request. It

includes the JobId that can be used to query the status and result of the processing

1 <wps:Result>

2 <wps:JobID>8282212079926</wps:JobID>

3 <wps:ExpirationDate>2016-01-02T12:25:28.467Z</wps:ExpirationDate>

4 <wps:Output id="1">

5 <wps:Data>

6 Correlation coefficient 0.5602

7 Mean absolute error 0.7143

8 Root mean squared error 1.8898

9 Relative absolute error 51.6129 %

10 Root relative squared error 85.1691 %

11 Total Number of Instances 7

12 </wps:Data>

13 </wps:Output>

14 </wps:Result>

Listing 9: Response of a synchronous WPS execute request or a GetResult request

(assuming the result is ready). It includes the results of the processing

67

Requirement R03

In order to be able to easily send large quantities of data as input for the WPS execute

operation, wps-classificator supports file upload or HTTP POST body.

File upload is suitable when the client already have the WPS payload codified as a

file on the disk and this file is very large. The HTTP header multipart/form-data will

speedup the performance of sending large files over HTTP.

It is also possible to include the WPS payload in the body of a HTTP POST request.

In this case, the payload is sent and codified as normal string and is embedded in the

HTTP request. This method is suitable when the payload is relatively small in size. It is

a perfect option for request the operations: GetCapabilities; DescribeProcess; GetStatus;

GetResult.

5.3.2.3 Dependencies

This section provides a brief description of the wps-classificator dependencies. All the

third-party libraries described below are open source.

Java Spark 21Spark Java is a microframework for developing web applications using

the Java programming language. Spark Java is very simple to learn and provides high

performance and scalability. It is not based on the Java EE stack and it fully supports

Java 8 features.

Redis 22Redis is a in-memory (but persistent) database that is able to achieve high

performance when dealing with large quantities of data. This is largely due to the fact

that it stores data in a simple key-value pairs.
21http://sparkjava.com/
22http://redis.io/

68

http://sparkjava.com/
http://redis.io/

5.3.3 Source code

Git is used for managing this project. As remote repository, Bitbucket is used. Bitbucket

is a web platform for managing Git projects. The source code for this project can be

found here: https://bitbucket.org/andreacalia/wps-classification-server.

69

https://bitbucket.org/andreacalia/wps-classification-server

5.4 Web Application: Indoor Location Management Tool

This section explains in details the tool that is created during the thesis to be able

to manage Indoor Location databases (in specific [35]). This tool is a web application

and simplifies the operations of analysis and process of the data. It connects to wps-

classificator to perform expensive analysis tasks.

Indoor Location databases are difficult to manage and analyze. The characteristic of

this database is that they contains numeric and spatial information.

The numeric information is composed by the sensors values, while the spatial infor-

mation may include coordinates (latitude and longitude for example), space ids, etc.

Normally, a table-based visualization and filtering is suitable for databases that does

not include spatial information. In the particular scenario of Indoor Location databases,

along with classical table-based visualization, it may be more convenient to have a map-

based visualization. In this way, some GIS analysis may be applied on the data and it

may be easier to identify meaningful data.

Also, the proposed tool as a web application is interesting due to its cross-platform

nature. Scientists may use their preferred software stack (OS X, Linux or Windows) and

they can continue to work with the tool.

Finally, the classification of samples and the data analysis it is shifted to a distributed

web service and this can drastically improve the overall performance of the system.

5.4.1 Requirements

Table 24 shows the requirements for the Indoor Location Management Tool.

Requirement ID Description

R01 Support for data visualization using tabular and map view

70

R02 Support for data filtering using for queries and geospatial opera-

tions
R03 Support for the creation of data clusters for performing periodical

analysis
R04 Open source compatible license

Table 24: Summary of the requirements for the Indoor Location Management Tool

5.4.2 Development and Results

This section describes the development of the Indoor Location Management Tool.

5.4.2.1 Technology and design decisions

In order to fulfill the requirements presented in Table 24, this section explains in details

the design and technology decisions.

The first design decision for the tool is the way it loads a indoor location database.

It can be done in two ways: via CSV file or via fetching from a web service. This first

option involves the load of a CSV file from the user computer. This file should contain a

row with the column header and

Indoor Location Management Tool is a web application. Therefore, it is developed

using HTML/CSS and JavaScript. Although, new versions of modern web browsers

feature most of HTML/CSS and JavaScript standards, the implementation may slightly

vary. Therefore, a cross-browser third-party library is needed. This kind of libraries are

of two types: custom API or polyfill. When providing a custom API, the library forces

the developer to learn and use their API to make standard operations. These operations

are then performed in different ways depending on the browser in which they are running.

In contrast, a polyfill library provides an implementation of a standard feature and it is

used when a native implementation is not present.

71

The requirements of the tool make the UI of the system quite elaborated. There is

the necessity of visualizing the data using both map and tabular view. The creation of a

mixed view layout of this complexity can be challenging. For this reason a UI framework

that provides a MV* (ModelView) design pattern is desirable. This framework should

provide a basic structure for data models and a representation of them using views. Also,

a mechanism for creating complex layouts involving nested views.

The tabular view of the data should be presented using well-known tables. Due to

the possible length of the database, a pagination control is required. In this way, only a

certain amount of data is shown on screen and the other parts are reachable using pages

controls.

The map view should present a map widget on screen. This widget should include all

the controls for zooming, panning and identify the feature on the map. Each element of

the database, which includes positioning data, is shown on the map and a preview of its

sensors data should be available with a click using a info window. Due to the possibly

high size and concentration of database elements, the map should be able to show the

database using clustering. Clustering technique scans the data and finds the elements

that will be shown so close that are not easily distinguishable. For these elements, a

cluster is shown which provides a summary of the information on the included elements.

This technique allows a much clearer view of crowded data at all levels of zoom.

Both tabular and map view should include filtering controls. These controls are able to

select data based on the properties of a database element. For alphanumerical properties,

such as sensors values, the tabular view provides a classical form to build a query. This

form allows the user to dynamically create a query by comparing properties with specific

values. For example, a user may want to select all the elements that have the word "wi-

fi" in the property "title". In contrast, for geospatial properties, the map view should

provide filtering options based on geospatial operations. For example, a user may want

to select all the elements of the database that are within a certain polygon or that are

close to a specific point of interest.

72

The filters create selection of element of the database. The selection can be saved

for a later use. Saving a selection will create an experiment. An experiment is a set of

element of the database that are grouped together for analysis reasons. For example, a

user may want to create an experiment with those elements that have a value greater

than 5 for the sensor S5. Along with a set of elements, an experiment have a name and

a description. It is important to note that an element of the database can pertain to

multiple experiments.

The experiments are used to perform classification analysis using a WPS 2.0 server.

A experiment may be used as a training or testing data for the classificator. In this way,

a user may be able to use a subset of the database elements (an experiment) as simulated

users in the system and then test its performance.

5.4.2.2 Requirement fulfillment

This section explains how the requirements are implemented in the Software.

Requirement R01

The tool provides tabular and map visualization for the elements of the database.

The tabular view, Figure 4, is composed by a table and pagination controls. The

number element shown on the page can be configured using the configuration page. Based

on the number of elements per page and the total number of elements in the database,

the tool calculates the necessary pages needed to visualize all the data. The pagination

controls allow the navigation between the pages.

The map view offers the visualization of the elements on a map, Figure 5. If present,

the coordinates of a database element is assumed to be in the WGS84 latitude, longi-

tude coordinate reference system. This allow the correct positioning and aligning of the

database elements with a basemap or custom geospatial layers. The maps controls allow

the user to zoom, pan and identify the elements. They are clustered if considered too

close. The minimum distance threshold can be configured in the configuration page.

73

Figure 4: The tabular view visualizes the element of the database in rows. Each column

represent a attribute of the element. Pagination is added because the expected number

of entries of the database is large. The page size can be customized

74

Figure 5: The map view visualize the data taking into account the geospatial attributes

of the elements. Those are latitude and longitude specified using WGS84. Custom layers

can be added into the map to better understand and analyze the data. Elements that are

very close to each other in the selected zoom are clustered together for clarity reasons

75

Requirement R02

The filtering using the tabular view can be done using a form (Figure 6). This is a

query builder and allows a user to specify the query that is then used to select and filter

the elements of the database.

The filtering option using the map view is based on a geospatial operation (Figure 7).

In this case, the user can draw a polygon and the elements (features) that are within the

polygon are added to the selection.

Figure 6: Filtering options using a form. It is possible to filter the data based on non-

geospatial properties. In this early version, the filter options occurs comparing using

equality the properties set in the form with the ones stored in the database

76

Figure 7: Filtering options for geospatial attributes. The filter happens using the geospa-

tial operation "within". The user chooses the preferred method (arbitrary polygon or

rectangle), draws the feature on the map and the database entries that fall into the

feature are selected automatically

77

Requirement R03

The selection that a user performs can be saved in the application and is called "ex-

periment" (Figure 8). A user can use an experiment for analysis, modification or deletion.

A database element may be included in more then one experiment. A experiment have

a unique name and a description. These metadata can be used for storing meaningful

information about the purpose of the experiment.

Figure 8: The experiment details are shown in the sidebar of the web application. In the

central part, the elements of the experiment are visualized

Requirement R04

The license of the project is Creative Commons Attribution-NonCommercial-ShareAlike

4.0 International23. This license is open source. Modification and distribution of the soft-

ware are allowed given it is not used for commercial purposes, it has proper attributions

and it is shared with a compatible license.
23https://creativecommons.org/licenses/by-nc-sa/4.0/

78

https://creativecommons.org/licenses/by-nc-sa/4.0/

5.4.2.3 Dependencies

This section provides a brief description of the Indoor Location Management Tool de-

pendencies. All the third-party libraries described below are open source and are loaded

by the application during the startup.

Bootstrap 24This is a popular front-end framework for developing web applications.

It provides basic structure for building responsive and high quality web pages. It also

features widget and plugins to ease the development.

jQuery 25This is a very famous JavaScript library. It provides a cross-browser API

for, among others, DOM manipulating, Ajax and event handling. It is also extendible

with a plugin system to include more functionality.

BackboneJS 26This is a lightweight JavaScript library that provides a simple model-

view system for making user interfaces in web application. It also features a collection

system for the models and a custom event system for UI interactions.

MarionetteJS 27This is a complementary framework of BackboneJS. It extends

BackboneJS and provides opinionated code structure for developing highly dynamic web

applications. Among its features are: layout system, list and collection views, basic object

model, custom UI behavior and a radio messaging system.

UnderscoreJS 28This library provides functional programming functions to JavaScript,

such as: map; reduce; and invoke. It aims to improve the productivity of the development

of JavaScript applications.
24http://getbootstrap.com/
25https://jquery.com/
26http://backbonejs.org/
27http://marionettejs.com/
28http://underscorejs.org/

79

http://getbootstrap.com/
https://jquery.com/
http://backbonejs.org/
http://marionettejs.com/
http://underscorejs.org/

Leaflet 29This library has the ability to integrate maps into web pages. It has been

built using JavaScript and supports mobile-friendly maps view. Also, it has a very small

fingerprint in size and it has a simple API.

TurfJS 30This library provide an implementation for geospatial analysis functions

in JavaScript. It supports browser and NodeJS environments and it aims to be fast in its

calculations. It provides many geospatial operations and it uses GeoJSON as geospatial

data formal.

alaSQL 31This library is a SQL database (SQL-99) for JavaScript. It can run in

browsers and NodeJS environment. Its main focus is to be very efficient and fast in

executing queries. It can load and store data using a variety of formats including: CSV,

JSON, TAB, IndexedDB, LocalStorage and SQLite.

5.4.3 Limitations

Indoor Location Management Tool is at a early stage of development. It aims to be a

complete suite for managing Indoor Location databases so the application is very complex

and challenging. The proposed work includes the basic implementation to be able to

interact with the WPS 2.0 server in order to test the effectiveness of the WPS 2.0 standard

for machine learning purposes.

In the next release, the query builder will be improved. The user will be able to

specify for each property of an element the condition that should be satisfied in order

to select an element. The user may specify conditions like: "contains"; "greater then";

"equals" and "less then"
29http://leafletjs.com/
30http://turfjs.org/
31https://github.com/agershun/alasql

80

http://leafletjs.com/
http://turfjs.org/
https://github.com/agershun/alasql

5.4.4 Source code

Git is used for managing this project. Bitbucket is used as remote repository. The

repository that holds the code of this project is currently private, it will be published in

the recent future. Copies of the code can be given under request.

81

6 Discussion

The proposed hypothesis of the thesis was not easy to validate. Proving performance im-

provements in modern Software environments is challenging. The resulting performance

depends on plenty of factors including the machine on which the Software is running.

Even more challenging is the prove of application responsiveness.

Therefore, the experiments are focused on the status of the client over time: blocked

or idle. In blocked stratus, the client cannot perform any operation since it is waiting for

the response of the server. While in idle, the client can perform other actions, such as

request resources from the web, respond to user input and update the GUI.

The gathered data come from two simulations, one (Large dataset) with 15000 ele-

ments and the other (Small dataset) with 3000 elements. The data is sent to the wps-

classificator web service using the async-wps library. The WPS payload that included the

samples were sent using a XML file. The results come from the last of 20 executions for

each simulation. This is due the optimization the server performs during the execution

of repeated operations.

Table 25 shows the results of the experiments. The table includes the amount of time

the client remains in Blocked and Idle status for each simulation. Also, the total elapsed

time is presented. Given this results, the asynchronous execution of the simulations led

to significant availability of the client versus the synchronous execution. Now the client

is in Idle status for 95.3% of the time for the Large dataset and 95.5% of the time for the

Small dataset.

Figure 9 shows the client availability over time during the simulation with the Large

dataset. Figure 10 shows the same information referred to the simulation using the Small

dataset. These graphical representation a presented to better understand the results.

The experiments using the WPS 2.0 asynchronous feature led to another considera-

tion. As described in Section 3.3, the polling technique used for getting the status of a

scheduled execution is an issue of the WPS standard. In the current version of WPS, the

82

client must get the status of a scheduled process execution periodically (polling). The

selected interval between GetStatus requests may influence the performance significantly.

Although the WPS server may specify the preferred polling interval, it may not be the

best one. During the experiments, this problem came out and a further study is presented

in Figure 11. The figure shows how the polling interval affects the completion time of

the process execution. Given the presented results, the polling technique is clearly not

the best one for getting the status of a WPS process, since a wrong polling interval may

halve the performance of the entire system.

Large dataset Small dataset

Blocked (s) Idle (s) Total (s) Blocked (s) Idle (s) Total (s)

Asynchronous 4.04 82.88 86.93 0.37 7.98 8.35

Synchronous 87.08 0 87.08 8.12 0 8.12

Table 25: This table shows the status of the client during an asynchronous and a syn-

chronous request for each simulation. The large dataset involves 15000 elements, while

the Small dataset only 3000 elements. During the Blocked status, the client cannot per-

form any action, since it is waiting for the response of the server. During the Idle status,

the client is available for doing other tasks, like updating the GUI or processing other

data. The time is expressed in seconds

83

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

IDLE

BLOCKED

Time [s]

C
lie
nt

st
at
us

(a) Client status chart for an asynchronous request using the Large dataset

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

IDLE

BLOCKED

Time [s]

C
lie
nt

st
at
us

(b) Client status chart for a synchronous request using the Large dataset

Figure 9: This chart compares the status of a WPS client during asynchronous (a) and

synchronous (b) requests for the Large dataset. The simulation is particularly heavy

since it involves 15000 elements

84

−1 0 1 2 3 4 5 6 7 8 9

IDLE

BLOCKED

Time [s]

C
lie
nt

st
at
us

(a) Client status chart for an asynchronous request using the Small dataset

−1 0 1 2 3 4 5 6 7 8 9

IDLE

BLOCKED

Time [s]

C
lie
nt

st
at
us

(b) Client status chart for a synchronous request using the Small dataset

Figure 10: This chart compares the status of a WPS client during asynchronous (a) and

synchronous (b) requests for the Small dataset. The simulation is particularly heavy since

it involves 15000 elements

85

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11
0

10

20

30

40

50

60

70

80

Polling interval [s]

C
om

pl
et
io
n
ti
m
e
[s
]

(a) Completion time versus polling interval for the experiment Large dataset. Average: 70.36 seconds. Standard

deviation: 1.69

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11
0

1

2

3

4

5

6

7

8

9

10

11

Polling interval [s]

C
om

pl
et
io
n
ti
m
e
[s
]

(b) Completion time versus polling interval for the experiment Small dataset. Average: 7.62 seconds. Standard

deviation: 1.29

Figure 11: These charts show the evolution of the completing time for the proposed

simulations compared with the interval between status polling. (a) shows the results for

the Large dataset, while (b) shows the results using the Small dataset. The polling interval

(in seconds) is the time the client waits before requesting the status of the execution. The

selected polling interval affects significantly the total execution time of the experiments

depending on the duration of the experiment (in seconds). Longer experiments (execution

time) seems not to be heavily affected

86

7 Conclusion

The main contribution of this thesis is the development of a JavaScript library for ac-

cessing WPS 2.0 web services in an asynchronous way. Specially in the case of intensive

computing tasks, this feature improves the client responsiveness, reduces network re-

sources usage and allows the implementation of high-performance server infrastructures.

Version 2.0 of WPS introduced the ability to execute processes in asynchronous mode

along with standard synchronous. This feature makes WPS suitable for processing large

quantity of data or for using time-consuming algorithms. This is specially useful in a

data analysis scenario in which there is a big amount of data that is needed for statistical

and big-data analysis.

Indoor Location is suitable example of performing expensive machine learning algo-

rithm on large datasets.

In such a context, giving a capable web service, it is demonstrated that for expensive

calculations involving a large quantity of data, the asynchronous feature of WPS 2.0 and

async-wps led to huge availability gain in the client side (around 95% in the performed

experiments). Now the client is not blocked anymore for long time waiting for the server

response. During the server calculations, the client is now able to perform other tasks

and provide early failure detection for the scheduled task. Also, the regular query of the

process status improves the friendliness of the user interface and give real time updates

to the user.

The proposed work consists of three Software programs. The first one is async-wps

which is a client library for accessing WPS 2.0 services. According to the accomplished

requirements (Table 22), the library features:

• Support for WPS 2.0 operations: GetCapabilities, DescribeProcess, Execute, Get-

Status and GetResult.

• Compatibility with NodeJS and browsers (e.g. Chrome and Firefox).

87

• Support for ComplexData type as input for the WPS server.

• Open source license.

• Simple JavaScript API that supports asynchronous execution using Promise API

and automatic transformation between JavaScript objects and XML documents.

The second Software is a WPS 2.0 server for performing kNN classification. According

to the requirements specified in Table 23, the web server is able to:

• Provide a web API using a simple and unique entry point.

• Support for all the operations of WPS 2.0 standard.

• Support for kNN classification. The input data can be specified either using HTTP

POST body or XML files. This operation can be done asynchronously as well as

synchronously.

The last Software is a web application called Indoor Location Management Tool. It is still

a development phase, yet the requirements for the scope of this thesis are accomplished

(Table 24). In short:

• Support for tabular and map visualization of the Indoor Location database. In

both cases, it is possible to filter the database entries using form controls and

geospatial operations. The type of filter depends on the type of the selected property

(geospatial or alphanumerical).

• Support for the creation of clusters of database entries, called experiments. This

option enables the batch execution of statistical analysis and allows a post-execution

comparison.

• Open source license.

88

In conclusion, WPS 2.0 standard represent a solid communication protocol for process-

intensive web services. The use case for this thesis implemented a simple kNN classifica-

tion algorithm, but the same idea can be extended to more complex algorithm and more

complex input datasets. A further revision of WPS for improving the GetStatus workflow

would improve the performance of the standard.

89

8 Future work

The proposed work in this thesis is meant to be a starting point for future studies.

Concerning async-wps, the library will be updated to cover 100% of the WPS 2.0

standard and other OWS data models. Once this work will be completed, it will be

proposed to OGC as the official client for accessing WPS 2.0 web services for JavaScript.

The wps-classificator web service will be published on a public accessible host and

made available to everyone. Also, more classification options and algorithm will be in-

troduced. Since the project is open source, the community can improve and upgrade the

existing code.

The Indoor Location Management Tool will be updated according to future usability

tests. This tool can be very useful for data scientist that are studying Indoor Location

databases.

Finally, a comprehensive test of a WPS 2.0 interface versus an ad-hoc one will be

performed. This test is very interesting because it will quantify the overhead of the WPS

standard compared to a raw solution. A specially interesting study may include the

usage of modern technologies like WebSockets or HTTP2 as a substitute of the polling

technique used for getting the status of a scheduled process.

90

References

[1] ISO 8601. Data elements and interchange formats – information interchange – rep-

resentation of dates and times. Technical report, ISO, http://www.iso.org/iso/

catalogue_detail?csnumber=40874, 2004.

[2] Anthony M. Castronova, Jonathan L. Goodall, and Mostafa M. Elag. Models as

web services using the Open Geospatial Consortium (OGC) Web Processing Service

(WPS) standard. Environmental Modelling Software, 41:72–83, mar 2013.

[3] Yi-Chao Chen, Ji-Rung Chiang, Hao-hua Chu, Polly Huang, and Arvin Wen Tsui.

Sensor-assisted wi-fi indoor location system for adapting to environmental dynamics.

In Proceedings of the 8th ACM international symposium on Modeling, analysis and

simulation of wireless and mobile systems - MSWiM ’05, page 118, New York, New

York, USA, 2005. ACM Press.

[4] Yin Chen, Dimitrios Lymberopoulos, Jie Liu, and Bodhi Priyantha. Indoor Local-

ization Using FM Signals. Transactions on Mobile Computing (TMC), 2013.

[5] Zeqiang Chen, Nengcheng Chen, Chao Yang, and Liping Di. Cloud Computing En-

abled Web Processing Service for Earth Observation Data Processing. IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing, 5(6):1637–

1649, dec 2012.

[6] Jaewoo Chung, Matt Donahoe, Chris Schmandt, Ig-Jae Kim, Pedram Razavai, and

Micaela Wiseman. Indoor location sensing using geo-magnetism. In Proceedings

of the 9th international conference on Mobile systems, applications, and services -

MobiSys ’11, page 141, New York, New York, USA, 2011. ACM Press.

[7] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions

on Information Theory, 13(1):21–27, jan 1967.

[8] Karan Dhiman and Benson Quach. Google’s go and dart: Parallelism and structured

web development for better analytics and applications. In Proceedings of the 2012

91

http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail?csnumber=40874

Conference of the Center for Advanced Studies on Collaborative Research, CASCON

’12, pages 253–254, Riverton, NJ, USA, 2012. IBM Corp.

[9] Constantinos Dovrolis, Brad Thayer, and Parameswaran Ramanathan. HIP. ACM

SIGOPS Operating Systems Review, 35(4):50–60, oct 2001.

[10] Gérald Fenoy, Nicolas Bozon, and Venkatesh Raghavan. ZOO-Project: the open

WPS platform. Applied Geomatics, 5(1):19–24, mar 2013.

[11] E. Fortuna, O. Anderson, L. Ceze, and S. Eggers. A limit study of javascript paral-

lelism. In Workload Characterization (IISWC), 2010 IEEE International Symposium

on, pages 1–10, Dec 2010.

[12] Degree Framework. Website. http://www.deegree.org/. Accessed: 2015-12-20.

[13] Gregory Giuliani, Stefano Nativi, Anthony Lehmann, and Nicolas Ray. {WPS}

mediation: An approach to process geospatial data on different computing backends.

Computers Geosciences, 47:20 – 33, 2012. Towards a Geoprocessing Web.

[14] Carlos Granell, Laura Díaz, Alain Tamayo, and Joaquín Huerta. Assessment of

OGC Web Processing Services for REST principles. (arXiv:1202.0723), feb 2012.

Comments: 25 pages, 3 Figures, 2 Tables. Paper accepted to International Journal

of Data Mining, Modelling and Management.

[15] E. Hazzard. Openlayers 2.10 beginner’s guide. Technical report, 2011.

[16] IETF. Tags for identifying languages. Technical report, Internet Engineering Task

Force, https://www.ietf.org/rfc/rfc4646.txt, 2006.

[17] Internet Engineering Task Force (IETF). Hypertext transfer protocol version 2

(http/2). Technical report, IETF, http://tools.ietf.org/pdf/rfc7540.pdf,

2015.

[18] Internet Engineering Task Force (IETF). Known issues and best practices for the

use of long polling and streaming in bidirectional http. Technical report, IETF,

http://www.hjp.at/doc/rfc/rfc6202.html, 2015.

92

http://www.deegree.org/
https://www.ietf.org/rfc/rfc4646.txt
http://tools.ietf.org/pdf/rfc7540.pdf
http://www.hjp.at/doc/rfc/rfc6202.html

[19] Ecma International. Ecmascript R© 2015 language specification. Technical re-

port, Ecma International, http://www.ecma-international.org/ecma-262/6.0/

index.html, 2015.

[20] K. Kaemarungsi. Distribution of WLAN Received Signal Strength Indication for

Indoor Location Determination. In 2006 1st International Symposium on Wireless

Pervasive Computing, pages 1–6. IEEE.

[21] E. Kazakov, A. Terekhov, E. Kapralov, and E. Panidi. WPS-based technology for

client-side remote sensing data processing. ISPRS - International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3:643–

649, apr 2015.

[22] Dimitrios Lymberopoulos, Jie Liu, Xue Yang, Romit Roy Choudhury, Vlado

Handziski, and Souvik Sen. A realistic evaluation and comparison of indoor location

technologies. In Proceedings of the 14th International Conference on Information

Processing in Sensor Networks - IPSN ’15, pages 178–189, New York, New York,

USA, 2015. ACM Press.

[23] I. Marin-Garcia, P. Chavez-Burbano, A Munoz-Arcentles, V Calero-Bravo, and

R Perez-Jimenez. Indoor location technique based on visible light communications

and ultrasound emitters. In 2015 IEEE International Conference on Consumer Elec-

tronics (ICCE), pages 297–298. IEEE, jan 2015.

[24] Danut Mihon, Teodor Stefanut, Victor Bacu, Cosmin Nandra, and Dorian Gorgan.

The geo-spatial service integration in educational domains by WPS compliant stan-

dard means. In 2014 IEEE 10th International Conference on Intelligent Computer

Communication and Processing (ICCP), pages 383–389. IEEE, sep 2014.

[25] Lionel M. Ni, Yunhao Liu, Yiu Cho Lau, and Abhishek P. Patil. LANDMARC:

Indoor Location Sensing Using Active RFID. Wireless Networks, 10(6):701–710, nov

2004.

[26] OGC. Wps 1.0 interface standard. Technical report, Open Geospatial Consortium,

http://portal.opengeospatial.org/files/?artifact_id=24151, 2007.

93

http://www.ecma-international.org/ecma-262/6.0/index.html
http://www.ecma-international.org/ecma-262/6.0/index.html
http://portal.opengeospatial.org/files/?artifact_id=24151

[27] OGC. Ogc web services common standard. Technical report, Open Geospatial

Consortium, http://portal.opengeospatial.org/files/?artifact_id=38867,

2010.

[28] OGC. Wps 2.0 interface standard. Technical report, Open Geospatial Consortium,

http://docs.opengeospatial.org/is/14-065/14-065.html, 2015.

[29] Open Geospatial Consortium (OGC). Website. http://www.opengeospatial.org/

ogc. Accessed: 2015-12-20.

[30] Victoria Pimentel and Bradford G. Nickerson. Communicating and Displaying Real-

Time Data with WebSocket. IEEE Internet Computing, 16(4):45–53, jul 2012.

[31] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The Cricket

location-support system. In Proceedings of the 6th annual international conference

on Mobile computing and networking - MobiCom ’00, pages 32–43, New York, New

York, USA, 2000. ACM Press.

[32] Mohamed Er Rida, Fuqiang Liu, Yassine Jadi, Amgad Ali Abdullah Algawhari, and

Ahmed Askourih. Indoor Location Position Based on Bluetooth Signal Strength. In

2015 2nd International Conference on Information Science and Control Engineering,

pages 769–773. IEEE, apr 2015.

[33] Beate Stollberg and Alexander Zipf. OGC Web Processing Service Interface for

Web Service Orchestration Aggregating Geo-processing Services in a Bomb Threat

Scenario. In Web and Wireless Geographical Information Systems, pages 239–251.

Springer Berlin Heidelberg, Berlin, Heidelberg.

[34] Joaquín Torres-Sospedra, Raúl Montoliu, Sergio Trilles, Óscar Belmonte, and

Joaquín Huerta. Comprehensive analysis of distance and similarity measures for

Wi-Fi fingerprinting indoor positioning systems. Expert Systems with Applications,

42(23):9263–9278, dec 2015.

[35] Joaquin Torres-Sospedra, David Rambla, Raul Montoliu, Oscar Belmonte, and

Joaquin Huerta. UJIIndoorLoc-Mag: A new database for magnetic field-based lo-

94

http://portal.opengeospatial.org/files/?artifact_id=38867
http://docs.opengeospatial.org/is/14-065/14-065.html
http://www.opengeospatial.org/ogc
http://www.opengeospatial.org/ogc

calization problems. In 2015 International Conference on Indoor Positioning and

Indoor Navigation (IPIN), pages 1–10. IEEE, oct 2015.

[36] Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gibbons. The active badge

location system. ACM Transactions on Information Systems, 10(1):91–102, jan 1992.

[37] WPSint. Website. http://wpsint.stage.tigris.org/. Accessed: 2015-12-20.

[38] Yan Yan Zhao, Xue Feng Liu, Jian Hua Mao, Xiao Ling Yang, and Hao Ran Wang.

52 North WPS and its Application in Fire Emergency Response. Advanced Materials

Research, 760-762:1748–1752, sep 2013.

[39] Chao Zhou, Houyao Xie, and Jiaoyang Shi. Wi-fi indoor location technology based on

k-means algorithm. In Zhenji Zhang, Zuojun Max Shen, Juliang Zhang, and Runtong

Zhang, editors, LISS 2014, pages 765–770. Springer Berlin Heidelberg, 2015.

95

http://wpsint.stage.tigris.org/

	Introduction
	State of the art
	Web Processing Service 2.0
	Definition
	GetCapabilities
	DescribeProcess
	Execute
	GetStatus
	GetResult

	Interaction between Client and Server: Sync and Async execution models
	Process discovery
	Process execution

	Issues and improvements

	Web Processing Service Client Library: async-wps
	Current implementations
	52north-wps-js
	OpenLayers 2

	Requirements
	Development and Results
	Technology and design decisions
	Requirements fulfillment
	Dependencies
	Tests
	Library compilation and test
	Source code

	Limitations

	Case Study: Indoor Location
	Definition
	Classification problem
	WPS 2.0 server: wps-classificator
	Requirements
	Development and Results
	Technology and design decisions
	Requirement fulfillment
	Dependencies

	Source code

	Web Application: Indoor Location Management Tool
	Requirements
	Development and Results
	Technology and design decisions
	Requirement fulfillment
	Dependencies

	Limitations
	Source code

	Discussion
	Conclusion
	Future work

